Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Huang Shijie | 2451 | 70.47% | 19 | 55.88% |
Boris Brezillon | 473 | 13.60% | 2 | 5.88% |
Miquel Raynal | 369 | 10.61% | 2 | 5.88% |
Sascha Hauer | 113 | 3.25% | 4 | 11.76% |
Wolfram Sang | 21 | 0.60% | 1 | 2.94% |
Fabio Estevam | 18 | 0.52% | 2 | 5.88% |
Martin Kepplinger | 12 | 0.35% | 1 | 2.94% |
Alex Bounine | 10 | 0.29% | 1 | 2.94% |
Shawn Guo | 10 | 0.29% | 1 | 2.94% |
Masanari Iida | 1 | 0.03% | 1 | 2.94% |
Total | 3478 | 34 |
// SPDX-License-Identifier: GPL-2.0+ /* * Freescale GPMI NAND Flash Driver * * Copyright (C) 2008-2011 Freescale Semiconductor, Inc. * Copyright (C) 2008 Embedded Alley Solutions, Inc. */ #include <linux/delay.h> #include <linux/clk.h> #include <linux/slab.h> #include "gpmi-nand.h" #include "gpmi-regs.h" #include "bch-regs.h" /* Converts time to clock cycles */ #define TO_CYCLES(duration, period) DIV_ROUND_UP_ULL(duration, period) #define MXS_SET_ADDR 0x4 #define MXS_CLR_ADDR 0x8 /* * Clear the bit and poll it cleared. This is usually called with * a reset address and mask being either SFTRST(bit 31) or CLKGATE * (bit 30). */ static int clear_poll_bit(void __iomem *addr, u32 mask) { int timeout = 0x400; /* clear the bit */ writel(mask, addr + MXS_CLR_ADDR); /* * SFTRST needs 3 GPMI clocks to settle, the reference manual * recommends to wait 1us. */ udelay(1); /* poll the bit becoming clear */ while ((readl(addr) & mask) && --timeout) /* nothing */; return !timeout; } #define MODULE_CLKGATE (1 << 30) #define MODULE_SFTRST (1 << 31) /* * The current mxs_reset_block() will do two things: * [1] enable the module. * [2] reset the module. * * In most of the cases, it's ok. * But in MX23, there is a hardware bug in the BCH block (see erratum #2847). * If you try to soft reset the BCH block, it becomes unusable until * the next hard reset. This case occurs in the NAND boot mode. When the board * boots by NAND, the ROM of the chip will initialize the BCH blocks itself. * So If the driver tries to reset the BCH again, the BCH will not work anymore. * You will see a DMA timeout in this case. The bug has been fixed * in the following chips, such as MX28. * * To avoid this bug, just add a new parameter `just_enable` for * the mxs_reset_block(), and rewrite it here. */ static int gpmi_reset_block(void __iomem *reset_addr, bool just_enable) { int ret; int timeout = 0x400; /* clear and poll SFTRST */ ret = clear_poll_bit(reset_addr, MODULE_SFTRST); if (unlikely(ret)) goto error; /* clear CLKGATE */ writel(MODULE_CLKGATE, reset_addr + MXS_CLR_ADDR); if (!just_enable) { /* set SFTRST to reset the block */ writel(MODULE_SFTRST, reset_addr + MXS_SET_ADDR); udelay(1); /* poll CLKGATE becoming set */ while ((!(readl(reset_addr) & MODULE_CLKGATE)) && --timeout) /* nothing */; if (unlikely(!timeout)) goto error; } /* clear and poll SFTRST */ ret = clear_poll_bit(reset_addr, MODULE_SFTRST); if (unlikely(ret)) goto error; /* clear and poll CLKGATE */ ret = clear_poll_bit(reset_addr, MODULE_CLKGATE); if (unlikely(ret)) goto error; return 0; error: pr_err("%s(%p): module reset timeout\n", __func__, reset_addr); return -ETIMEDOUT; } static int __gpmi_enable_clk(struct gpmi_nand_data *this, bool v) { struct clk *clk; int ret; int i; for (i = 0; i < GPMI_CLK_MAX; i++) { clk = this->resources.clock[i]; if (!clk) break; if (v) { ret = clk_prepare_enable(clk); if (ret) goto err_clk; } else { clk_disable_unprepare(clk); } } return 0; err_clk: for (; i > 0; i--) clk_disable_unprepare(this->resources.clock[i - 1]); return ret; } int gpmi_enable_clk(struct gpmi_nand_data *this) { return __gpmi_enable_clk(this, true); } int gpmi_disable_clk(struct gpmi_nand_data *this) { return __gpmi_enable_clk(this, false); } int gpmi_init(struct gpmi_nand_data *this) { struct resources *r = &this->resources; int ret; ret = gpmi_enable_clk(this); if (ret) return ret; ret = gpmi_reset_block(r->gpmi_regs, false); if (ret) goto err_out; /* * Reset BCH here, too. We got failures otherwise :( * See later BCH reset for explanation of MX23 and MX28 handling */ ret = gpmi_reset_block(r->bch_regs, GPMI_IS_MX23(this) || GPMI_IS_MX28(this)); if (ret) goto err_out; /* Choose NAND mode. */ writel(BM_GPMI_CTRL1_GPMI_MODE, r->gpmi_regs + HW_GPMI_CTRL1_CLR); /* Set the IRQ polarity. */ writel(BM_GPMI_CTRL1_ATA_IRQRDY_POLARITY, r->gpmi_regs + HW_GPMI_CTRL1_SET); /* Disable Write-Protection. */ writel(BM_GPMI_CTRL1_DEV_RESET, r->gpmi_regs + HW_GPMI_CTRL1_SET); /* Select BCH ECC. */ writel(BM_GPMI_CTRL1_BCH_MODE, r->gpmi_regs + HW_GPMI_CTRL1_SET); /* * Decouple the chip select from dma channel. We use dma0 for all * the chips. */ writel(BM_GPMI_CTRL1_DECOUPLE_CS, r->gpmi_regs + HW_GPMI_CTRL1_SET); gpmi_disable_clk(this); return 0; err_out: gpmi_disable_clk(this); return ret; } /* This function is very useful. It is called only when the bug occur. */ void gpmi_dump_info(struct gpmi_nand_data *this) { struct resources *r = &this->resources; struct bch_geometry *geo = &this->bch_geometry; u32 reg; int i; dev_err(this->dev, "Show GPMI registers :\n"); for (i = 0; i <= HW_GPMI_DEBUG / 0x10 + 1; i++) { reg = readl(r->gpmi_regs + i * 0x10); dev_err(this->dev, "offset 0x%.3x : 0x%.8x\n", i * 0x10, reg); } /* start to print out the BCH info */ dev_err(this->dev, "Show BCH registers :\n"); for (i = 0; i <= HW_BCH_VERSION / 0x10 + 1; i++) { reg = readl(r->bch_regs + i * 0x10); dev_err(this->dev, "offset 0x%.3x : 0x%.8x\n", i * 0x10, reg); } dev_err(this->dev, "BCH Geometry :\n" "GF length : %u\n" "ECC Strength : %u\n" "Page Size in Bytes : %u\n" "Metadata Size in Bytes : %u\n" "ECC Chunk Size in Bytes: %u\n" "ECC Chunk Count : %u\n" "Payload Size in Bytes : %u\n" "Auxiliary Size in Bytes: %u\n" "Auxiliary Status Offset: %u\n" "Block Mark Byte Offset : %u\n" "Block Mark Bit Offset : %u\n", geo->gf_len, geo->ecc_strength, geo->page_size, geo->metadata_size, geo->ecc_chunk_size, geo->ecc_chunk_count, geo->payload_size, geo->auxiliary_size, geo->auxiliary_status_offset, geo->block_mark_byte_offset, geo->block_mark_bit_offset); } /* Configures the geometry for BCH. */ int bch_set_geometry(struct gpmi_nand_data *this) { struct resources *r = &this->resources; struct bch_geometry *bch_geo = &this->bch_geometry; unsigned int block_count; unsigned int block_size; unsigned int metadata_size; unsigned int ecc_strength; unsigned int page_size; unsigned int gf_len; int ret; ret = common_nfc_set_geometry(this); if (ret) return ret; block_count = bch_geo->ecc_chunk_count - 1; block_size = bch_geo->ecc_chunk_size; metadata_size = bch_geo->metadata_size; ecc_strength = bch_geo->ecc_strength >> 1; page_size = bch_geo->page_size; gf_len = bch_geo->gf_len; ret = gpmi_enable_clk(this); if (ret) return ret; /* * Due to erratum #2847 of the MX23, the BCH cannot be soft reset on this * chip, otherwise it will lock up. So we skip resetting BCH on the MX23. * and MX28. */ ret = gpmi_reset_block(r->bch_regs, GPMI_IS_MX23(this) || GPMI_IS_MX28(this)); if (ret) goto err_out; /* Configure layout 0. */ writel(BF_BCH_FLASH0LAYOUT0_NBLOCKS(block_count) | BF_BCH_FLASH0LAYOUT0_META_SIZE(metadata_size) | BF_BCH_FLASH0LAYOUT0_ECC0(ecc_strength, this) | BF_BCH_FLASH0LAYOUT0_GF(gf_len, this) | BF_BCH_FLASH0LAYOUT0_DATA0_SIZE(block_size, this), r->bch_regs + HW_BCH_FLASH0LAYOUT0); writel(BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(page_size) | BF_BCH_FLASH0LAYOUT1_ECCN(ecc_strength, this) | BF_BCH_FLASH0LAYOUT1_GF(gf_len, this) | BF_BCH_FLASH0LAYOUT1_DATAN_SIZE(block_size, this), r->bch_regs + HW_BCH_FLASH0LAYOUT1); /* Set *all* chip selects to use layout 0. */ writel(0, r->bch_regs + HW_BCH_LAYOUTSELECT); /* Enable interrupts. */ writel(BM_BCH_CTRL_COMPLETE_IRQ_EN, r->bch_regs + HW_BCH_CTRL_SET); gpmi_disable_clk(this); return 0; err_out: gpmi_disable_clk(this); return ret; } /* * <1> Firstly, we should know what's the GPMI-clock means. * The GPMI-clock is the internal clock in the gpmi nand controller. * If you set 100MHz to gpmi nand controller, the GPMI-clock's period * is 10ns. Mark the GPMI-clock's period as GPMI-clock-period. * * <2> Secondly, we should know what's the frequency on the nand chip pins. * The frequency on the nand chip pins is derived from the GPMI-clock. * We can get it from the following equation: * * F = G / (DS + DH) * * F : the frequency on the nand chip pins. * G : the GPMI clock, such as 100MHz. * DS : GPMI_HW_GPMI_TIMING0:DATA_SETUP * DH : GPMI_HW_GPMI_TIMING0:DATA_HOLD * * <3> Thirdly, when the frequency on the nand chip pins is above 33MHz, * the nand EDO(extended Data Out) timing could be applied. * The GPMI implements a feedback read strobe to sample the read data. * The feedback read strobe can be delayed to support the nand EDO timing * where the read strobe may deasserts before the read data is valid, and * read data is valid for some time after read strobe. * * The following figure illustrates some aspects of a NAND Flash read: * * |<---tREA---->| * | | * | | | * |<--tRP-->| | * | | | * __ ___|__________________________________ * RDN \________/ | * | * /---------\ * Read Data --------------< >--------- * \---------/ * | | * |<-D->| * FeedbackRDN ________ ____________ * \___________/ * * D stands for delay, set in the HW_GPMI_CTRL1:RDN_DELAY. * * * <4> Now, we begin to describe how to compute the right RDN_DELAY. * * 4.1) From the aspect of the nand chip pins: * Delay = (tREA + C - tRP) {1} * * tREA : the maximum read access time. * C : a constant to adjust the delay. default is 4000ps. * tRP : the read pulse width, which is exactly: * tRP = (GPMI-clock-period) * DATA_SETUP * * 4.2) From the aspect of the GPMI nand controller: * Delay = RDN_DELAY * 0.125 * RP {2} * * RP : the DLL reference period. * if (GPMI-clock-period > DLL_THRETHOLD) * RP = GPMI-clock-period / 2; * else * RP = GPMI-clock-period; * * Set the HW_GPMI_CTRL1:HALF_PERIOD if GPMI-clock-period * is greater DLL_THRETHOLD. In other SOCs, the DLL_THRETHOLD * is 16000ps, but in mx6q, we use 12000ps. * * 4.3) since {1} equals {2}, we get: * * (tREA + 4000 - tRP) * 8 * RDN_DELAY = ----------------------- {3} * RP */ static void gpmi_nfc_compute_timings(struct gpmi_nand_data *this, const struct nand_sdr_timings *sdr) { struct gpmi_nfc_hardware_timing *hw = &this->hw; unsigned int dll_threshold_ps = this->devdata->max_chain_delay; unsigned int period_ps, reference_period_ps; unsigned int data_setup_cycles, data_hold_cycles, addr_setup_cycles; unsigned int tRP_ps; bool use_half_period; int sample_delay_ps, sample_delay_factor; u16 busy_timeout_cycles; u8 wrn_dly_sel; if (sdr->tRC_min >= 30000) { /* ONFI non-EDO modes [0-3] */ hw->clk_rate = 22000000; wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_4_TO_8NS; } else if (sdr->tRC_min >= 25000) { /* ONFI EDO mode 4 */ hw->clk_rate = 80000000; wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_NO_DELAY; } else { /* ONFI EDO mode 5 */ hw->clk_rate = 100000000; wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_NO_DELAY; } /* SDR core timings are given in picoseconds */ period_ps = div_u64((u64)NSEC_PER_SEC * 1000, hw->clk_rate); addr_setup_cycles = TO_CYCLES(sdr->tALS_min, period_ps); data_setup_cycles = TO_CYCLES(sdr->tDS_min, period_ps); data_hold_cycles = TO_CYCLES(sdr->tDH_min, period_ps); busy_timeout_cycles = TO_CYCLES(sdr->tWB_max + sdr->tR_max, period_ps); hw->timing0 = BF_GPMI_TIMING0_ADDRESS_SETUP(addr_setup_cycles) | BF_GPMI_TIMING0_DATA_HOLD(data_hold_cycles) | BF_GPMI_TIMING0_DATA_SETUP(data_setup_cycles); hw->timing1 = BF_GPMI_TIMING1_BUSY_TIMEOUT(busy_timeout_cycles * 4096); /* * Derive NFC ideal delay from {3}: * * (tREA + 4000 - tRP) * 8 * RDN_DELAY = ----------------------- * RP */ if (period_ps > dll_threshold_ps) { use_half_period = true; reference_period_ps = period_ps / 2; } else { use_half_period = false; reference_period_ps = period_ps; } tRP_ps = data_setup_cycles * period_ps; sample_delay_ps = (sdr->tREA_max + 4000 - tRP_ps) * 8; if (sample_delay_ps > 0) sample_delay_factor = sample_delay_ps / reference_period_ps; else sample_delay_factor = 0; hw->ctrl1n = BF_GPMI_CTRL1_WRN_DLY_SEL(wrn_dly_sel); if (sample_delay_factor) hw->ctrl1n |= BF_GPMI_CTRL1_RDN_DELAY(sample_delay_factor) | BM_GPMI_CTRL1_DLL_ENABLE | (use_half_period ? BM_GPMI_CTRL1_HALF_PERIOD : 0); } void gpmi_nfc_apply_timings(struct gpmi_nand_data *this) { struct gpmi_nfc_hardware_timing *hw = &this->hw; struct resources *r = &this->resources; void __iomem *gpmi_regs = r->gpmi_regs; unsigned int dll_wait_time_us; clk_set_rate(r->clock[0], hw->clk_rate); writel(hw->timing0, gpmi_regs + HW_GPMI_TIMING0); writel(hw->timing1, gpmi_regs + HW_GPMI_TIMING1); /* * Clear several CTRL1 fields, DLL must be disabled when setting * RDN_DELAY or HALF_PERIOD. */ writel(BM_GPMI_CTRL1_CLEAR_MASK, gpmi_regs + HW_GPMI_CTRL1_CLR); writel(hw->ctrl1n, gpmi_regs + HW_GPMI_CTRL1_SET); /* Wait 64 clock cycles before using the GPMI after enabling the DLL */ dll_wait_time_us = USEC_PER_SEC / hw->clk_rate * 64; if (!dll_wait_time_us) dll_wait_time_us = 1; /* Wait for the DLL to settle. */ udelay(dll_wait_time_us); } int gpmi_setup_data_interface(struct nand_chip *chip, int chipnr, const struct nand_data_interface *conf) { struct gpmi_nand_data *this = nand_get_controller_data(chip); const struct nand_sdr_timings *sdr; /* Retrieve required NAND timings */ sdr = nand_get_sdr_timings(conf); if (IS_ERR(sdr)) return PTR_ERR(sdr); /* Only MX6 GPMI controller can reach EDO timings */ if (sdr->tRC_min <= 25000 && !GPMI_IS_MX6(this)) return -ENOTSUPP; /* Stop here if this call was just a check */ if (chipnr < 0) return 0; /* Do the actual derivation of the controller timings */ gpmi_nfc_compute_timings(this, sdr); this->hw.must_apply_timings = true; return 0; } /* Clears a BCH interrupt. */ void gpmi_clear_bch(struct gpmi_nand_data *this) { struct resources *r = &this->resources; writel(BM_BCH_CTRL_COMPLETE_IRQ, r->bch_regs + HW_BCH_CTRL_CLR); } /* Returns the Ready/Busy status of the given chip. */ int gpmi_is_ready(struct gpmi_nand_data *this, unsigned chip) { struct resources *r = &this->resources; uint32_t mask = 0; uint32_t reg = 0; if (GPMI_IS_MX23(this)) { mask = MX23_BM_GPMI_DEBUG_READY0 << chip; reg = readl(r->gpmi_regs + HW_GPMI_DEBUG); } else if (GPMI_IS_MX28(this) || GPMI_IS_MX6(this)) { /* * In the imx6, all the ready/busy pins are bound * together. So we only need to check chip 0. */ if (GPMI_IS_MX6(this)) chip = 0; /* MX28 shares the same R/B register as MX6Q. */ mask = MX28_BF_GPMI_STAT_READY_BUSY(1 << chip); reg = readl(r->gpmi_regs + HW_GPMI_STAT); } else dev_err(this->dev, "unknown arch.\n"); return reg & mask; } int gpmi_send_command(struct gpmi_nand_data *this) { struct dma_chan *channel = get_dma_chan(this); struct dma_async_tx_descriptor *desc; struct scatterlist *sgl; int chip = this->current_chip; int ret; u32 pio[3]; /* [1] send out the PIO words */ pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__WRITE) | BM_GPMI_CTRL0_WORD_LENGTH | BF_GPMI_CTRL0_CS(chip, this) | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this) | BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_CLE) | BM_GPMI_CTRL0_ADDRESS_INCREMENT | BF_GPMI_CTRL0_XFER_COUNT(this->command_length); pio[1] = pio[2] = 0; desc = dmaengine_prep_slave_sg(channel, (struct scatterlist *)pio, ARRAY_SIZE(pio), DMA_TRANS_NONE, 0); if (!desc) return -EINVAL; /* [2] send out the COMMAND + ADDRESS string stored in @buffer */ sgl = &this->cmd_sgl; sg_init_one(sgl, this->cmd_buffer, this->command_length); dma_map_sg(this->dev, sgl, 1, DMA_TO_DEVICE); desc = dmaengine_prep_slave_sg(channel, sgl, 1, DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); if (!desc) return -EINVAL; /* [3] submit the DMA */ ret = start_dma_without_bch_irq(this, desc); dma_unmap_sg(this->dev, sgl, 1, DMA_TO_DEVICE); return ret; } int gpmi_send_data(struct gpmi_nand_data *this, const void *buf, int len) { struct dma_async_tx_descriptor *desc; struct dma_chan *channel = get_dma_chan(this); int chip = this->current_chip; int ret; uint32_t command_mode; uint32_t address; u32 pio[2]; /* [1] PIO */ command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WRITE; address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA; pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode) | BM_GPMI_CTRL0_WORD_LENGTH | BF_GPMI_CTRL0_CS(chip, this) | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this) | BF_GPMI_CTRL0_ADDRESS(address) | BF_GPMI_CTRL0_XFER_COUNT(len); pio[1] = 0; desc = dmaengine_prep_slave_sg(channel, (struct scatterlist *)pio, ARRAY_SIZE(pio), DMA_TRANS_NONE, 0); if (!desc) return -EINVAL; /* [2] send DMA request */ prepare_data_dma(this, buf, len, DMA_TO_DEVICE); desc = dmaengine_prep_slave_sg(channel, &this->data_sgl, 1, DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); if (!desc) return -EINVAL; /* [3] submit the DMA */ ret = start_dma_without_bch_irq(this, desc); dma_unmap_sg(this->dev, &this->data_sgl, 1, DMA_TO_DEVICE); return ret; } int gpmi_read_data(struct gpmi_nand_data *this, void *buf, int len) { struct dma_async_tx_descriptor *desc; struct dma_chan *channel = get_dma_chan(this); int chip = this->current_chip; int ret; u32 pio[2]; bool direct; /* [1] : send PIO */ pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__READ) | BM_GPMI_CTRL0_WORD_LENGTH | BF_GPMI_CTRL0_CS(chip, this) | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this) | BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_DATA) | BF_GPMI_CTRL0_XFER_COUNT(len); pio[1] = 0; desc = dmaengine_prep_slave_sg(channel, (struct scatterlist *)pio, ARRAY_SIZE(pio), DMA_TRANS_NONE, 0); if (!desc) return -EINVAL; /* [2] : send DMA request */ direct = prepare_data_dma(this, buf, len, DMA_FROM_DEVICE); desc = dmaengine_prep_slave_sg(channel, &this->data_sgl, 1, DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); if (!desc) return -EINVAL; /* [3] : submit the DMA */ ret = start_dma_without_bch_irq(this, desc); dma_unmap_sg(this->dev, &this->data_sgl, 1, DMA_FROM_DEVICE); if (!direct) memcpy(buf, this->data_buffer_dma, len); return ret; } int gpmi_send_page(struct gpmi_nand_data *this, dma_addr_t payload, dma_addr_t auxiliary) { struct bch_geometry *geo = &this->bch_geometry; uint32_t command_mode; uint32_t address; uint32_t ecc_command; uint32_t buffer_mask; struct dma_async_tx_descriptor *desc; struct dma_chan *channel = get_dma_chan(this); int chip = this->current_chip; u32 pio[6]; /* A DMA descriptor that does an ECC page read. */ command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WRITE; address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA; ecc_command = BV_GPMI_ECCCTRL_ECC_CMD__BCH_ENCODE; buffer_mask = BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE | BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY; pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode) | BM_GPMI_CTRL0_WORD_LENGTH | BF_GPMI_CTRL0_CS(chip, this) | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this) | BF_GPMI_CTRL0_ADDRESS(address) | BF_GPMI_CTRL0_XFER_COUNT(0); pio[1] = 0; pio[2] = BM_GPMI_ECCCTRL_ENABLE_ECC | BF_GPMI_ECCCTRL_ECC_CMD(ecc_command) | BF_GPMI_ECCCTRL_BUFFER_MASK(buffer_mask); pio[3] = geo->page_size; pio[4] = payload; pio[5] = auxiliary; desc = dmaengine_prep_slave_sg(channel, (struct scatterlist *)pio, ARRAY_SIZE(pio), DMA_TRANS_NONE, DMA_CTRL_ACK); if (!desc) return -EINVAL; return start_dma_with_bch_irq(this, desc); } int gpmi_read_page(struct gpmi_nand_data *this, dma_addr_t payload, dma_addr_t auxiliary) { struct bch_geometry *geo = &this->bch_geometry; uint32_t command_mode; uint32_t address; uint32_t ecc_command; uint32_t buffer_mask; struct dma_async_tx_descriptor *desc; struct dma_chan *channel = get_dma_chan(this); int chip = this->current_chip; u32 pio[6]; /* [1] Wait for the chip to report ready. */ command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY; address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA; pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode) | BM_GPMI_CTRL0_WORD_LENGTH | BF_GPMI_CTRL0_CS(chip, this) | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this) | BF_GPMI_CTRL0_ADDRESS(address) | BF_GPMI_CTRL0_XFER_COUNT(0); pio[1] = 0; desc = dmaengine_prep_slave_sg(channel, (struct scatterlist *)pio, 2, DMA_TRANS_NONE, 0); if (!desc) return -EINVAL; /* [2] Enable the BCH block and read. */ command_mode = BV_GPMI_CTRL0_COMMAND_MODE__READ; address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA; ecc_command = BV_GPMI_ECCCTRL_ECC_CMD__BCH_DECODE; buffer_mask = BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE | BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY; pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode) | BM_GPMI_CTRL0_WORD_LENGTH | BF_GPMI_CTRL0_CS(chip, this) | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this) | BF_GPMI_CTRL0_ADDRESS(address) | BF_GPMI_CTRL0_XFER_COUNT(geo->page_size); pio[1] = 0; pio[2] = BM_GPMI_ECCCTRL_ENABLE_ECC | BF_GPMI_ECCCTRL_ECC_CMD(ecc_command) | BF_GPMI_ECCCTRL_BUFFER_MASK(buffer_mask); pio[3] = geo->page_size; pio[4] = payload; pio[5] = auxiliary; desc = dmaengine_prep_slave_sg(channel, (struct scatterlist *)pio, ARRAY_SIZE(pio), DMA_TRANS_NONE, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); if (!desc) return -EINVAL; /* [3] Disable the BCH block */ command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY; address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA; pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode) | BM_GPMI_CTRL0_WORD_LENGTH | BF_GPMI_CTRL0_CS(chip, this) | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this) | BF_GPMI_CTRL0_ADDRESS(address) | BF_GPMI_CTRL0_XFER_COUNT(geo->page_size); pio[1] = 0; pio[2] = 0; /* clear GPMI_HW_GPMI_ECCCTRL, disable the BCH. */ desc = dmaengine_prep_slave_sg(channel, (struct scatterlist *)pio, 3, DMA_TRANS_NONE, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); if (!desc) return -EINVAL; /* [4] submit the DMA */ return start_dma_with_bch_irq(this, desc); } /** * gpmi_copy_bits - copy bits from one memory region to another * @dst: destination buffer * @dst_bit_off: bit offset we're starting to write at * @src: source buffer * @src_bit_off: bit offset we're starting to read from * @nbits: number of bits to copy * * This functions copies bits from one memory region to another, and is used by * the GPMI driver to copy ECC sections which are not guaranteed to be byte * aligned. * * src and dst should not overlap. * */ void gpmi_copy_bits(u8 *dst, size_t dst_bit_off, const u8 *src, size_t src_bit_off, size_t nbits) { size_t i; size_t nbytes; u32 src_buffer = 0; size_t bits_in_src_buffer = 0; if (!nbits) return; /* * Move src and dst pointers to the closest byte pointer and store bit * offsets within a byte. */ src += src_bit_off / 8; src_bit_off %= 8; dst += dst_bit_off / 8; dst_bit_off %= 8; /* * Initialize the src_buffer value with bits available in the first * byte of data so that we end up with a byte aligned src pointer. */ if (src_bit_off) { src_buffer = src[0] >> src_bit_off; if (nbits >= (8 - src_bit_off)) { bits_in_src_buffer += 8 - src_bit_off; } else { src_buffer &= GENMASK(nbits - 1, 0); bits_in_src_buffer += nbits; } nbits -= bits_in_src_buffer; src++; } /* Calculate the number of bytes that can be copied from src to dst. */ nbytes = nbits / 8; /* Try to align dst to a byte boundary. */ if (dst_bit_off) { if (bits_in_src_buffer < (8 - dst_bit_off) && nbytes) { src_buffer |= src[0] << bits_in_src_buffer; bits_in_src_buffer += 8; src++; nbytes--; } if (bits_in_src_buffer >= (8 - dst_bit_off)) { dst[0] &= GENMASK(dst_bit_off - 1, 0); dst[0] |= src_buffer << dst_bit_off; src_buffer >>= (8 - dst_bit_off); bits_in_src_buffer -= (8 - dst_bit_off); dst_bit_off = 0; dst++; if (bits_in_src_buffer > 7) { bits_in_src_buffer -= 8; dst[0] = src_buffer; dst++; src_buffer >>= 8; } } } if (!bits_in_src_buffer && !dst_bit_off) { /* * Both src and dst pointers are byte aligned, thus we can * just use the optimized memcpy function. */ if (nbytes) memcpy(dst, src, nbytes); } else { /* * src buffer is not byte aligned, hence we have to copy each * src byte to the src_buffer variable before extracting a byte * to store in dst. */ for (i = 0; i < nbytes; i++) { src_buffer |= src[i] << bits_in_src_buffer; dst[i] = src_buffer; src_buffer >>= 8; } } /* Update dst and src pointers */ dst += nbytes; src += nbytes; /* * nbits is the number of remaining bits. It should not exceed 8 as * we've already copied as much bytes as possible. */ nbits %= 8; /* * If there's no more bits to copy to the destination and src buffer * was already byte aligned, then we're done. */ if (!nbits && !bits_in_src_buffer) return; /* Copy the remaining bits to src_buffer */ if (nbits) src_buffer |= (*src & GENMASK(nbits - 1, 0)) << bits_in_src_buffer; bits_in_src_buffer += nbits; /* * In case there were not enough bits to get a byte aligned dst buffer * prepare the src_buffer variable to match the dst organization (shift * src_buffer by dst_bit_off and retrieve the least significant bits * from dst). */ if (dst_bit_off) src_buffer = (src_buffer << dst_bit_off) | (*dst & GENMASK(dst_bit_off - 1, 0)); bits_in_src_buffer += dst_bit_off; /* * Keep most significant bits from dst if we end up with an unaligned * number of bits. */ nbytes = bits_in_src_buffer / 8; if (bits_in_src_buffer % 8) { src_buffer |= (dst[nbytes] & GENMASK(7, bits_in_src_buffer % 8)) << (nbytes * 8); nbytes++; } /* Copy the remaining bytes to dst */ for (i = 0; i < nbytes; i++) { dst[i] = src_buffer; src_buffer >>= 8; } }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1