Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Boris Brezillon | 2036 | 100.00% | 5 | 100.00% |
Total | 2036 | 5 |
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com) * 2002-2006 Thomas Gleixner (tglx@linutronix.de) * * Credits: * David Woodhouse for adding multichip support * * Aleph One Ltd. and Toby Churchill Ltd. for supporting the * rework for 2K page size chips * * This file contains all legacy helpers/code that should be removed * at some point. */ #include <linux/delay.h> #include <linux/io.h> #include <linux/nmi.h> #include "internals.h" /** * nand_read_byte - [DEFAULT] read one byte from the chip * @chip: NAND chip object * * Default read function for 8bit buswidth */ static uint8_t nand_read_byte(struct nand_chip *chip) { return readb(chip->legacy.IO_ADDR_R); } /** * nand_read_byte16 - [DEFAULT] read one byte endianness aware from the chip * @chip: NAND chip object * * Default read function for 16bit buswidth with endianness conversion. * */ static uint8_t nand_read_byte16(struct nand_chip *chip) { return (uint8_t) cpu_to_le16(readw(chip->legacy.IO_ADDR_R)); } /** * nand_select_chip - [DEFAULT] control CE line * @chip: NAND chip object * @chipnr: chipnumber to select, -1 for deselect * * Default select function for 1 chip devices. */ static void nand_select_chip(struct nand_chip *chip, int chipnr) { switch (chipnr) { case -1: chip->legacy.cmd_ctrl(chip, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE); break; case 0: break; default: BUG(); } } /** * nand_write_byte - [DEFAULT] write single byte to chip * @chip: NAND chip object * @byte: value to write * * Default function to write a byte to I/O[7:0] */ static void nand_write_byte(struct nand_chip *chip, uint8_t byte) { chip->legacy.write_buf(chip, &byte, 1); } /** * nand_write_byte16 - [DEFAULT] write single byte to a chip with width 16 * @chip: NAND chip object * @byte: value to write * * Default function to write a byte to I/O[7:0] on a 16-bit wide chip. */ static void nand_write_byte16(struct nand_chip *chip, uint8_t byte) { uint16_t word = byte; /* * It's not entirely clear what should happen to I/O[15:8] when writing * a byte. The ONFi spec (Revision 3.1; 2012-09-19, Section 2.16) reads: * * When the host supports a 16-bit bus width, only data is * transferred at the 16-bit width. All address and command line * transfers shall use only the lower 8-bits of the data bus. During * command transfers, the host may place any value on the upper * 8-bits of the data bus. During address transfers, the host shall * set the upper 8-bits of the data bus to 00h. * * One user of the write_byte callback is nand_set_features. The * four parameters are specified to be written to I/O[7:0], but this is * neither an address nor a command transfer. Let's assume a 0 on the * upper I/O lines is OK. */ chip->legacy.write_buf(chip, (uint8_t *)&word, 2); } /** * nand_write_buf - [DEFAULT] write buffer to chip * @chip: NAND chip object * @buf: data buffer * @len: number of bytes to write * * Default write function for 8bit buswidth. */ static void nand_write_buf(struct nand_chip *chip, const uint8_t *buf, int len) { iowrite8_rep(chip->legacy.IO_ADDR_W, buf, len); } /** * nand_read_buf - [DEFAULT] read chip data into buffer * @chip: NAND chip object * @buf: buffer to store date * @len: number of bytes to read * * Default read function for 8bit buswidth. */ static void nand_read_buf(struct nand_chip *chip, uint8_t *buf, int len) { ioread8_rep(chip->legacy.IO_ADDR_R, buf, len); } /** * nand_write_buf16 - [DEFAULT] write buffer to chip * @chip: NAND chip object * @buf: data buffer * @len: number of bytes to write * * Default write function for 16bit buswidth. */ static void nand_write_buf16(struct nand_chip *chip, const uint8_t *buf, int len) { u16 *p = (u16 *) buf; iowrite16_rep(chip->legacy.IO_ADDR_W, p, len >> 1); } /** * nand_read_buf16 - [DEFAULT] read chip data into buffer * @chip: NAND chip object * @buf: buffer to store date * @len: number of bytes to read * * Default read function for 16bit buswidth. */ static void nand_read_buf16(struct nand_chip *chip, uint8_t *buf, int len) { u16 *p = (u16 *) buf; ioread16_rep(chip->legacy.IO_ADDR_R, p, len >> 1); } /** * panic_nand_wait_ready - [GENERIC] Wait for the ready pin after commands. * @chip: NAND chip object * @timeo: Timeout * * Helper function for nand_wait_ready used when needing to wait in interrupt * context. */ static void panic_nand_wait_ready(struct nand_chip *chip, unsigned long timeo) { int i; /* Wait for the device to get ready */ for (i = 0; i < timeo; i++) { if (chip->legacy.dev_ready(chip)) break; touch_softlockup_watchdog(); mdelay(1); } } /** * nand_wait_ready - [GENERIC] Wait for the ready pin after commands. * @chip: NAND chip object * * Wait for the ready pin after a command, and warn if a timeout occurs. */ void nand_wait_ready(struct nand_chip *chip) { unsigned long timeo = 400; if (in_interrupt() || oops_in_progress) return panic_nand_wait_ready(chip, timeo); /* Wait until command is processed or timeout occurs */ timeo = jiffies + msecs_to_jiffies(timeo); do { if (chip->legacy.dev_ready(chip)) return; cond_resched(); } while (time_before(jiffies, timeo)); if (!chip->legacy.dev_ready(chip)) pr_warn_ratelimited("timeout while waiting for chip to become ready\n"); } EXPORT_SYMBOL_GPL(nand_wait_ready); /** * nand_wait_status_ready - [GENERIC] Wait for the ready status after commands. * @chip: NAND chip object * @timeo: Timeout in ms * * Wait for status ready (i.e. command done) or timeout. */ static void nand_wait_status_ready(struct nand_chip *chip, unsigned long timeo) { int ret; timeo = jiffies + msecs_to_jiffies(timeo); do { u8 status; ret = nand_read_data_op(chip, &status, sizeof(status), true); if (ret) return; if (status & NAND_STATUS_READY) break; touch_softlockup_watchdog(); } while (time_before(jiffies, timeo)); }; /** * nand_command - [DEFAULT] Send command to NAND device * @chip: NAND chip object * @command: the command to be sent * @column: the column address for this command, -1 if none * @page_addr: the page address for this command, -1 if none * * Send command to NAND device. This function is used for small page devices * (512 Bytes per page). */ static void nand_command(struct nand_chip *chip, unsigned int command, int column, int page_addr) { struct mtd_info *mtd = nand_to_mtd(chip); int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE; /* Write out the command to the device */ if (command == NAND_CMD_SEQIN) { int readcmd; if (column >= mtd->writesize) { /* OOB area */ column -= mtd->writesize; readcmd = NAND_CMD_READOOB; } else if (column < 256) { /* First 256 bytes --> READ0 */ readcmd = NAND_CMD_READ0; } else { column -= 256; readcmd = NAND_CMD_READ1; } chip->legacy.cmd_ctrl(chip, readcmd, ctrl); ctrl &= ~NAND_CTRL_CHANGE; } if (command != NAND_CMD_NONE) chip->legacy.cmd_ctrl(chip, command, ctrl); /* Address cycle, when necessary */ ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE; /* Serially input address */ if (column != -1) { /* Adjust columns for 16 bit buswidth */ if (chip->options & NAND_BUSWIDTH_16 && !nand_opcode_8bits(command)) column >>= 1; chip->legacy.cmd_ctrl(chip, column, ctrl); ctrl &= ~NAND_CTRL_CHANGE; } if (page_addr != -1) { chip->legacy.cmd_ctrl(chip, page_addr, ctrl); ctrl &= ~NAND_CTRL_CHANGE; chip->legacy.cmd_ctrl(chip, page_addr >> 8, ctrl); if (chip->options & NAND_ROW_ADDR_3) chip->legacy.cmd_ctrl(chip, page_addr >> 16, ctrl); } chip->legacy.cmd_ctrl(chip, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE); /* * Program and erase have their own busy handlers status and sequential * in needs no delay */ switch (command) { case NAND_CMD_NONE: case NAND_CMD_PAGEPROG: case NAND_CMD_ERASE1: case NAND_CMD_ERASE2: case NAND_CMD_SEQIN: case NAND_CMD_STATUS: case NAND_CMD_READID: case NAND_CMD_SET_FEATURES: return; case NAND_CMD_RESET: if (chip->legacy.dev_ready) break; udelay(chip->legacy.chip_delay); chip->legacy.cmd_ctrl(chip, NAND_CMD_STATUS, NAND_CTRL_CLE | NAND_CTRL_CHANGE); chip->legacy.cmd_ctrl(chip, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE); /* EZ-NAND can take upto 250ms as per ONFi v4.0 */ nand_wait_status_ready(chip, 250); return; /* This applies to read commands */ case NAND_CMD_READ0: /* * READ0 is sometimes used to exit GET STATUS mode. When this * is the case no address cycles are requested, and we can use * this information to detect that we should not wait for the * device to be ready. */ if (column == -1 && page_addr == -1) return; default: /* * If we don't have access to the busy pin, we apply the given * command delay */ if (!chip->legacy.dev_ready) { udelay(chip->legacy.chip_delay); return; } } /* * Apply this short delay always to ensure that we do wait tWB in * any case on any machine. */ ndelay(100); nand_wait_ready(chip); } static void nand_ccs_delay(struct nand_chip *chip) { /* * The controller already takes care of waiting for tCCS when the RNDIN * or RNDOUT command is sent, return directly. */ if (!(chip->options & NAND_WAIT_TCCS)) return; /* * Wait tCCS_min if it is correctly defined, otherwise wait 500ns * (which should be safe for all NANDs). */ if (nand_has_setup_data_iface(chip)) ndelay(chip->data_interface.timings.sdr.tCCS_min / 1000); else ndelay(500); } /** * nand_command_lp - [DEFAULT] Send command to NAND large page device * @chip: NAND chip object * @command: the command to be sent * @column: the column address for this command, -1 if none * @page_addr: the page address for this command, -1 if none * * Send command to NAND device. This is the version for the new large page * devices. We don't have the separate regions as we have in the small page * devices. We must emulate NAND_CMD_READOOB to keep the code compatible. */ static void nand_command_lp(struct nand_chip *chip, unsigned int command, int column, int page_addr) { struct mtd_info *mtd = nand_to_mtd(chip); /* Emulate NAND_CMD_READOOB */ if (command == NAND_CMD_READOOB) { column += mtd->writesize; command = NAND_CMD_READ0; } /* Command latch cycle */ if (command != NAND_CMD_NONE) chip->legacy.cmd_ctrl(chip, command, NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE); if (column != -1 || page_addr != -1) { int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE; /* Serially input address */ if (column != -1) { /* Adjust columns for 16 bit buswidth */ if (chip->options & NAND_BUSWIDTH_16 && !nand_opcode_8bits(command)) column >>= 1; chip->legacy.cmd_ctrl(chip, column, ctrl); ctrl &= ~NAND_CTRL_CHANGE; /* Only output a single addr cycle for 8bits opcodes. */ if (!nand_opcode_8bits(command)) chip->legacy.cmd_ctrl(chip, column >> 8, ctrl); } if (page_addr != -1) { chip->legacy.cmd_ctrl(chip, page_addr, ctrl); chip->legacy.cmd_ctrl(chip, page_addr >> 8, NAND_NCE | NAND_ALE); if (chip->options & NAND_ROW_ADDR_3) chip->legacy.cmd_ctrl(chip, page_addr >> 16, NAND_NCE | NAND_ALE); } } chip->legacy.cmd_ctrl(chip, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE); /* * Program and erase have their own busy handlers status, sequential * in and status need no delay. */ switch (command) { case NAND_CMD_NONE: case NAND_CMD_CACHEDPROG: case NAND_CMD_PAGEPROG: case NAND_CMD_ERASE1: case NAND_CMD_ERASE2: case NAND_CMD_SEQIN: case NAND_CMD_STATUS: case NAND_CMD_READID: case NAND_CMD_SET_FEATURES: return; case NAND_CMD_RNDIN: nand_ccs_delay(chip); return; case NAND_CMD_RESET: if (chip->legacy.dev_ready) break; udelay(chip->legacy.chip_delay); chip->legacy.cmd_ctrl(chip, NAND_CMD_STATUS, NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE); chip->legacy.cmd_ctrl(chip, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE); /* EZ-NAND can take upto 250ms as per ONFi v4.0 */ nand_wait_status_ready(chip, 250); return; case NAND_CMD_RNDOUT: /* No ready / busy check necessary */ chip->legacy.cmd_ctrl(chip, NAND_CMD_RNDOUTSTART, NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE); chip->legacy.cmd_ctrl(chip, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE); nand_ccs_delay(chip); return; case NAND_CMD_READ0: /* * READ0 is sometimes used to exit GET STATUS mode. When this * is the case no address cycles are requested, and we can use * this information to detect that READSTART should not be * issued. */ if (column == -1 && page_addr == -1) return; chip->legacy.cmd_ctrl(chip, NAND_CMD_READSTART, NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE); chip->legacy.cmd_ctrl(chip, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE); /* This applies to read commands */ default: /* * If we don't have access to the busy pin, we apply the given * command delay. */ if (!chip->legacy.dev_ready) { udelay(chip->legacy.chip_delay); return; } } /* * Apply this short delay always to ensure that we do wait tWB in * any case on any machine. */ ndelay(100); nand_wait_ready(chip); } /** * nand_get_set_features_notsupp - set/get features stub returning -ENOTSUPP * @chip: nand chip info structure * @addr: feature address. * @subfeature_param: the subfeature parameters, a four bytes array. * * Should be used by NAND controller drivers that do not support the SET/GET * FEATURES operations. */ int nand_get_set_features_notsupp(struct nand_chip *chip, int addr, u8 *subfeature_param) { return -ENOTSUPP; } EXPORT_SYMBOL(nand_get_set_features_notsupp); /** * nand_wait - [DEFAULT] wait until the command is done * @chip: NAND chip structure * * Wait for command done. This applies to erase and program only. */ static int nand_wait(struct nand_chip *chip) { unsigned long timeo = 400; u8 status; int ret; /* * Apply this short delay always to ensure that we do wait tWB in any * case on any machine. */ ndelay(100); ret = nand_status_op(chip, NULL); if (ret) return ret; if (in_interrupt() || oops_in_progress) panic_nand_wait(chip, timeo); else { timeo = jiffies + msecs_to_jiffies(timeo); do { if (chip->legacy.dev_ready) { if (chip->legacy.dev_ready(chip)) break; } else { ret = nand_read_data_op(chip, &status, sizeof(status), true); if (ret) return ret; if (status & NAND_STATUS_READY) break; } cond_resched(); } while (time_before(jiffies, timeo)); } ret = nand_read_data_op(chip, &status, sizeof(status), true); if (ret) return ret; /* This can happen if in case of timeout or buggy dev_ready */ WARN_ON(!(status & NAND_STATUS_READY)); return status; } void nand_legacy_set_defaults(struct nand_chip *chip) { unsigned int busw = chip->options & NAND_BUSWIDTH_16; if (nand_has_exec_op(chip)) return; /* check for proper chip_delay setup, set 20us if not */ if (!chip->legacy.chip_delay) chip->legacy.chip_delay = 20; /* check, if a user supplied command function given */ if (!chip->legacy.cmdfunc) chip->legacy.cmdfunc = nand_command; /* check, if a user supplied wait function given */ if (chip->legacy.waitfunc == NULL) chip->legacy.waitfunc = nand_wait; if (!chip->legacy.select_chip) chip->legacy.select_chip = nand_select_chip; /* If called twice, pointers that depend on busw may need to be reset */ if (!chip->legacy.read_byte || chip->legacy.read_byte == nand_read_byte) chip->legacy.read_byte = busw ? nand_read_byte16 : nand_read_byte; if (!chip->legacy.write_buf || chip->legacy.write_buf == nand_write_buf) chip->legacy.write_buf = busw ? nand_write_buf16 : nand_write_buf; if (!chip->legacy.write_byte || chip->legacy.write_byte == nand_write_byte) chip->legacy.write_byte = busw ? nand_write_byte16 : nand_write_byte; if (!chip->legacy.read_buf || chip->legacy.read_buf == nand_read_buf) chip->legacy.read_buf = busw ? nand_read_buf16 : nand_read_buf; } void nand_legacy_adjust_cmdfunc(struct nand_chip *chip) { struct mtd_info *mtd = nand_to_mtd(chip); /* Do not replace user supplied command function! */ if (mtd->writesize > 512 && chip->legacy.cmdfunc == nand_command) chip->legacy.cmdfunc = nand_command_lp; } int nand_legacy_check_hooks(struct nand_chip *chip) { /* * ->legacy.cmdfunc() is legacy and will only be used if ->exec_op() is * not populated. */ if (nand_has_exec_op(chip)) return 0; /* * Default functions assigned for ->legacy.cmdfunc() and * ->legacy.select_chip() both expect ->legacy.cmd_ctrl() to be * populated. */ if ((!chip->legacy.cmdfunc || !chip->legacy.select_chip) && !chip->legacy.cmd_ctrl) { pr_err("->legacy.cmd_ctrl() should be provided\n"); return -EINVAL; } return 0; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1