Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Huang Shijie | 3648 | 69.63% | 1 | 2.22% |
Allen Xu | 615 | 11.74% | 7 | 15.56% |
Yao Yuan | 318 | 6.07% | 2 | 4.44% |
Frank Li | 282 | 5.38% | 5 | 11.11% |
Fabio Estevam | 140 | 2.67% | 7 | 15.56% |
Brian Norris | 54 | 1.03% | 9 | 20.00% |
Yunhui Cui | 53 | 1.01% | 2 | 4.44% |
Yogesh Gaur | 50 | 0.95% | 2 | 4.44% |
Michal Suchanek | 24 | 0.46% | 2 | 4.44% |
Ahmad Fatoum | 23 | 0.44% | 1 | 2.22% |
Cyrille Pitchen | 16 | 0.31% | 1 | 2.22% |
Marek Vašut | 4 | 0.08% | 1 | 2.22% |
Corentin Labbe | 4 | 0.08% | 1 | 2.22% |
Liu Xiang | 3 | 0.06% | 1 | 2.22% |
Nicholas Mc Guire | 3 | 0.06% | 1 | 2.22% |
Fabian Frederick | 1 | 0.02% | 1 | 2.22% |
Alexander Stein | 1 | 0.02% | 1 | 2.22% |
Total | 5239 | 45 |
/* * Freescale QuadSPI driver. * * Copyright (C) 2013 Freescale Semiconductor, Inc. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/interrupt.h> #include <linux/errno.h> #include <linux/platform_device.h> #include <linux/sched.h> #include <linux/delay.h> #include <linux/io.h> #include <linux/clk.h> #include <linux/err.h> #include <linux/of.h> #include <linux/of_device.h> #include <linux/timer.h> #include <linux/jiffies.h> #include <linux/completion.h> #include <linux/mtd/mtd.h> #include <linux/mtd/partitions.h> #include <linux/mtd/spi-nor.h> #include <linux/mutex.h> #include <linux/pm_qos.h> #include <linux/sizes.h> /* Controller needs driver to swap endian */ #define QUADSPI_QUIRK_SWAP_ENDIAN (1 << 0) /* Controller needs 4x internal clock */ #define QUADSPI_QUIRK_4X_INT_CLK (1 << 1) /* * TKT253890, Controller needs driver to fill txfifo till 16 byte to * trigger data transfer even though extern data will not transferred. */ #define QUADSPI_QUIRK_TKT253890 (1 << 2) /* Controller cannot wake up from wait mode, TKT245618 */ #define QUADSPI_QUIRK_TKT245618 (1 << 3) /* The registers */ #define QUADSPI_MCR 0x00 #define QUADSPI_MCR_RESERVED_SHIFT 16 #define QUADSPI_MCR_RESERVED_MASK (0xF << QUADSPI_MCR_RESERVED_SHIFT) #define QUADSPI_MCR_MDIS_SHIFT 14 #define QUADSPI_MCR_MDIS_MASK (1 << QUADSPI_MCR_MDIS_SHIFT) #define QUADSPI_MCR_CLR_TXF_SHIFT 11 #define QUADSPI_MCR_CLR_TXF_MASK (1 << QUADSPI_MCR_CLR_TXF_SHIFT) #define QUADSPI_MCR_CLR_RXF_SHIFT 10 #define QUADSPI_MCR_CLR_RXF_MASK (1 << QUADSPI_MCR_CLR_RXF_SHIFT) #define QUADSPI_MCR_DDR_EN_SHIFT 7 #define QUADSPI_MCR_DDR_EN_MASK (1 << QUADSPI_MCR_DDR_EN_SHIFT) #define QUADSPI_MCR_END_CFG_SHIFT 2 #define QUADSPI_MCR_END_CFG_MASK (3 << QUADSPI_MCR_END_CFG_SHIFT) #define QUADSPI_MCR_SWRSTHD_SHIFT 1 #define QUADSPI_MCR_SWRSTHD_MASK (1 << QUADSPI_MCR_SWRSTHD_SHIFT) #define QUADSPI_MCR_SWRSTSD_SHIFT 0 #define QUADSPI_MCR_SWRSTSD_MASK (1 << QUADSPI_MCR_SWRSTSD_SHIFT) #define QUADSPI_IPCR 0x08 #define QUADSPI_IPCR_SEQID_SHIFT 24 #define QUADSPI_IPCR_SEQID_MASK (0xF << QUADSPI_IPCR_SEQID_SHIFT) #define QUADSPI_BUF0CR 0x10 #define QUADSPI_BUF1CR 0x14 #define QUADSPI_BUF2CR 0x18 #define QUADSPI_BUFXCR_INVALID_MSTRID 0xe #define QUADSPI_BUF3CR 0x1c #define QUADSPI_BUF3CR_ALLMST_SHIFT 31 #define QUADSPI_BUF3CR_ALLMST_MASK (1 << QUADSPI_BUF3CR_ALLMST_SHIFT) #define QUADSPI_BUF3CR_ADATSZ_SHIFT 8 #define QUADSPI_BUF3CR_ADATSZ_MASK (0xFF << QUADSPI_BUF3CR_ADATSZ_SHIFT) #define QUADSPI_BFGENCR 0x20 #define QUADSPI_BFGENCR_PAR_EN_SHIFT 16 #define QUADSPI_BFGENCR_PAR_EN_MASK (1 << (QUADSPI_BFGENCR_PAR_EN_SHIFT)) #define QUADSPI_BFGENCR_SEQID_SHIFT 12 #define QUADSPI_BFGENCR_SEQID_MASK (0xF << QUADSPI_BFGENCR_SEQID_SHIFT) #define QUADSPI_BUF0IND 0x30 #define QUADSPI_BUF1IND 0x34 #define QUADSPI_BUF2IND 0x38 #define QUADSPI_SFAR 0x100 #define QUADSPI_SMPR 0x108 #define QUADSPI_SMPR_DDRSMP_SHIFT 16 #define QUADSPI_SMPR_DDRSMP_MASK (7 << QUADSPI_SMPR_DDRSMP_SHIFT) #define QUADSPI_SMPR_FSDLY_SHIFT 6 #define QUADSPI_SMPR_FSDLY_MASK (1 << QUADSPI_SMPR_FSDLY_SHIFT) #define QUADSPI_SMPR_FSPHS_SHIFT 5 #define QUADSPI_SMPR_FSPHS_MASK (1 << QUADSPI_SMPR_FSPHS_SHIFT) #define QUADSPI_SMPR_HSENA_SHIFT 0 #define QUADSPI_SMPR_HSENA_MASK (1 << QUADSPI_SMPR_HSENA_SHIFT) #define QUADSPI_RBSR 0x10c #define QUADSPI_RBSR_RDBFL_SHIFT 8 #define QUADSPI_RBSR_RDBFL_MASK (0x3F << QUADSPI_RBSR_RDBFL_SHIFT) #define QUADSPI_RBCT 0x110 #define QUADSPI_RBCT_WMRK_MASK 0x1F #define QUADSPI_RBCT_RXBRD_SHIFT 8 #define QUADSPI_RBCT_RXBRD_USEIPS (0x1 << QUADSPI_RBCT_RXBRD_SHIFT) #define QUADSPI_TBSR 0x150 #define QUADSPI_TBDR 0x154 #define QUADSPI_SR 0x15c #define QUADSPI_SR_IP_ACC_SHIFT 1 #define QUADSPI_SR_IP_ACC_MASK (0x1 << QUADSPI_SR_IP_ACC_SHIFT) #define QUADSPI_SR_AHB_ACC_SHIFT 2 #define QUADSPI_SR_AHB_ACC_MASK (0x1 << QUADSPI_SR_AHB_ACC_SHIFT) #define QUADSPI_FR 0x160 #define QUADSPI_FR_TFF_MASK 0x1 #define QUADSPI_SFA1AD 0x180 #define QUADSPI_SFA2AD 0x184 #define QUADSPI_SFB1AD 0x188 #define QUADSPI_SFB2AD 0x18c #define QUADSPI_RBDR 0x200 #define QUADSPI_LUTKEY 0x300 #define QUADSPI_LUTKEY_VALUE 0x5AF05AF0 #define QUADSPI_LCKCR 0x304 #define QUADSPI_LCKER_LOCK 0x1 #define QUADSPI_LCKER_UNLOCK 0x2 #define QUADSPI_RSER 0x164 #define QUADSPI_RSER_TFIE (0x1 << 0) #define QUADSPI_LUT_BASE 0x310 /* * The definition of the LUT register shows below: * * --------------------------------------------------- * | INSTR1 | PAD1 | OPRND1 | INSTR0 | PAD0 | OPRND0 | * --------------------------------------------------- */ #define OPRND0_SHIFT 0 #define PAD0_SHIFT 8 #define INSTR0_SHIFT 10 #define OPRND1_SHIFT 16 /* Instruction set for the LUT register. */ #define LUT_STOP 0 #define LUT_CMD 1 #define LUT_ADDR 2 #define LUT_DUMMY 3 #define LUT_MODE 4 #define LUT_MODE2 5 #define LUT_MODE4 6 #define LUT_FSL_READ 7 #define LUT_FSL_WRITE 8 #define LUT_JMP_ON_CS 9 #define LUT_ADDR_DDR 10 #define LUT_MODE_DDR 11 #define LUT_MODE2_DDR 12 #define LUT_MODE4_DDR 13 #define LUT_FSL_READ_DDR 14 #define LUT_FSL_WRITE_DDR 15 #define LUT_DATA_LEARN 16 /* * The PAD definitions for LUT register. * * The pad stands for the lines number of IO[0:3]. * For example, the Quad read need four IO lines, so you should * set LUT_PAD4 which means we use four IO lines. */ #define LUT_PAD1 0 #define LUT_PAD2 1 #define LUT_PAD4 2 /* Oprands for the LUT register. */ #define ADDR24BIT 0x18 #define ADDR32BIT 0x20 /* Macros for constructing the LUT register. */ #define LUT0(ins, pad, opr) \ (((opr) << OPRND0_SHIFT) | ((LUT_##pad) << PAD0_SHIFT) | \ ((LUT_##ins) << INSTR0_SHIFT)) #define LUT1(ins, pad, opr) (LUT0(ins, pad, opr) << OPRND1_SHIFT) /* other macros for LUT register. */ #define QUADSPI_LUT(x) (QUADSPI_LUT_BASE + (x) * 4) #define QUADSPI_LUT_NUM 64 /* SEQID -- we can have 16 seqids at most. */ #define SEQID_READ 0 #define SEQID_WREN 1 #define SEQID_WRDI 2 #define SEQID_RDSR 3 #define SEQID_SE 4 #define SEQID_CHIP_ERASE 5 #define SEQID_PP 6 #define SEQID_RDID 7 #define SEQID_WRSR 8 #define SEQID_RDCR 9 #define SEQID_EN4B 10 #define SEQID_BRWR 11 #define QUADSPI_MIN_IOMAP SZ_4M enum fsl_qspi_devtype { FSL_QUADSPI_VYBRID, FSL_QUADSPI_IMX6SX, FSL_QUADSPI_IMX7D, FSL_QUADSPI_IMX6UL, FSL_QUADSPI_LS1021A, FSL_QUADSPI_LS2080A, }; struct fsl_qspi_devtype_data { enum fsl_qspi_devtype devtype; int rxfifo; int txfifo; int ahb_buf_size; int driver_data; }; static const struct fsl_qspi_devtype_data vybrid_data = { .devtype = FSL_QUADSPI_VYBRID, .rxfifo = 128, .txfifo = 64, .ahb_buf_size = 1024, .driver_data = QUADSPI_QUIRK_SWAP_ENDIAN, }; static const struct fsl_qspi_devtype_data imx6sx_data = { .devtype = FSL_QUADSPI_IMX6SX, .rxfifo = 128, .txfifo = 512, .ahb_buf_size = 1024, .driver_data = QUADSPI_QUIRK_4X_INT_CLK | QUADSPI_QUIRK_TKT245618, }; static const struct fsl_qspi_devtype_data imx7d_data = { .devtype = FSL_QUADSPI_IMX7D, .rxfifo = 512, .txfifo = 512, .ahb_buf_size = 1024, .driver_data = QUADSPI_QUIRK_TKT253890 | QUADSPI_QUIRK_4X_INT_CLK, }; static const struct fsl_qspi_devtype_data imx6ul_data = { .devtype = FSL_QUADSPI_IMX6UL, .rxfifo = 128, .txfifo = 512, .ahb_buf_size = 1024, .driver_data = QUADSPI_QUIRK_TKT253890 | QUADSPI_QUIRK_4X_INT_CLK, }; static struct fsl_qspi_devtype_data ls1021a_data = { .devtype = FSL_QUADSPI_LS1021A, .rxfifo = 128, .txfifo = 64, .ahb_buf_size = 1024, .driver_data = 0, }; static const struct fsl_qspi_devtype_data ls2080a_data = { .devtype = FSL_QUADSPI_LS2080A, .rxfifo = 128, .txfifo = 64, .ahb_buf_size = 1024, .driver_data = QUADSPI_QUIRK_TKT253890, }; #define FSL_QSPI_MAX_CHIP 4 struct fsl_qspi { struct spi_nor nor[FSL_QSPI_MAX_CHIP]; void __iomem *iobase; void __iomem *ahb_addr; u32 memmap_phy; u32 memmap_offs; u32 memmap_len; struct clk *clk, *clk_en; struct device *dev; struct completion c; const struct fsl_qspi_devtype_data *devtype_data; u32 nor_size; u32 nor_num; u32 clk_rate; unsigned int chip_base_addr; /* We may support two chips. */ bool has_second_chip; bool big_endian; struct mutex lock; struct pm_qos_request pm_qos_req; }; static inline int needs_swap_endian(struct fsl_qspi *q) { return q->devtype_data->driver_data & QUADSPI_QUIRK_SWAP_ENDIAN; } static inline int needs_4x_clock(struct fsl_qspi *q) { return q->devtype_data->driver_data & QUADSPI_QUIRK_4X_INT_CLK; } static inline int needs_fill_txfifo(struct fsl_qspi *q) { return q->devtype_data->driver_data & QUADSPI_QUIRK_TKT253890; } static inline int needs_wakeup_wait_mode(struct fsl_qspi *q) { return q->devtype_data->driver_data & QUADSPI_QUIRK_TKT245618; } /* * R/W functions for big- or little-endian registers: * The qSPI controller's endian is independent of the CPU core's endian. * So far, although the CPU core is little-endian but the qSPI have two * versions for big-endian and little-endian. */ static void qspi_writel(struct fsl_qspi *q, u32 val, void __iomem *addr) { if (q->big_endian) iowrite32be(val, addr); else iowrite32(val, addr); } static u32 qspi_readl(struct fsl_qspi *q, void __iomem *addr) { if (q->big_endian) return ioread32be(addr); else return ioread32(addr); } /* * An IC bug makes us to re-arrange the 32-bit data. * The following chips, such as IMX6SLX, have fixed this bug. */ static inline u32 fsl_qspi_endian_xchg(struct fsl_qspi *q, u32 a) { return needs_swap_endian(q) ? __swab32(a) : a; } static inline void fsl_qspi_unlock_lut(struct fsl_qspi *q) { qspi_writel(q, QUADSPI_LUTKEY_VALUE, q->iobase + QUADSPI_LUTKEY); qspi_writel(q, QUADSPI_LCKER_UNLOCK, q->iobase + QUADSPI_LCKCR); } static inline void fsl_qspi_lock_lut(struct fsl_qspi *q) { qspi_writel(q, QUADSPI_LUTKEY_VALUE, q->iobase + QUADSPI_LUTKEY); qspi_writel(q, QUADSPI_LCKER_LOCK, q->iobase + QUADSPI_LCKCR); } static irqreturn_t fsl_qspi_irq_handler(int irq, void *dev_id) { struct fsl_qspi *q = dev_id; u32 reg; /* clear interrupt */ reg = qspi_readl(q, q->iobase + QUADSPI_FR); qspi_writel(q, reg, q->iobase + QUADSPI_FR); if (reg & QUADSPI_FR_TFF_MASK) complete(&q->c); dev_dbg(q->dev, "QUADSPI_FR : 0x%.8x:0x%.8x\n", q->chip_base_addr, reg); return IRQ_HANDLED; } static void fsl_qspi_init_lut(struct fsl_qspi *q) { void __iomem *base = q->iobase; int rxfifo = q->devtype_data->rxfifo; u32 lut_base; int i; struct spi_nor *nor = &q->nor[0]; u8 addrlen = (nor->addr_width == 3) ? ADDR24BIT : ADDR32BIT; u8 read_op = nor->read_opcode; u8 read_dm = nor->read_dummy; fsl_qspi_unlock_lut(q); /* Clear all the LUT table */ for (i = 0; i < QUADSPI_LUT_NUM; i++) qspi_writel(q, 0, base + QUADSPI_LUT_BASE + i * 4); /* Read */ lut_base = SEQID_READ * 4; qspi_writel(q, LUT0(CMD, PAD1, read_op) | LUT1(ADDR, PAD1, addrlen), base + QUADSPI_LUT(lut_base)); qspi_writel(q, LUT0(DUMMY, PAD1, read_dm) | LUT1(FSL_READ, PAD4, rxfifo), base + QUADSPI_LUT(lut_base + 1)); /* Write enable */ lut_base = SEQID_WREN * 4; qspi_writel(q, LUT0(CMD, PAD1, SPINOR_OP_WREN), base + QUADSPI_LUT(lut_base)); /* Page Program */ lut_base = SEQID_PP * 4; qspi_writel(q, LUT0(CMD, PAD1, nor->program_opcode) | LUT1(ADDR, PAD1, addrlen), base + QUADSPI_LUT(lut_base)); qspi_writel(q, LUT0(FSL_WRITE, PAD1, 0), base + QUADSPI_LUT(lut_base + 1)); /* Read Status */ lut_base = SEQID_RDSR * 4; qspi_writel(q, LUT0(CMD, PAD1, SPINOR_OP_RDSR) | LUT1(FSL_READ, PAD1, 0x1), base + QUADSPI_LUT(lut_base)); /* Erase a sector */ lut_base = SEQID_SE * 4; qspi_writel(q, LUT0(CMD, PAD1, nor->erase_opcode) | LUT1(ADDR, PAD1, addrlen), base + QUADSPI_LUT(lut_base)); /* Erase the whole chip */ lut_base = SEQID_CHIP_ERASE * 4; qspi_writel(q, LUT0(CMD, PAD1, SPINOR_OP_CHIP_ERASE), base + QUADSPI_LUT(lut_base)); /* READ ID */ lut_base = SEQID_RDID * 4; qspi_writel(q, LUT0(CMD, PAD1, SPINOR_OP_RDID) | LUT1(FSL_READ, PAD1, 0x8), base + QUADSPI_LUT(lut_base)); /* Write Register */ lut_base = SEQID_WRSR * 4; qspi_writel(q, LUT0(CMD, PAD1, SPINOR_OP_WRSR) | LUT1(FSL_WRITE, PAD1, 0x2), base + QUADSPI_LUT(lut_base)); /* Read Configuration Register */ lut_base = SEQID_RDCR * 4; qspi_writel(q, LUT0(CMD, PAD1, SPINOR_OP_RDCR) | LUT1(FSL_READ, PAD1, 0x1), base + QUADSPI_LUT(lut_base)); /* Write disable */ lut_base = SEQID_WRDI * 4; qspi_writel(q, LUT0(CMD, PAD1, SPINOR_OP_WRDI), base + QUADSPI_LUT(lut_base)); /* Enter 4 Byte Mode (Micron) */ lut_base = SEQID_EN4B * 4; qspi_writel(q, LUT0(CMD, PAD1, SPINOR_OP_EN4B), base + QUADSPI_LUT(lut_base)); /* Enter 4 Byte Mode (Spansion) */ lut_base = SEQID_BRWR * 4; qspi_writel(q, LUT0(CMD, PAD1, SPINOR_OP_BRWR), base + QUADSPI_LUT(lut_base)); fsl_qspi_lock_lut(q); } /* Get the SEQID for the command */ static int fsl_qspi_get_seqid(struct fsl_qspi *q, u8 cmd) { switch (cmd) { case SPINOR_OP_READ_1_1_4: case SPINOR_OP_READ_1_1_4_4B: return SEQID_READ; case SPINOR_OP_WREN: return SEQID_WREN; case SPINOR_OP_WRDI: return SEQID_WRDI; case SPINOR_OP_RDSR: return SEQID_RDSR; case SPINOR_OP_SE: return SEQID_SE; case SPINOR_OP_CHIP_ERASE: return SEQID_CHIP_ERASE; case SPINOR_OP_PP: return SEQID_PP; case SPINOR_OP_RDID: return SEQID_RDID; case SPINOR_OP_WRSR: return SEQID_WRSR; case SPINOR_OP_RDCR: return SEQID_RDCR; case SPINOR_OP_EN4B: return SEQID_EN4B; case SPINOR_OP_BRWR: return SEQID_BRWR; default: if (cmd == q->nor[0].erase_opcode) return SEQID_SE; dev_err(q->dev, "Unsupported cmd 0x%.2x\n", cmd); break; } return -EINVAL; } static int fsl_qspi_runcmd(struct fsl_qspi *q, u8 cmd, unsigned int addr, int len) { void __iomem *base = q->iobase; int seqid; u32 reg, reg2; int err; init_completion(&q->c); dev_dbg(q->dev, "to 0x%.8x:0x%.8x, len:%d, cmd:%.2x\n", q->chip_base_addr, addr, len, cmd); /* save the reg */ reg = qspi_readl(q, base + QUADSPI_MCR); qspi_writel(q, q->memmap_phy + q->chip_base_addr + addr, base + QUADSPI_SFAR); qspi_writel(q, QUADSPI_RBCT_WMRK_MASK | QUADSPI_RBCT_RXBRD_USEIPS, base + QUADSPI_RBCT); qspi_writel(q, reg | QUADSPI_MCR_CLR_RXF_MASK, base + QUADSPI_MCR); do { reg2 = qspi_readl(q, base + QUADSPI_SR); if (reg2 & (QUADSPI_SR_IP_ACC_MASK | QUADSPI_SR_AHB_ACC_MASK)) { udelay(1); dev_dbg(q->dev, "The controller is busy, 0x%x\n", reg2); continue; } break; } while (1); /* trigger the LUT now */ seqid = fsl_qspi_get_seqid(q, cmd); if (seqid < 0) return seqid; qspi_writel(q, (seqid << QUADSPI_IPCR_SEQID_SHIFT) | len, base + QUADSPI_IPCR); /* Wait for the interrupt. */ if (!wait_for_completion_timeout(&q->c, msecs_to_jiffies(1000))) { dev_err(q->dev, "cmd 0x%.2x timeout, addr@%.8x, FR:0x%.8x, SR:0x%.8x\n", cmd, addr, qspi_readl(q, base + QUADSPI_FR), qspi_readl(q, base + QUADSPI_SR)); err = -ETIMEDOUT; } else { err = 0; } /* restore the MCR */ qspi_writel(q, reg, base + QUADSPI_MCR); return err; } /* Read out the data from the QUADSPI_RBDR buffer registers. */ static void fsl_qspi_read_data(struct fsl_qspi *q, int len, u8 *rxbuf) { u32 tmp; int i = 0; while (len > 0) { tmp = qspi_readl(q, q->iobase + QUADSPI_RBDR + i * 4); tmp = fsl_qspi_endian_xchg(q, tmp); dev_dbg(q->dev, "chip addr:0x%.8x, rcv:0x%.8x\n", q->chip_base_addr, tmp); if (len >= 4) { *((u32 *)rxbuf) = tmp; rxbuf += 4; } else { memcpy(rxbuf, &tmp, len); break; } len -= 4; i++; } } /* * If we have changed the content of the flash by writing or erasing, * we need to invalidate the AHB buffer. If we do not do so, we may read out * the wrong data. The spec tells us reset the AHB domain and Serial Flash * domain at the same time. */ static inline void fsl_qspi_invalid(struct fsl_qspi *q) { u32 reg; reg = qspi_readl(q, q->iobase + QUADSPI_MCR); reg |= QUADSPI_MCR_SWRSTHD_MASK | QUADSPI_MCR_SWRSTSD_MASK; qspi_writel(q, reg, q->iobase + QUADSPI_MCR); /* * The minimum delay : 1 AHB + 2 SFCK clocks. * Delay 1 us is enough. */ udelay(1); reg &= ~(QUADSPI_MCR_SWRSTHD_MASK | QUADSPI_MCR_SWRSTSD_MASK); qspi_writel(q, reg, q->iobase + QUADSPI_MCR); } static ssize_t fsl_qspi_nor_write(struct fsl_qspi *q, struct spi_nor *nor, u8 opcode, unsigned int to, u32 *txbuf, unsigned count) { int ret, i, j; u32 tmp; dev_dbg(q->dev, "to 0x%.8x:0x%.8x, len : %d\n", q->chip_base_addr, to, count); /* clear the TX FIFO. */ tmp = qspi_readl(q, q->iobase + QUADSPI_MCR); qspi_writel(q, tmp | QUADSPI_MCR_CLR_TXF_MASK, q->iobase + QUADSPI_MCR); /* fill the TX data to the FIFO */ for (j = 0, i = ((count + 3) / 4); j < i; j++) { tmp = fsl_qspi_endian_xchg(q, *txbuf); qspi_writel(q, tmp, q->iobase + QUADSPI_TBDR); txbuf++; } /* fill the TXFIFO upto 16 bytes for i.MX7d */ if (needs_fill_txfifo(q)) for (; i < 4; i++) qspi_writel(q, tmp, q->iobase + QUADSPI_TBDR); /* Trigger it */ ret = fsl_qspi_runcmd(q, opcode, to, count); if (ret == 0) return count; return ret; } static void fsl_qspi_set_map_addr(struct fsl_qspi *q) { int nor_size = q->nor_size; void __iomem *base = q->iobase; qspi_writel(q, nor_size + q->memmap_phy, base + QUADSPI_SFA1AD); qspi_writel(q, nor_size * 2 + q->memmap_phy, base + QUADSPI_SFA2AD); qspi_writel(q, nor_size * 3 + q->memmap_phy, base + QUADSPI_SFB1AD); qspi_writel(q, nor_size * 4 + q->memmap_phy, base + QUADSPI_SFB2AD); } /* * There are two different ways to read out the data from the flash: * the "IP Command Read" and the "AHB Command Read". * * The IC guy suggests we use the "AHB Command Read" which is faster * then the "IP Command Read". (What's more is that there is a bug in * the "IP Command Read" in the Vybrid.) * * After we set up the registers for the "AHB Command Read", we can use * the memcpy to read the data directly. A "missed" access to the buffer * causes the controller to clear the buffer, and use the sequence pointed * by the QUADSPI_BFGENCR[SEQID] to initiate a read from the flash. */ static int fsl_qspi_init_ahb_read(struct fsl_qspi *q) { void __iomem *base = q->iobase; int seqid; /* AHB configuration for access buffer 0/1/2 .*/ qspi_writel(q, QUADSPI_BUFXCR_INVALID_MSTRID, base + QUADSPI_BUF0CR); qspi_writel(q, QUADSPI_BUFXCR_INVALID_MSTRID, base + QUADSPI_BUF1CR); qspi_writel(q, QUADSPI_BUFXCR_INVALID_MSTRID, base + QUADSPI_BUF2CR); /* * Set ADATSZ with the maximum AHB buffer size to improve the * read performance. */ qspi_writel(q, QUADSPI_BUF3CR_ALLMST_MASK | ((q->devtype_data->ahb_buf_size / 8) << QUADSPI_BUF3CR_ADATSZ_SHIFT), base + QUADSPI_BUF3CR); /* We only use the buffer3 */ qspi_writel(q, 0, base + QUADSPI_BUF0IND); qspi_writel(q, 0, base + QUADSPI_BUF1IND); qspi_writel(q, 0, base + QUADSPI_BUF2IND); /* Set the default lut sequence for AHB Read. */ seqid = fsl_qspi_get_seqid(q, q->nor[0].read_opcode); if (seqid < 0) return seqid; qspi_writel(q, seqid << QUADSPI_BFGENCR_SEQID_SHIFT, q->iobase + QUADSPI_BFGENCR); return 0; } /* This function was used to prepare and enable QSPI clock */ static int fsl_qspi_clk_prep_enable(struct fsl_qspi *q) { int ret; ret = clk_prepare_enable(q->clk_en); if (ret) return ret; ret = clk_prepare_enable(q->clk); if (ret) { clk_disable_unprepare(q->clk_en); return ret; } if (needs_wakeup_wait_mode(q)) pm_qos_add_request(&q->pm_qos_req, PM_QOS_CPU_DMA_LATENCY, 0); return 0; } /* This function was used to disable and unprepare QSPI clock */ static void fsl_qspi_clk_disable_unprep(struct fsl_qspi *q) { if (needs_wakeup_wait_mode(q)) pm_qos_remove_request(&q->pm_qos_req); clk_disable_unprepare(q->clk); clk_disable_unprepare(q->clk_en); } /* We use this function to do some basic init for spi_nor_scan(). */ static int fsl_qspi_nor_setup(struct fsl_qspi *q) { void __iomem *base = q->iobase; u32 reg; int ret; /* disable and unprepare clock to avoid glitch pass to controller */ fsl_qspi_clk_disable_unprep(q); /* the default frequency, we will change it in the future. */ ret = clk_set_rate(q->clk, 66000000); if (ret) return ret; ret = fsl_qspi_clk_prep_enable(q); if (ret) return ret; /* Reset the module */ qspi_writel(q, QUADSPI_MCR_SWRSTSD_MASK | QUADSPI_MCR_SWRSTHD_MASK, base + QUADSPI_MCR); udelay(1); /* Init the LUT table. */ fsl_qspi_init_lut(q); /* Disable the module */ qspi_writel(q, QUADSPI_MCR_MDIS_MASK | QUADSPI_MCR_RESERVED_MASK, base + QUADSPI_MCR); reg = qspi_readl(q, base + QUADSPI_SMPR); qspi_writel(q, reg & ~(QUADSPI_SMPR_FSDLY_MASK | QUADSPI_SMPR_FSPHS_MASK | QUADSPI_SMPR_HSENA_MASK | QUADSPI_SMPR_DDRSMP_MASK), base + QUADSPI_SMPR); /* Enable the module */ qspi_writel(q, QUADSPI_MCR_RESERVED_MASK | QUADSPI_MCR_END_CFG_MASK, base + QUADSPI_MCR); /* clear all interrupt status */ qspi_writel(q, 0xffffffff, q->iobase + QUADSPI_FR); /* enable the interrupt */ qspi_writel(q, QUADSPI_RSER_TFIE, q->iobase + QUADSPI_RSER); return 0; } static int fsl_qspi_nor_setup_last(struct fsl_qspi *q) { unsigned long rate = q->clk_rate; int ret; if (needs_4x_clock(q)) rate *= 4; /* disable and unprepare clock to avoid glitch pass to controller */ fsl_qspi_clk_disable_unprep(q); ret = clk_set_rate(q->clk, rate); if (ret) return ret; ret = fsl_qspi_clk_prep_enable(q); if (ret) return ret; /* Init the LUT table again. */ fsl_qspi_init_lut(q); /* Init for AHB read */ return fsl_qspi_init_ahb_read(q); } static const struct of_device_id fsl_qspi_dt_ids[] = { { .compatible = "fsl,vf610-qspi", .data = &vybrid_data, }, { .compatible = "fsl,imx6sx-qspi", .data = &imx6sx_data, }, { .compatible = "fsl,imx7d-qspi", .data = &imx7d_data, }, { .compatible = "fsl,imx6ul-qspi", .data = &imx6ul_data, }, { .compatible = "fsl,ls1021a-qspi", .data = (void *)&ls1021a_data, }, { .compatible = "fsl,ls2080a-qspi", .data = &ls2080a_data, }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, fsl_qspi_dt_ids); static void fsl_qspi_set_base_addr(struct fsl_qspi *q, struct spi_nor *nor) { q->chip_base_addr = q->nor_size * (nor - q->nor); } static int fsl_qspi_read_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len) { int ret; struct fsl_qspi *q = nor->priv; ret = fsl_qspi_runcmd(q, opcode, 0, len); if (ret) return ret; fsl_qspi_read_data(q, len, buf); return 0; } static int fsl_qspi_write_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len) { struct fsl_qspi *q = nor->priv; int ret; if (!buf) { ret = fsl_qspi_runcmd(q, opcode, 0, 1); if (ret) return ret; if (opcode == SPINOR_OP_CHIP_ERASE) fsl_qspi_invalid(q); } else if (len > 0) { ret = fsl_qspi_nor_write(q, nor, opcode, 0, (u32 *)buf, len); if (ret > 0) return 0; } else { dev_err(q->dev, "invalid cmd %d\n", opcode); ret = -EINVAL; } return ret; } static ssize_t fsl_qspi_write(struct spi_nor *nor, loff_t to, size_t len, const u_char *buf) { struct fsl_qspi *q = nor->priv; ssize_t ret = fsl_qspi_nor_write(q, nor, nor->program_opcode, to, (u32 *)buf, len); /* invalid the data in the AHB buffer. */ fsl_qspi_invalid(q); return ret; } static ssize_t fsl_qspi_read(struct spi_nor *nor, loff_t from, size_t len, u_char *buf) { struct fsl_qspi *q = nor->priv; u8 cmd = nor->read_opcode; /* if necessary,ioremap buffer before AHB read, */ if (!q->ahb_addr) { q->memmap_offs = q->chip_base_addr + from; q->memmap_len = len > QUADSPI_MIN_IOMAP ? len : QUADSPI_MIN_IOMAP; q->ahb_addr = ioremap_nocache( q->memmap_phy + q->memmap_offs, q->memmap_len); if (!q->ahb_addr) { dev_err(q->dev, "ioremap failed\n"); return -ENOMEM; } /* ioremap if the data requested is out of range */ } else if (q->chip_base_addr + from < q->memmap_offs || q->chip_base_addr + from + len > q->memmap_offs + q->memmap_len) { iounmap(q->ahb_addr); q->memmap_offs = q->chip_base_addr + from; q->memmap_len = len > QUADSPI_MIN_IOMAP ? len : QUADSPI_MIN_IOMAP; q->ahb_addr = ioremap_nocache( q->memmap_phy + q->memmap_offs, q->memmap_len); if (!q->ahb_addr) { dev_err(q->dev, "ioremap failed\n"); return -ENOMEM; } } dev_dbg(q->dev, "cmd [%x],read from %p, len:%zd\n", cmd, q->ahb_addr + q->chip_base_addr + from - q->memmap_offs, len); /* Read out the data directly from the AHB buffer.*/ memcpy(buf, q->ahb_addr + q->chip_base_addr + from - q->memmap_offs, len); return len; } static int fsl_qspi_erase(struct spi_nor *nor, loff_t offs) { struct fsl_qspi *q = nor->priv; int ret; dev_dbg(nor->dev, "%dKiB at 0x%08x:0x%08x\n", nor->mtd.erasesize / 1024, q->chip_base_addr, (u32)offs); ret = fsl_qspi_runcmd(q, nor->erase_opcode, offs, 0); if (ret) return ret; fsl_qspi_invalid(q); return 0; } static int fsl_qspi_prep(struct spi_nor *nor, enum spi_nor_ops ops) { struct fsl_qspi *q = nor->priv; int ret; mutex_lock(&q->lock); ret = fsl_qspi_clk_prep_enable(q); if (ret) goto err_mutex; fsl_qspi_set_base_addr(q, nor); return 0; err_mutex: mutex_unlock(&q->lock); return ret; } static void fsl_qspi_unprep(struct spi_nor *nor, enum spi_nor_ops ops) { struct fsl_qspi *q = nor->priv; fsl_qspi_clk_disable_unprep(q); mutex_unlock(&q->lock); } static int fsl_qspi_probe(struct platform_device *pdev) { const struct spi_nor_hwcaps hwcaps = { .mask = SNOR_HWCAPS_READ_1_1_4 | SNOR_HWCAPS_PP, }; struct device_node *np = pdev->dev.of_node; struct device *dev = &pdev->dev; struct fsl_qspi *q; struct resource *res; struct spi_nor *nor; struct mtd_info *mtd; int ret, i = 0; q = devm_kzalloc(dev, sizeof(*q), GFP_KERNEL); if (!q) return -ENOMEM; q->nor_num = of_get_child_count(dev->of_node); if (!q->nor_num || q->nor_num > FSL_QSPI_MAX_CHIP) return -ENODEV; q->dev = dev; q->devtype_data = of_device_get_match_data(dev); if (!q->devtype_data) return -ENODEV; platform_set_drvdata(pdev, q); /* find the resources */ res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "QuadSPI"); q->iobase = devm_ioremap_resource(dev, res); if (IS_ERR(q->iobase)) return PTR_ERR(q->iobase); q->big_endian = of_property_read_bool(np, "big-endian"); res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "QuadSPI-memory"); if (!devm_request_mem_region(dev, res->start, resource_size(res), res->name)) { dev_err(dev, "can't request region for resource %pR\n", res); return -EBUSY; } q->memmap_phy = res->start; /* find the clocks */ q->clk_en = devm_clk_get(dev, "qspi_en"); if (IS_ERR(q->clk_en)) return PTR_ERR(q->clk_en); q->clk = devm_clk_get(dev, "qspi"); if (IS_ERR(q->clk)) return PTR_ERR(q->clk); ret = fsl_qspi_clk_prep_enable(q); if (ret) { dev_err(dev, "can not enable the clock\n"); goto clk_failed; } /* find the irq */ ret = platform_get_irq(pdev, 0); if (ret < 0) { dev_err(dev, "failed to get the irq: %d\n", ret); goto irq_failed; } ret = devm_request_irq(dev, ret, fsl_qspi_irq_handler, 0, pdev->name, q); if (ret) { dev_err(dev, "failed to request irq: %d\n", ret); goto irq_failed; } ret = fsl_qspi_nor_setup(q); if (ret) goto irq_failed; if (of_get_property(np, "fsl,qspi-has-second-chip", NULL)) q->has_second_chip = true; mutex_init(&q->lock); /* iterate the subnodes. */ for_each_available_child_of_node(dev->of_node, np) { /* skip the holes */ if (!q->has_second_chip) i *= 2; nor = &q->nor[i]; mtd = &nor->mtd; nor->dev = dev; spi_nor_set_flash_node(nor, np); nor->priv = q; if (q->nor_num > 1 && !mtd->name) { int spiflash_idx; ret = of_property_read_u32(np, "reg", &spiflash_idx); if (!ret) { mtd->name = devm_kasprintf(dev, GFP_KERNEL, "%s-%d", dev_name(dev), spiflash_idx); if (!mtd->name) { ret = -ENOMEM; goto mutex_failed; } } else { dev_warn(dev, "reg property is missing\n"); } } /* fill the hooks */ nor->read_reg = fsl_qspi_read_reg; nor->write_reg = fsl_qspi_write_reg; nor->read = fsl_qspi_read; nor->write = fsl_qspi_write; nor->erase = fsl_qspi_erase; nor->prepare = fsl_qspi_prep; nor->unprepare = fsl_qspi_unprep; ret = of_property_read_u32(np, "spi-max-frequency", &q->clk_rate); if (ret < 0) goto mutex_failed; /* set the chip address for READID */ fsl_qspi_set_base_addr(q, nor); ret = spi_nor_scan(nor, NULL, &hwcaps); if (ret) goto mutex_failed; ret = mtd_device_register(mtd, NULL, 0); if (ret) goto mutex_failed; /* Set the correct NOR size now. */ if (q->nor_size == 0) { q->nor_size = mtd->size; /* Map the SPI NOR to accessiable address */ fsl_qspi_set_map_addr(q); } /* * The TX FIFO is 64 bytes in the Vybrid, but the Page Program * may writes 265 bytes per time. The write is working in the * unit of the TX FIFO, not in the unit of the SPI NOR's page * size. * * So shrink the spi_nor->page_size if it is larger then the * TX FIFO. */ if (nor->page_size > q->devtype_data->txfifo) nor->page_size = q->devtype_data->txfifo; i++; } /* finish the rest init. */ ret = fsl_qspi_nor_setup_last(q); if (ret) goto last_init_failed; fsl_qspi_clk_disable_unprep(q); return 0; last_init_failed: for (i = 0; i < q->nor_num; i++) { /* skip the holes */ if (!q->has_second_chip) i *= 2; mtd_device_unregister(&q->nor[i].mtd); } mutex_failed: mutex_destroy(&q->lock); irq_failed: fsl_qspi_clk_disable_unprep(q); clk_failed: dev_err(dev, "Freescale QuadSPI probe failed\n"); return ret; } static int fsl_qspi_remove(struct platform_device *pdev) { struct fsl_qspi *q = platform_get_drvdata(pdev); int i; for (i = 0; i < q->nor_num; i++) { /* skip the holes */ if (!q->has_second_chip) i *= 2; mtd_device_unregister(&q->nor[i].mtd); } /* disable the hardware */ qspi_writel(q, QUADSPI_MCR_MDIS_MASK, q->iobase + QUADSPI_MCR); qspi_writel(q, 0x0, q->iobase + QUADSPI_RSER); mutex_destroy(&q->lock); if (q->ahb_addr) iounmap(q->ahb_addr); return 0; } static int fsl_qspi_suspend(struct platform_device *pdev, pm_message_t state) { return 0; } static int fsl_qspi_resume(struct platform_device *pdev) { int ret; struct fsl_qspi *q = platform_get_drvdata(pdev); ret = fsl_qspi_clk_prep_enable(q); if (ret) return ret; fsl_qspi_nor_setup(q); fsl_qspi_set_map_addr(q); fsl_qspi_nor_setup_last(q); fsl_qspi_clk_disable_unprep(q); return 0; } static struct platform_driver fsl_qspi_driver = { .driver = { .name = "fsl-quadspi", .of_match_table = fsl_qspi_dt_ids, }, .probe = fsl_qspi_probe, .remove = fsl_qspi_remove, .suspend = fsl_qspi_suspend, .resume = fsl_qspi_resume, }; module_platform_driver(fsl_qspi_driver); MODULE_DESCRIPTION("Freescale QuadSPI Controller Driver"); MODULE_AUTHOR("Freescale Semiconductor Inc."); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1