Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Ludovic Barre | 3335 | 98.67% | 3 | 37.50% |
Cyrille Pitchen | 37 | 1.09% | 2 | 25.00% |
Geert Uytterhoeven | 4 | 0.12% | 1 | 12.50% |
Benjamin Gaignard | 3 | 0.09% | 1 | 12.50% |
Philipp Zabel | 1 | 0.03% | 1 | 12.50% |
Total | 3380 | 8 |
/* * Driver for stm32 quadspi controller * * Copyright (C) 2017, STMicroelectronics - All Rights Reserved * Author(s): Ludovic Barre author <ludovic.barre@st.com>. * * License terms: GPL V2.0. * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 as published by * the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more * details. * * You should have received a copy of the GNU General Public License along with * This program. If not, see <http://www.gnu.org/licenses/>. */ #include <linux/clk.h> #include <linux/errno.h> #include <linux/io.h> #include <linux/iopoll.h> #include <linux/interrupt.h> #include <linux/module.h> #include <linux/mtd/mtd.h> #include <linux/mtd/partitions.h> #include <linux/mtd/spi-nor.h> #include <linux/mutex.h> #include <linux/of.h> #include <linux/of_device.h> #include <linux/platform_device.h> #include <linux/reset.h> #include <linux/sizes.h> #define QUADSPI_CR 0x00 #define CR_EN BIT(0) #define CR_ABORT BIT(1) #define CR_DMAEN BIT(2) #define CR_TCEN BIT(3) #define CR_SSHIFT BIT(4) #define CR_DFM BIT(6) #define CR_FSEL BIT(7) #define CR_FTHRES_SHIFT 8 #define CR_FTHRES_MASK GENMASK(12, 8) #define CR_FTHRES(n) (((n) << CR_FTHRES_SHIFT) & CR_FTHRES_MASK) #define CR_TEIE BIT(16) #define CR_TCIE BIT(17) #define CR_FTIE BIT(18) #define CR_SMIE BIT(19) #define CR_TOIE BIT(20) #define CR_PRESC_SHIFT 24 #define CR_PRESC_MASK GENMASK(31, 24) #define CR_PRESC(n) (((n) << CR_PRESC_SHIFT) & CR_PRESC_MASK) #define QUADSPI_DCR 0x04 #define DCR_CSHT_SHIFT 8 #define DCR_CSHT_MASK GENMASK(10, 8) #define DCR_CSHT(n) (((n) << DCR_CSHT_SHIFT) & DCR_CSHT_MASK) #define DCR_FSIZE_SHIFT 16 #define DCR_FSIZE_MASK GENMASK(20, 16) #define DCR_FSIZE(n) (((n) << DCR_FSIZE_SHIFT) & DCR_FSIZE_MASK) #define QUADSPI_SR 0x08 #define SR_TEF BIT(0) #define SR_TCF BIT(1) #define SR_FTF BIT(2) #define SR_SMF BIT(3) #define SR_TOF BIT(4) #define SR_BUSY BIT(5) #define SR_FLEVEL_SHIFT 8 #define SR_FLEVEL_MASK GENMASK(13, 8) #define QUADSPI_FCR 0x0c #define FCR_CTCF BIT(1) #define QUADSPI_DLR 0x10 #define QUADSPI_CCR 0x14 #define CCR_INST_SHIFT 0 #define CCR_INST_MASK GENMASK(7, 0) #define CCR_INST(n) (((n) << CCR_INST_SHIFT) & CCR_INST_MASK) #define CCR_IMODE_NONE (0U << 8) #define CCR_IMODE_1 (1U << 8) #define CCR_IMODE_2 (2U << 8) #define CCR_IMODE_4 (3U << 8) #define CCR_ADMODE_NONE (0U << 10) #define CCR_ADMODE_1 (1U << 10) #define CCR_ADMODE_2 (2U << 10) #define CCR_ADMODE_4 (3U << 10) #define CCR_ADSIZE_SHIFT 12 #define CCR_ADSIZE_MASK GENMASK(13, 12) #define CCR_ADSIZE(n) (((n) << CCR_ADSIZE_SHIFT) & CCR_ADSIZE_MASK) #define CCR_ABMODE_NONE (0U << 14) #define CCR_ABMODE_1 (1U << 14) #define CCR_ABMODE_2 (2U << 14) #define CCR_ABMODE_4 (3U << 14) #define CCR_ABSIZE_8 (0U << 16) #define CCR_ABSIZE_16 (1U << 16) #define CCR_ABSIZE_24 (2U << 16) #define CCR_ABSIZE_32 (3U << 16) #define CCR_DCYC_SHIFT 18 #define CCR_DCYC_MASK GENMASK(22, 18) #define CCR_DCYC(n) (((n) << CCR_DCYC_SHIFT) & CCR_DCYC_MASK) #define CCR_DMODE_NONE (0U << 24) #define CCR_DMODE_1 (1U << 24) #define CCR_DMODE_2 (2U << 24) #define CCR_DMODE_4 (3U << 24) #define CCR_FMODE_INDW (0U << 26) #define CCR_FMODE_INDR (1U << 26) #define CCR_FMODE_APM (2U << 26) #define CCR_FMODE_MM (3U << 26) #define QUADSPI_AR 0x18 #define QUADSPI_ABR 0x1c #define QUADSPI_DR 0x20 #define QUADSPI_PSMKR 0x24 #define QUADSPI_PSMAR 0x28 #define QUADSPI_PIR 0x2c #define QUADSPI_LPTR 0x30 #define LPTR_DFT_TIMEOUT 0x10 #define FSIZE_VAL(size) (__fls(size) - 1) #define STM32_MAX_MMAP_SZ SZ_256M #define STM32_MAX_NORCHIP 2 #define STM32_QSPI_FIFO_SZ 32 #define STM32_QSPI_FIFO_TIMEOUT_US 30000 #define STM32_QSPI_BUSY_TIMEOUT_US 100000 struct stm32_qspi_flash { struct spi_nor nor; struct stm32_qspi *qspi; u32 cs; u32 fsize; u32 presc; u32 read_mode; bool registered; u32 prefetch_limit; }; struct stm32_qspi { struct device *dev; void __iomem *io_base; void __iomem *mm_base; resource_size_t mm_size; u32 nor_num; struct clk *clk; u32 clk_rate; struct stm32_qspi_flash flash[STM32_MAX_NORCHIP]; struct completion cmd_completion; /* * to protect device configuration, could be different between * 2 flash access (bk1, bk2) */ struct mutex lock; }; struct stm32_qspi_cmd { u8 addr_width; u8 dummy; bool tx_data; u8 opcode; u32 framemode; u32 qspimode; u32 addr; size_t len; void *buf; }; static int stm32_qspi_wait_cmd(struct stm32_qspi *qspi) { u32 cr; int err = 0; if (readl_relaxed(qspi->io_base + QUADSPI_SR) & SR_TCF) return 0; reinit_completion(&qspi->cmd_completion); cr = readl_relaxed(qspi->io_base + QUADSPI_CR); writel_relaxed(cr | CR_TCIE, qspi->io_base + QUADSPI_CR); if (!wait_for_completion_interruptible_timeout(&qspi->cmd_completion, msecs_to_jiffies(1000))) err = -ETIMEDOUT; writel_relaxed(cr, qspi->io_base + QUADSPI_CR); return err; } static int stm32_qspi_wait_nobusy(struct stm32_qspi *qspi) { u32 sr; return readl_relaxed_poll_timeout(qspi->io_base + QUADSPI_SR, sr, !(sr & SR_BUSY), 10, STM32_QSPI_BUSY_TIMEOUT_US); } static void stm32_qspi_set_framemode(struct spi_nor *nor, struct stm32_qspi_cmd *cmd, bool read) { u32 dmode = CCR_DMODE_1; cmd->framemode = CCR_IMODE_1; if (read) { switch (nor->read_proto) { default: case SNOR_PROTO_1_1_1: dmode = CCR_DMODE_1; break; case SNOR_PROTO_1_1_2: dmode = CCR_DMODE_2; break; case SNOR_PROTO_1_1_4: dmode = CCR_DMODE_4; break; } } cmd->framemode |= cmd->tx_data ? dmode : 0; cmd->framemode |= cmd->addr_width ? CCR_ADMODE_1 : 0; } static void stm32_qspi_read_fifo(u8 *val, void __iomem *addr) { *val = readb_relaxed(addr); } static void stm32_qspi_write_fifo(u8 *val, void __iomem *addr) { writeb_relaxed(*val, addr); } static int stm32_qspi_tx_poll(struct stm32_qspi *qspi, const struct stm32_qspi_cmd *cmd) { void (*tx_fifo)(u8 *, void __iomem *); u32 len = cmd->len, sr; u8 *buf = cmd->buf; int ret; if (cmd->qspimode == CCR_FMODE_INDW) tx_fifo = stm32_qspi_write_fifo; else tx_fifo = stm32_qspi_read_fifo; while (len--) { ret = readl_relaxed_poll_timeout(qspi->io_base + QUADSPI_SR, sr, (sr & SR_FTF), 10, STM32_QSPI_FIFO_TIMEOUT_US); if (ret) { dev_err(qspi->dev, "fifo timeout (stat:%#x)\n", sr); return ret; } tx_fifo(buf++, qspi->io_base + QUADSPI_DR); } return 0; } static int stm32_qspi_tx_mm(struct stm32_qspi *qspi, const struct stm32_qspi_cmd *cmd) { memcpy_fromio(cmd->buf, qspi->mm_base + cmd->addr, cmd->len); return 0; } static int stm32_qspi_tx(struct stm32_qspi *qspi, const struct stm32_qspi_cmd *cmd) { if (!cmd->tx_data) return 0; if (cmd->qspimode == CCR_FMODE_MM) return stm32_qspi_tx_mm(qspi, cmd); return stm32_qspi_tx_poll(qspi, cmd); } static int stm32_qspi_send(struct stm32_qspi_flash *flash, const struct stm32_qspi_cmd *cmd) { struct stm32_qspi *qspi = flash->qspi; u32 ccr, dcr, cr; u32 last_byte; int err; err = stm32_qspi_wait_nobusy(qspi); if (err) goto abort; dcr = readl_relaxed(qspi->io_base + QUADSPI_DCR) & ~DCR_FSIZE_MASK; dcr |= DCR_FSIZE(flash->fsize); writel_relaxed(dcr, qspi->io_base + QUADSPI_DCR); cr = readl_relaxed(qspi->io_base + QUADSPI_CR); cr &= ~CR_PRESC_MASK & ~CR_FSEL; cr |= CR_PRESC(flash->presc); cr |= flash->cs ? CR_FSEL : 0; writel_relaxed(cr, qspi->io_base + QUADSPI_CR); if (cmd->tx_data) writel_relaxed(cmd->len - 1, qspi->io_base + QUADSPI_DLR); ccr = cmd->framemode | cmd->qspimode; if (cmd->dummy) ccr |= CCR_DCYC(cmd->dummy); if (cmd->addr_width) ccr |= CCR_ADSIZE(cmd->addr_width - 1); ccr |= CCR_INST(cmd->opcode); writel_relaxed(ccr, qspi->io_base + QUADSPI_CCR); if (cmd->addr_width && cmd->qspimode != CCR_FMODE_MM) writel_relaxed(cmd->addr, qspi->io_base + QUADSPI_AR); err = stm32_qspi_tx(qspi, cmd); if (err) goto abort; if (cmd->qspimode != CCR_FMODE_MM) { err = stm32_qspi_wait_cmd(qspi); if (err) goto abort; writel_relaxed(FCR_CTCF, qspi->io_base + QUADSPI_FCR); } else { last_byte = cmd->addr + cmd->len; if (last_byte > flash->prefetch_limit) goto abort; } return err; abort: cr = readl_relaxed(qspi->io_base + QUADSPI_CR) | CR_ABORT; writel_relaxed(cr, qspi->io_base + QUADSPI_CR); if (err) dev_err(qspi->dev, "%s abort err:%d\n", __func__, err); return err; } static int stm32_qspi_read_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len) { struct stm32_qspi_flash *flash = nor->priv; struct device *dev = flash->qspi->dev; struct stm32_qspi_cmd cmd; dev_dbg(dev, "read_reg: cmd:%#.2x buf:%pK len:%#x\n", opcode, buf, len); memset(&cmd, 0, sizeof(cmd)); cmd.opcode = opcode; cmd.tx_data = true; cmd.len = len; cmd.buf = buf; cmd.qspimode = CCR_FMODE_INDR; stm32_qspi_set_framemode(nor, &cmd, false); return stm32_qspi_send(flash, &cmd); } static int stm32_qspi_write_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len) { struct stm32_qspi_flash *flash = nor->priv; struct device *dev = flash->qspi->dev; struct stm32_qspi_cmd cmd; dev_dbg(dev, "write_reg: cmd:%#.2x buf:%pK len:%#x\n", opcode, buf, len); memset(&cmd, 0, sizeof(cmd)); cmd.opcode = opcode; cmd.tx_data = !!(buf && len > 0); cmd.len = len; cmd.buf = buf; cmd.qspimode = CCR_FMODE_INDW; stm32_qspi_set_framemode(nor, &cmd, false); return stm32_qspi_send(flash, &cmd); } static ssize_t stm32_qspi_read(struct spi_nor *nor, loff_t from, size_t len, u_char *buf) { struct stm32_qspi_flash *flash = nor->priv; struct stm32_qspi *qspi = flash->qspi; struct stm32_qspi_cmd cmd; int err; dev_dbg(qspi->dev, "read(%#.2x): buf:%pK from:%#.8x len:%#zx\n", nor->read_opcode, buf, (u32)from, len); memset(&cmd, 0, sizeof(cmd)); cmd.opcode = nor->read_opcode; cmd.addr_width = nor->addr_width; cmd.addr = (u32)from; cmd.tx_data = true; cmd.dummy = nor->read_dummy; cmd.len = len; cmd.buf = buf; cmd.qspimode = flash->read_mode; stm32_qspi_set_framemode(nor, &cmd, true); err = stm32_qspi_send(flash, &cmd); return err ? err : len; } static ssize_t stm32_qspi_write(struct spi_nor *nor, loff_t to, size_t len, const u_char *buf) { struct stm32_qspi_flash *flash = nor->priv; struct device *dev = flash->qspi->dev; struct stm32_qspi_cmd cmd; int err; dev_dbg(dev, "write(%#.2x): buf:%p to:%#.8x len:%#zx\n", nor->program_opcode, buf, (u32)to, len); memset(&cmd, 0, sizeof(cmd)); cmd.opcode = nor->program_opcode; cmd.addr_width = nor->addr_width; cmd.addr = (u32)to; cmd.tx_data = true; cmd.len = len; cmd.buf = (void *)buf; cmd.qspimode = CCR_FMODE_INDW; stm32_qspi_set_framemode(nor, &cmd, false); err = stm32_qspi_send(flash, &cmd); return err ? err : len; } static int stm32_qspi_erase(struct spi_nor *nor, loff_t offs) { struct stm32_qspi_flash *flash = nor->priv; struct device *dev = flash->qspi->dev; struct stm32_qspi_cmd cmd; dev_dbg(dev, "erase(%#.2x):offs:%#x\n", nor->erase_opcode, (u32)offs); memset(&cmd, 0, sizeof(cmd)); cmd.opcode = nor->erase_opcode; cmd.addr_width = nor->addr_width; cmd.addr = (u32)offs; cmd.qspimode = CCR_FMODE_INDW; stm32_qspi_set_framemode(nor, &cmd, false); return stm32_qspi_send(flash, &cmd); } static irqreturn_t stm32_qspi_irq(int irq, void *dev_id) { struct stm32_qspi *qspi = (struct stm32_qspi *)dev_id; u32 cr, sr, fcr = 0; cr = readl_relaxed(qspi->io_base + QUADSPI_CR); sr = readl_relaxed(qspi->io_base + QUADSPI_SR); if ((cr & CR_TCIE) && (sr & SR_TCF)) { /* tx complete */ fcr |= FCR_CTCF; complete(&qspi->cmd_completion); } else { dev_info_ratelimited(qspi->dev, "spurious interrupt\n"); } writel_relaxed(fcr, qspi->io_base + QUADSPI_FCR); return IRQ_HANDLED; } static int stm32_qspi_prep(struct spi_nor *nor, enum spi_nor_ops ops) { struct stm32_qspi_flash *flash = nor->priv; struct stm32_qspi *qspi = flash->qspi; mutex_lock(&qspi->lock); return 0; } static void stm32_qspi_unprep(struct spi_nor *nor, enum spi_nor_ops ops) { struct stm32_qspi_flash *flash = nor->priv; struct stm32_qspi *qspi = flash->qspi; mutex_unlock(&qspi->lock); } static int stm32_qspi_flash_setup(struct stm32_qspi *qspi, struct device_node *np) { struct spi_nor_hwcaps hwcaps = { .mask = SNOR_HWCAPS_READ | SNOR_HWCAPS_READ_FAST | SNOR_HWCAPS_PP, }; u32 width, presc, cs_num, max_rate = 0; struct stm32_qspi_flash *flash; struct mtd_info *mtd; int ret; of_property_read_u32(np, "reg", &cs_num); if (cs_num >= STM32_MAX_NORCHIP) return -EINVAL; of_property_read_u32(np, "spi-max-frequency", &max_rate); if (!max_rate) return -EINVAL; presc = DIV_ROUND_UP(qspi->clk_rate, max_rate) - 1; if (of_property_read_u32(np, "spi-rx-bus-width", &width)) width = 1; if (width == 4) hwcaps.mask |= SNOR_HWCAPS_READ_1_1_4; else if (width == 2) hwcaps.mask |= SNOR_HWCAPS_READ_1_1_2; else if (width != 1) return -EINVAL; flash = &qspi->flash[cs_num]; flash->qspi = qspi; flash->cs = cs_num; flash->presc = presc; flash->nor.dev = qspi->dev; spi_nor_set_flash_node(&flash->nor, np); flash->nor.priv = flash; mtd = &flash->nor.mtd; flash->nor.read = stm32_qspi_read; flash->nor.write = stm32_qspi_write; flash->nor.erase = stm32_qspi_erase; flash->nor.read_reg = stm32_qspi_read_reg; flash->nor.write_reg = stm32_qspi_write_reg; flash->nor.prepare = stm32_qspi_prep; flash->nor.unprepare = stm32_qspi_unprep; writel_relaxed(LPTR_DFT_TIMEOUT, qspi->io_base + QUADSPI_LPTR); writel_relaxed(CR_PRESC(presc) | CR_FTHRES(3) | CR_TCEN | CR_SSHIFT | CR_EN, qspi->io_base + QUADSPI_CR); /* * in stm32 qspi controller, QUADSPI_DCR register has a fsize field * which define the size of nor flash. * if fsize is NULL, the controller can't sent spi-nor command. * set a temporary value just to discover the nor flash with * "spi_nor_scan". After, the right value (mtd->size) can be set. */ flash->fsize = FSIZE_VAL(SZ_1K); ret = spi_nor_scan(&flash->nor, NULL, &hwcaps); if (ret) { dev_err(qspi->dev, "device scan failed\n"); return ret; } flash->fsize = FSIZE_VAL(mtd->size); flash->prefetch_limit = mtd->size - STM32_QSPI_FIFO_SZ; flash->read_mode = CCR_FMODE_MM; if (mtd->size > qspi->mm_size) flash->read_mode = CCR_FMODE_INDR; writel_relaxed(DCR_CSHT(1), qspi->io_base + QUADSPI_DCR); ret = mtd_device_register(mtd, NULL, 0); if (ret) { dev_err(qspi->dev, "mtd device parse failed\n"); return ret; } flash->registered = true; dev_dbg(qspi->dev, "read mm:%s cs:%d bus:%d\n", flash->read_mode == CCR_FMODE_MM ? "yes" : "no", cs_num, width); return 0; } static void stm32_qspi_mtd_free(struct stm32_qspi *qspi) { int i; for (i = 0; i < STM32_MAX_NORCHIP; i++) if (qspi->flash[i].registered) mtd_device_unregister(&qspi->flash[i].nor.mtd); } static int stm32_qspi_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct device_node *flash_np; struct reset_control *rstc; struct stm32_qspi *qspi; struct resource *res; int ret, irq; qspi = devm_kzalloc(dev, sizeof(*qspi), GFP_KERNEL); if (!qspi) return -ENOMEM; qspi->nor_num = of_get_child_count(dev->of_node); if (!qspi->nor_num || qspi->nor_num > STM32_MAX_NORCHIP) return -ENODEV; res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "qspi"); qspi->io_base = devm_ioremap_resource(dev, res); if (IS_ERR(qspi->io_base)) return PTR_ERR(qspi->io_base); res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "qspi_mm"); qspi->mm_base = devm_ioremap_resource(dev, res); if (IS_ERR(qspi->mm_base)) return PTR_ERR(qspi->mm_base); qspi->mm_size = resource_size(res); irq = platform_get_irq(pdev, 0); ret = devm_request_irq(dev, irq, stm32_qspi_irq, 0, dev_name(dev), qspi); if (ret) { dev_err(dev, "failed to request irq\n"); return ret; } init_completion(&qspi->cmd_completion); qspi->clk = devm_clk_get(dev, NULL); if (IS_ERR(qspi->clk)) return PTR_ERR(qspi->clk); qspi->clk_rate = clk_get_rate(qspi->clk); if (!qspi->clk_rate) return -EINVAL; ret = clk_prepare_enable(qspi->clk); if (ret) { dev_err(dev, "can not enable the clock\n"); return ret; } rstc = devm_reset_control_get_exclusive(dev, NULL); if (!IS_ERR(rstc)) { reset_control_assert(rstc); udelay(2); reset_control_deassert(rstc); } qspi->dev = dev; platform_set_drvdata(pdev, qspi); mutex_init(&qspi->lock); for_each_available_child_of_node(dev->of_node, flash_np) { ret = stm32_qspi_flash_setup(qspi, flash_np); if (ret) { dev_err(dev, "unable to setup flash chip\n"); goto err_flash; } } return 0; err_flash: mutex_destroy(&qspi->lock); stm32_qspi_mtd_free(qspi); clk_disable_unprepare(qspi->clk); return ret; } static int stm32_qspi_remove(struct platform_device *pdev) { struct stm32_qspi *qspi = platform_get_drvdata(pdev); /* disable qspi */ writel_relaxed(0, qspi->io_base + QUADSPI_CR); stm32_qspi_mtd_free(qspi); mutex_destroy(&qspi->lock); clk_disable_unprepare(qspi->clk); return 0; } static const struct of_device_id stm32_qspi_match[] = { {.compatible = "st,stm32f469-qspi"}, {} }; MODULE_DEVICE_TABLE(of, stm32_qspi_match); static struct platform_driver stm32_qspi_driver = { .probe = stm32_qspi_probe, .remove = stm32_qspi_remove, .driver = { .name = "stm32-quadspi", .of_match_table = stm32_qspi_match, }, }; module_platform_driver(stm32_qspi_driver); MODULE_AUTHOR("Ludovic Barre <ludovic.barre@st.com>"); MODULE_DESCRIPTION("STMicroelectronics STM32 quad spi driver"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1