Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Hauke Mehrtens | 5421 | 99.39% | 3 | 60.00% |
Wei Yongjun | 33 | 0.61% | 2 | 40.00% |
Total | 5454 | 5 |
// SPDX-License-Identifier: GPL-2.0 /* * Lantiq / Intel GSWIP switch driver for VRX200 SoCs * * Copyright (C) 2010 Lantiq Deutschland * Copyright (C) 2012 John Crispin <john@phrozen.org> * Copyright (C) 2017 - 2018 Hauke Mehrtens <hauke@hauke-m.de> */ #include <linux/clk.h> #include <linux/etherdevice.h> #include <linux/firmware.h> #include <linux/if_bridge.h> #include <linux/if_vlan.h> #include <linux/iopoll.h> #include <linux/mfd/syscon.h> #include <linux/module.h> #include <linux/of_mdio.h> #include <linux/of_net.h> #include <linux/of_platform.h> #include <linux/phy.h> #include <linux/phylink.h> #include <linux/platform_device.h> #include <linux/regmap.h> #include <linux/reset.h> #include <net/dsa.h> #include <dt-bindings/mips/lantiq_rcu_gphy.h> #include "lantiq_pce.h" /* GSWIP MDIO Registers */ #define GSWIP_MDIO_GLOB 0x00 #define GSWIP_MDIO_GLOB_ENABLE BIT(15) #define GSWIP_MDIO_CTRL 0x08 #define GSWIP_MDIO_CTRL_BUSY BIT(12) #define GSWIP_MDIO_CTRL_RD BIT(11) #define GSWIP_MDIO_CTRL_WR BIT(10) #define GSWIP_MDIO_CTRL_PHYAD_MASK 0x1f #define GSWIP_MDIO_CTRL_PHYAD_SHIFT 5 #define GSWIP_MDIO_CTRL_REGAD_MASK 0x1f #define GSWIP_MDIO_READ 0x09 #define GSWIP_MDIO_WRITE 0x0A #define GSWIP_MDIO_MDC_CFG0 0x0B #define GSWIP_MDIO_MDC_CFG1 0x0C #define GSWIP_MDIO_PHYp(p) (0x15 - (p)) #define GSWIP_MDIO_PHY_LINK_MASK 0x6000 #define GSWIP_MDIO_PHY_LINK_AUTO 0x0000 #define GSWIP_MDIO_PHY_LINK_DOWN 0x4000 #define GSWIP_MDIO_PHY_LINK_UP 0x2000 #define GSWIP_MDIO_PHY_SPEED_MASK 0x1800 #define GSWIP_MDIO_PHY_SPEED_AUTO 0x1800 #define GSWIP_MDIO_PHY_SPEED_M10 0x0000 #define GSWIP_MDIO_PHY_SPEED_M100 0x0800 #define GSWIP_MDIO_PHY_SPEED_G1 0x1000 #define GSWIP_MDIO_PHY_FDUP_MASK 0x0600 #define GSWIP_MDIO_PHY_FDUP_AUTO 0x0000 #define GSWIP_MDIO_PHY_FDUP_EN 0x0200 #define GSWIP_MDIO_PHY_FDUP_DIS 0x0600 #define GSWIP_MDIO_PHY_FCONTX_MASK 0x0180 #define GSWIP_MDIO_PHY_FCONTX_AUTO 0x0000 #define GSWIP_MDIO_PHY_FCONTX_EN 0x0100 #define GSWIP_MDIO_PHY_FCONTX_DIS 0x0180 #define GSWIP_MDIO_PHY_FCONRX_MASK 0x0060 #define GSWIP_MDIO_PHY_FCONRX_AUTO 0x0000 #define GSWIP_MDIO_PHY_FCONRX_EN 0x0020 #define GSWIP_MDIO_PHY_FCONRX_DIS 0x0060 #define GSWIP_MDIO_PHY_ADDR_MASK 0x001f #define GSWIP_MDIO_PHY_MASK (GSWIP_MDIO_PHY_ADDR_MASK | \ GSWIP_MDIO_PHY_FCONRX_MASK | \ GSWIP_MDIO_PHY_FCONTX_MASK | \ GSWIP_MDIO_PHY_LINK_MASK | \ GSWIP_MDIO_PHY_SPEED_MASK | \ GSWIP_MDIO_PHY_FDUP_MASK) /* GSWIP MII Registers */ #define GSWIP_MII_CFG0 0x00 #define GSWIP_MII_CFG1 0x02 #define GSWIP_MII_CFG5 0x04 #define GSWIP_MII_CFG_EN BIT(14) #define GSWIP_MII_CFG_LDCLKDIS BIT(12) #define GSWIP_MII_CFG_MODE_MIIP 0x0 #define GSWIP_MII_CFG_MODE_MIIM 0x1 #define GSWIP_MII_CFG_MODE_RMIIP 0x2 #define GSWIP_MII_CFG_MODE_RMIIM 0x3 #define GSWIP_MII_CFG_MODE_RGMII 0x4 #define GSWIP_MII_CFG_MODE_MASK 0xf #define GSWIP_MII_CFG_RATE_M2P5 0x00 #define GSWIP_MII_CFG_RATE_M25 0x10 #define GSWIP_MII_CFG_RATE_M125 0x20 #define GSWIP_MII_CFG_RATE_M50 0x30 #define GSWIP_MII_CFG_RATE_AUTO 0x40 #define GSWIP_MII_CFG_RATE_MASK 0x70 #define GSWIP_MII_PCDU0 0x01 #define GSWIP_MII_PCDU1 0x03 #define GSWIP_MII_PCDU5 0x05 #define GSWIP_MII_PCDU_TXDLY_MASK GENMASK(2, 0) #define GSWIP_MII_PCDU_RXDLY_MASK GENMASK(9, 7) /* GSWIP Core Registers */ #define GSWIP_SWRES 0x000 #define GSWIP_SWRES_R1 BIT(1) /* GSWIP Software reset */ #define GSWIP_SWRES_R0 BIT(0) /* GSWIP Hardware reset */ #define GSWIP_VERSION 0x013 #define GSWIP_VERSION_REV_SHIFT 0 #define GSWIP_VERSION_REV_MASK GENMASK(7, 0) #define GSWIP_VERSION_MOD_SHIFT 8 #define GSWIP_VERSION_MOD_MASK GENMASK(15, 8) #define GSWIP_VERSION_2_0 0x100 #define GSWIP_VERSION_2_1 0x021 #define GSWIP_VERSION_2_2 0x122 #define GSWIP_VERSION_2_2_ETC 0x022 #define GSWIP_BM_RAM_VAL(x) (0x043 - (x)) #define GSWIP_BM_RAM_ADDR 0x044 #define GSWIP_BM_RAM_CTRL 0x045 #define GSWIP_BM_RAM_CTRL_BAS BIT(15) #define GSWIP_BM_RAM_CTRL_OPMOD BIT(5) #define GSWIP_BM_RAM_CTRL_ADDR_MASK GENMASK(4, 0) #define GSWIP_BM_QUEUE_GCTRL 0x04A #define GSWIP_BM_QUEUE_GCTRL_GL_MOD BIT(10) /* buffer management Port Configuration Register */ #define GSWIP_BM_PCFGp(p) (0x080 + ((p) * 2)) #define GSWIP_BM_PCFG_CNTEN BIT(0) /* RMON Counter Enable */ #define GSWIP_BM_PCFG_IGCNT BIT(1) /* Ingres Special Tag RMON count */ /* buffer management Port Control Register */ #define GSWIP_BM_RMON_CTRLp(p) (0x81 + ((p) * 2)) #define GSWIP_BM_CTRL_RMON_RAM1_RES BIT(0) /* Software Reset for RMON RAM 1 */ #define GSWIP_BM_CTRL_RMON_RAM2_RES BIT(1) /* Software Reset for RMON RAM 2 */ /* PCE */ #define GSWIP_PCE_TBL_KEY(x) (0x447 - (x)) #define GSWIP_PCE_TBL_MASK 0x448 #define GSWIP_PCE_TBL_VAL(x) (0x44D - (x)) #define GSWIP_PCE_TBL_ADDR 0x44E #define GSWIP_PCE_TBL_CTRL 0x44F #define GSWIP_PCE_TBL_CTRL_BAS BIT(15) #define GSWIP_PCE_TBL_CTRL_TYPE BIT(13) #define GSWIP_PCE_TBL_CTRL_VLD BIT(12) #define GSWIP_PCE_TBL_CTRL_KEYFORM BIT(11) #define GSWIP_PCE_TBL_CTRL_GMAP_MASK GENMASK(10, 7) #define GSWIP_PCE_TBL_CTRL_OPMOD_MASK GENMASK(6, 5) #define GSWIP_PCE_TBL_CTRL_OPMOD_ADRD 0x00 #define GSWIP_PCE_TBL_CTRL_OPMOD_ADWR 0x20 #define GSWIP_PCE_TBL_CTRL_OPMOD_KSRD 0x40 #define GSWIP_PCE_TBL_CTRL_OPMOD_KSWR 0x60 #define GSWIP_PCE_TBL_CTRL_ADDR_MASK GENMASK(4, 0) #define GSWIP_PCE_PMAP1 0x453 /* Monitoring port map */ #define GSWIP_PCE_PMAP2 0x454 /* Default Multicast port map */ #define GSWIP_PCE_PMAP3 0x455 /* Default Unknown Unicast port map */ #define GSWIP_PCE_GCTRL_0 0x456 #define GSWIP_PCE_GCTRL_0_MC_VALID BIT(3) #define GSWIP_PCE_GCTRL_0_VLAN BIT(14) /* VLAN aware Switching */ #define GSWIP_PCE_GCTRL_1 0x457 #define GSWIP_PCE_GCTRL_1_MAC_GLOCK BIT(2) /* MAC Address table lock */ #define GSWIP_PCE_GCTRL_1_MAC_GLOCK_MOD BIT(3) /* Mac address table lock forwarding mode */ #define GSWIP_PCE_PCTRL_0p(p) (0x480 + ((p) * 0xA)) #define GSWIP_PCE_PCTRL_0_INGRESS BIT(11) #define GSWIP_PCE_PCTRL_0_PSTATE_LISTEN 0x0 #define GSWIP_PCE_PCTRL_0_PSTATE_RX 0x1 #define GSWIP_PCE_PCTRL_0_PSTATE_TX 0x2 #define GSWIP_PCE_PCTRL_0_PSTATE_LEARNING 0x3 #define GSWIP_PCE_PCTRL_0_PSTATE_FORWARDING 0x7 #define GSWIP_PCE_PCTRL_0_PSTATE_MASK GENMASK(2, 0) #define GSWIP_MAC_FLEN 0x8C5 #define GSWIP_MAC_CTRL_2p(p) (0x905 + ((p) * 0xC)) #define GSWIP_MAC_CTRL_2_MLEN BIT(3) /* Maximum Untagged Frame Lnegth */ /* Ethernet Switch Fetch DMA Port Control Register */ #define GSWIP_FDMA_PCTRLp(p) (0xA80 + ((p) * 0x6)) #define GSWIP_FDMA_PCTRL_EN BIT(0) /* FDMA Port Enable */ #define GSWIP_FDMA_PCTRL_STEN BIT(1) /* Special Tag Insertion Enable */ #define GSWIP_FDMA_PCTRL_VLANMOD_MASK GENMASK(4, 3) /* VLAN Modification Control */ #define GSWIP_FDMA_PCTRL_VLANMOD_SHIFT 3 /* VLAN Modification Control */ #define GSWIP_FDMA_PCTRL_VLANMOD_DIS (0x0 << GSWIP_FDMA_PCTRL_VLANMOD_SHIFT) #define GSWIP_FDMA_PCTRL_VLANMOD_PRIO (0x1 << GSWIP_FDMA_PCTRL_VLANMOD_SHIFT) #define GSWIP_FDMA_PCTRL_VLANMOD_ID (0x2 << GSWIP_FDMA_PCTRL_VLANMOD_SHIFT) #define GSWIP_FDMA_PCTRL_VLANMOD_BOTH (0x3 << GSWIP_FDMA_PCTRL_VLANMOD_SHIFT) /* Ethernet Switch Store DMA Port Control Register */ #define GSWIP_SDMA_PCTRLp(p) (0xBC0 + ((p) * 0x6)) #define GSWIP_SDMA_PCTRL_EN BIT(0) /* SDMA Port Enable */ #define GSWIP_SDMA_PCTRL_FCEN BIT(1) /* Flow Control Enable */ #define GSWIP_SDMA_PCTRL_PAUFWD BIT(1) /* Pause Frame Forwarding */ #define XRX200_GPHY_FW_ALIGN (16 * 1024) struct gswip_hw_info { int max_ports; int cpu_port; }; struct xway_gphy_match_data { char *fe_firmware_name; char *ge_firmware_name; }; struct gswip_gphy_fw { struct clk *clk_gate; struct reset_control *reset; u32 fw_addr_offset; char *fw_name; }; struct gswip_priv { __iomem void *gswip; __iomem void *mdio; __iomem void *mii; const struct gswip_hw_info *hw_info; const struct xway_gphy_match_data *gphy_fw_name_cfg; struct dsa_switch *ds; struct device *dev; struct regmap *rcu_regmap; int num_gphy_fw; struct gswip_gphy_fw *gphy_fw; }; struct gswip_rmon_cnt_desc { unsigned int size; unsigned int offset; const char *name; }; #define MIB_DESC(_size, _offset, _name) {.size = _size, .offset = _offset, .name = _name} static const struct gswip_rmon_cnt_desc gswip_rmon_cnt[] = { /** Receive Packet Count (only packets that are accepted and not discarded). */ MIB_DESC(1, 0x1F, "RxGoodPkts"), MIB_DESC(1, 0x23, "RxUnicastPkts"), MIB_DESC(1, 0x22, "RxMulticastPkts"), MIB_DESC(1, 0x21, "RxFCSErrorPkts"), MIB_DESC(1, 0x1D, "RxUnderSizeGoodPkts"), MIB_DESC(1, 0x1E, "RxUnderSizeErrorPkts"), MIB_DESC(1, 0x1B, "RxOversizeGoodPkts"), MIB_DESC(1, 0x1C, "RxOversizeErrorPkts"), MIB_DESC(1, 0x20, "RxGoodPausePkts"), MIB_DESC(1, 0x1A, "RxAlignErrorPkts"), MIB_DESC(1, 0x12, "Rx64BytePkts"), MIB_DESC(1, 0x13, "Rx127BytePkts"), MIB_DESC(1, 0x14, "Rx255BytePkts"), MIB_DESC(1, 0x15, "Rx511BytePkts"), MIB_DESC(1, 0x16, "Rx1023BytePkts"), /** Receive Size 1024-1522 (or more, if configured) Packet Count. */ MIB_DESC(1, 0x17, "RxMaxBytePkts"), MIB_DESC(1, 0x18, "RxDroppedPkts"), MIB_DESC(1, 0x19, "RxFilteredPkts"), MIB_DESC(2, 0x24, "RxGoodBytes"), MIB_DESC(2, 0x26, "RxBadBytes"), MIB_DESC(1, 0x11, "TxAcmDroppedPkts"), MIB_DESC(1, 0x0C, "TxGoodPkts"), MIB_DESC(1, 0x06, "TxUnicastPkts"), MIB_DESC(1, 0x07, "TxMulticastPkts"), MIB_DESC(1, 0x00, "Tx64BytePkts"), MIB_DESC(1, 0x01, "Tx127BytePkts"), MIB_DESC(1, 0x02, "Tx255BytePkts"), MIB_DESC(1, 0x03, "Tx511BytePkts"), MIB_DESC(1, 0x04, "Tx1023BytePkts"), /** Transmit Size 1024-1522 (or more, if configured) Packet Count. */ MIB_DESC(1, 0x05, "TxMaxBytePkts"), MIB_DESC(1, 0x08, "TxSingleCollCount"), MIB_DESC(1, 0x09, "TxMultCollCount"), MIB_DESC(1, 0x0A, "TxLateCollCount"), MIB_DESC(1, 0x0B, "TxExcessCollCount"), MIB_DESC(1, 0x0D, "TxPauseCount"), MIB_DESC(1, 0x10, "TxDroppedPkts"), MIB_DESC(2, 0x0E, "TxGoodBytes"), }; static u32 gswip_switch_r(struct gswip_priv *priv, u32 offset) { return __raw_readl(priv->gswip + (offset * 4)); } static void gswip_switch_w(struct gswip_priv *priv, u32 val, u32 offset) { __raw_writel(val, priv->gswip + (offset * 4)); } static void gswip_switch_mask(struct gswip_priv *priv, u32 clear, u32 set, u32 offset) { u32 val = gswip_switch_r(priv, offset); val &= ~(clear); val |= set; gswip_switch_w(priv, val, offset); } static u32 gswip_switch_r_timeout(struct gswip_priv *priv, u32 offset, u32 cleared) { u32 val; return readx_poll_timeout(__raw_readl, priv->gswip + (offset * 4), val, (val & cleared) == 0, 20, 50000); } static u32 gswip_mdio_r(struct gswip_priv *priv, u32 offset) { return __raw_readl(priv->mdio + (offset * 4)); } static void gswip_mdio_w(struct gswip_priv *priv, u32 val, u32 offset) { __raw_writel(val, priv->mdio + (offset * 4)); } static void gswip_mdio_mask(struct gswip_priv *priv, u32 clear, u32 set, u32 offset) { u32 val = gswip_mdio_r(priv, offset); val &= ~(clear); val |= set; gswip_mdio_w(priv, val, offset); } static u32 gswip_mii_r(struct gswip_priv *priv, u32 offset) { return __raw_readl(priv->mii + (offset * 4)); } static void gswip_mii_w(struct gswip_priv *priv, u32 val, u32 offset) { __raw_writel(val, priv->mii + (offset * 4)); } static void gswip_mii_mask(struct gswip_priv *priv, u32 clear, u32 set, u32 offset) { u32 val = gswip_mii_r(priv, offset); val &= ~(clear); val |= set; gswip_mii_w(priv, val, offset); } static void gswip_mii_mask_cfg(struct gswip_priv *priv, u32 clear, u32 set, int port) { switch (port) { case 0: gswip_mii_mask(priv, clear, set, GSWIP_MII_CFG0); break; case 1: gswip_mii_mask(priv, clear, set, GSWIP_MII_CFG1); break; case 5: gswip_mii_mask(priv, clear, set, GSWIP_MII_CFG5); break; } } static void gswip_mii_mask_pcdu(struct gswip_priv *priv, u32 clear, u32 set, int port) { switch (port) { case 0: gswip_mii_mask(priv, clear, set, GSWIP_MII_PCDU0); break; case 1: gswip_mii_mask(priv, clear, set, GSWIP_MII_PCDU1); break; case 5: gswip_mii_mask(priv, clear, set, GSWIP_MII_PCDU5); break; } } static int gswip_mdio_poll(struct gswip_priv *priv) { int cnt = 100; while (likely(cnt--)) { u32 ctrl = gswip_mdio_r(priv, GSWIP_MDIO_CTRL); if ((ctrl & GSWIP_MDIO_CTRL_BUSY) == 0) return 0; usleep_range(20, 40); } return -ETIMEDOUT; } static int gswip_mdio_wr(struct mii_bus *bus, int addr, int reg, u16 val) { struct gswip_priv *priv = bus->priv; int err; err = gswip_mdio_poll(priv); if (err) { dev_err(&bus->dev, "waiting for MDIO bus busy timed out\n"); return err; } gswip_mdio_w(priv, val, GSWIP_MDIO_WRITE); gswip_mdio_w(priv, GSWIP_MDIO_CTRL_BUSY | GSWIP_MDIO_CTRL_WR | ((addr & GSWIP_MDIO_CTRL_PHYAD_MASK) << GSWIP_MDIO_CTRL_PHYAD_SHIFT) | (reg & GSWIP_MDIO_CTRL_REGAD_MASK), GSWIP_MDIO_CTRL); return 0; } static int gswip_mdio_rd(struct mii_bus *bus, int addr, int reg) { struct gswip_priv *priv = bus->priv; int err; err = gswip_mdio_poll(priv); if (err) { dev_err(&bus->dev, "waiting for MDIO bus busy timed out\n"); return err; } gswip_mdio_w(priv, GSWIP_MDIO_CTRL_BUSY | GSWIP_MDIO_CTRL_RD | ((addr & GSWIP_MDIO_CTRL_PHYAD_MASK) << GSWIP_MDIO_CTRL_PHYAD_SHIFT) | (reg & GSWIP_MDIO_CTRL_REGAD_MASK), GSWIP_MDIO_CTRL); err = gswip_mdio_poll(priv); if (err) { dev_err(&bus->dev, "waiting for MDIO bus busy timed out\n"); return err; } return gswip_mdio_r(priv, GSWIP_MDIO_READ); } static int gswip_mdio(struct gswip_priv *priv, struct device_node *mdio_np) { struct dsa_switch *ds = priv->ds; ds->slave_mii_bus = devm_mdiobus_alloc(priv->dev); if (!ds->slave_mii_bus) return -ENOMEM; ds->slave_mii_bus->priv = priv; ds->slave_mii_bus->read = gswip_mdio_rd; ds->slave_mii_bus->write = gswip_mdio_wr; ds->slave_mii_bus->name = "lantiq,xrx200-mdio"; snprintf(ds->slave_mii_bus->id, MII_BUS_ID_SIZE, "%s-mii", dev_name(priv->dev)); ds->slave_mii_bus->parent = priv->dev; ds->slave_mii_bus->phy_mask = ~ds->phys_mii_mask; return of_mdiobus_register(ds->slave_mii_bus, mdio_np); } static int gswip_port_enable(struct dsa_switch *ds, int port, struct phy_device *phydev) { struct gswip_priv *priv = ds->priv; /* RMON Counter Enable for port */ gswip_switch_w(priv, GSWIP_BM_PCFG_CNTEN, GSWIP_BM_PCFGp(port)); /* enable port fetch/store dma & VLAN Modification */ gswip_switch_mask(priv, 0, GSWIP_FDMA_PCTRL_EN | GSWIP_FDMA_PCTRL_VLANMOD_BOTH, GSWIP_FDMA_PCTRLp(port)); gswip_switch_mask(priv, 0, GSWIP_SDMA_PCTRL_EN, GSWIP_SDMA_PCTRLp(port)); gswip_switch_mask(priv, 0, GSWIP_PCE_PCTRL_0_INGRESS, GSWIP_PCE_PCTRL_0p(port)); if (!dsa_is_cpu_port(ds, port)) { u32 macconf = GSWIP_MDIO_PHY_LINK_AUTO | GSWIP_MDIO_PHY_SPEED_AUTO | GSWIP_MDIO_PHY_FDUP_AUTO | GSWIP_MDIO_PHY_FCONTX_AUTO | GSWIP_MDIO_PHY_FCONRX_AUTO | (phydev->mdio.addr & GSWIP_MDIO_PHY_ADDR_MASK); gswip_mdio_w(priv, macconf, GSWIP_MDIO_PHYp(port)); /* Activate MDIO auto polling */ gswip_mdio_mask(priv, 0, BIT(port), GSWIP_MDIO_MDC_CFG0); } return 0; } static void gswip_port_disable(struct dsa_switch *ds, int port, struct phy_device *phy) { struct gswip_priv *priv = ds->priv; if (!dsa_is_cpu_port(ds, port)) { gswip_mdio_mask(priv, GSWIP_MDIO_PHY_LINK_DOWN, GSWIP_MDIO_PHY_LINK_MASK, GSWIP_MDIO_PHYp(port)); /* Deactivate MDIO auto polling */ gswip_mdio_mask(priv, BIT(port), 0, GSWIP_MDIO_MDC_CFG0); } gswip_switch_mask(priv, GSWIP_FDMA_PCTRL_EN, 0, GSWIP_FDMA_PCTRLp(port)); gswip_switch_mask(priv, GSWIP_SDMA_PCTRL_EN, 0, GSWIP_SDMA_PCTRLp(port)); } static int gswip_pce_load_microcode(struct gswip_priv *priv) { int i; int err; gswip_switch_mask(priv, GSWIP_PCE_TBL_CTRL_ADDR_MASK | GSWIP_PCE_TBL_CTRL_OPMOD_MASK, GSWIP_PCE_TBL_CTRL_OPMOD_ADWR, GSWIP_PCE_TBL_CTRL); gswip_switch_w(priv, 0, GSWIP_PCE_TBL_MASK); for (i = 0; i < ARRAY_SIZE(gswip_pce_microcode); i++) { gswip_switch_w(priv, i, GSWIP_PCE_TBL_ADDR); gswip_switch_w(priv, gswip_pce_microcode[i].val_0, GSWIP_PCE_TBL_VAL(0)); gswip_switch_w(priv, gswip_pce_microcode[i].val_1, GSWIP_PCE_TBL_VAL(1)); gswip_switch_w(priv, gswip_pce_microcode[i].val_2, GSWIP_PCE_TBL_VAL(2)); gswip_switch_w(priv, gswip_pce_microcode[i].val_3, GSWIP_PCE_TBL_VAL(3)); /* start the table access: */ gswip_switch_mask(priv, 0, GSWIP_PCE_TBL_CTRL_BAS, GSWIP_PCE_TBL_CTRL); err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL, GSWIP_PCE_TBL_CTRL_BAS); if (err) return err; } /* tell the switch that the microcode is loaded */ gswip_switch_mask(priv, 0, GSWIP_PCE_GCTRL_0_MC_VALID, GSWIP_PCE_GCTRL_0); return 0; } static int gswip_setup(struct dsa_switch *ds) { struct gswip_priv *priv = ds->priv; unsigned int cpu_port = priv->hw_info->cpu_port; int i; int err; gswip_switch_w(priv, GSWIP_SWRES_R0, GSWIP_SWRES); usleep_range(5000, 10000); gswip_switch_w(priv, 0, GSWIP_SWRES); /* disable port fetch/store dma on all ports */ for (i = 0; i < priv->hw_info->max_ports; i++) gswip_port_disable(ds, i, NULL); /* enable Switch */ gswip_mdio_mask(priv, 0, GSWIP_MDIO_GLOB_ENABLE, GSWIP_MDIO_GLOB); err = gswip_pce_load_microcode(priv); if (err) { dev_err(priv->dev, "writing PCE microcode failed, %i", err); return err; } /* Default unknown Broadcast/Multicast/Unicast port maps */ gswip_switch_w(priv, BIT(cpu_port), GSWIP_PCE_PMAP1); gswip_switch_w(priv, BIT(cpu_port), GSWIP_PCE_PMAP2); gswip_switch_w(priv, BIT(cpu_port), GSWIP_PCE_PMAP3); /* disable PHY auto polling */ gswip_mdio_w(priv, 0x0, GSWIP_MDIO_MDC_CFG0); /* Configure the MDIO Clock 2.5 MHz */ gswip_mdio_mask(priv, 0xff, 0x09, GSWIP_MDIO_MDC_CFG1); /* Disable the xMII link */ gswip_mii_mask_cfg(priv, GSWIP_MII_CFG_EN, 0, 0); gswip_mii_mask_cfg(priv, GSWIP_MII_CFG_EN, 0, 1); gswip_mii_mask_cfg(priv, GSWIP_MII_CFG_EN, 0, 5); /* enable special tag insertion on cpu port */ gswip_switch_mask(priv, 0, GSWIP_FDMA_PCTRL_STEN, GSWIP_FDMA_PCTRLp(cpu_port)); gswip_switch_mask(priv, 0, GSWIP_MAC_CTRL_2_MLEN, GSWIP_MAC_CTRL_2p(cpu_port)); gswip_switch_w(priv, VLAN_ETH_FRAME_LEN + 8, GSWIP_MAC_FLEN); gswip_switch_mask(priv, 0, GSWIP_BM_QUEUE_GCTRL_GL_MOD, GSWIP_BM_QUEUE_GCTRL); /* VLAN aware Switching */ gswip_switch_mask(priv, 0, GSWIP_PCE_GCTRL_0_VLAN, GSWIP_PCE_GCTRL_0); /* Mac Address Table Lock */ gswip_switch_mask(priv, 0, GSWIP_PCE_GCTRL_1_MAC_GLOCK | GSWIP_PCE_GCTRL_1_MAC_GLOCK_MOD, GSWIP_PCE_GCTRL_1); gswip_port_enable(ds, cpu_port, NULL); return 0; } static enum dsa_tag_protocol gswip_get_tag_protocol(struct dsa_switch *ds, int port) { return DSA_TAG_PROTO_GSWIP; } static void gswip_phylink_validate(struct dsa_switch *ds, int port, unsigned long *supported, struct phylink_link_state *state) { __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, }; switch (port) { case 0: case 1: if (!phy_interface_mode_is_rgmii(state->interface) && state->interface != PHY_INTERFACE_MODE_MII && state->interface != PHY_INTERFACE_MODE_REVMII && state->interface != PHY_INTERFACE_MODE_RMII) goto unsupported; break; case 2: case 3: case 4: if (state->interface != PHY_INTERFACE_MODE_INTERNAL) goto unsupported; break; case 5: if (!phy_interface_mode_is_rgmii(state->interface) && state->interface != PHY_INTERFACE_MODE_INTERNAL) goto unsupported; break; default: bitmap_zero(supported, __ETHTOOL_LINK_MODE_MASK_NBITS); dev_err(ds->dev, "Unsupported port: %i\n", port); return; } /* Allow all the expected bits */ phylink_set(mask, Autoneg); phylink_set_port_modes(mask); phylink_set(mask, Pause); phylink_set(mask, Asym_Pause); /* With the exclusion of MII and Reverse MII, we support Gigabit, * including Half duplex */ if (state->interface != PHY_INTERFACE_MODE_MII && state->interface != PHY_INTERFACE_MODE_REVMII) { phylink_set(mask, 1000baseT_Full); phylink_set(mask, 1000baseT_Half); } phylink_set(mask, 10baseT_Half); phylink_set(mask, 10baseT_Full); phylink_set(mask, 100baseT_Half); phylink_set(mask, 100baseT_Full); bitmap_and(supported, supported, mask, __ETHTOOL_LINK_MODE_MASK_NBITS); bitmap_and(state->advertising, state->advertising, mask, __ETHTOOL_LINK_MODE_MASK_NBITS); return; unsupported: bitmap_zero(supported, __ETHTOOL_LINK_MODE_MASK_NBITS); dev_err(ds->dev, "Unsupported interface: %d\n", state->interface); return; } static void gswip_phylink_mac_config(struct dsa_switch *ds, int port, unsigned int mode, const struct phylink_link_state *state) { struct gswip_priv *priv = ds->priv; u32 miicfg = 0; miicfg |= GSWIP_MII_CFG_LDCLKDIS; switch (state->interface) { case PHY_INTERFACE_MODE_MII: case PHY_INTERFACE_MODE_INTERNAL: miicfg |= GSWIP_MII_CFG_MODE_MIIM; break; case PHY_INTERFACE_MODE_REVMII: miicfg |= GSWIP_MII_CFG_MODE_MIIP; break; case PHY_INTERFACE_MODE_RMII: miicfg |= GSWIP_MII_CFG_MODE_RMIIM; break; case PHY_INTERFACE_MODE_RGMII: case PHY_INTERFACE_MODE_RGMII_ID: case PHY_INTERFACE_MODE_RGMII_RXID: case PHY_INTERFACE_MODE_RGMII_TXID: miicfg |= GSWIP_MII_CFG_MODE_RGMII; break; default: dev_err(ds->dev, "Unsupported interface: %d\n", state->interface); return; } gswip_mii_mask_cfg(priv, GSWIP_MII_CFG_MODE_MASK, miicfg, port); switch (state->interface) { case PHY_INTERFACE_MODE_RGMII_ID: gswip_mii_mask_pcdu(priv, GSWIP_MII_PCDU_TXDLY_MASK | GSWIP_MII_PCDU_RXDLY_MASK, 0, port); break; case PHY_INTERFACE_MODE_RGMII_RXID: gswip_mii_mask_pcdu(priv, GSWIP_MII_PCDU_RXDLY_MASK, 0, port); break; case PHY_INTERFACE_MODE_RGMII_TXID: gswip_mii_mask_pcdu(priv, GSWIP_MII_PCDU_TXDLY_MASK, 0, port); break; default: break; } } static void gswip_phylink_mac_link_down(struct dsa_switch *ds, int port, unsigned int mode, phy_interface_t interface) { struct gswip_priv *priv = ds->priv; gswip_mii_mask_cfg(priv, GSWIP_MII_CFG_EN, 0, port); } static void gswip_phylink_mac_link_up(struct dsa_switch *ds, int port, unsigned int mode, phy_interface_t interface, struct phy_device *phydev) { struct gswip_priv *priv = ds->priv; /* Enable the xMII interface only for the external PHY */ if (interface != PHY_INTERFACE_MODE_INTERNAL) gswip_mii_mask_cfg(priv, 0, GSWIP_MII_CFG_EN, port); } static void gswip_get_strings(struct dsa_switch *ds, int port, u32 stringset, uint8_t *data) { int i; if (stringset != ETH_SS_STATS) return; for (i = 0; i < ARRAY_SIZE(gswip_rmon_cnt); i++) strncpy(data + i * ETH_GSTRING_LEN, gswip_rmon_cnt[i].name, ETH_GSTRING_LEN); } static u32 gswip_bcm_ram_entry_read(struct gswip_priv *priv, u32 table, u32 index) { u32 result; int err; gswip_switch_w(priv, index, GSWIP_BM_RAM_ADDR); gswip_switch_mask(priv, GSWIP_BM_RAM_CTRL_ADDR_MASK | GSWIP_BM_RAM_CTRL_OPMOD, table | GSWIP_BM_RAM_CTRL_BAS, GSWIP_BM_RAM_CTRL); err = gswip_switch_r_timeout(priv, GSWIP_BM_RAM_CTRL, GSWIP_BM_RAM_CTRL_BAS); if (err) { dev_err(priv->dev, "timeout while reading table: %u, index: %u", table, index); return 0; } result = gswip_switch_r(priv, GSWIP_BM_RAM_VAL(0)); result |= gswip_switch_r(priv, GSWIP_BM_RAM_VAL(1)) << 16; return result; } static void gswip_get_ethtool_stats(struct dsa_switch *ds, int port, uint64_t *data) { struct gswip_priv *priv = ds->priv; const struct gswip_rmon_cnt_desc *rmon_cnt; int i; u64 high; for (i = 0; i < ARRAY_SIZE(gswip_rmon_cnt); i++) { rmon_cnt = &gswip_rmon_cnt[i]; data[i] = gswip_bcm_ram_entry_read(priv, port, rmon_cnt->offset); if (rmon_cnt->size == 2) { high = gswip_bcm_ram_entry_read(priv, port, rmon_cnt->offset + 1); data[i] |= high << 32; } } } static int gswip_get_sset_count(struct dsa_switch *ds, int port, int sset) { if (sset != ETH_SS_STATS) return 0; return ARRAY_SIZE(gswip_rmon_cnt); } static const struct dsa_switch_ops gswip_switch_ops = { .get_tag_protocol = gswip_get_tag_protocol, .setup = gswip_setup, .port_enable = gswip_port_enable, .port_disable = gswip_port_disable, .phylink_validate = gswip_phylink_validate, .phylink_mac_config = gswip_phylink_mac_config, .phylink_mac_link_down = gswip_phylink_mac_link_down, .phylink_mac_link_up = gswip_phylink_mac_link_up, .get_strings = gswip_get_strings, .get_ethtool_stats = gswip_get_ethtool_stats, .get_sset_count = gswip_get_sset_count, }; static const struct xway_gphy_match_data xrx200a1x_gphy_data = { .fe_firmware_name = "lantiq/xrx200_phy22f_a14.bin", .ge_firmware_name = "lantiq/xrx200_phy11g_a14.bin", }; static const struct xway_gphy_match_data xrx200a2x_gphy_data = { .fe_firmware_name = "lantiq/xrx200_phy22f_a22.bin", .ge_firmware_name = "lantiq/xrx200_phy11g_a22.bin", }; static const struct xway_gphy_match_data xrx300_gphy_data = { .fe_firmware_name = "lantiq/xrx300_phy22f_a21.bin", .ge_firmware_name = "lantiq/xrx300_phy11g_a21.bin", }; static const struct of_device_id xway_gphy_match[] = { { .compatible = "lantiq,xrx200-gphy-fw", .data = NULL }, { .compatible = "lantiq,xrx200a1x-gphy-fw", .data = &xrx200a1x_gphy_data }, { .compatible = "lantiq,xrx200a2x-gphy-fw", .data = &xrx200a2x_gphy_data }, { .compatible = "lantiq,xrx300-gphy-fw", .data = &xrx300_gphy_data }, { .compatible = "lantiq,xrx330-gphy-fw", .data = &xrx300_gphy_data }, {}, }; static int gswip_gphy_fw_load(struct gswip_priv *priv, struct gswip_gphy_fw *gphy_fw) { struct device *dev = priv->dev; const struct firmware *fw; void *fw_addr; dma_addr_t dma_addr; dma_addr_t dev_addr; size_t size; int ret; ret = clk_prepare_enable(gphy_fw->clk_gate); if (ret) return ret; reset_control_assert(gphy_fw->reset); ret = request_firmware(&fw, gphy_fw->fw_name, dev); if (ret) { dev_err(dev, "failed to load firmware: %s, error: %i\n", gphy_fw->fw_name, ret); return ret; } /* GPHY cores need the firmware code in a persistent and contiguous * memory area with a 16 kB boundary aligned start address. */ size = fw->size + XRX200_GPHY_FW_ALIGN; fw_addr = dmam_alloc_coherent(dev, size, &dma_addr, GFP_KERNEL); if (fw_addr) { fw_addr = PTR_ALIGN(fw_addr, XRX200_GPHY_FW_ALIGN); dev_addr = ALIGN(dma_addr, XRX200_GPHY_FW_ALIGN); memcpy(fw_addr, fw->data, fw->size); } else { dev_err(dev, "failed to alloc firmware memory\n"); release_firmware(fw); return -ENOMEM; } release_firmware(fw); ret = regmap_write(priv->rcu_regmap, gphy_fw->fw_addr_offset, dev_addr); if (ret) return ret; reset_control_deassert(gphy_fw->reset); return ret; } static int gswip_gphy_fw_probe(struct gswip_priv *priv, struct gswip_gphy_fw *gphy_fw, struct device_node *gphy_fw_np, int i) { struct device *dev = priv->dev; u32 gphy_mode; int ret; char gphyname[10]; snprintf(gphyname, sizeof(gphyname), "gphy%d", i); gphy_fw->clk_gate = devm_clk_get(dev, gphyname); if (IS_ERR(gphy_fw->clk_gate)) { dev_err(dev, "Failed to lookup gate clock\n"); return PTR_ERR(gphy_fw->clk_gate); } ret = of_property_read_u32(gphy_fw_np, "reg", &gphy_fw->fw_addr_offset); if (ret) return ret; ret = of_property_read_u32(gphy_fw_np, "lantiq,gphy-mode", &gphy_mode); /* Default to GE mode */ if (ret) gphy_mode = GPHY_MODE_GE; switch (gphy_mode) { case GPHY_MODE_FE: gphy_fw->fw_name = priv->gphy_fw_name_cfg->fe_firmware_name; break; case GPHY_MODE_GE: gphy_fw->fw_name = priv->gphy_fw_name_cfg->ge_firmware_name; break; default: dev_err(dev, "Unknown GPHY mode %d\n", gphy_mode); return -EINVAL; } gphy_fw->reset = of_reset_control_array_get_exclusive(gphy_fw_np); if (IS_ERR(gphy_fw->reset)) { if (PTR_ERR(gphy_fw->reset) != -EPROBE_DEFER) dev_err(dev, "Failed to lookup gphy reset\n"); return PTR_ERR(gphy_fw->reset); } return gswip_gphy_fw_load(priv, gphy_fw); } static void gswip_gphy_fw_remove(struct gswip_priv *priv, struct gswip_gphy_fw *gphy_fw) { int ret; /* check if the device was fully probed */ if (!gphy_fw->fw_name) return; ret = regmap_write(priv->rcu_regmap, gphy_fw->fw_addr_offset, 0); if (ret) dev_err(priv->dev, "can not reset GPHY FW pointer"); clk_disable_unprepare(gphy_fw->clk_gate); reset_control_put(gphy_fw->reset); } static int gswip_gphy_fw_list(struct gswip_priv *priv, struct device_node *gphy_fw_list_np, u32 version) { struct device *dev = priv->dev; struct device_node *gphy_fw_np; const struct of_device_id *match; int err; int i = 0; /* The VRX200 rev 1.1 uses the GSWIP 2.0 and needs the older * GPHY firmware. The VRX200 rev 1.2 uses the GSWIP 2.1 and also * needs a different GPHY firmware. */ if (of_device_is_compatible(gphy_fw_list_np, "lantiq,xrx200-gphy-fw")) { switch (version) { case GSWIP_VERSION_2_0: priv->gphy_fw_name_cfg = &xrx200a1x_gphy_data; break; case GSWIP_VERSION_2_1: priv->gphy_fw_name_cfg = &xrx200a2x_gphy_data; break; default: dev_err(dev, "unknown GSWIP version: 0x%x", version); return -ENOENT; } } match = of_match_node(xway_gphy_match, gphy_fw_list_np); if (match && match->data) priv->gphy_fw_name_cfg = match->data; if (!priv->gphy_fw_name_cfg) { dev_err(dev, "GPHY compatible type not supported"); return -ENOENT; } priv->num_gphy_fw = of_get_available_child_count(gphy_fw_list_np); if (!priv->num_gphy_fw) return -ENOENT; priv->rcu_regmap = syscon_regmap_lookup_by_phandle(gphy_fw_list_np, "lantiq,rcu"); if (IS_ERR(priv->rcu_regmap)) return PTR_ERR(priv->rcu_regmap); priv->gphy_fw = devm_kmalloc_array(dev, priv->num_gphy_fw, sizeof(*priv->gphy_fw), GFP_KERNEL | __GFP_ZERO); if (!priv->gphy_fw) return -ENOMEM; for_each_available_child_of_node(gphy_fw_list_np, gphy_fw_np) { err = gswip_gphy_fw_probe(priv, &priv->gphy_fw[i], gphy_fw_np, i); if (err) goto remove_gphy; i++; } return 0; remove_gphy: for (i = 0; i < priv->num_gphy_fw; i++) gswip_gphy_fw_remove(priv, &priv->gphy_fw[i]); return err; } static int gswip_probe(struct platform_device *pdev) { struct gswip_priv *priv; struct resource *gswip_res, *mdio_res, *mii_res; struct device_node *mdio_np, *gphy_fw_np; struct device *dev = &pdev->dev; int err; int i; u32 version; priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; gswip_res = platform_get_resource(pdev, IORESOURCE_MEM, 0); priv->gswip = devm_ioremap_resource(dev, gswip_res); if (IS_ERR(priv->gswip)) return PTR_ERR(priv->gswip); mdio_res = platform_get_resource(pdev, IORESOURCE_MEM, 1); priv->mdio = devm_ioremap_resource(dev, mdio_res); if (IS_ERR(priv->mdio)) return PTR_ERR(priv->mdio); mii_res = platform_get_resource(pdev, IORESOURCE_MEM, 2); priv->mii = devm_ioremap_resource(dev, mii_res); if (IS_ERR(priv->mii)) return PTR_ERR(priv->mii); priv->hw_info = of_device_get_match_data(dev); if (!priv->hw_info) return -EINVAL; priv->ds = dsa_switch_alloc(dev, priv->hw_info->max_ports); if (!priv->ds) return -ENOMEM; priv->ds->priv = priv; priv->ds->ops = &gswip_switch_ops; priv->dev = dev; version = gswip_switch_r(priv, GSWIP_VERSION); /* bring up the mdio bus */ gphy_fw_np = of_find_compatible_node(pdev->dev.of_node, NULL, "lantiq,gphy-fw"); if (gphy_fw_np) { err = gswip_gphy_fw_list(priv, gphy_fw_np, version); if (err) { dev_err(dev, "gphy fw probe failed\n"); return err; } } /* bring up the mdio bus */ mdio_np = of_find_compatible_node(pdev->dev.of_node, NULL, "lantiq,xrx200-mdio"); if (mdio_np) { err = gswip_mdio(priv, mdio_np); if (err) { dev_err(dev, "mdio probe failed\n"); goto gphy_fw; } } err = dsa_register_switch(priv->ds); if (err) { dev_err(dev, "dsa switch register failed: %i\n", err); goto mdio_bus; } if (!dsa_is_cpu_port(priv->ds, priv->hw_info->cpu_port)) { dev_err(dev, "wrong CPU port defined, HW only supports port: %i", priv->hw_info->cpu_port); err = -EINVAL; goto mdio_bus; } platform_set_drvdata(pdev, priv); dev_info(dev, "probed GSWIP version %lx mod %lx\n", (version & GSWIP_VERSION_REV_MASK) >> GSWIP_VERSION_REV_SHIFT, (version & GSWIP_VERSION_MOD_MASK) >> GSWIP_VERSION_MOD_SHIFT); return 0; mdio_bus: if (mdio_np) mdiobus_unregister(priv->ds->slave_mii_bus); gphy_fw: for (i = 0; i < priv->num_gphy_fw; i++) gswip_gphy_fw_remove(priv, &priv->gphy_fw[i]); return err; } static int gswip_remove(struct platform_device *pdev) { struct gswip_priv *priv = platform_get_drvdata(pdev); int i; if (!priv) return 0; /* disable the switch */ gswip_mdio_mask(priv, GSWIP_MDIO_GLOB_ENABLE, 0, GSWIP_MDIO_GLOB); dsa_unregister_switch(priv->ds); if (priv->ds->slave_mii_bus) mdiobus_unregister(priv->ds->slave_mii_bus); for (i = 0; i < priv->num_gphy_fw; i++) gswip_gphy_fw_remove(priv, &priv->gphy_fw[i]); return 0; } static const struct gswip_hw_info gswip_xrx200 = { .max_ports = 7, .cpu_port = 6, }; static const struct of_device_id gswip_of_match[] = { { .compatible = "lantiq,xrx200-gswip", .data = &gswip_xrx200 }, {}, }; MODULE_DEVICE_TABLE(of, gswip_of_match); static struct platform_driver gswip_driver = { .probe = gswip_probe, .remove = gswip_remove, .driver = { .name = "gswip", .of_match_table = gswip_of_match, }, }; module_platform_driver(gswip_driver); MODULE_FIRMWARE("lantiq/xrx300_phy11g_a21.bin"); MODULE_FIRMWARE("lantiq/xrx300_phy22f_a21.bin"); MODULE_FIRMWARE("lantiq/xrx200_phy11g_a14.bin"); MODULE_FIRMWARE("lantiq/xrx200_phy11g_a22.bin"); MODULE_FIRMWARE("lantiq/xrx200_phy22f_a14.bin"); MODULE_FIRMWARE("lantiq/xrx200_phy22f_a22.bin"); MODULE_AUTHOR("Hauke Mehrtens <hauke@hauke-m.de>"); MODULE_DESCRIPTION("Lantiq / Intel GSWIP driver"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1