Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Brandon Streiff | 1724 | 81.74% | 3 | 37.50% |
Andrew Lunn | 385 | 18.26% | 5 | 62.50% |
Total | 2109 | 8 |
/* * Marvell 88E6xxx Switch PTP support * * Copyright (c) 2008 Marvell Semiconductor * * Copyright (c) 2017 National Instruments * Erik Hons <erik.hons@ni.com> * Brandon Streiff <brandon.streiff@ni.com> * Dane Wagner <dane.wagner@ni.com> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. */ #include "chip.h" #include "global2.h" #include "hwtstamp.h" #include "ptp.h" /* Raw timestamps are in units of 8-ns clock periods. */ #define CC_SHIFT 28 #define CC_MULT (8 << CC_SHIFT) #define CC_MULT_NUM (1 << 9) #define CC_MULT_DEM 15625ULL #define TAI_EVENT_WORK_INTERVAL msecs_to_jiffies(100) #define cc_to_chip(cc) container_of(cc, struct mv88e6xxx_chip, tstamp_cc) #define dw_overflow_to_chip(dw) container_of(dw, struct mv88e6xxx_chip, \ overflow_work) #define dw_tai_event_to_chip(dw) container_of(dw, struct mv88e6xxx_chip, \ tai_event_work) static int mv88e6xxx_tai_read(struct mv88e6xxx_chip *chip, int addr, u16 *data, int len) { if (!chip->info->ops->avb_ops->tai_read) return -EOPNOTSUPP; return chip->info->ops->avb_ops->tai_read(chip, addr, data, len); } static int mv88e6xxx_tai_write(struct mv88e6xxx_chip *chip, int addr, u16 data) { if (!chip->info->ops->avb_ops->tai_write) return -EOPNOTSUPP; return chip->info->ops->avb_ops->tai_write(chip, addr, data); } /* TODO: places where this are called should be using pinctrl */ static int mv88e6352_set_gpio_func(struct mv88e6xxx_chip *chip, int pin, int func, int input) { int err; if (!chip->info->ops->gpio_ops) return -EOPNOTSUPP; err = chip->info->ops->gpio_ops->set_dir(chip, pin, input); if (err) return err; return chip->info->ops->gpio_ops->set_pctl(chip, pin, func); } static u64 mv88e6352_ptp_clock_read(const struct cyclecounter *cc) { struct mv88e6xxx_chip *chip = cc_to_chip(cc); u16 phc_time[2]; int err; err = mv88e6xxx_tai_read(chip, MV88E6XXX_TAI_TIME_LO, phc_time, ARRAY_SIZE(phc_time)); if (err) return 0; else return ((u32)phc_time[1] << 16) | phc_time[0]; } static u64 mv88e6165_ptp_clock_read(const struct cyclecounter *cc) { struct mv88e6xxx_chip *chip = cc_to_chip(cc); u16 phc_time[2]; int err; err = mv88e6xxx_tai_read(chip, MV88E6XXX_PTP_GC_TIME_LO, phc_time, ARRAY_SIZE(phc_time)); if (err) return 0; else return ((u32)phc_time[1] << 16) | phc_time[0]; } /* mv88e6352_config_eventcap - configure TAI event capture * @event: PTP_CLOCK_PPS (internal) or PTP_CLOCK_EXTTS (external) * @rising: zero for falling-edge trigger, else rising-edge trigger * * This will also reset the capture sequence counter. */ static int mv88e6352_config_eventcap(struct mv88e6xxx_chip *chip, int event, int rising) { u16 global_config; u16 cap_config; int err; chip->evcap_config = MV88E6XXX_TAI_CFG_CAP_OVERWRITE | MV88E6XXX_TAI_CFG_CAP_CTR_START; if (!rising) chip->evcap_config |= MV88E6XXX_TAI_CFG_EVREQ_FALLING; global_config = (chip->evcap_config | chip->trig_config); err = mv88e6xxx_tai_write(chip, MV88E6XXX_TAI_CFG, global_config); if (err) return err; if (event == PTP_CLOCK_PPS) { cap_config = MV88E6XXX_TAI_EVENT_STATUS_CAP_TRIG; } else if (event == PTP_CLOCK_EXTTS) { /* if STATUS_CAP_TRIG is unset we capture PTP_EVREQ events */ cap_config = 0; } else { return -EINVAL; } /* Write the capture config; this also clears the capture counter */ err = mv88e6xxx_tai_write(chip, MV88E6XXX_TAI_EVENT_STATUS, cap_config); return err; } static void mv88e6352_tai_event_work(struct work_struct *ugly) { struct delayed_work *dw = to_delayed_work(ugly); struct mv88e6xxx_chip *chip = dw_tai_event_to_chip(dw); struct ptp_clock_event ev; u16 status[4]; u32 raw_ts; int err; mutex_lock(&chip->reg_lock); err = mv88e6xxx_tai_read(chip, MV88E6XXX_TAI_EVENT_STATUS, status, ARRAY_SIZE(status)); mutex_unlock(&chip->reg_lock); if (err) { dev_err(chip->dev, "failed to read TAI status register\n"); return; } if (status[0] & MV88E6XXX_TAI_EVENT_STATUS_ERROR) { dev_warn(chip->dev, "missed event capture\n"); return; } if (!(status[0] & MV88E6XXX_TAI_EVENT_STATUS_VALID)) goto out; raw_ts = ((u32)status[2] << 16) | status[1]; /* Clear the valid bit so the next timestamp can come in */ status[0] &= ~MV88E6XXX_TAI_EVENT_STATUS_VALID; mutex_lock(&chip->reg_lock); err = mv88e6xxx_tai_write(chip, MV88E6XXX_TAI_EVENT_STATUS, status[0]); mutex_unlock(&chip->reg_lock); /* This is an external timestamp */ ev.type = PTP_CLOCK_EXTTS; /* We only have one timestamping channel. */ ev.index = 0; mutex_lock(&chip->reg_lock); ev.timestamp = timecounter_cyc2time(&chip->tstamp_tc, raw_ts); mutex_unlock(&chip->reg_lock); ptp_clock_event(chip->ptp_clock, &ev); out: schedule_delayed_work(&chip->tai_event_work, TAI_EVENT_WORK_INTERVAL); } static int mv88e6xxx_ptp_adjfine(struct ptp_clock_info *ptp, long scaled_ppm) { struct mv88e6xxx_chip *chip = ptp_to_chip(ptp); int neg_adj = 0; u32 diff, mult; u64 adj; if (scaled_ppm < 0) { neg_adj = 1; scaled_ppm = -scaled_ppm; } mult = CC_MULT; adj = CC_MULT_NUM; adj *= scaled_ppm; diff = div_u64(adj, CC_MULT_DEM); mutex_lock(&chip->reg_lock); timecounter_read(&chip->tstamp_tc); chip->tstamp_cc.mult = neg_adj ? mult - diff : mult + diff; mutex_unlock(&chip->reg_lock); return 0; } static int mv88e6xxx_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta) { struct mv88e6xxx_chip *chip = ptp_to_chip(ptp); mutex_lock(&chip->reg_lock); timecounter_adjtime(&chip->tstamp_tc, delta); mutex_unlock(&chip->reg_lock); return 0; } static int mv88e6xxx_ptp_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts) { struct mv88e6xxx_chip *chip = ptp_to_chip(ptp); u64 ns; mutex_lock(&chip->reg_lock); ns = timecounter_read(&chip->tstamp_tc); mutex_unlock(&chip->reg_lock); *ts = ns_to_timespec64(ns); return 0; } static int mv88e6xxx_ptp_settime(struct ptp_clock_info *ptp, const struct timespec64 *ts) { struct mv88e6xxx_chip *chip = ptp_to_chip(ptp); u64 ns; ns = timespec64_to_ns(ts); mutex_lock(&chip->reg_lock); timecounter_init(&chip->tstamp_tc, &chip->tstamp_cc, ns); mutex_unlock(&chip->reg_lock); return 0; } static int mv88e6352_ptp_enable_extts(struct mv88e6xxx_chip *chip, struct ptp_clock_request *rq, int on) { int rising = (rq->extts.flags & PTP_RISING_EDGE); int func; int pin; int err; pin = ptp_find_pin(chip->ptp_clock, PTP_PF_EXTTS, rq->extts.index); if (pin < 0) return -EBUSY; mutex_lock(&chip->reg_lock); if (on) { func = MV88E6352_G2_SCRATCH_GPIO_PCTL_EVREQ; err = mv88e6352_set_gpio_func(chip, pin, func, true); if (err) goto out; schedule_delayed_work(&chip->tai_event_work, TAI_EVENT_WORK_INTERVAL); err = mv88e6352_config_eventcap(chip, PTP_CLOCK_EXTTS, rising); } else { func = MV88E6352_G2_SCRATCH_GPIO_PCTL_GPIO; err = mv88e6352_set_gpio_func(chip, pin, func, true); cancel_delayed_work_sync(&chip->tai_event_work); } out: mutex_unlock(&chip->reg_lock); return err; } static int mv88e6352_ptp_enable(struct ptp_clock_info *ptp, struct ptp_clock_request *rq, int on) { struct mv88e6xxx_chip *chip = ptp_to_chip(ptp); switch (rq->type) { case PTP_CLK_REQ_EXTTS: return mv88e6352_ptp_enable_extts(chip, rq, on); default: return -EOPNOTSUPP; } } static int mv88e6352_ptp_verify(struct ptp_clock_info *ptp, unsigned int pin, enum ptp_pin_function func, unsigned int chan) { switch (func) { case PTP_PF_NONE: case PTP_PF_EXTTS: break; case PTP_PF_PEROUT: case PTP_PF_PHYSYNC: return -EOPNOTSUPP; } return 0; } const struct mv88e6xxx_ptp_ops mv88e6352_ptp_ops = { .clock_read = mv88e6352_ptp_clock_read, .ptp_enable = mv88e6352_ptp_enable, .ptp_verify = mv88e6352_ptp_verify, .event_work = mv88e6352_tai_event_work, .port_enable = mv88e6352_hwtstamp_port_enable, .port_disable = mv88e6352_hwtstamp_port_disable, .n_ext_ts = 1, .arr0_sts_reg = MV88E6XXX_PORT_PTP_ARR0_STS, .arr1_sts_reg = MV88E6XXX_PORT_PTP_ARR1_STS, .dep_sts_reg = MV88E6XXX_PORT_PTP_DEP_STS, .rx_filters = (1 << HWTSTAMP_FILTER_NONE) | (1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT) | (1 << HWTSTAMP_FILTER_PTP_V2_L4_SYNC) | (1 << HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ) | (1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) | (1 << HWTSTAMP_FILTER_PTP_V2_L2_SYNC) | (1 << HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ) | (1 << HWTSTAMP_FILTER_PTP_V2_EVENT) | (1 << HWTSTAMP_FILTER_PTP_V2_SYNC) | (1 << HWTSTAMP_FILTER_PTP_V2_DELAY_REQ), }; const struct mv88e6xxx_ptp_ops mv88e6165_ptp_ops = { .clock_read = mv88e6165_ptp_clock_read, .global_enable = mv88e6165_global_enable, .global_disable = mv88e6165_global_disable, .arr0_sts_reg = MV88E6165_PORT_PTP_ARR0_STS, .arr1_sts_reg = MV88E6165_PORT_PTP_ARR1_STS, .dep_sts_reg = MV88E6165_PORT_PTP_DEP_STS, .rx_filters = (1 << HWTSTAMP_FILTER_NONE) | (1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) | (1 << HWTSTAMP_FILTER_PTP_V2_L2_SYNC) | (1 << HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ) | (1 << HWTSTAMP_FILTER_PTP_V2_EVENT) | (1 << HWTSTAMP_FILTER_PTP_V2_SYNC) | (1 << HWTSTAMP_FILTER_PTP_V2_DELAY_REQ), }; static u64 mv88e6xxx_ptp_clock_read(const struct cyclecounter *cc) { struct mv88e6xxx_chip *chip = cc_to_chip(cc); if (chip->info->ops->ptp_ops->clock_read) return chip->info->ops->ptp_ops->clock_read(cc); return 0; } /* With a 125MHz input clock, the 32-bit timestamp counter overflows in ~34.3 * seconds; this task forces periodic reads so that we don't miss any. */ #define MV88E6XXX_TAI_OVERFLOW_PERIOD (HZ * 16) static void mv88e6xxx_ptp_overflow_check(struct work_struct *work) { struct delayed_work *dw = to_delayed_work(work); struct mv88e6xxx_chip *chip = dw_overflow_to_chip(dw); struct timespec64 ts; mv88e6xxx_ptp_gettime(&chip->ptp_clock_info, &ts); schedule_delayed_work(&chip->overflow_work, MV88E6XXX_TAI_OVERFLOW_PERIOD); } int mv88e6xxx_ptp_setup(struct mv88e6xxx_chip *chip) { const struct mv88e6xxx_ptp_ops *ptp_ops = chip->info->ops->ptp_ops; int i; /* Set up the cycle counter */ memset(&chip->tstamp_cc, 0, sizeof(chip->tstamp_cc)); chip->tstamp_cc.read = mv88e6xxx_ptp_clock_read; chip->tstamp_cc.mask = CYCLECOUNTER_MASK(32); chip->tstamp_cc.mult = CC_MULT; chip->tstamp_cc.shift = CC_SHIFT; timecounter_init(&chip->tstamp_tc, &chip->tstamp_cc, ktime_to_ns(ktime_get_real())); INIT_DELAYED_WORK(&chip->overflow_work, mv88e6xxx_ptp_overflow_check); if (ptp_ops->event_work) INIT_DELAYED_WORK(&chip->tai_event_work, ptp_ops->event_work); chip->ptp_clock_info.owner = THIS_MODULE; snprintf(chip->ptp_clock_info.name, sizeof(chip->ptp_clock_info.name), dev_name(chip->dev)); chip->ptp_clock_info.max_adj = 1000000; chip->ptp_clock_info.n_ext_ts = ptp_ops->n_ext_ts; chip->ptp_clock_info.n_per_out = 0; chip->ptp_clock_info.n_pins = mv88e6xxx_num_gpio(chip); chip->ptp_clock_info.pps = 0; for (i = 0; i < chip->ptp_clock_info.n_pins; ++i) { struct ptp_pin_desc *ppd = &chip->pin_config[i]; snprintf(ppd->name, sizeof(ppd->name), "mv88e6xxx_gpio%d", i); ppd->index = i; ppd->func = PTP_PF_NONE; } chip->ptp_clock_info.pin_config = chip->pin_config; chip->ptp_clock_info.adjfine = mv88e6xxx_ptp_adjfine; chip->ptp_clock_info.adjtime = mv88e6xxx_ptp_adjtime; chip->ptp_clock_info.gettime64 = mv88e6xxx_ptp_gettime; chip->ptp_clock_info.settime64 = mv88e6xxx_ptp_settime; chip->ptp_clock_info.enable = ptp_ops->ptp_enable; chip->ptp_clock_info.verify = ptp_ops->ptp_verify; chip->ptp_clock_info.do_aux_work = mv88e6xxx_hwtstamp_work; chip->ptp_clock = ptp_clock_register(&chip->ptp_clock_info, chip->dev); if (IS_ERR(chip->ptp_clock)) return PTR_ERR(chip->ptp_clock); schedule_delayed_work(&chip->overflow_work, MV88E6XXX_TAI_OVERFLOW_PERIOD); return 0; } void mv88e6xxx_ptp_free(struct mv88e6xxx_chip *chip) { if (chip->ptp_clock) { cancel_delayed_work_sync(&chip->overflow_work); if (chip->info->ops->ptp_ops->event_work) cancel_delayed_work_sync(&chip->tai_event_work); ptp_clock_unregister(chip->ptp_clock); chip->ptp_clock = NULL; } }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1