Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
John Crispin | 4422 | 93.15% | 1 | 3.57% |
Michal Vokáč | 202 | 4.26% | 5 | 17.86% |
Vivien Didelot | 53 | 1.12% | 11 | 39.29% |
Arkadi Sharshevsky | 34 | 0.72% | 3 | 10.71% |
Florian Fainelli | 26 | 0.55% | 3 | 10.71% |
Wolfram Sang | 4 | 0.08% | 1 | 3.57% |
Andrew Lunn | 3 | 0.06% | 1 | 3.57% |
Wei Yongjun | 2 | 0.04% | 2 | 7.14% |
Bhumika Goyal | 1 | 0.02% | 1 | 3.57% |
Total | 4747 | 28 |
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2009 Felix Fietkau <nbd@nbd.name> * Copyright (C) 2011-2012 Gabor Juhos <juhosg@openwrt.org> * Copyright (c) 2015, The Linux Foundation. All rights reserved. * Copyright (c) 2016 John Crispin <john@phrozen.org> */ #include <linux/module.h> #include <linux/phy.h> #include <linux/netdevice.h> #include <net/dsa.h> #include <linux/of_net.h> #include <linux/of_platform.h> #include <linux/if_bridge.h> #include <linux/mdio.h> #include <linux/etherdevice.h> #include "qca8k.h" #define MIB_DESC(_s, _o, _n) \ { \ .size = (_s), \ .offset = (_o), \ .name = (_n), \ } static const struct qca8k_mib_desc ar8327_mib[] = { MIB_DESC(1, 0x00, "RxBroad"), MIB_DESC(1, 0x04, "RxPause"), MIB_DESC(1, 0x08, "RxMulti"), MIB_DESC(1, 0x0c, "RxFcsErr"), MIB_DESC(1, 0x10, "RxAlignErr"), MIB_DESC(1, 0x14, "RxRunt"), MIB_DESC(1, 0x18, "RxFragment"), MIB_DESC(1, 0x1c, "Rx64Byte"), MIB_DESC(1, 0x20, "Rx128Byte"), MIB_DESC(1, 0x24, "Rx256Byte"), MIB_DESC(1, 0x28, "Rx512Byte"), MIB_DESC(1, 0x2c, "Rx1024Byte"), MIB_DESC(1, 0x30, "Rx1518Byte"), MIB_DESC(1, 0x34, "RxMaxByte"), MIB_DESC(1, 0x38, "RxTooLong"), MIB_DESC(2, 0x3c, "RxGoodByte"), MIB_DESC(2, 0x44, "RxBadByte"), MIB_DESC(1, 0x4c, "RxOverFlow"), MIB_DESC(1, 0x50, "Filtered"), MIB_DESC(1, 0x54, "TxBroad"), MIB_DESC(1, 0x58, "TxPause"), MIB_DESC(1, 0x5c, "TxMulti"), MIB_DESC(1, 0x60, "TxUnderRun"), MIB_DESC(1, 0x64, "Tx64Byte"), MIB_DESC(1, 0x68, "Tx128Byte"), MIB_DESC(1, 0x6c, "Tx256Byte"), MIB_DESC(1, 0x70, "Tx512Byte"), MIB_DESC(1, 0x74, "Tx1024Byte"), MIB_DESC(1, 0x78, "Tx1518Byte"), MIB_DESC(1, 0x7c, "TxMaxByte"), MIB_DESC(1, 0x80, "TxOverSize"), MIB_DESC(2, 0x84, "TxByte"), MIB_DESC(1, 0x8c, "TxCollision"), MIB_DESC(1, 0x90, "TxAbortCol"), MIB_DESC(1, 0x94, "TxMultiCol"), MIB_DESC(1, 0x98, "TxSingleCol"), MIB_DESC(1, 0x9c, "TxExcDefer"), MIB_DESC(1, 0xa0, "TxDefer"), MIB_DESC(1, 0xa4, "TxLateCol"), }; /* The 32bit switch registers are accessed indirectly. To achieve this we need * to set the page of the register. Track the last page that was set to reduce * mdio writes */ static u16 qca8k_current_page = 0xffff; static void qca8k_split_addr(u32 regaddr, u16 *r1, u16 *r2, u16 *page) { regaddr >>= 1; *r1 = regaddr & 0x1e; regaddr >>= 5; *r2 = regaddr & 0x7; regaddr >>= 3; *page = regaddr & 0x3ff; } static u32 qca8k_mii_read32(struct mii_bus *bus, int phy_id, u32 regnum) { u32 val; int ret; ret = bus->read(bus, phy_id, regnum); if (ret >= 0) { val = ret; ret = bus->read(bus, phy_id, regnum + 1); val |= ret << 16; } if (ret < 0) { dev_err_ratelimited(&bus->dev, "failed to read qca8k 32bit register\n"); return ret; } return val; } static void qca8k_mii_write32(struct mii_bus *bus, int phy_id, u32 regnum, u32 val) { u16 lo, hi; int ret; lo = val & 0xffff; hi = (u16)(val >> 16); ret = bus->write(bus, phy_id, regnum, lo); if (ret >= 0) ret = bus->write(bus, phy_id, regnum + 1, hi); if (ret < 0) dev_err_ratelimited(&bus->dev, "failed to write qca8k 32bit register\n"); } static void qca8k_set_page(struct mii_bus *bus, u16 page) { if (page == qca8k_current_page) return; if (bus->write(bus, 0x18, 0, page) < 0) dev_err_ratelimited(&bus->dev, "failed to set qca8k page\n"); qca8k_current_page = page; } static u32 qca8k_read(struct qca8k_priv *priv, u32 reg) { u16 r1, r2, page; u32 val; qca8k_split_addr(reg, &r1, &r2, &page); mutex_lock_nested(&priv->bus->mdio_lock, MDIO_MUTEX_NESTED); qca8k_set_page(priv->bus, page); val = qca8k_mii_read32(priv->bus, 0x10 | r2, r1); mutex_unlock(&priv->bus->mdio_lock); return val; } static void qca8k_write(struct qca8k_priv *priv, u32 reg, u32 val) { u16 r1, r2, page; qca8k_split_addr(reg, &r1, &r2, &page); mutex_lock_nested(&priv->bus->mdio_lock, MDIO_MUTEX_NESTED); qca8k_set_page(priv->bus, page); qca8k_mii_write32(priv->bus, 0x10 | r2, r1, val); mutex_unlock(&priv->bus->mdio_lock); } static u32 qca8k_rmw(struct qca8k_priv *priv, u32 reg, u32 mask, u32 val) { u16 r1, r2, page; u32 ret; qca8k_split_addr(reg, &r1, &r2, &page); mutex_lock_nested(&priv->bus->mdio_lock, MDIO_MUTEX_NESTED); qca8k_set_page(priv->bus, page); ret = qca8k_mii_read32(priv->bus, 0x10 | r2, r1); ret &= ~mask; ret |= val; qca8k_mii_write32(priv->bus, 0x10 | r2, r1, ret); mutex_unlock(&priv->bus->mdio_lock); return ret; } static void qca8k_reg_set(struct qca8k_priv *priv, u32 reg, u32 val) { qca8k_rmw(priv, reg, 0, val); } static void qca8k_reg_clear(struct qca8k_priv *priv, u32 reg, u32 val) { qca8k_rmw(priv, reg, val, 0); } static int qca8k_regmap_read(void *ctx, uint32_t reg, uint32_t *val) { struct qca8k_priv *priv = (struct qca8k_priv *)ctx; *val = qca8k_read(priv, reg); return 0; } static int qca8k_regmap_write(void *ctx, uint32_t reg, uint32_t val) { struct qca8k_priv *priv = (struct qca8k_priv *)ctx; qca8k_write(priv, reg, val); return 0; } static const struct regmap_range qca8k_readable_ranges[] = { regmap_reg_range(0x0000, 0x00e4), /* Global control */ regmap_reg_range(0x0100, 0x0168), /* EEE control */ regmap_reg_range(0x0200, 0x0270), /* Parser control */ regmap_reg_range(0x0400, 0x0454), /* ACL */ regmap_reg_range(0x0600, 0x0718), /* Lookup */ regmap_reg_range(0x0800, 0x0b70), /* QM */ regmap_reg_range(0x0c00, 0x0c80), /* PKT */ regmap_reg_range(0x0e00, 0x0e98), /* L3 */ regmap_reg_range(0x1000, 0x10ac), /* MIB - Port0 */ regmap_reg_range(0x1100, 0x11ac), /* MIB - Port1 */ regmap_reg_range(0x1200, 0x12ac), /* MIB - Port2 */ regmap_reg_range(0x1300, 0x13ac), /* MIB - Port3 */ regmap_reg_range(0x1400, 0x14ac), /* MIB - Port4 */ regmap_reg_range(0x1500, 0x15ac), /* MIB - Port5 */ regmap_reg_range(0x1600, 0x16ac), /* MIB - Port6 */ }; static const struct regmap_access_table qca8k_readable_table = { .yes_ranges = qca8k_readable_ranges, .n_yes_ranges = ARRAY_SIZE(qca8k_readable_ranges), }; static struct regmap_config qca8k_regmap_config = { .reg_bits = 16, .val_bits = 32, .reg_stride = 4, .max_register = 0x16ac, /* end MIB - Port6 range */ .reg_read = qca8k_regmap_read, .reg_write = qca8k_regmap_write, .rd_table = &qca8k_readable_table, }; static int qca8k_busy_wait(struct qca8k_priv *priv, u32 reg, u32 mask) { unsigned long timeout; timeout = jiffies + msecs_to_jiffies(20); /* loop until the busy flag has cleared */ do { u32 val = qca8k_read(priv, reg); int busy = val & mask; if (!busy) break; cond_resched(); } while (!time_after_eq(jiffies, timeout)); return time_after_eq(jiffies, timeout); } static void qca8k_fdb_read(struct qca8k_priv *priv, struct qca8k_fdb *fdb) { u32 reg[4]; int i; /* load the ARL table into an array */ for (i = 0; i < 4; i++) reg[i] = qca8k_read(priv, QCA8K_REG_ATU_DATA0 + (i * 4)); /* vid - 83:72 */ fdb->vid = (reg[2] >> QCA8K_ATU_VID_S) & QCA8K_ATU_VID_M; /* aging - 67:64 */ fdb->aging = reg[2] & QCA8K_ATU_STATUS_M; /* portmask - 54:48 */ fdb->port_mask = (reg[1] >> QCA8K_ATU_PORT_S) & QCA8K_ATU_PORT_M; /* mac - 47:0 */ fdb->mac[0] = (reg[1] >> QCA8K_ATU_ADDR0_S) & 0xff; fdb->mac[1] = reg[1] & 0xff; fdb->mac[2] = (reg[0] >> QCA8K_ATU_ADDR2_S) & 0xff; fdb->mac[3] = (reg[0] >> QCA8K_ATU_ADDR3_S) & 0xff; fdb->mac[4] = (reg[0] >> QCA8K_ATU_ADDR4_S) & 0xff; fdb->mac[5] = reg[0] & 0xff; } static void qca8k_fdb_write(struct qca8k_priv *priv, u16 vid, u8 port_mask, const u8 *mac, u8 aging) { u32 reg[3] = { 0 }; int i; /* vid - 83:72 */ reg[2] = (vid & QCA8K_ATU_VID_M) << QCA8K_ATU_VID_S; /* aging - 67:64 */ reg[2] |= aging & QCA8K_ATU_STATUS_M; /* portmask - 54:48 */ reg[1] = (port_mask & QCA8K_ATU_PORT_M) << QCA8K_ATU_PORT_S; /* mac - 47:0 */ reg[1] |= mac[0] << QCA8K_ATU_ADDR0_S; reg[1] |= mac[1]; reg[0] |= mac[2] << QCA8K_ATU_ADDR2_S; reg[0] |= mac[3] << QCA8K_ATU_ADDR3_S; reg[0] |= mac[4] << QCA8K_ATU_ADDR4_S; reg[0] |= mac[5]; /* load the array into the ARL table */ for (i = 0; i < 3; i++) qca8k_write(priv, QCA8K_REG_ATU_DATA0 + (i * 4), reg[i]); } static int qca8k_fdb_access(struct qca8k_priv *priv, enum qca8k_fdb_cmd cmd, int port) { u32 reg; /* Set the command and FDB index */ reg = QCA8K_ATU_FUNC_BUSY; reg |= cmd; if (port >= 0) { reg |= QCA8K_ATU_FUNC_PORT_EN; reg |= (port & QCA8K_ATU_FUNC_PORT_M) << QCA8K_ATU_FUNC_PORT_S; } /* Write the function register triggering the table access */ qca8k_write(priv, QCA8K_REG_ATU_FUNC, reg); /* wait for completion */ if (qca8k_busy_wait(priv, QCA8K_REG_ATU_FUNC, QCA8K_ATU_FUNC_BUSY)) return -1; /* Check for table full violation when adding an entry */ if (cmd == QCA8K_FDB_LOAD) { reg = qca8k_read(priv, QCA8K_REG_ATU_FUNC); if (reg & QCA8K_ATU_FUNC_FULL) return -1; } return 0; } static int qca8k_fdb_next(struct qca8k_priv *priv, struct qca8k_fdb *fdb, int port) { int ret; qca8k_fdb_write(priv, fdb->vid, fdb->port_mask, fdb->mac, fdb->aging); ret = qca8k_fdb_access(priv, QCA8K_FDB_NEXT, port); if (ret >= 0) qca8k_fdb_read(priv, fdb); return ret; } static int qca8k_fdb_add(struct qca8k_priv *priv, const u8 *mac, u16 port_mask, u16 vid, u8 aging) { int ret; mutex_lock(&priv->reg_mutex); qca8k_fdb_write(priv, vid, port_mask, mac, aging); ret = qca8k_fdb_access(priv, QCA8K_FDB_LOAD, -1); mutex_unlock(&priv->reg_mutex); return ret; } static int qca8k_fdb_del(struct qca8k_priv *priv, const u8 *mac, u16 port_mask, u16 vid) { int ret; mutex_lock(&priv->reg_mutex); qca8k_fdb_write(priv, vid, port_mask, mac, 0); ret = qca8k_fdb_access(priv, QCA8K_FDB_PURGE, -1); mutex_unlock(&priv->reg_mutex); return ret; } static void qca8k_fdb_flush(struct qca8k_priv *priv) { mutex_lock(&priv->reg_mutex); qca8k_fdb_access(priv, QCA8K_FDB_FLUSH, -1); mutex_unlock(&priv->reg_mutex); } static void qca8k_mib_init(struct qca8k_priv *priv) { mutex_lock(&priv->reg_mutex); qca8k_reg_set(priv, QCA8K_REG_MIB, QCA8K_MIB_FLUSH | QCA8K_MIB_BUSY); qca8k_busy_wait(priv, QCA8K_REG_MIB, QCA8K_MIB_BUSY); qca8k_reg_set(priv, QCA8K_REG_MIB, QCA8K_MIB_CPU_KEEP); qca8k_write(priv, QCA8K_REG_MODULE_EN, QCA8K_MODULE_EN_MIB); mutex_unlock(&priv->reg_mutex); } static int qca8k_set_pad_ctrl(struct qca8k_priv *priv, int port, int mode) { u32 reg; switch (port) { case 0: reg = QCA8K_REG_PORT0_PAD_CTRL; break; case 6: reg = QCA8K_REG_PORT6_PAD_CTRL; break; default: pr_err("Can't set PAD_CTRL on port %d\n", port); return -EINVAL; } /* Configure a port to be directly connected to an external * PHY or MAC. */ switch (mode) { case PHY_INTERFACE_MODE_RGMII: qca8k_write(priv, reg, QCA8K_PORT_PAD_RGMII_EN | QCA8K_PORT_PAD_RGMII_TX_DELAY(3) | QCA8K_PORT_PAD_RGMII_RX_DELAY(3)); /* According to the datasheet, RGMII delay is enabled through * PORT5_PAD_CTRL for all ports, rather than individual port * registers */ qca8k_write(priv, QCA8K_REG_PORT5_PAD_CTRL, QCA8K_PORT_PAD_RGMII_RX_DELAY_EN); break; case PHY_INTERFACE_MODE_SGMII: qca8k_write(priv, reg, QCA8K_PORT_PAD_SGMII_EN); break; default: pr_err("xMII mode %d not supported\n", mode); return -EINVAL; } return 0; } static void qca8k_port_set_status(struct qca8k_priv *priv, int port, int enable) { u32 mask = QCA8K_PORT_STATUS_TXMAC | QCA8K_PORT_STATUS_RXMAC; /* Port 0 and 6 have no internal PHY */ if (port > 0 && port < 6) mask |= QCA8K_PORT_STATUS_LINK_AUTO; if (enable) qca8k_reg_set(priv, QCA8K_REG_PORT_STATUS(port), mask); else qca8k_reg_clear(priv, QCA8K_REG_PORT_STATUS(port), mask); } static int qca8k_setup(struct dsa_switch *ds) { struct qca8k_priv *priv = (struct qca8k_priv *)ds->priv; int ret, i, phy_mode = -1; u32 mask; /* Make sure that port 0 is the cpu port */ if (!dsa_is_cpu_port(ds, 0)) { pr_err("port 0 is not the CPU port\n"); return -EINVAL; } mutex_init(&priv->reg_mutex); /* Start by setting up the register mapping */ priv->regmap = devm_regmap_init(ds->dev, NULL, priv, &qca8k_regmap_config); if (IS_ERR(priv->regmap)) pr_warn("regmap initialization failed"); /* Initialize CPU port pad mode (xMII type, delays...) */ phy_mode = of_get_phy_mode(ds->ports[QCA8K_CPU_PORT].dn); if (phy_mode < 0) { pr_err("Can't find phy-mode for master device\n"); return phy_mode; } ret = qca8k_set_pad_ctrl(priv, QCA8K_CPU_PORT, phy_mode); if (ret < 0) return ret; /* Enable CPU Port, force it to maximum bandwidth and full-duplex */ mask = QCA8K_PORT_STATUS_SPEED_1000 | QCA8K_PORT_STATUS_TXFLOW | QCA8K_PORT_STATUS_RXFLOW | QCA8K_PORT_STATUS_DUPLEX; qca8k_write(priv, QCA8K_REG_PORT_STATUS(QCA8K_CPU_PORT), mask); qca8k_reg_set(priv, QCA8K_REG_GLOBAL_FW_CTRL0, QCA8K_GLOBAL_FW_CTRL0_CPU_PORT_EN); qca8k_port_set_status(priv, QCA8K_CPU_PORT, 1); priv->port_sts[QCA8K_CPU_PORT].enabled = 1; /* Enable MIB counters */ qca8k_mib_init(priv); /* Enable QCA header mode on the cpu port */ qca8k_write(priv, QCA8K_REG_PORT_HDR_CTRL(QCA8K_CPU_PORT), QCA8K_PORT_HDR_CTRL_ALL << QCA8K_PORT_HDR_CTRL_TX_S | QCA8K_PORT_HDR_CTRL_ALL << QCA8K_PORT_HDR_CTRL_RX_S); /* Disable forwarding by default on all ports */ for (i = 0; i < QCA8K_NUM_PORTS; i++) qca8k_rmw(priv, QCA8K_PORT_LOOKUP_CTRL(i), QCA8K_PORT_LOOKUP_MEMBER, 0); /* Disable MAC by default on all user ports */ for (i = 1; i < QCA8K_NUM_PORTS; i++) if (dsa_is_user_port(ds, i)) qca8k_port_set_status(priv, i, 0); /* Forward all unknown frames to CPU port for Linux processing */ qca8k_write(priv, QCA8K_REG_GLOBAL_FW_CTRL1, BIT(0) << QCA8K_GLOBAL_FW_CTRL1_IGMP_DP_S | BIT(0) << QCA8K_GLOBAL_FW_CTRL1_BC_DP_S | BIT(0) << QCA8K_GLOBAL_FW_CTRL1_MC_DP_S | BIT(0) << QCA8K_GLOBAL_FW_CTRL1_UC_DP_S); /* Setup connection between CPU port & user ports */ for (i = 0; i < DSA_MAX_PORTS; i++) { /* CPU port gets connected to all user ports of the switch */ if (dsa_is_cpu_port(ds, i)) { qca8k_rmw(priv, QCA8K_PORT_LOOKUP_CTRL(QCA8K_CPU_PORT), QCA8K_PORT_LOOKUP_MEMBER, dsa_user_ports(ds)); } /* Invividual user ports get connected to CPU port only */ if (dsa_is_user_port(ds, i)) { int shift = 16 * (i % 2); qca8k_rmw(priv, QCA8K_PORT_LOOKUP_CTRL(i), QCA8K_PORT_LOOKUP_MEMBER, BIT(QCA8K_CPU_PORT)); /* Enable ARP Auto-learning by default */ qca8k_reg_set(priv, QCA8K_PORT_LOOKUP_CTRL(i), QCA8K_PORT_LOOKUP_LEARN); /* For port based vlans to work we need to set the * default egress vid */ qca8k_rmw(priv, QCA8K_EGRESS_VLAN(i), 0xffff << shift, 1 << shift); qca8k_write(priv, QCA8K_REG_PORT_VLAN_CTRL0(i), QCA8K_PORT_VLAN_CVID(1) | QCA8K_PORT_VLAN_SVID(1)); } } /* Flush the FDB table */ qca8k_fdb_flush(priv); return 0; } static void qca8k_adjust_link(struct dsa_switch *ds, int port, struct phy_device *phy) { struct qca8k_priv *priv = ds->priv; u32 reg; /* Force fixed-link setting for CPU port, skip others. */ if (!phy_is_pseudo_fixed_link(phy)) return; /* Set port speed */ switch (phy->speed) { case 10: reg = QCA8K_PORT_STATUS_SPEED_10; break; case 100: reg = QCA8K_PORT_STATUS_SPEED_100; break; case 1000: reg = QCA8K_PORT_STATUS_SPEED_1000; break; default: dev_dbg(priv->dev, "port%d link speed %dMbps not supported.\n", port, phy->speed); return; } /* Set duplex mode */ if (phy->duplex == DUPLEX_FULL) reg |= QCA8K_PORT_STATUS_DUPLEX; /* Force flow control */ if (dsa_is_cpu_port(ds, port)) reg |= QCA8K_PORT_STATUS_RXFLOW | QCA8K_PORT_STATUS_TXFLOW; /* Force link down before changing MAC options */ qca8k_port_set_status(priv, port, 0); qca8k_write(priv, QCA8K_REG_PORT_STATUS(port), reg); qca8k_port_set_status(priv, port, 1); } static int qca8k_phy_read(struct dsa_switch *ds, int phy, int regnum) { struct qca8k_priv *priv = (struct qca8k_priv *)ds->priv; return mdiobus_read(priv->bus, phy, regnum); } static int qca8k_phy_write(struct dsa_switch *ds, int phy, int regnum, u16 val) { struct qca8k_priv *priv = (struct qca8k_priv *)ds->priv; return mdiobus_write(priv->bus, phy, regnum, val); } static void qca8k_get_strings(struct dsa_switch *ds, int port, u32 stringset, uint8_t *data) { int i; if (stringset != ETH_SS_STATS) return; for (i = 0; i < ARRAY_SIZE(ar8327_mib); i++) strncpy(data + i * ETH_GSTRING_LEN, ar8327_mib[i].name, ETH_GSTRING_LEN); } static void qca8k_get_ethtool_stats(struct dsa_switch *ds, int port, uint64_t *data) { struct qca8k_priv *priv = (struct qca8k_priv *)ds->priv; const struct qca8k_mib_desc *mib; u32 reg, i; u64 hi; for (i = 0; i < ARRAY_SIZE(ar8327_mib); i++) { mib = &ar8327_mib[i]; reg = QCA8K_PORT_MIB_COUNTER(port) + mib->offset; data[i] = qca8k_read(priv, reg); if (mib->size == 2) { hi = qca8k_read(priv, reg + 4); data[i] |= hi << 32; } } } static int qca8k_get_sset_count(struct dsa_switch *ds, int port, int sset) { if (sset != ETH_SS_STATS) return 0; return ARRAY_SIZE(ar8327_mib); } static int qca8k_set_mac_eee(struct dsa_switch *ds, int port, struct ethtool_eee *eee) { struct qca8k_priv *priv = (struct qca8k_priv *)ds->priv; u32 lpi_en = QCA8K_REG_EEE_CTRL_LPI_EN(port); u32 reg; mutex_lock(&priv->reg_mutex); reg = qca8k_read(priv, QCA8K_REG_EEE_CTRL); if (eee->eee_enabled) reg |= lpi_en; else reg &= ~lpi_en; qca8k_write(priv, QCA8K_REG_EEE_CTRL, reg); mutex_unlock(&priv->reg_mutex); return 0; } static int qca8k_get_mac_eee(struct dsa_switch *ds, int port, struct ethtool_eee *e) { /* Nothing to do on the port's MAC */ return 0; } static void qca8k_port_stp_state_set(struct dsa_switch *ds, int port, u8 state) { struct qca8k_priv *priv = (struct qca8k_priv *)ds->priv; u32 stp_state; switch (state) { case BR_STATE_DISABLED: stp_state = QCA8K_PORT_LOOKUP_STATE_DISABLED; break; case BR_STATE_BLOCKING: stp_state = QCA8K_PORT_LOOKUP_STATE_BLOCKING; break; case BR_STATE_LISTENING: stp_state = QCA8K_PORT_LOOKUP_STATE_LISTENING; break; case BR_STATE_LEARNING: stp_state = QCA8K_PORT_LOOKUP_STATE_LEARNING; break; case BR_STATE_FORWARDING: default: stp_state = QCA8K_PORT_LOOKUP_STATE_FORWARD; break; } qca8k_rmw(priv, QCA8K_PORT_LOOKUP_CTRL(port), QCA8K_PORT_LOOKUP_STATE_MASK, stp_state); } static int qca8k_port_bridge_join(struct dsa_switch *ds, int port, struct net_device *br) { struct qca8k_priv *priv = (struct qca8k_priv *)ds->priv; int port_mask = BIT(QCA8K_CPU_PORT); int i; for (i = 1; i < QCA8K_NUM_PORTS; i++) { if (dsa_to_port(ds, i)->bridge_dev != br) continue; /* Add this port to the portvlan mask of the other ports * in the bridge */ qca8k_reg_set(priv, QCA8K_PORT_LOOKUP_CTRL(i), BIT(port)); if (i != port) port_mask |= BIT(i); } /* Add all other ports to this ports portvlan mask */ qca8k_rmw(priv, QCA8K_PORT_LOOKUP_CTRL(port), QCA8K_PORT_LOOKUP_MEMBER, port_mask); return 0; } static void qca8k_port_bridge_leave(struct dsa_switch *ds, int port, struct net_device *br) { struct qca8k_priv *priv = (struct qca8k_priv *)ds->priv; int i; for (i = 1; i < QCA8K_NUM_PORTS; i++) { if (dsa_to_port(ds, i)->bridge_dev != br) continue; /* Remove this port to the portvlan mask of the other ports * in the bridge */ qca8k_reg_clear(priv, QCA8K_PORT_LOOKUP_CTRL(i), BIT(port)); } /* Set the cpu port to be the only one in the portvlan mask of * this port */ qca8k_rmw(priv, QCA8K_PORT_LOOKUP_CTRL(port), QCA8K_PORT_LOOKUP_MEMBER, BIT(QCA8K_CPU_PORT)); } static int qca8k_port_enable(struct dsa_switch *ds, int port, struct phy_device *phy) { struct qca8k_priv *priv = (struct qca8k_priv *)ds->priv; qca8k_port_set_status(priv, port, 1); priv->port_sts[port].enabled = 1; return 0; } static void qca8k_port_disable(struct dsa_switch *ds, int port, struct phy_device *phy) { struct qca8k_priv *priv = (struct qca8k_priv *)ds->priv; qca8k_port_set_status(priv, port, 0); priv->port_sts[port].enabled = 0; } static int qca8k_port_fdb_insert(struct qca8k_priv *priv, const u8 *addr, u16 port_mask, u16 vid) { /* Set the vid to the port vlan id if no vid is set */ if (!vid) vid = 1; return qca8k_fdb_add(priv, addr, port_mask, vid, QCA8K_ATU_STATUS_STATIC); } static int qca8k_port_fdb_add(struct dsa_switch *ds, int port, const unsigned char *addr, u16 vid) { struct qca8k_priv *priv = (struct qca8k_priv *)ds->priv; u16 port_mask = BIT(port); return qca8k_port_fdb_insert(priv, addr, port_mask, vid); } static int qca8k_port_fdb_del(struct dsa_switch *ds, int port, const unsigned char *addr, u16 vid) { struct qca8k_priv *priv = (struct qca8k_priv *)ds->priv; u16 port_mask = BIT(port); if (!vid) vid = 1; return qca8k_fdb_del(priv, addr, port_mask, vid); } static int qca8k_port_fdb_dump(struct dsa_switch *ds, int port, dsa_fdb_dump_cb_t *cb, void *data) { struct qca8k_priv *priv = (struct qca8k_priv *)ds->priv; struct qca8k_fdb _fdb = { 0 }; int cnt = QCA8K_NUM_FDB_RECORDS; bool is_static; int ret = 0; mutex_lock(&priv->reg_mutex); while (cnt-- && !qca8k_fdb_next(priv, &_fdb, port)) { if (!_fdb.aging) break; is_static = (_fdb.aging == QCA8K_ATU_STATUS_STATIC); ret = cb(_fdb.mac, _fdb.vid, is_static, data); if (ret) break; } mutex_unlock(&priv->reg_mutex); return 0; } static enum dsa_tag_protocol qca8k_get_tag_protocol(struct dsa_switch *ds, int port) { return DSA_TAG_PROTO_QCA; } static const struct dsa_switch_ops qca8k_switch_ops = { .get_tag_protocol = qca8k_get_tag_protocol, .setup = qca8k_setup, .adjust_link = qca8k_adjust_link, .get_strings = qca8k_get_strings, .phy_read = qca8k_phy_read, .phy_write = qca8k_phy_write, .get_ethtool_stats = qca8k_get_ethtool_stats, .get_sset_count = qca8k_get_sset_count, .get_mac_eee = qca8k_get_mac_eee, .set_mac_eee = qca8k_set_mac_eee, .port_enable = qca8k_port_enable, .port_disable = qca8k_port_disable, .port_stp_state_set = qca8k_port_stp_state_set, .port_bridge_join = qca8k_port_bridge_join, .port_bridge_leave = qca8k_port_bridge_leave, .port_fdb_add = qca8k_port_fdb_add, .port_fdb_del = qca8k_port_fdb_del, .port_fdb_dump = qca8k_port_fdb_dump, }; static int qca8k_sw_probe(struct mdio_device *mdiodev) { struct qca8k_priv *priv; u32 id; /* allocate the private data struct so that we can probe the switches * ID register */ priv = devm_kzalloc(&mdiodev->dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; priv->bus = mdiodev->bus; priv->dev = &mdiodev->dev; /* read the switches ID register */ id = qca8k_read(priv, QCA8K_REG_MASK_CTRL); id >>= QCA8K_MASK_CTRL_ID_S; id &= QCA8K_MASK_CTRL_ID_M; if (id != QCA8K_ID_QCA8337) return -ENODEV; priv->ds = dsa_switch_alloc(&mdiodev->dev, DSA_MAX_PORTS); if (!priv->ds) return -ENOMEM; priv->ds->priv = priv; priv->ds->ops = &qca8k_switch_ops; mutex_init(&priv->reg_mutex); dev_set_drvdata(&mdiodev->dev, priv); return dsa_register_switch(priv->ds); } static void qca8k_sw_remove(struct mdio_device *mdiodev) { struct qca8k_priv *priv = dev_get_drvdata(&mdiodev->dev); int i; for (i = 0; i < QCA8K_NUM_PORTS; i++) qca8k_port_set_status(priv, i, 0); dsa_unregister_switch(priv->ds); } #ifdef CONFIG_PM_SLEEP static void qca8k_set_pm(struct qca8k_priv *priv, int enable) { int i; for (i = 0; i < QCA8K_NUM_PORTS; i++) { if (!priv->port_sts[i].enabled) continue; qca8k_port_set_status(priv, i, enable); } } static int qca8k_suspend(struct device *dev) { struct qca8k_priv *priv = dev_get_drvdata(dev); qca8k_set_pm(priv, 0); return dsa_switch_suspend(priv->ds); } static int qca8k_resume(struct device *dev) { struct qca8k_priv *priv = dev_get_drvdata(dev); qca8k_set_pm(priv, 1); return dsa_switch_resume(priv->ds); } #endif /* CONFIG_PM_SLEEP */ static SIMPLE_DEV_PM_OPS(qca8k_pm_ops, qca8k_suspend, qca8k_resume); static const struct of_device_id qca8k_of_match[] = { { .compatible = "qca,qca8334" }, { .compatible = "qca,qca8337" }, { /* sentinel */ }, }; static struct mdio_driver qca8kmdio_driver = { .probe = qca8k_sw_probe, .remove = qca8k_sw_remove, .mdiodrv.driver = { .name = "qca8k", .of_match_table = qca8k_of_match, .pm = &qca8k_pm_ops, }, }; mdio_module_driver(qca8kmdio_driver); MODULE_AUTHOR("Mathieu Olivari, John Crispin <john@phrozen.org>"); MODULE_DESCRIPTION("Driver for QCA8K ethernet switch family"); MODULE_LICENSE("GPL v2"); MODULE_ALIAS("platform:qca8k");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1