Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Johannes Berg | 6333 | 63.79% | 3 | 7.14% |
Tobias Regnery | 2943 | 29.64% | 15 | 35.71% |
Sabrina Dubroca | 264 | 2.66% | 2 | 4.76% |
Christoph Hellwig | 199 | 2.00% | 1 | 2.38% |
Feng Tang | 33 | 0.33% | 1 | 2.38% |
Eric Dumazet | 32 | 0.32% | 2 | 4.76% |
Jarod Wilson | 26 | 0.26% | 2 | 4.76% |
Maarten Lankhorst | 18 | 0.18% | 1 | 2.38% |
Jonas Hahnfeld | 15 | 0.15% | 1 | 2.38% |
Ben Pope | 14 | 0.14% | 1 | 2.38% |
Owen Lin | 14 | 0.14% | 1 | 2.38% |
John Greene | 8 | 0.08% | 1 | 2.38% |
Benoit Taine | 6 | 0.06% | 1 | 2.38% |
Johannes Thumshirn | 4 | 0.04% | 1 | 2.38% |
Rakesh Pandit | 4 | 0.04% | 1 | 2.38% |
Yijing Wang | 3 | 0.03% | 1 | 2.38% |
Florian Westphal | 3 | 0.03% | 1 | 2.38% |
Wilfried Klaebe | 3 | 0.03% | 1 | 2.38% |
Peter Senna Tschudin | 2 | 0.02% | 1 | 2.38% |
Stephen Hemminger | 1 | 0.01% | 1 | 2.38% |
Eric W. Biedermann | 1 | 0.01% | 1 | 2.38% |
Luis R. Rodriguez | 1 | 0.01% | 1 | 2.38% |
Rasmus Villemoes | 1 | 0.01% | 1 | 2.38% |
Total | 9928 | 42 |
/* * Copyright (c) 2013 Johannes Berg <johannes@sipsolutions.net> * * This file is free software: you may copy, redistribute and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation, either version 2 of the License, or (at your * option) any later version. * * This file is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. * * This file incorporates work covered by the following copyright and * permission notice: * * Copyright (c) 2012 Qualcomm Atheros, Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include <linux/module.h> #include <linux/pci.h> #include <linux/interrupt.h> #include <linux/ip.h> #include <linux/ipv6.h> #include <linux/if_vlan.h> #include <linux/mdio.h> #include <linux/aer.h> #include <linux/bitops.h> #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <net/ip6_checksum.h> #include <linux/crc32.h> #include "alx.h" #include "hw.h" #include "reg.h" static const char alx_drv_name[] = "alx"; static void alx_free_txbuf(struct alx_tx_queue *txq, int entry) { struct alx_buffer *txb = &txq->bufs[entry]; if (dma_unmap_len(txb, size)) { dma_unmap_single(txq->dev, dma_unmap_addr(txb, dma), dma_unmap_len(txb, size), DMA_TO_DEVICE); dma_unmap_len_set(txb, size, 0); } if (txb->skb) { dev_kfree_skb_any(txb->skb); txb->skb = NULL; } } static int alx_refill_rx_ring(struct alx_priv *alx, gfp_t gfp) { struct alx_rx_queue *rxq = alx->qnapi[0]->rxq; struct sk_buff *skb; struct alx_buffer *cur_buf; dma_addr_t dma; u16 cur, next, count = 0; next = cur = rxq->write_idx; if (++next == alx->rx_ringsz) next = 0; cur_buf = &rxq->bufs[cur]; while (!cur_buf->skb && next != rxq->read_idx) { struct alx_rfd *rfd = &rxq->rfd[cur]; /* * When DMA RX address is set to something like * 0x....fc0, it will be very likely to cause DMA * RFD overflow issue. * * To work around it, we apply rx skb with 64 bytes * longer space, and offset the address whenever * 0x....fc0 is detected. */ skb = __netdev_alloc_skb(alx->dev, alx->rxbuf_size + 64, gfp); if (!skb) break; if (((unsigned long)skb->data & 0xfff) == 0xfc0) skb_reserve(skb, 64); dma = dma_map_single(&alx->hw.pdev->dev, skb->data, alx->rxbuf_size, DMA_FROM_DEVICE); if (dma_mapping_error(&alx->hw.pdev->dev, dma)) { dev_kfree_skb(skb); break; } /* Unfortunately, RX descriptor buffers must be 4-byte * aligned, so we can't use IP alignment. */ if (WARN_ON(dma & 3)) { dev_kfree_skb(skb); break; } cur_buf->skb = skb; dma_unmap_len_set(cur_buf, size, alx->rxbuf_size); dma_unmap_addr_set(cur_buf, dma, dma); rfd->addr = cpu_to_le64(dma); cur = next; if (++next == alx->rx_ringsz) next = 0; cur_buf = &rxq->bufs[cur]; count++; } if (count) { /* flush all updates before updating hardware */ wmb(); rxq->write_idx = cur; alx_write_mem16(&alx->hw, ALX_RFD_PIDX, cur); } return count; } static struct alx_tx_queue *alx_tx_queue_mapping(struct alx_priv *alx, struct sk_buff *skb) { unsigned int r_idx = skb->queue_mapping; if (r_idx >= alx->num_txq) r_idx = r_idx % alx->num_txq; return alx->qnapi[r_idx]->txq; } static struct netdev_queue *alx_get_tx_queue(const struct alx_tx_queue *txq) { return netdev_get_tx_queue(txq->netdev, txq->queue_idx); } static inline int alx_tpd_avail(struct alx_tx_queue *txq) { if (txq->write_idx >= txq->read_idx) return txq->count + txq->read_idx - txq->write_idx - 1; return txq->read_idx - txq->write_idx - 1; } static bool alx_clean_tx_irq(struct alx_tx_queue *txq) { struct alx_priv *alx; struct netdev_queue *tx_queue; u16 hw_read_idx, sw_read_idx; unsigned int total_bytes = 0, total_packets = 0; int budget = ALX_DEFAULT_TX_WORK; alx = netdev_priv(txq->netdev); tx_queue = alx_get_tx_queue(txq); sw_read_idx = txq->read_idx; hw_read_idx = alx_read_mem16(&alx->hw, txq->c_reg); if (sw_read_idx != hw_read_idx) { while (sw_read_idx != hw_read_idx && budget > 0) { struct sk_buff *skb; skb = txq->bufs[sw_read_idx].skb; if (skb) { total_bytes += skb->len; total_packets++; budget--; } alx_free_txbuf(txq, sw_read_idx); if (++sw_read_idx == txq->count) sw_read_idx = 0; } txq->read_idx = sw_read_idx; netdev_tx_completed_queue(tx_queue, total_packets, total_bytes); } if (netif_tx_queue_stopped(tx_queue) && netif_carrier_ok(alx->dev) && alx_tpd_avail(txq) > txq->count / 4) netif_tx_wake_queue(tx_queue); return sw_read_idx == hw_read_idx; } static void alx_schedule_link_check(struct alx_priv *alx) { schedule_work(&alx->link_check_wk); } static void alx_schedule_reset(struct alx_priv *alx) { schedule_work(&alx->reset_wk); } static int alx_clean_rx_irq(struct alx_rx_queue *rxq, int budget) { struct alx_priv *alx; struct alx_rrd *rrd; struct alx_buffer *rxb; struct sk_buff *skb; u16 length, rfd_cleaned = 0; int work = 0; alx = netdev_priv(rxq->netdev); while (work < budget) { rrd = &rxq->rrd[rxq->rrd_read_idx]; if (!(rrd->word3 & cpu_to_le32(1 << RRD_UPDATED_SHIFT))) break; rrd->word3 &= ~cpu_to_le32(1 << RRD_UPDATED_SHIFT); if (ALX_GET_FIELD(le32_to_cpu(rrd->word0), RRD_SI) != rxq->read_idx || ALX_GET_FIELD(le32_to_cpu(rrd->word0), RRD_NOR) != 1) { alx_schedule_reset(alx); return work; } rxb = &rxq->bufs[rxq->read_idx]; dma_unmap_single(rxq->dev, dma_unmap_addr(rxb, dma), dma_unmap_len(rxb, size), DMA_FROM_DEVICE); dma_unmap_len_set(rxb, size, 0); skb = rxb->skb; rxb->skb = NULL; if (rrd->word3 & cpu_to_le32(1 << RRD_ERR_RES_SHIFT) || rrd->word3 & cpu_to_le32(1 << RRD_ERR_LEN_SHIFT)) { rrd->word3 = 0; dev_kfree_skb_any(skb); goto next_pkt; } length = ALX_GET_FIELD(le32_to_cpu(rrd->word3), RRD_PKTLEN) - ETH_FCS_LEN; skb_put(skb, length); skb->protocol = eth_type_trans(skb, rxq->netdev); skb_checksum_none_assert(skb); if (alx->dev->features & NETIF_F_RXCSUM && !(rrd->word3 & (cpu_to_le32(1 << RRD_ERR_L4_SHIFT) | cpu_to_le32(1 << RRD_ERR_IPV4_SHIFT)))) { switch (ALX_GET_FIELD(le32_to_cpu(rrd->word2), RRD_PID)) { case RRD_PID_IPV6UDP: case RRD_PID_IPV4UDP: case RRD_PID_IPV4TCP: case RRD_PID_IPV6TCP: skb->ip_summed = CHECKSUM_UNNECESSARY; break; } } napi_gro_receive(&rxq->np->napi, skb); work++; next_pkt: if (++rxq->read_idx == rxq->count) rxq->read_idx = 0; if (++rxq->rrd_read_idx == rxq->count) rxq->rrd_read_idx = 0; if (++rfd_cleaned > ALX_RX_ALLOC_THRESH) rfd_cleaned -= alx_refill_rx_ring(alx, GFP_ATOMIC); } if (rfd_cleaned) alx_refill_rx_ring(alx, GFP_ATOMIC); return work; } static int alx_poll(struct napi_struct *napi, int budget) { struct alx_napi *np = container_of(napi, struct alx_napi, napi); struct alx_priv *alx = np->alx; struct alx_hw *hw = &alx->hw; unsigned long flags; bool tx_complete = true; int work = 0; if (np->txq) tx_complete = alx_clean_tx_irq(np->txq); if (np->rxq) work = alx_clean_rx_irq(np->rxq, budget); if (!tx_complete || work == budget) return budget; napi_complete_done(&np->napi, work); /* enable interrupt */ if (alx->hw.pdev->msix_enabled) { alx_mask_msix(hw, np->vec_idx, false); } else { spin_lock_irqsave(&alx->irq_lock, flags); alx->int_mask |= ALX_ISR_TX_Q0 | ALX_ISR_RX_Q0; alx_write_mem32(hw, ALX_IMR, alx->int_mask); spin_unlock_irqrestore(&alx->irq_lock, flags); } alx_post_write(hw); return work; } static bool alx_intr_handle_misc(struct alx_priv *alx, u32 intr) { struct alx_hw *hw = &alx->hw; if (intr & ALX_ISR_FATAL) { netif_warn(alx, hw, alx->dev, "fatal interrupt 0x%x, resetting\n", intr); alx_schedule_reset(alx); return true; } if (intr & ALX_ISR_ALERT) netdev_warn(alx->dev, "alert interrupt: 0x%x\n", intr); if (intr & ALX_ISR_PHY) { /* suppress PHY interrupt, because the source * is from PHY internal. only the internal status * is cleared, the interrupt status could be cleared. */ alx->int_mask &= ~ALX_ISR_PHY; alx_write_mem32(hw, ALX_IMR, alx->int_mask); alx_schedule_link_check(alx); } return false; } static irqreturn_t alx_intr_handle(struct alx_priv *alx, u32 intr) { struct alx_hw *hw = &alx->hw; spin_lock(&alx->irq_lock); /* ACK interrupt */ alx_write_mem32(hw, ALX_ISR, intr | ALX_ISR_DIS); intr &= alx->int_mask; if (alx_intr_handle_misc(alx, intr)) goto out; if (intr & (ALX_ISR_TX_Q0 | ALX_ISR_RX_Q0)) { napi_schedule(&alx->qnapi[0]->napi); /* mask rx/tx interrupt, enable them when napi complete */ alx->int_mask &= ~ALX_ISR_ALL_QUEUES; alx_write_mem32(hw, ALX_IMR, alx->int_mask); } alx_write_mem32(hw, ALX_ISR, 0); out: spin_unlock(&alx->irq_lock); return IRQ_HANDLED; } static irqreturn_t alx_intr_msix_ring(int irq, void *data) { struct alx_napi *np = data; struct alx_hw *hw = &np->alx->hw; /* mask interrupt to ACK chip */ alx_mask_msix(hw, np->vec_idx, true); /* clear interrupt status */ alx_write_mem32(hw, ALX_ISR, np->vec_mask); napi_schedule(&np->napi); return IRQ_HANDLED; } static irqreturn_t alx_intr_msix_misc(int irq, void *data) { struct alx_priv *alx = data; struct alx_hw *hw = &alx->hw; u32 intr; /* mask interrupt to ACK chip */ alx_mask_msix(hw, 0, true); /* read interrupt status */ intr = alx_read_mem32(hw, ALX_ISR); intr &= (alx->int_mask & ~ALX_ISR_ALL_QUEUES); if (alx_intr_handle_misc(alx, intr)) return IRQ_HANDLED; /* clear interrupt status */ alx_write_mem32(hw, ALX_ISR, intr); /* enable interrupt again */ alx_mask_msix(hw, 0, false); return IRQ_HANDLED; } static irqreturn_t alx_intr_msi(int irq, void *data) { struct alx_priv *alx = data; return alx_intr_handle(alx, alx_read_mem32(&alx->hw, ALX_ISR)); } static irqreturn_t alx_intr_legacy(int irq, void *data) { struct alx_priv *alx = data; struct alx_hw *hw = &alx->hw; u32 intr; intr = alx_read_mem32(hw, ALX_ISR); if (intr & ALX_ISR_DIS || !(intr & alx->int_mask)) return IRQ_NONE; return alx_intr_handle(alx, intr); } static const u16 txring_header_reg[] = {ALX_TPD_PRI0_ADDR_LO, ALX_TPD_PRI1_ADDR_LO, ALX_TPD_PRI2_ADDR_LO, ALX_TPD_PRI3_ADDR_LO}; static void alx_init_ring_ptrs(struct alx_priv *alx) { struct alx_hw *hw = &alx->hw; u32 addr_hi = ((u64)alx->descmem.dma) >> 32; struct alx_napi *np; int i; for (i = 0; i < alx->num_napi; i++) { np = alx->qnapi[i]; if (np->txq) { np->txq->read_idx = 0; np->txq->write_idx = 0; alx_write_mem32(hw, txring_header_reg[np->txq->queue_idx], np->txq->tpd_dma); } if (np->rxq) { np->rxq->read_idx = 0; np->rxq->write_idx = 0; np->rxq->rrd_read_idx = 0; alx_write_mem32(hw, ALX_RRD_ADDR_LO, np->rxq->rrd_dma); alx_write_mem32(hw, ALX_RFD_ADDR_LO, np->rxq->rfd_dma); } } alx_write_mem32(hw, ALX_TX_BASE_ADDR_HI, addr_hi); alx_write_mem32(hw, ALX_TPD_RING_SZ, alx->tx_ringsz); alx_write_mem32(hw, ALX_RX_BASE_ADDR_HI, addr_hi); alx_write_mem32(hw, ALX_RRD_RING_SZ, alx->rx_ringsz); alx_write_mem32(hw, ALX_RFD_RING_SZ, alx->rx_ringsz); alx_write_mem32(hw, ALX_RFD_BUF_SZ, alx->rxbuf_size); /* load these pointers into the chip */ alx_write_mem32(hw, ALX_SRAM9, ALX_SRAM_LOAD_PTR); } static void alx_free_txring_buf(struct alx_tx_queue *txq) { int i; if (!txq->bufs) return; for (i = 0; i < txq->count; i++) alx_free_txbuf(txq, i); memset(txq->bufs, 0, txq->count * sizeof(struct alx_buffer)); memset(txq->tpd, 0, txq->count * sizeof(struct alx_txd)); txq->write_idx = 0; txq->read_idx = 0; netdev_tx_reset_queue(alx_get_tx_queue(txq)); } static void alx_free_rxring_buf(struct alx_rx_queue *rxq) { struct alx_buffer *cur_buf; u16 i; if (!rxq->bufs) return; for (i = 0; i < rxq->count; i++) { cur_buf = rxq->bufs + i; if (cur_buf->skb) { dma_unmap_single(rxq->dev, dma_unmap_addr(cur_buf, dma), dma_unmap_len(cur_buf, size), DMA_FROM_DEVICE); dev_kfree_skb(cur_buf->skb); cur_buf->skb = NULL; dma_unmap_len_set(cur_buf, size, 0); dma_unmap_addr_set(cur_buf, dma, 0); } } rxq->write_idx = 0; rxq->read_idx = 0; rxq->rrd_read_idx = 0; } static void alx_free_buffers(struct alx_priv *alx) { int i; for (i = 0; i < alx->num_txq; i++) if (alx->qnapi[i] && alx->qnapi[i]->txq) alx_free_txring_buf(alx->qnapi[i]->txq); if (alx->qnapi[0] && alx->qnapi[0]->rxq) alx_free_rxring_buf(alx->qnapi[0]->rxq); } static int alx_reinit_rings(struct alx_priv *alx) { alx_free_buffers(alx); alx_init_ring_ptrs(alx); if (!alx_refill_rx_ring(alx, GFP_KERNEL)) return -ENOMEM; return 0; } static void alx_add_mc_addr(struct alx_hw *hw, const u8 *addr, u32 *mc_hash) { u32 crc32, bit, reg; crc32 = ether_crc(ETH_ALEN, addr); reg = (crc32 >> 31) & 0x1; bit = (crc32 >> 26) & 0x1F; mc_hash[reg] |= BIT(bit); } static void __alx_set_rx_mode(struct net_device *netdev) { struct alx_priv *alx = netdev_priv(netdev); struct alx_hw *hw = &alx->hw; struct netdev_hw_addr *ha; u32 mc_hash[2] = {}; if (!(netdev->flags & IFF_ALLMULTI)) { netdev_for_each_mc_addr(ha, netdev) alx_add_mc_addr(hw, ha->addr, mc_hash); alx_write_mem32(hw, ALX_HASH_TBL0, mc_hash[0]); alx_write_mem32(hw, ALX_HASH_TBL1, mc_hash[1]); } hw->rx_ctrl &= ~(ALX_MAC_CTRL_MULTIALL_EN | ALX_MAC_CTRL_PROMISC_EN); if (netdev->flags & IFF_PROMISC) hw->rx_ctrl |= ALX_MAC_CTRL_PROMISC_EN; if (netdev->flags & IFF_ALLMULTI) hw->rx_ctrl |= ALX_MAC_CTRL_MULTIALL_EN; alx_write_mem32(hw, ALX_MAC_CTRL, hw->rx_ctrl); } static void alx_set_rx_mode(struct net_device *netdev) { __alx_set_rx_mode(netdev); } static int alx_set_mac_address(struct net_device *netdev, void *data) { struct alx_priv *alx = netdev_priv(netdev); struct alx_hw *hw = &alx->hw; struct sockaddr *addr = data; if (!is_valid_ether_addr(addr->sa_data)) return -EADDRNOTAVAIL; if (netdev->addr_assign_type & NET_ADDR_RANDOM) netdev->addr_assign_type ^= NET_ADDR_RANDOM; memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len); alx_set_macaddr(hw, hw->mac_addr); return 0; } static int alx_alloc_tx_ring(struct alx_priv *alx, struct alx_tx_queue *txq, int offset) { txq->bufs = kcalloc(txq->count, sizeof(struct alx_buffer), GFP_KERNEL); if (!txq->bufs) return -ENOMEM; txq->tpd = alx->descmem.virt + offset; txq->tpd_dma = alx->descmem.dma + offset; offset += sizeof(struct alx_txd) * txq->count; return offset; } static int alx_alloc_rx_ring(struct alx_priv *alx, struct alx_rx_queue *rxq, int offset) { rxq->bufs = kcalloc(rxq->count, sizeof(struct alx_buffer), GFP_KERNEL); if (!rxq->bufs) return -ENOMEM; rxq->rrd = alx->descmem.virt + offset; rxq->rrd_dma = alx->descmem.dma + offset; offset += sizeof(struct alx_rrd) * rxq->count; rxq->rfd = alx->descmem.virt + offset; rxq->rfd_dma = alx->descmem.dma + offset; offset += sizeof(struct alx_rfd) * rxq->count; return offset; } static int alx_alloc_rings(struct alx_priv *alx) { int i, offset = 0; /* physical tx/rx ring descriptors * * Allocate them as a single chunk because they must not cross a * 4G boundary (hardware has a single register for high 32 bits * of addresses only) */ alx->descmem.size = sizeof(struct alx_txd) * alx->tx_ringsz * alx->num_txq + sizeof(struct alx_rrd) * alx->rx_ringsz + sizeof(struct alx_rfd) * alx->rx_ringsz; alx->descmem.virt = dma_alloc_coherent(&alx->hw.pdev->dev, alx->descmem.size, &alx->descmem.dma, GFP_KERNEL); if (!alx->descmem.virt) return -ENOMEM; /* alignment requirements */ BUILD_BUG_ON(sizeof(struct alx_txd) % 8); BUILD_BUG_ON(sizeof(struct alx_rrd) % 8); for (i = 0; i < alx->num_txq; i++) { offset = alx_alloc_tx_ring(alx, alx->qnapi[i]->txq, offset); if (offset < 0) { netdev_err(alx->dev, "Allocation of tx buffer failed!\n"); return -ENOMEM; } } offset = alx_alloc_rx_ring(alx, alx->qnapi[0]->rxq, offset); if (offset < 0) { netdev_err(alx->dev, "Allocation of rx buffer failed!\n"); return -ENOMEM; } return 0; } static void alx_free_rings(struct alx_priv *alx) { int i; alx_free_buffers(alx); for (i = 0; i < alx->num_txq; i++) if (alx->qnapi[i] && alx->qnapi[i]->txq) kfree(alx->qnapi[i]->txq->bufs); if (alx->qnapi[0] && alx->qnapi[0]->rxq) kfree(alx->qnapi[0]->rxq->bufs); if (alx->descmem.virt) dma_free_coherent(&alx->hw.pdev->dev, alx->descmem.size, alx->descmem.virt, alx->descmem.dma); } static void alx_free_napis(struct alx_priv *alx) { struct alx_napi *np; int i; for (i = 0; i < alx->num_napi; i++) { np = alx->qnapi[i]; if (!np) continue; netif_napi_del(&np->napi); kfree(np->txq); kfree(np->rxq); kfree(np); alx->qnapi[i] = NULL; } } static const u16 tx_pidx_reg[] = {ALX_TPD_PRI0_PIDX, ALX_TPD_PRI1_PIDX, ALX_TPD_PRI2_PIDX, ALX_TPD_PRI3_PIDX}; static const u16 tx_cidx_reg[] = {ALX_TPD_PRI0_CIDX, ALX_TPD_PRI1_CIDX, ALX_TPD_PRI2_CIDX, ALX_TPD_PRI3_CIDX}; static const u32 tx_vect_mask[] = {ALX_ISR_TX_Q0, ALX_ISR_TX_Q1, ALX_ISR_TX_Q2, ALX_ISR_TX_Q3}; static const u32 rx_vect_mask[] = {ALX_ISR_RX_Q0, ALX_ISR_RX_Q1, ALX_ISR_RX_Q2, ALX_ISR_RX_Q3, ALX_ISR_RX_Q4, ALX_ISR_RX_Q5, ALX_ISR_RX_Q6, ALX_ISR_RX_Q7}; static int alx_alloc_napis(struct alx_priv *alx) { struct alx_napi *np; struct alx_rx_queue *rxq; struct alx_tx_queue *txq; int i; alx->int_mask &= ~ALX_ISR_ALL_QUEUES; /* allocate alx_napi structures */ for (i = 0; i < alx->num_napi; i++) { np = kzalloc(sizeof(struct alx_napi), GFP_KERNEL); if (!np) goto err_out; np->alx = alx; netif_napi_add(alx->dev, &np->napi, alx_poll, 64); alx->qnapi[i] = np; } /* allocate tx queues */ for (i = 0; i < alx->num_txq; i++) { np = alx->qnapi[i]; txq = kzalloc(sizeof(*txq), GFP_KERNEL); if (!txq) goto err_out; np->txq = txq; txq->p_reg = tx_pidx_reg[i]; txq->c_reg = tx_cidx_reg[i]; txq->queue_idx = i; txq->count = alx->tx_ringsz; txq->netdev = alx->dev; txq->dev = &alx->hw.pdev->dev; np->vec_mask |= tx_vect_mask[i]; alx->int_mask |= tx_vect_mask[i]; } /* allocate rx queues */ np = alx->qnapi[0]; rxq = kzalloc(sizeof(*rxq), GFP_KERNEL); if (!rxq) goto err_out; np->rxq = rxq; rxq->np = alx->qnapi[0]; rxq->queue_idx = 0; rxq->count = alx->rx_ringsz; rxq->netdev = alx->dev; rxq->dev = &alx->hw.pdev->dev; np->vec_mask |= rx_vect_mask[0]; alx->int_mask |= rx_vect_mask[0]; return 0; err_out: netdev_err(alx->dev, "error allocating internal structures\n"); alx_free_napis(alx); return -ENOMEM; } static const int txq_vec_mapping_shift[] = { 0, ALX_MSI_MAP_TBL1_TXQ0_SHIFT, 0, ALX_MSI_MAP_TBL1_TXQ1_SHIFT, 1, ALX_MSI_MAP_TBL2_TXQ2_SHIFT, 1, ALX_MSI_MAP_TBL2_TXQ3_SHIFT, }; static void alx_config_vector_mapping(struct alx_priv *alx) { struct alx_hw *hw = &alx->hw; u32 tbl[2] = {0, 0}; int i, vector, idx, shift; if (alx->hw.pdev->msix_enabled) { /* tx mappings */ for (i = 0, vector = 1; i < alx->num_txq; i++, vector++) { idx = txq_vec_mapping_shift[i * 2]; shift = txq_vec_mapping_shift[i * 2 + 1]; tbl[idx] |= vector << shift; } /* rx mapping */ tbl[0] |= 1 << ALX_MSI_MAP_TBL1_RXQ0_SHIFT; } alx_write_mem32(hw, ALX_MSI_MAP_TBL1, tbl[0]); alx_write_mem32(hw, ALX_MSI_MAP_TBL2, tbl[1]); alx_write_mem32(hw, ALX_MSI_ID_MAP, 0); } static int alx_enable_msix(struct alx_priv *alx) { int err, num_vec, num_txq, num_rxq; num_txq = min_t(int, num_online_cpus(), ALX_MAX_TX_QUEUES); num_rxq = 1; num_vec = max_t(int, num_txq, num_rxq) + 1; err = pci_alloc_irq_vectors(alx->hw.pdev, num_vec, num_vec, PCI_IRQ_MSIX); if (err < 0) { netdev_warn(alx->dev, "Enabling MSI-X interrupts failed!\n"); return err; } alx->num_vec = num_vec; alx->num_napi = num_vec - 1; alx->num_txq = num_txq; alx->num_rxq = num_rxq; return err; } static int alx_request_msix(struct alx_priv *alx) { struct net_device *netdev = alx->dev; int i, err, vector = 0, free_vector = 0; err = request_irq(pci_irq_vector(alx->hw.pdev, 0), alx_intr_msix_misc, 0, netdev->name, alx); if (err) goto out_err; for (i = 0; i < alx->num_napi; i++) { struct alx_napi *np = alx->qnapi[i]; vector++; if (np->txq && np->rxq) sprintf(np->irq_lbl, "%s-TxRx-%u", netdev->name, np->txq->queue_idx); else if (np->txq) sprintf(np->irq_lbl, "%s-tx-%u", netdev->name, np->txq->queue_idx); else if (np->rxq) sprintf(np->irq_lbl, "%s-rx-%u", netdev->name, np->rxq->queue_idx); else sprintf(np->irq_lbl, "%s-unused", netdev->name); np->vec_idx = vector; err = request_irq(pci_irq_vector(alx->hw.pdev, vector), alx_intr_msix_ring, 0, np->irq_lbl, np); if (err) goto out_free; } return 0; out_free: free_irq(pci_irq_vector(alx->hw.pdev, free_vector++), alx); vector--; for (i = 0; i < vector; i++) free_irq(pci_irq_vector(alx->hw.pdev,free_vector++), alx->qnapi[i]); out_err: return err; } static int alx_init_intr(struct alx_priv *alx) { int ret; ret = pci_alloc_irq_vectors(alx->hw.pdev, 1, 1, PCI_IRQ_MSI | PCI_IRQ_LEGACY); if (ret < 0) return ret; alx->num_vec = 1; alx->num_napi = 1; alx->num_txq = 1; alx->num_rxq = 1; return 0; } static void alx_irq_enable(struct alx_priv *alx) { struct alx_hw *hw = &alx->hw; int i; /* level-1 interrupt switch */ alx_write_mem32(hw, ALX_ISR, 0); alx_write_mem32(hw, ALX_IMR, alx->int_mask); alx_post_write(hw); if (alx->hw.pdev->msix_enabled) { /* enable all msix irqs */ for (i = 0; i < alx->num_vec; i++) alx_mask_msix(hw, i, false); } } static void alx_irq_disable(struct alx_priv *alx) { struct alx_hw *hw = &alx->hw; int i; alx_write_mem32(hw, ALX_ISR, ALX_ISR_DIS); alx_write_mem32(hw, ALX_IMR, 0); alx_post_write(hw); if (alx->hw.pdev->msix_enabled) { for (i = 0; i < alx->num_vec; i++) { alx_mask_msix(hw, i, true); synchronize_irq(pci_irq_vector(alx->hw.pdev, i)); } } else { synchronize_irq(pci_irq_vector(alx->hw.pdev, 0)); } } static int alx_realloc_resources(struct alx_priv *alx) { int err; alx_free_rings(alx); alx_free_napis(alx); pci_free_irq_vectors(alx->hw.pdev); err = alx_init_intr(alx); if (err) return err; err = alx_alloc_napis(alx); if (err) return err; err = alx_alloc_rings(alx); if (err) return err; return 0; } static int alx_request_irq(struct alx_priv *alx) { struct pci_dev *pdev = alx->hw.pdev; struct alx_hw *hw = &alx->hw; int err; u32 msi_ctrl; msi_ctrl = (hw->imt >> 1) << ALX_MSI_RETRANS_TM_SHIFT; if (alx->hw.pdev->msix_enabled) { alx_write_mem32(hw, ALX_MSI_RETRANS_TIMER, msi_ctrl); err = alx_request_msix(alx); if (!err) goto out; /* msix request failed, realloc resources */ err = alx_realloc_resources(alx); if (err) goto out; } if (alx->hw.pdev->msi_enabled) { alx_write_mem32(hw, ALX_MSI_RETRANS_TIMER, msi_ctrl | ALX_MSI_MASK_SEL_LINE); err = request_irq(pci_irq_vector(pdev, 0), alx_intr_msi, 0, alx->dev->name, alx); if (!err) goto out; /* fall back to legacy interrupt */ pci_free_irq_vectors(alx->hw.pdev); } alx_write_mem32(hw, ALX_MSI_RETRANS_TIMER, 0); err = request_irq(pci_irq_vector(pdev, 0), alx_intr_legacy, IRQF_SHARED, alx->dev->name, alx); out: if (!err) alx_config_vector_mapping(alx); else netdev_err(alx->dev, "IRQ registration failed!\n"); return err; } static void alx_free_irq(struct alx_priv *alx) { struct pci_dev *pdev = alx->hw.pdev; int i; free_irq(pci_irq_vector(pdev, 0), alx); if (alx->hw.pdev->msix_enabled) { for (i = 0; i < alx->num_napi; i++) free_irq(pci_irq_vector(pdev, i + 1), alx->qnapi[i]); } pci_free_irq_vectors(pdev); } static int alx_identify_hw(struct alx_priv *alx) { struct alx_hw *hw = &alx->hw; int rev = alx_hw_revision(hw); if (rev > ALX_REV_C0) return -EINVAL; hw->max_dma_chnl = rev >= ALX_REV_B0 ? 4 : 2; return 0; } static int alx_init_sw(struct alx_priv *alx) { struct pci_dev *pdev = alx->hw.pdev; struct alx_hw *hw = &alx->hw; int err; err = alx_identify_hw(alx); if (err) { dev_err(&pdev->dev, "unrecognized chip, aborting\n"); return err; } alx->hw.lnk_patch = pdev->device == ALX_DEV_ID_AR8161 && pdev->subsystem_vendor == PCI_VENDOR_ID_ATTANSIC && pdev->subsystem_device == 0x0091 && pdev->revision == 0; hw->smb_timer = 400; hw->mtu = alx->dev->mtu; alx->rxbuf_size = ALX_MAX_FRAME_LEN(hw->mtu); /* MTU range: 34 - 9256 */ alx->dev->min_mtu = 34; alx->dev->max_mtu = ALX_MAX_FRAME_LEN(ALX_MAX_FRAME_SIZE); alx->tx_ringsz = 256; alx->rx_ringsz = 512; hw->imt = 200; alx->int_mask = ALX_ISR_MISC; hw->dma_chnl = hw->max_dma_chnl; hw->ith_tpd = alx->tx_ringsz / 3; hw->link_speed = SPEED_UNKNOWN; hw->duplex = DUPLEX_UNKNOWN; hw->adv_cfg = ADVERTISED_Autoneg | ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | ADVERTISED_100baseT_Full | ADVERTISED_100baseT_Half | ADVERTISED_1000baseT_Full; hw->flowctrl = ALX_FC_ANEG | ALX_FC_RX | ALX_FC_TX; hw->rx_ctrl = ALX_MAC_CTRL_WOLSPED_SWEN | ALX_MAC_CTRL_MHASH_ALG_HI5B | ALX_MAC_CTRL_BRD_EN | ALX_MAC_CTRL_PCRCE | ALX_MAC_CTRL_CRCE | ALX_MAC_CTRL_RXFC_EN | ALX_MAC_CTRL_TXFC_EN | 7 << ALX_MAC_CTRL_PRMBLEN_SHIFT; return err; } static netdev_features_t alx_fix_features(struct net_device *netdev, netdev_features_t features) { if (netdev->mtu > ALX_MAX_TSO_PKT_SIZE) features &= ~(NETIF_F_TSO | NETIF_F_TSO6); return features; } static void alx_netif_stop(struct alx_priv *alx) { int i; netif_trans_update(alx->dev); if (netif_carrier_ok(alx->dev)) { netif_carrier_off(alx->dev); netif_tx_disable(alx->dev); for (i = 0; i < alx->num_napi; i++) napi_disable(&alx->qnapi[i]->napi); } } static void alx_halt(struct alx_priv *alx) { struct alx_hw *hw = &alx->hw; alx_netif_stop(alx); hw->link_speed = SPEED_UNKNOWN; hw->duplex = DUPLEX_UNKNOWN; alx_reset_mac(hw); /* disable l0s/l1 */ alx_enable_aspm(hw, false, false); alx_irq_disable(alx); alx_free_buffers(alx); } static void alx_configure(struct alx_priv *alx) { struct alx_hw *hw = &alx->hw; alx_configure_basic(hw); alx_disable_rss(hw); __alx_set_rx_mode(alx->dev); alx_write_mem32(hw, ALX_MAC_CTRL, hw->rx_ctrl); } static void alx_activate(struct alx_priv *alx) { /* hardware setting lost, restore it */ alx_reinit_rings(alx); alx_configure(alx); /* clear old interrupts */ alx_write_mem32(&alx->hw, ALX_ISR, ~(u32)ALX_ISR_DIS); alx_irq_enable(alx); alx_schedule_link_check(alx); } static void alx_reinit(struct alx_priv *alx) { ASSERT_RTNL(); alx_halt(alx); alx_activate(alx); } static int alx_change_mtu(struct net_device *netdev, int mtu) { struct alx_priv *alx = netdev_priv(netdev); int max_frame = ALX_MAX_FRAME_LEN(mtu); netdev->mtu = mtu; alx->hw.mtu = mtu; alx->rxbuf_size = max(max_frame, ALX_DEF_RXBUF_SIZE); netdev_update_features(netdev); if (netif_running(netdev)) alx_reinit(alx); return 0; } static void alx_netif_start(struct alx_priv *alx) { int i; netif_tx_wake_all_queues(alx->dev); for (i = 0; i < alx->num_napi; i++) napi_enable(&alx->qnapi[i]->napi); netif_carrier_on(alx->dev); } static int __alx_open(struct alx_priv *alx, bool resume) { int err; err = alx_enable_msix(alx); if (err < 0) { err = alx_init_intr(alx); if (err) return err; } if (!resume) netif_carrier_off(alx->dev); err = alx_alloc_napis(alx); if (err) goto out_disable_adv_intr; err = alx_alloc_rings(alx); if (err) goto out_free_rings; alx_configure(alx); err = alx_request_irq(alx); if (err) goto out_free_rings; /* must be called after alx_request_irq because the chip stops working * if we copy the dma addresses in alx_init_ring_ptrs twice when * requesting msi-x interrupts failed */ alx_reinit_rings(alx); netif_set_real_num_tx_queues(alx->dev, alx->num_txq); netif_set_real_num_rx_queues(alx->dev, alx->num_rxq); /* clear old interrupts */ alx_write_mem32(&alx->hw, ALX_ISR, ~(u32)ALX_ISR_DIS); alx_irq_enable(alx); if (!resume) netif_tx_start_all_queues(alx->dev); alx_schedule_link_check(alx); return 0; out_free_rings: alx_free_rings(alx); alx_free_napis(alx); out_disable_adv_intr: pci_free_irq_vectors(alx->hw.pdev); return err; } static void __alx_stop(struct alx_priv *alx) { alx_halt(alx); alx_free_irq(alx); alx_free_rings(alx); alx_free_napis(alx); } static const char *alx_speed_desc(struct alx_hw *hw) { switch (alx_speed_to_ethadv(hw->link_speed, hw->duplex)) { case ADVERTISED_1000baseT_Full: return "1 Gbps Full"; case ADVERTISED_100baseT_Full: return "100 Mbps Full"; case ADVERTISED_100baseT_Half: return "100 Mbps Half"; case ADVERTISED_10baseT_Full: return "10 Mbps Full"; case ADVERTISED_10baseT_Half: return "10 Mbps Half"; default: return "Unknown speed"; } } static void alx_check_link(struct alx_priv *alx) { struct alx_hw *hw = &alx->hw; unsigned long flags; int old_speed; int err; /* clear PHY internal interrupt status, otherwise the main * interrupt status will be asserted forever */ alx_clear_phy_intr(hw); old_speed = hw->link_speed; err = alx_read_phy_link(hw); if (err < 0) goto reset; spin_lock_irqsave(&alx->irq_lock, flags); alx->int_mask |= ALX_ISR_PHY; alx_write_mem32(hw, ALX_IMR, alx->int_mask); spin_unlock_irqrestore(&alx->irq_lock, flags); if (old_speed == hw->link_speed) return; if (hw->link_speed != SPEED_UNKNOWN) { netif_info(alx, link, alx->dev, "NIC Up: %s\n", alx_speed_desc(hw)); alx_post_phy_link(hw); alx_enable_aspm(hw, true, true); alx_start_mac(hw); if (old_speed == SPEED_UNKNOWN) alx_netif_start(alx); } else { /* link is now down */ alx_netif_stop(alx); netif_info(alx, link, alx->dev, "Link Down\n"); err = alx_reset_mac(hw); if (err) goto reset; alx_irq_disable(alx); /* MAC reset causes all HW settings to be lost, restore all */ err = alx_reinit_rings(alx); if (err) goto reset; alx_configure(alx); alx_enable_aspm(hw, false, true); alx_post_phy_link(hw); alx_irq_enable(alx); } return; reset: alx_schedule_reset(alx); } static int alx_open(struct net_device *netdev) { return __alx_open(netdev_priv(netdev), false); } static int alx_stop(struct net_device *netdev) { __alx_stop(netdev_priv(netdev)); return 0; } static void alx_link_check(struct work_struct *work) { struct alx_priv *alx; alx = container_of(work, struct alx_priv, link_check_wk); rtnl_lock(); alx_check_link(alx); rtnl_unlock(); } static void alx_reset(struct work_struct *work) { struct alx_priv *alx = container_of(work, struct alx_priv, reset_wk); rtnl_lock(); alx_reinit(alx); rtnl_unlock(); } static int alx_tpd_req(struct sk_buff *skb) { int num; num = skb_shinfo(skb)->nr_frags + 1; /* we need one extra descriptor for LSOv2 */ if (skb_is_gso(skb) && skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6) num++; return num; } static int alx_tx_csum(struct sk_buff *skb, struct alx_txd *first) { u8 cso, css; if (skb->ip_summed != CHECKSUM_PARTIAL) return 0; cso = skb_checksum_start_offset(skb); if (cso & 1) return -EINVAL; css = cso + skb->csum_offset; first->word1 |= cpu_to_le32((cso >> 1) << TPD_CXSUMSTART_SHIFT); first->word1 |= cpu_to_le32((css >> 1) << TPD_CXSUMOFFSET_SHIFT); first->word1 |= cpu_to_le32(1 << TPD_CXSUM_EN_SHIFT); return 0; } static int alx_tso(struct sk_buff *skb, struct alx_txd *first) { int err; if (skb->ip_summed != CHECKSUM_PARTIAL) return 0; if (!skb_is_gso(skb)) return 0; err = skb_cow_head(skb, 0); if (err < 0) return err; if (skb->protocol == htons(ETH_P_IP)) { struct iphdr *iph = ip_hdr(skb); iph->check = 0; tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr, 0, IPPROTO_TCP, 0); first->word1 |= 1 << TPD_IPV4_SHIFT; } else if (skb_is_gso_v6(skb)) { ipv6_hdr(skb)->payload_len = 0; tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, &ipv6_hdr(skb)->daddr, 0, IPPROTO_TCP, 0); /* LSOv2: the first TPD only provides the packet length */ first->adrl.l.pkt_len = skb->len; first->word1 |= 1 << TPD_LSO_V2_SHIFT; } first->word1 |= 1 << TPD_LSO_EN_SHIFT; first->word1 |= (skb_transport_offset(skb) & TPD_L4HDROFFSET_MASK) << TPD_L4HDROFFSET_SHIFT; first->word1 |= (skb_shinfo(skb)->gso_size & TPD_MSS_MASK) << TPD_MSS_SHIFT; return 1; } static int alx_map_tx_skb(struct alx_tx_queue *txq, struct sk_buff *skb) { struct alx_txd *tpd, *first_tpd; dma_addr_t dma; int maplen, f, first_idx = txq->write_idx; first_tpd = &txq->tpd[txq->write_idx]; tpd = first_tpd; if (tpd->word1 & (1 << TPD_LSO_V2_SHIFT)) { if (++txq->write_idx == txq->count) txq->write_idx = 0; tpd = &txq->tpd[txq->write_idx]; tpd->len = first_tpd->len; tpd->vlan_tag = first_tpd->vlan_tag; tpd->word1 = first_tpd->word1; } maplen = skb_headlen(skb); dma = dma_map_single(txq->dev, skb->data, maplen, DMA_TO_DEVICE); if (dma_mapping_error(txq->dev, dma)) goto err_dma; dma_unmap_len_set(&txq->bufs[txq->write_idx], size, maplen); dma_unmap_addr_set(&txq->bufs[txq->write_idx], dma, dma); tpd->adrl.addr = cpu_to_le64(dma); tpd->len = cpu_to_le16(maplen); for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) { struct skb_frag_struct *frag; frag = &skb_shinfo(skb)->frags[f]; if (++txq->write_idx == txq->count) txq->write_idx = 0; tpd = &txq->tpd[txq->write_idx]; tpd->word1 = first_tpd->word1; maplen = skb_frag_size(frag); dma = skb_frag_dma_map(txq->dev, frag, 0, maplen, DMA_TO_DEVICE); if (dma_mapping_error(txq->dev, dma)) goto err_dma; dma_unmap_len_set(&txq->bufs[txq->write_idx], size, maplen); dma_unmap_addr_set(&txq->bufs[txq->write_idx], dma, dma); tpd->adrl.addr = cpu_to_le64(dma); tpd->len = cpu_to_le16(maplen); } /* last TPD, set EOP flag and store skb */ tpd->word1 |= cpu_to_le32(1 << TPD_EOP_SHIFT); txq->bufs[txq->write_idx].skb = skb; if (++txq->write_idx == txq->count) txq->write_idx = 0; return 0; err_dma: f = first_idx; while (f != txq->write_idx) { alx_free_txbuf(txq, f); if (++f == txq->count) f = 0; } return -ENOMEM; } static netdev_tx_t alx_start_xmit_ring(struct sk_buff *skb, struct alx_tx_queue *txq) { struct alx_priv *alx; struct alx_txd *first; int tso; alx = netdev_priv(txq->netdev); if (alx_tpd_avail(txq) < alx_tpd_req(skb)) { netif_tx_stop_queue(alx_get_tx_queue(txq)); goto drop; } first = &txq->tpd[txq->write_idx]; memset(first, 0, sizeof(*first)); tso = alx_tso(skb, first); if (tso < 0) goto drop; else if (!tso && alx_tx_csum(skb, first)) goto drop; if (alx_map_tx_skb(txq, skb) < 0) goto drop; netdev_tx_sent_queue(alx_get_tx_queue(txq), skb->len); /* flush updates before updating hardware */ wmb(); alx_write_mem16(&alx->hw, txq->p_reg, txq->write_idx); if (alx_tpd_avail(txq) < txq->count / 8) netif_tx_stop_queue(alx_get_tx_queue(txq)); return NETDEV_TX_OK; drop: dev_kfree_skb_any(skb); return NETDEV_TX_OK; } static netdev_tx_t alx_start_xmit(struct sk_buff *skb, struct net_device *netdev) { struct alx_priv *alx = netdev_priv(netdev); return alx_start_xmit_ring(skb, alx_tx_queue_mapping(alx, skb)); } static void alx_tx_timeout(struct net_device *dev) { struct alx_priv *alx = netdev_priv(dev); alx_schedule_reset(alx); } static int alx_mdio_read(struct net_device *netdev, int prtad, int devad, u16 addr) { struct alx_priv *alx = netdev_priv(netdev); struct alx_hw *hw = &alx->hw; u16 val; int err; if (prtad != hw->mdio.prtad) return -EINVAL; if (devad == MDIO_DEVAD_NONE) err = alx_read_phy_reg(hw, addr, &val); else err = alx_read_phy_ext(hw, devad, addr, &val); if (err) return err; return val; } static int alx_mdio_write(struct net_device *netdev, int prtad, int devad, u16 addr, u16 val) { struct alx_priv *alx = netdev_priv(netdev); struct alx_hw *hw = &alx->hw; if (prtad != hw->mdio.prtad) return -EINVAL; if (devad == MDIO_DEVAD_NONE) return alx_write_phy_reg(hw, addr, val); return alx_write_phy_ext(hw, devad, addr, val); } static int alx_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) { struct alx_priv *alx = netdev_priv(netdev); if (!netif_running(netdev)) return -EAGAIN; return mdio_mii_ioctl(&alx->hw.mdio, if_mii(ifr), cmd); } #ifdef CONFIG_NET_POLL_CONTROLLER static void alx_poll_controller(struct net_device *netdev) { struct alx_priv *alx = netdev_priv(netdev); int i; if (alx->hw.pdev->msix_enabled) { alx_intr_msix_misc(0, alx); for (i = 0; i < alx->num_txq; i++) alx_intr_msix_ring(0, alx->qnapi[i]); } else if (alx->hw.pdev->msi_enabled) alx_intr_msi(0, alx); else alx_intr_legacy(0, alx); } #endif static void alx_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *net_stats) { struct alx_priv *alx = netdev_priv(dev); struct alx_hw_stats *hw_stats = &alx->hw.stats; spin_lock(&alx->stats_lock); alx_update_hw_stats(&alx->hw); net_stats->tx_bytes = hw_stats->tx_byte_cnt; net_stats->rx_bytes = hw_stats->rx_byte_cnt; net_stats->multicast = hw_stats->rx_mcast; net_stats->collisions = hw_stats->tx_single_col + hw_stats->tx_multi_col + hw_stats->tx_late_col + hw_stats->tx_abort_col; net_stats->rx_errors = hw_stats->rx_frag + hw_stats->rx_fcs_err + hw_stats->rx_len_err + hw_stats->rx_ov_sz + hw_stats->rx_ov_rrd + hw_stats->rx_align_err + hw_stats->rx_ov_rxf; net_stats->rx_fifo_errors = hw_stats->rx_ov_rxf; net_stats->rx_length_errors = hw_stats->rx_len_err; net_stats->rx_crc_errors = hw_stats->rx_fcs_err; net_stats->rx_frame_errors = hw_stats->rx_align_err; net_stats->rx_dropped = hw_stats->rx_ov_rrd; net_stats->tx_errors = hw_stats->tx_late_col + hw_stats->tx_abort_col + hw_stats->tx_underrun + hw_stats->tx_trunc; net_stats->tx_aborted_errors = hw_stats->tx_abort_col; net_stats->tx_fifo_errors = hw_stats->tx_underrun; net_stats->tx_window_errors = hw_stats->tx_late_col; net_stats->tx_packets = hw_stats->tx_ok + net_stats->tx_errors; net_stats->rx_packets = hw_stats->rx_ok + net_stats->rx_errors; spin_unlock(&alx->stats_lock); } static const struct net_device_ops alx_netdev_ops = { .ndo_open = alx_open, .ndo_stop = alx_stop, .ndo_start_xmit = alx_start_xmit, .ndo_get_stats64 = alx_get_stats64, .ndo_set_rx_mode = alx_set_rx_mode, .ndo_validate_addr = eth_validate_addr, .ndo_set_mac_address = alx_set_mac_address, .ndo_change_mtu = alx_change_mtu, .ndo_do_ioctl = alx_ioctl, .ndo_tx_timeout = alx_tx_timeout, .ndo_fix_features = alx_fix_features, #ifdef CONFIG_NET_POLL_CONTROLLER .ndo_poll_controller = alx_poll_controller, #endif }; static int alx_probe(struct pci_dev *pdev, const struct pci_device_id *ent) { struct net_device *netdev; struct alx_priv *alx; struct alx_hw *hw; bool phy_configured; int err; err = pci_enable_device_mem(pdev); if (err) return err; /* The alx chip can DMA to 64-bit addresses, but it uses a single * shared register for the high 32 bits, so only a single, aligned, * 4 GB physical address range can be used for descriptors. */ if (!dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) { dev_dbg(&pdev->dev, "DMA to 64-BIT addresses\n"); } else { err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); if (err) { dev_err(&pdev->dev, "No usable DMA config, aborting\n"); goto out_pci_disable; } } err = pci_request_mem_regions(pdev, alx_drv_name); if (err) { dev_err(&pdev->dev, "pci_request_mem_regions failed\n"); goto out_pci_disable; } pci_enable_pcie_error_reporting(pdev); pci_set_master(pdev); if (!pdev->pm_cap) { dev_err(&pdev->dev, "Can't find power management capability, aborting\n"); err = -EIO; goto out_pci_release; } netdev = alloc_etherdev_mqs(sizeof(*alx), ALX_MAX_TX_QUEUES, 1); if (!netdev) { err = -ENOMEM; goto out_pci_release; } SET_NETDEV_DEV(netdev, &pdev->dev); alx = netdev_priv(netdev); spin_lock_init(&alx->hw.mdio_lock); spin_lock_init(&alx->irq_lock); spin_lock_init(&alx->stats_lock); alx->dev = netdev; alx->hw.pdev = pdev; alx->msg_enable = NETIF_MSG_LINK | NETIF_MSG_HW | NETIF_MSG_IFUP | NETIF_MSG_TX_ERR | NETIF_MSG_RX_ERR | NETIF_MSG_WOL; hw = &alx->hw; pci_set_drvdata(pdev, alx); hw->hw_addr = pci_ioremap_bar(pdev, 0); if (!hw->hw_addr) { dev_err(&pdev->dev, "cannot map device registers\n"); err = -EIO; goto out_free_netdev; } netdev->netdev_ops = &alx_netdev_ops; netdev->ethtool_ops = &alx_ethtool_ops; netdev->irq = pci_irq_vector(pdev, 0); netdev->watchdog_timeo = ALX_WATCHDOG_TIME; if (ent->driver_data & ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG) pdev->dev_flags |= PCI_DEV_FLAGS_MSI_INTX_DISABLE_BUG; err = alx_init_sw(alx); if (err) { dev_err(&pdev->dev, "net device private data init failed\n"); goto out_unmap; } alx_reset_pcie(hw); phy_configured = alx_phy_configured(hw); if (!phy_configured) alx_reset_phy(hw); err = alx_reset_mac(hw); if (err) { dev_err(&pdev->dev, "MAC Reset failed, error = %d\n", err); goto out_unmap; } /* setup link to put it in a known good starting state */ if (!phy_configured) { err = alx_setup_speed_duplex(hw, hw->adv_cfg, hw->flowctrl); if (err) { dev_err(&pdev->dev, "failed to configure PHY speed/duplex (err=%d)\n", err); goto out_unmap; } } netdev->hw_features = NETIF_F_SG | NETIF_F_HW_CSUM | NETIF_F_RXCSUM | NETIF_F_TSO | NETIF_F_TSO6; if (alx_get_perm_macaddr(hw, hw->perm_addr)) { dev_warn(&pdev->dev, "Invalid permanent address programmed, using random one\n"); eth_hw_addr_random(netdev); memcpy(hw->perm_addr, netdev->dev_addr, netdev->addr_len); } memcpy(hw->mac_addr, hw->perm_addr, ETH_ALEN); memcpy(netdev->dev_addr, hw->mac_addr, ETH_ALEN); memcpy(netdev->perm_addr, hw->perm_addr, ETH_ALEN); hw->mdio.prtad = 0; hw->mdio.mmds = 0; hw->mdio.dev = netdev; hw->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_SUPPORTS_C22 | MDIO_EMULATE_C22; hw->mdio.mdio_read = alx_mdio_read; hw->mdio.mdio_write = alx_mdio_write; if (!alx_get_phy_info(hw)) { dev_err(&pdev->dev, "failed to identify PHY\n"); err = -EIO; goto out_unmap; } INIT_WORK(&alx->link_check_wk, alx_link_check); INIT_WORK(&alx->reset_wk, alx_reset); netif_carrier_off(netdev); err = register_netdev(netdev); if (err) { dev_err(&pdev->dev, "register netdevice failed\n"); goto out_unmap; } netdev_info(netdev, "Qualcomm Atheros AR816x/AR817x Ethernet [%pM]\n", netdev->dev_addr); return 0; out_unmap: iounmap(hw->hw_addr); out_free_netdev: free_netdev(netdev); out_pci_release: pci_release_mem_regions(pdev); out_pci_disable: pci_disable_device(pdev); return err; } static void alx_remove(struct pci_dev *pdev) { struct alx_priv *alx = pci_get_drvdata(pdev); struct alx_hw *hw = &alx->hw; cancel_work_sync(&alx->link_check_wk); cancel_work_sync(&alx->reset_wk); /* restore permanent mac address */ alx_set_macaddr(hw, hw->perm_addr); unregister_netdev(alx->dev); iounmap(hw->hw_addr); pci_release_mem_regions(pdev); pci_disable_pcie_error_reporting(pdev); pci_disable_device(pdev); free_netdev(alx->dev); } #ifdef CONFIG_PM_SLEEP static int alx_suspend(struct device *dev) { struct pci_dev *pdev = to_pci_dev(dev); struct alx_priv *alx = pci_get_drvdata(pdev); if (!netif_running(alx->dev)) return 0; netif_device_detach(alx->dev); __alx_stop(alx); return 0; } static int alx_resume(struct device *dev) { struct pci_dev *pdev = to_pci_dev(dev); struct alx_priv *alx = pci_get_drvdata(pdev); struct alx_hw *hw = &alx->hw; int err; alx_reset_phy(hw); if (!netif_running(alx->dev)) return 0; netif_device_attach(alx->dev); rtnl_lock(); err = __alx_open(alx, true); rtnl_unlock(); return err; } static SIMPLE_DEV_PM_OPS(alx_pm_ops, alx_suspend, alx_resume); #define ALX_PM_OPS (&alx_pm_ops) #else #define ALX_PM_OPS NULL #endif static pci_ers_result_t alx_pci_error_detected(struct pci_dev *pdev, pci_channel_state_t state) { struct alx_priv *alx = pci_get_drvdata(pdev); struct net_device *netdev = alx->dev; pci_ers_result_t rc = PCI_ERS_RESULT_NEED_RESET; dev_info(&pdev->dev, "pci error detected\n"); rtnl_lock(); if (netif_running(netdev)) { netif_device_detach(netdev); alx_halt(alx); } if (state == pci_channel_io_perm_failure) rc = PCI_ERS_RESULT_DISCONNECT; else pci_disable_device(pdev); rtnl_unlock(); return rc; } static pci_ers_result_t alx_pci_error_slot_reset(struct pci_dev *pdev) { struct alx_priv *alx = pci_get_drvdata(pdev); struct alx_hw *hw = &alx->hw; pci_ers_result_t rc = PCI_ERS_RESULT_DISCONNECT; dev_info(&pdev->dev, "pci error slot reset\n"); rtnl_lock(); if (pci_enable_device(pdev)) { dev_err(&pdev->dev, "Failed to re-enable PCI device after reset\n"); goto out; } pci_set_master(pdev); alx_reset_pcie(hw); if (!alx_reset_mac(hw)) rc = PCI_ERS_RESULT_RECOVERED; out: rtnl_unlock(); return rc; } static void alx_pci_error_resume(struct pci_dev *pdev) { struct alx_priv *alx = pci_get_drvdata(pdev); struct net_device *netdev = alx->dev; dev_info(&pdev->dev, "pci error resume\n"); rtnl_lock(); if (netif_running(netdev)) { alx_activate(alx); netif_device_attach(netdev); } rtnl_unlock(); } static const struct pci_error_handlers alx_err_handlers = { .error_detected = alx_pci_error_detected, .slot_reset = alx_pci_error_slot_reset, .resume = alx_pci_error_resume, }; static const struct pci_device_id alx_pci_tbl[] = { { PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_AR8161), .driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG }, { PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_E2200), .driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG }, { PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_E2400), .driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG }, { PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_E2500), .driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG }, { PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_AR8162), .driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG }, { PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_AR8171) }, { PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_AR8172) }, {} }; static struct pci_driver alx_driver = { .name = alx_drv_name, .id_table = alx_pci_tbl, .probe = alx_probe, .remove = alx_remove, .err_handler = &alx_err_handlers, .driver.pm = ALX_PM_OPS, }; module_pci_driver(alx_driver); MODULE_DEVICE_TABLE(pci, alx_pci_tbl); MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>"); MODULE_AUTHOR("Qualcomm Corporation, <nic-devel@qualcomm.com>"); MODULE_DESCRIPTION( "Qualcomm Atheros(R) AR816x/AR817x PCI-E Ethernet Network Driver"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1