Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Vladislav Zolotarov | 6817 | 39.46% | 6 | 4.51% |
Dmitry Kravkov | 3607 | 20.88% | 22 | 16.54% |
Yuval Mintz | 1889 | 10.93% | 35 | 26.32% |
Merav Sicron | 1479 | 8.56% | 9 | 6.77% |
Miriam Shitrit | 1313 | 7.60% | 1 | 0.75% |
Yaniv Rosner | 868 | 5.02% | 17 | 12.78% |
Philippe Reynes | 239 | 1.38% | 1 | 0.75% |
Sudarsana Reddy Kalluru | 209 | 1.21% | 3 | 2.26% |
Ariel Elior | 200 | 1.16% | 8 | 6.02% |
Tom Herbert | 148 | 0.86% | 1 | 0.75% |
Michal Kalderon | 133 | 0.77% | 1 | 0.75% |
Michal Schmidt | 90 | 0.52% | 3 | 2.26% |
Eyal Perry | 52 | 0.30% | 1 | 0.75% |
Ben Hutchings | 43 | 0.25% | 3 | 2.26% |
Barak Witkowsky | 41 | 0.24% | 3 | 2.26% |
Rick Jones | 30 | 0.17% | 1 | 0.75% |
Hao Zheng | 29 | 0.17% | 1 | 0.75% |
Stephen Hemminger | 26 | 0.15% | 1 | 0.75% |
Dan Carpenter | 11 | 0.06% | 1 | 0.75% |
Eric Dumazet | 10 | 0.06% | 2 | 1.50% |
Wilfried Klaebe | 8 | 0.05% | 1 | 0.75% |
Joe Perches | 8 | 0.05% | 2 | 1.50% |
Arnd Bergmann | 6 | 0.03% | 1 | 0.75% |
Richard Cochran | 4 | 0.02% | 1 | 0.75% |
Jon Mason | 4 | 0.02% | 1 | 0.75% |
Sinan Kaya | 3 | 0.02% | 2 | 1.50% |
David Decotigny | 3 | 0.02% | 1 | 0.75% |
Bruce W Allan | 2 | 0.01% | 1 | 0.75% |
Colin Ian King | 2 | 0.01% | 1 | 0.75% |
Jesse Gross | 1 | 0.01% | 1 | 0.75% |
Masanari Iida | 1 | 0.01% | 1 | 0.75% |
Total | 17276 | 133 |
/* bnx2x_ethtool.c: QLogic Everest network driver. * * Copyright (c) 2007-2013 Broadcom Corporation * Copyright (c) 2014 QLogic Corporation * All rights reserved * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation. * * Maintained by: Ariel Elior <ariel.elior@qlogic.com> * Written by: Eliezer Tamir * Based on code from Michael Chan's bnx2 driver * UDP CSUM errata workaround by Arik Gendelman * Slowpath and fastpath rework by Vladislav Zolotarov * Statistics and Link management by Yitchak Gertner * */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/ethtool.h> #include <linux/netdevice.h> #include <linux/types.h> #include <linux/sched.h> #include <linux/crc32.h> #include "bnx2x.h" #include "bnx2x_cmn.h" #include "bnx2x_dump.h" #include "bnx2x_init.h" /* Note: in the format strings below %s is replaced by the queue-name which is * either its index or 'fcoe' for the fcoe queue. Make sure the format string * length does not exceed ETH_GSTRING_LEN - MAX_QUEUE_NAME_LEN + 2 */ #define MAX_QUEUE_NAME_LEN 4 static const struct { long offset; int size; char string[ETH_GSTRING_LEN]; } bnx2x_q_stats_arr[] = { /* 1 */ { Q_STATS_OFFSET32(total_bytes_received_hi), 8, "[%s]: rx_bytes" }, { Q_STATS_OFFSET32(total_unicast_packets_received_hi), 8, "[%s]: rx_ucast_packets" }, { Q_STATS_OFFSET32(total_multicast_packets_received_hi), 8, "[%s]: rx_mcast_packets" }, { Q_STATS_OFFSET32(total_broadcast_packets_received_hi), 8, "[%s]: rx_bcast_packets" }, { Q_STATS_OFFSET32(no_buff_discard_hi), 8, "[%s]: rx_discards" }, { Q_STATS_OFFSET32(rx_err_discard_pkt), 4, "[%s]: rx_phy_ip_err_discards"}, { Q_STATS_OFFSET32(rx_skb_alloc_failed), 4, "[%s]: rx_skb_alloc_discard" }, { Q_STATS_OFFSET32(hw_csum_err), 4, "[%s]: rx_csum_offload_errors" }, { Q_STATS_OFFSET32(driver_xoff), 4, "[%s]: tx_exhaustion_events" }, { Q_STATS_OFFSET32(total_bytes_transmitted_hi), 8, "[%s]: tx_bytes" }, /* 10 */{ Q_STATS_OFFSET32(total_unicast_packets_transmitted_hi), 8, "[%s]: tx_ucast_packets" }, { Q_STATS_OFFSET32(total_multicast_packets_transmitted_hi), 8, "[%s]: tx_mcast_packets" }, { Q_STATS_OFFSET32(total_broadcast_packets_transmitted_hi), 8, "[%s]: tx_bcast_packets" }, { Q_STATS_OFFSET32(total_tpa_aggregations_hi), 8, "[%s]: tpa_aggregations" }, { Q_STATS_OFFSET32(total_tpa_aggregated_frames_hi), 8, "[%s]: tpa_aggregated_frames"}, { Q_STATS_OFFSET32(total_tpa_bytes_hi), 8, "[%s]: tpa_bytes"}, { Q_STATS_OFFSET32(driver_filtered_tx_pkt), 4, "[%s]: driver_filtered_tx_pkt" } }; #define BNX2X_NUM_Q_STATS ARRAY_SIZE(bnx2x_q_stats_arr) static const struct { long offset; int size; bool is_port_stat; char string[ETH_GSTRING_LEN]; } bnx2x_stats_arr[] = { /* 1 */ { STATS_OFFSET32(total_bytes_received_hi), 8, false, "rx_bytes" }, { STATS_OFFSET32(error_bytes_received_hi), 8, false, "rx_error_bytes" }, { STATS_OFFSET32(total_unicast_packets_received_hi), 8, false, "rx_ucast_packets" }, { STATS_OFFSET32(total_multicast_packets_received_hi), 8, false, "rx_mcast_packets" }, { STATS_OFFSET32(total_broadcast_packets_received_hi), 8, false, "rx_bcast_packets" }, { STATS_OFFSET32(rx_stat_dot3statsfcserrors_hi), 8, true, "rx_crc_errors" }, { STATS_OFFSET32(rx_stat_dot3statsalignmenterrors_hi), 8, true, "rx_align_errors" }, { STATS_OFFSET32(rx_stat_etherstatsundersizepkts_hi), 8, true, "rx_undersize_packets" }, { STATS_OFFSET32(etherstatsoverrsizepkts_hi), 8, true, "rx_oversize_packets" }, /* 10 */{ STATS_OFFSET32(rx_stat_etherstatsfragments_hi), 8, true, "rx_fragments" }, { STATS_OFFSET32(rx_stat_etherstatsjabbers_hi), 8, true, "rx_jabbers" }, { STATS_OFFSET32(no_buff_discard_hi), 8, false, "rx_discards" }, { STATS_OFFSET32(mac_filter_discard), 4, true, "rx_filtered_packets" }, { STATS_OFFSET32(mf_tag_discard), 4, true, "rx_mf_tag_discard" }, { STATS_OFFSET32(pfc_frames_received_hi), 8, true, "pfc_frames_received" }, { STATS_OFFSET32(pfc_frames_sent_hi), 8, true, "pfc_frames_sent" }, { STATS_OFFSET32(brb_drop_hi), 8, true, "rx_brb_discard" }, { STATS_OFFSET32(brb_truncate_hi), 8, true, "rx_brb_truncate" }, { STATS_OFFSET32(pause_frames_received_hi), 8, true, "rx_pause_frames" }, { STATS_OFFSET32(rx_stat_maccontrolframesreceived_hi), 8, true, "rx_mac_ctrl_frames" }, { STATS_OFFSET32(nig_timer_max), 4, true, "rx_constant_pause_events" }, /* 20 */{ STATS_OFFSET32(rx_err_discard_pkt), 4, false, "rx_phy_ip_err_discards"}, { STATS_OFFSET32(rx_skb_alloc_failed), 4, false, "rx_skb_alloc_discard" }, { STATS_OFFSET32(hw_csum_err), 4, false, "rx_csum_offload_errors" }, { STATS_OFFSET32(driver_xoff), 4, false, "tx_exhaustion_events" }, { STATS_OFFSET32(total_bytes_transmitted_hi), 8, false, "tx_bytes" }, { STATS_OFFSET32(tx_stat_ifhcoutbadoctets_hi), 8, true, "tx_error_bytes" }, { STATS_OFFSET32(total_unicast_packets_transmitted_hi), 8, false, "tx_ucast_packets" }, { STATS_OFFSET32(total_multicast_packets_transmitted_hi), 8, false, "tx_mcast_packets" }, { STATS_OFFSET32(total_broadcast_packets_transmitted_hi), 8, false, "tx_bcast_packets" }, { STATS_OFFSET32(tx_stat_dot3statsinternalmactransmiterrors_hi), 8, true, "tx_mac_errors" }, { STATS_OFFSET32(rx_stat_dot3statscarriersenseerrors_hi), 8, true, "tx_carrier_errors" }, /* 30 */{ STATS_OFFSET32(tx_stat_dot3statssinglecollisionframes_hi), 8, true, "tx_single_collisions" }, { STATS_OFFSET32(tx_stat_dot3statsmultiplecollisionframes_hi), 8, true, "tx_multi_collisions" }, { STATS_OFFSET32(tx_stat_dot3statsdeferredtransmissions_hi), 8, true, "tx_deferred" }, { STATS_OFFSET32(tx_stat_dot3statsexcessivecollisions_hi), 8, true, "tx_excess_collisions" }, { STATS_OFFSET32(tx_stat_dot3statslatecollisions_hi), 8, true, "tx_late_collisions" }, { STATS_OFFSET32(tx_stat_etherstatscollisions_hi), 8, true, "tx_total_collisions" }, { STATS_OFFSET32(tx_stat_etherstatspkts64octets_hi), 8, true, "tx_64_byte_packets" }, { STATS_OFFSET32(tx_stat_etherstatspkts65octetsto127octets_hi), 8, true, "tx_65_to_127_byte_packets" }, { STATS_OFFSET32(tx_stat_etherstatspkts128octetsto255octets_hi), 8, true, "tx_128_to_255_byte_packets" }, { STATS_OFFSET32(tx_stat_etherstatspkts256octetsto511octets_hi), 8, true, "tx_256_to_511_byte_packets" }, /* 40 */{ STATS_OFFSET32(tx_stat_etherstatspkts512octetsto1023octets_hi), 8, true, "tx_512_to_1023_byte_packets" }, { STATS_OFFSET32(etherstatspkts1024octetsto1522octets_hi), 8, true, "tx_1024_to_1522_byte_packets" }, { STATS_OFFSET32(etherstatspktsover1522octets_hi), 8, true, "tx_1523_to_9022_byte_packets" }, { STATS_OFFSET32(pause_frames_sent_hi), 8, true, "tx_pause_frames" }, { STATS_OFFSET32(total_tpa_aggregations_hi), 8, false, "tpa_aggregations" }, { STATS_OFFSET32(total_tpa_aggregated_frames_hi), 8, false, "tpa_aggregated_frames"}, { STATS_OFFSET32(total_tpa_bytes_hi), 8, false, "tpa_bytes"}, { STATS_OFFSET32(recoverable_error), 4, false, "recoverable_errors" }, { STATS_OFFSET32(unrecoverable_error), 4, false, "unrecoverable_errors" }, { STATS_OFFSET32(driver_filtered_tx_pkt), 4, false, "driver_filtered_tx_pkt" }, { STATS_OFFSET32(eee_tx_lpi), 4, true, "Tx LPI entry count"} }; #define BNX2X_NUM_STATS ARRAY_SIZE(bnx2x_stats_arr) static int bnx2x_get_port_type(struct bnx2x *bp) { int port_type; u32 phy_idx = bnx2x_get_cur_phy_idx(bp); switch (bp->link_params.phy[phy_idx].media_type) { case ETH_PHY_SFPP_10G_FIBER: case ETH_PHY_SFP_1G_FIBER: case ETH_PHY_XFP_FIBER: case ETH_PHY_KR: case ETH_PHY_CX4: port_type = PORT_FIBRE; break; case ETH_PHY_DA_TWINAX: port_type = PORT_DA; break; case ETH_PHY_BASE_T: port_type = PORT_TP; break; case ETH_PHY_NOT_PRESENT: port_type = PORT_NONE; break; case ETH_PHY_UNSPECIFIED: default: port_type = PORT_OTHER; break; } return port_type; } static int bnx2x_get_vf_link_ksettings(struct net_device *dev, struct ethtool_link_ksettings *cmd) { struct bnx2x *bp = netdev_priv(dev); u32 supported, advertising; ethtool_convert_link_mode_to_legacy_u32(&supported, cmd->link_modes.supported); ethtool_convert_link_mode_to_legacy_u32(&advertising, cmd->link_modes.advertising); if (bp->state == BNX2X_STATE_OPEN) { if (test_bit(BNX2X_LINK_REPORT_FD, &bp->vf_link_vars.link_report_flags)) cmd->base.duplex = DUPLEX_FULL; else cmd->base.duplex = DUPLEX_HALF; cmd->base.speed = bp->vf_link_vars.line_speed; } else { cmd->base.duplex = DUPLEX_UNKNOWN; cmd->base.speed = SPEED_UNKNOWN; } cmd->base.port = PORT_OTHER; cmd->base.phy_address = 0; cmd->base.autoneg = AUTONEG_DISABLE; DP(BNX2X_MSG_ETHTOOL, "ethtool_cmd: cmd %d\n" " supported 0x%x advertising 0x%x speed %u\n" " duplex %d port %d phy_address %d\n" " autoneg %d\n", cmd->base.cmd, supported, advertising, cmd->base.speed, cmd->base.duplex, cmd->base.port, cmd->base.phy_address, cmd->base.autoneg); return 0; } static int bnx2x_get_link_ksettings(struct net_device *dev, struct ethtool_link_ksettings *cmd) { struct bnx2x *bp = netdev_priv(dev); int cfg_idx = bnx2x_get_link_cfg_idx(bp); u32 media_type; u32 supported, advertising, lp_advertising; ethtool_convert_link_mode_to_legacy_u32(&lp_advertising, cmd->link_modes.lp_advertising); /* Dual Media boards present all available port types */ supported = bp->port.supported[cfg_idx] | (bp->port.supported[cfg_idx ^ 1] & (SUPPORTED_TP | SUPPORTED_FIBRE)); advertising = bp->port.advertising[cfg_idx]; media_type = bp->link_params.phy[bnx2x_get_cur_phy_idx(bp)].media_type; if (media_type == ETH_PHY_SFP_1G_FIBER) { supported &= ~(SUPPORTED_10000baseT_Full); advertising &= ~(ADVERTISED_10000baseT_Full); } if ((bp->state == BNX2X_STATE_OPEN) && bp->link_vars.link_up && !(bp->flags & MF_FUNC_DIS)) { cmd->base.duplex = bp->link_vars.duplex; if (IS_MF(bp) && !BP_NOMCP(bp)) cmd->base.speed = bnx2x_get_mf_speed(bp); else cmd->base.speed = bp->link_vars.line_speed; } else { cmd->base.duplex = DUPLEX_UNKNOWN; cmd->base.speed = SPEED_UNKNOWN; } cmd->base.port = bnx2x_get_port_type(bp); cmd->base.phy_address = bp->mdio.prtad; if (bp->link_params.req_line_speed[cfg_idx] == SPEED_AUTO_NEG) cmd->base.autoneg = AUTONEG_ENABLE; else cmd->base.autoneg = AUTONEG_DISABLE; /* Publish LP advertised speeds and FC */ if (bp->link_vars.link_status & LINK_STATUS_AUTO_NEGOTIATE_COMPLETE) { u32 status = bp->link_vars.link_status; lp_advertising |= ADVERTISED_Autoneg; if (status & LINK_STATUS_LINK_PARTNER_SYMMETRIC_PAUSE) lp_advertising |= ADVERTISED_Pause; if (status & LINK_STATUS_LINK_PARTNER_ASYMMETRIC_PAUSE) lp_advertising |= ADVERTISED_Asym_Pause; if (status & LINK_STATUS_LINK_PARTNER_10THD_CAPABLE) lp_advertising |= ADVERTISED_10baseT_Half; if (status & LINK_STATUS_LINK_PARTNER_10TFD_CAPABLE) lp_advertising |= ADVERTISED_10baseT_Full; if (status & LINK_STATUS_LINK_PARTNER_100TXHD_CAPABLE) lp_advertising |= ADVERTISED_100baseT_Half; if (status & LINK_STATUS_LINK_PARTNER_100TXFD_CAPABLE) lp_advertising |= ADVERTISED_100baseT_Full; if (status & LINK_STATUS_LINK_PARTNER_1000THD_CAPABLE) lp_advertising |= ADVERTISED_1000baseT_Half; if (status & LINK_STATUS_LINK_PARTNER_1000TFD_CAPABLE) { if (media_type == ETH_PHY_KR) { lp_advertising |= ADVERTISED_1000baseKX_Full; } else { lp_advertising |= ADVERTISED_1000baseT_Full; } } if (status & LINK_STATUS_LINK_PARTNER_2500XFD_CAPABLE) lp_advertising |= ADVERTISED_2500baseX_Full; if (status & LINK_STATUS_LINK_PARTNER_10GXFD_CAPABLE) { if (media_type == ETH_PHY_KR) { lp_advertising |= ADVERTISED_10000baseKR_Full; } else { lp_advertising |= ADVERTISED_10000baseT_Full; } } if (status & LINK_STATUS_LINK_PARTNER_20GXFD_CAPABLE) lp_advertising |= ADVERTISED_20000baseKR2_Full; } ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported, supported); ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising, advertising); ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.lp_advertising, lp_advertising); DP(BNX2X_MSG_ETHTOOL, "ethtool_cmd: cmd %d\n" " supported 0x%x advertising 0x%x speed %u\n" " duplex %d port %d phy_address %d\n" " autoneg %d\n", cmd->base.cmd, supported, advertising, cmd->base.speed, cmd->base.duplex, cmd->base.port, cmd->base.phy_address, cmd->base.autoneg); return 0; } static int bnx2x_set_link_ksettings(struct net_device *dev, const struct ethtool_link_ksettings *cmd) { struct bnx2x *bp = netdev_priv(dev); u32 advertising, cfg_idx, old_multi_phy_config, new_multi_phy_config; u32 speed, phy_idx; u32 supported; u8 duplex = cmd->base.duplex; ethtool_convert_link_mode_to_legacy_u32(&supported, cmd->link_modes.supported); ethtool_convert_link_mode_to_legacy_u32(&advertising, cmd->link_modes.advertising); if (IS_MF_SD(bp)) return 0; DP(BNX2X_MSG_ETHTOOL, "ethtool_cmd: cmd %d\n" " supported 0x%x advertising 0x%x speed %u\n" " duplex %d port %d phy_address %d\n" " autoneg %d\n", cmd->base.cmd, supported, advertising, cmd->base.speed, cmd->base.duplex, cmd->base.port, cmd->base.phy_address, cmd->base.autoneg); speed = cmd->base.speed; /* If received a request for an unknown duplex, assume full*/ if (duplex == DUPLEX_UNKNOWN) duplex = DUPLEX_FULL; if (IS_MF_SI(bp)) { u32 part; u32 line_speed = bp->link_vars.line_speed; /* use 10G if no link detected */ if (!line_speed) line_speed = 10000; if (bp->common.bc_ver < REQ_BC_VER_4_SET_MF_BW) { DP(BNX2X_MSG_ETHTOOL, "To set speed BC %X or higher is required, please upgrade BC\n", REQ_BC_VER_4_SET_MF_BW); return -EINVAL; } part = (speed * 100) / line_speed; if (line_speed < speed || !part) { DP(BNX2X_MSG_ETHTOOL, "Speed setting should be in a range from 1%% to 100%% of actual line speed\n"); return -EINVAL; } if (bp->state != BNX2X_STATE_OPEN) /* store value for following "load" */ bp->pending_max = part; else bnx2x_update_max_mf_config(bp, part); return 0; } cfg_idx = bnx2x_get_link_cfg_idx(bp); old_multi_phy_config = bp->link_params.multi_phy_config; if (cmd->base.port != bnx2x_get_port_type(bp)) { switch (cmd->base.port) { case PORT_TP: if (!(bp->port.supported[0] & SUPPORTED_TP || bp->port.supported[1] & SUPPORTED_TP)) { DP(BNX2X_MSG_ETHTOOL, "Unsupported port type\n"); return -EINVAL; } bp->link_params.multi_phy_config &= ~PORT_HW_CFG_PHY_SELECTION_MASK; if (bp->link_params.multi_phy_config & PORT_HW_CFG_PHY_SWAPPED_ENABLED) bp->link_params.multi_phy_config |= PORT_HW_CFG_PHY_SELECTION_SECOND_PHY; else bp->link_params.multi_phy_config |= PORT_HW_CFG_PHY_SELECTION_FIRST_PHY; break; case PORT_FIBRE: case PORT_DA: case PORT_NONE: if (!(bp->port.supported[0] & SUPPORTED_FIBRE || bp->port.supported[1] & SUPPORTED_FIBRE)) { DP(BNX2X_MSG_ETHTOOL, "Unsupported port type\n"); return -EINVAL; } bp->link_params.multi_phy_config &= ~PORT_HW_CFG_PHY_SELECTION_MASK; if (bp->link_params.multi_phy_config & PORT_HW_CFG_PHY_SWAPPED_ENABLED) bp->link_params.multi_phy_config |= PORT_HW_CFG_PHY_SELECTION_FIRST_PHY; else bp->link_params.multi_phy_config |= PORT_HW_CFG_PHY_SELECTION_SECOND_PHY; break; default: DP(BNX2X_MSG_ETHTOOL, "Unsupported port type\n"); return -EINVAL; } } /* Save new config in case command complete successfully */ new_multi_phy_config = bp->link_params.multi_phy_config; /* Get the new cfg_idx */ cfg_idx = bnx2x_get_link_cfg_idx(bp); /* Restore old config in case command failed */ bp->link_params.multi_phy_config = old_multi_phy_config; DP(BNX2X_MSG_ETHTOOL, "cfg_idx = %x\n", cfg_idx); if (cmd->base.autoneg == AUTONEG_ENABLE) { u32 an_supported_speed = bp->port.supported[cfg_idx]; if (bp->link_params.phy[EXT_PHY1].type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833) an_supported_speed |= (SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full); if (!(bp->port.supported[cfg_idx] & SUPPORTED_Autoneg)) { DP(BNX2X_MSG_ETHTOOL, "Autoneg not supported\n"); return -EINVAL; } /* advertise the requested speed and duplex if supported */ if (advertising & ~an_supported_speed) { DP(BNX2X_MSG_ETHTOOL, "Advertisement parameters are not supported\n"); return -EINVAL; } bp->link_params.req_line_speed[cfg_idx] = SPEED_AUTO_NEG; bp->link_params.req_duplex[cfg_idx] = duplex; bp->port.advertising[cfg_idx] = (ADVERTISED_Autoneg | advertising); if (advertising) { bp->link_params.speed_cap_mask[cfg_idx] = 0; if (advertising & ADVERTISED_10baseT_Half) { bp->link_params.speed_cap_mask[cfg_idx] |= PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF; } if (advertising & ADVERTISED_10baseT_Full) bp->link_params.speed_cap_mask[cfg_idx] |= PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL; if (advertising & ADVERTISED_100baseT_Full) bp->link_params.speed_cap_mask[cfg_idx] |= PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL; if (advertising & ADVERTISED_100baseT_Half) { bp->link_params.speed_cap_mask[cfg_idx] |= PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF; } if (advertising & ADVERTISED_1000baseT_Half) { bp->link_params.speed_cap_mask[cfg_idx] |= PORT_HW_CFG_SPEED_CAPABILITY_D0_1G; } if (advertising & (ADVERTISED_1000baseT_Full | ADVERTISED_1000baseKX_Full)) bp->link_params.speed_cap_mask[cfg_idx] |= PORT_HW_CFG_SPEED_CAPABILITY_D0_1G; if (advertising & (ADVERTISED_10000baseT_Full | ADVERTISED_10000baseKX4_Full | ADVERTISED_10000baseKR_Full)) bp->link_params.speed_cap_mask[cfg_idx] |= PORT_HW_CFG_SPEED_CAPABILITY_D0_10G; if (advertising & ADVERTISED_20000baseKR2_Full) bp->link_params.speed_cap_mask[cfg_idx] |= PORT_HW_CFG_SPEED_CAPABILITY_D0_20G; } } else { /* forced speed */ /* advertise the requested speed and duplex if supported */ switch (speed) { case SPEED_10: if (duplex == DUPLEX_FULL) { if (!(bp->port.supported[cfg_idx] & SUPPORTED_10baseT_Full)) { DP(BNX2X_MSG_ETHTOOL, "10M full not supported\n"); return -EINVAL; } advertising = (ADVERTISED_10baseT_Full | ADVERTISED_TP); } else { if (!(bp->port.supported[cfg_idx] & SUPPORTED_10baseT_Half)) { DP(BNX2X_MSG_ETHTOOL, "10M half not supported\n"); return -EINVAL; } advertising = (ADVERTISED_10baseT_Half | ADVERTISED_TP); } break; case SPEED_100: if (duplex == DUPLEX_FULL) { if (!(bp->port.supported[cfg_idx] & SUPPORTED_100baseT_Full)) { DP(BNX2X_MSG_ETHTOOL, "100M full not supported\n"); return -EINVAL; } advertising = (ADVERTISED_100baseT_Full | ADVERTISED_TP); } else { if (!(bp->port.supported[cfg_idx] & SUPPORTED_100baseT_Half)) { DP(BNX2X_MSG_ETHTOOL, "100M half not supported\n"); return -EINVAL; } advertising = (ADVERTISED_100baseT_Half | ADVERTISED_TP); } break; case SPEED_1000: if (duplex != DUPLEX_FULL) { DP(BNX2X_MSG_ETHTOOL, "1G half not supported\n"); return -EINVAL; } if (bp->port.supported[cfg_idx] & SUPPORTED_1000baseT_Full) { advertising = (ADVERTISED_1000baseT_Full | ADVERTISED_TP); } else if (bp->port.supported[cfg_idx] & SUPPORTED_1000baseKX_Full) { advertising = ADVERTISED_1000baseKX_Full; } else { DP(BNX2X_MSG_ETHTOOL, "1G full not supported\n"); return -EINVAL; } break; case SPEED_2500: if (duplex != DUPLEX_FULL) { DP(BNX2X_MSG_ETHTOOL, "2.5G half not supported\n"); return -EINVAL; } if (!(bp->port.supported[cfg_idx] & SUPPORTED_2500baseX_Full)) { DP(BNX2X_MSG_ETHTOOL, "2.5G full not supported\n"); return -EINVAL; } advertising = (ADVERTISED_2500baseX_Full | ADVERTISED_TP); break; case SPEED_10000: if (duplex != DUPLEX_FULL) { DP(BNX2X_MSG_ETHTOOL, "10G half not supported\n"); return -EINVAL; } phy_idx = bnx2x_get_cur_phy_idx(bp); if ((bp->port.supported[cfg_idx] & SUPPORTED_10000baseT_Full) && (bp->link_params.phy[phy_idx].media_type != ETH_PHY_SFP_1G_FIBER)) { advertising = (ADVERTISED_10000baseT_Full | ADVERTISED_FIBRE); } else if (bp->port.supported[cfg_idx] & SUPPORTED_10000baseKR_Full) { advertising = (ADVERTISED_10000baseKR_Full | ADVERTISED_FIBRE); } else { DP(BNX2X_MSG_ETHTOOL, "10G full not supported\n"); return -EINVAL; } break; default: DP(BNX2X_MSG_ETHTOOL, "Unsupported speed %u\n", speed); return -EINVAL; } bp->link_params.req_line_speed[cfg_idx] = speed; bp->link_params.req_duplex[cfg_idx] = duplex; bp->port.advertising[cfg_idx] = advertising; } DP(BNX2X_MSG_ETHTOOL, "req_line_speed %d\n" " req_duplex %d advertising 0x%x\n", bp->link_params.req_line_speed[cfg_idx], bp->link_params.req_duplex[cfg_idx], bp->port.advertising[cfg_idx]); /* Set new config */ bp->link_params.multi_phy_config = new_multi_phy_config; if (netif_running(dev)) { bnx2x_stats_handle(bp, STATS_EVENT_STOP); bnx2x_force_link_reset(bp); bnx2x_link_set(bp); } return 0; } #define DUMP_ALL_PRESETS 0x1FFF #define DUMP_MAX_PRESETS 13 static int __bnx2x_get_preset_regs_len(struct bnx2x *bp, u32 preset) { if (CHIP_IS_E1(bp)) return dump_num_registers[0][preset-1]; else if (CHIP_IS_E1H(bp)) return dump_num_registers[1][preset-1]; else if (CHIP_IS_E2(bp)) return dump_num_registers[2][preset-1]; else if (CHIP_IS_E3A0(bp)) return dump_num_registers[3][preset-1]; else if (CHIP_IS_E3B0(bp)) return dump_num_registers[4][preset-1]; else return 0; } static int __bnx2x_get_regs_len(struct bnx2x *bp) { u32 preset_idx; int regdump_len = 0; /* Calculate the total preset regs length */ for (preset_idx = 1; preset_idx <= DUMP_MAX_PRESETS; preset_idx++) regdump_len += __bnx2x_get_preset_regs_len(bp, preset_idx); return regdump_len; } static int bnx2x_get_regs_len(struct net_device *dev) { struct bnx2x *bp = netdev_priv(dev); int regdump_len = 0; if (IS_VF(bp)) return 0; regdump_len = __bnx2x_get_regs_len(bp); regdump_len *= 4; regdump_len += sizeof(struct dump_header); return regdump_len; } #define IS_E1_REG(chips) ((chips & DUMP_CHIP_E1) == DUMP_CHIP_E1) #define IS_E1H_REG(chips) ((chips & DUMP_CHIP_E1H) == DUMP_CHIP_E1H) #define IS_E2_REG(chips) ((chips & DUMP_CHIP_E2) == DUMP_CHIP_E2) #define IS_E3A0_REG(chips) ((chips & DUMP_CHIP_E3A0) == DUMP_CHIP_E3A0) #define IS_E3B0_REG(chips) ((chips & DUMP_CHIP_E3B0) == DUMP_CHIP_E3B0) #define IS_REG_IN_PRESET(presets, idx) \ ((presets & (1 << (idx-1))) == (1 << (idx-1))) /******* Paged registers info selectors ********/ static const u32 *__bnx2x_get_page_addr_ar(struct bnx2x *bp) { if (CHIP_IS_E2(bp)) return page_vals_e2; else if (CHIP_IS_E3(bp)) return page_vals_e3; else return NULL; } static u32 __bnx2x_get_page_reg_num(struct bnx2x *bp) { if (CHIP_IS_E2(bp)) return PAGE_MODE_VALUES_E2; else if (CHIP_IS_E3(bp)) return PAGE_MODE_VALUES_E3; else return 0; } static const u32 *__bnx2x_get_page_write_ar(struct bnx2x *bp) { if (CHIP_IS_E2(bp)) return page_write_regs_e2; else if (CHIP_IS_E3(bp)) return page_write_regs_e3; else return NULL; } static u32 __bnx2x_get_page_write_num(struct bnx2x *bp) { if (CHIP_IS_E2(bp)) return PAGE_WRITE_REGS_E2; else if (CHIP_IS_E3(bp)) return PAGE_WRITE_REGS_E3; else return 0; } static const struct reg_addr *__bnx2x_get_page_read_ar(struct bnx2x *bp) { if (CHIP_IS_E2(bp)) return page_read_regs_e2; else if (CHIP_IS_E3(bp)) return page_read_regs_e3; else return NULL; } static u32 __bnx2x_get_page_read_num(struct bnx2x *bp) { if (CHIP_IS_E2(bp)) return PAGE_READ_REGS_E2; else if (CHIP_IS_E3(bp)) return PAGE_READ_REGS_E3; else return 0; } static bool bnx2x_is_reg_in_chip(struct bnx2x *bp, const struct reg_addr *reg_info) { if (CHIP_IS_E1(bp)) return IS_E1_REG(reg_info->chips); else if (CHIP_IS_E1H(bp)) return IS_E1H_REG(reg_info->chips); else if (CHIP_IS_E2(bp)) return IS_E2_REG(reg_info->chips); else if (CHIP_IS_E3A0(bp)) return IS_E3A0_REG(reg_info->chips); else if (CHIP_IS_E3B0(bp)) return IS_E3B0_REG(reg_info->chips); else return false; } static bool bnx2x_is_wreg_in_chip(struct bnx2x *bp, const struct wreg_addr *wreg_info) { if (CHIP_IS_E1(bp)) return IS_E1_REG(wreg_info->chips); else if (CHIP_IS_E1H(bp)) return IS_E1H_REG(wreg_info->chips); else if (CHIP_IS_E2(bp)) return IS_E2_REG(wreg_info->chips); else if (CHIP_IS_E3A0(bp)) return IS_E3A0_REG(wreg_info->chips); else if (CHIP_IS_E3B0(bp)) return IS_E3B0_REG(wreg_info->chips); else return false; } /** * bnx2x_read_pages_regs - read "paged" registers * * @bp device handle * @p output buffer * * Reads "paged" memories: memories that may only be read by first writing to a * specific address ("write address") and then reading from a specific address * ("read address"). There may be more than one write address per "page" and * more than one read address per write address. */ static void bnx2x_read_pages_regs(struct bnx2x *bp, u32 *p, u32 preset) { u32 i, j, k, n; /* addresses of the paged registers */ const u32 *page_addr = __bnx2x_get_page_addr_ar(bp); /* number of paged registers */ int num_pages = __bnx2x_get_page_reg_num(bp); /* write addresses */ const u32 *write_addr = __bnx2x_get_page_write_ar(bp); /* number of write addresses */ int write_num = __bnx2x_get_page_write_num(bp); /* read addresses info */ const struct reg_addr *read_addr = __bnx2x_get_page_read_ar(bp); /* number of read addresses */ int read_num = __bnx2x_get_page_read_num(bp); u32 addr, size; for (i = 0; i < num_pages; i++) { for (j = 0; j < write_num; j++) { REG_WR(bp, write_addr[j], page_addr[i]); for (k = 0; k < read_num; k++) { if (IS_REG_IN_PRESET(read_addr[k].presets, preset)) { size = read_addr[k].size; for (n = 0; n < size; n++) { addr = read_addr[k].addr + n*4; *p++ = REG_RD(bp, addr); } } } } } } static int __bnx2x_get_preset_regs(struct bnx2x *bp, u32 *p, u32 preset) { u32 i, j, addr; const struct wreg_addr *wreg_addr_p = NULL; if (CHIP_IS_E1(bp)) wreg_addr_p = &wreg_addr_e1; else if (CHIP_IS_E1H(bp)) wreg_addr_p = &wreg_addr_e1h; else if (CHIP_IS_E2(bp)) wreg_addr_p = &wreg_addr_e2; else if (CHIP_IS_E3A0(bp)) wreg_addr_p = &wreg_addr_e3; else if (CHIP_IS_E3B0(bp)) wreg_addr_p = &wreg_addr_e3b0; /* Read the idle_chk registers */ for (i = 0; i < IDLE_REGS_COUNT; i++) { if (bnx2x_is_reg_in_chip(bp, &idle_reg_addrs[i]) && IS_REG_IN_PRESET(idle_reg_addrs[i].presets, preset)) { for (j = 0; j < idle_reg_addrs[i].size; j++) *p++ = REG_RD(bp, idle_reg_addrs[i].addr + j*4); } } /* Read the regular registers */ for (i = 0; i < REGS_COUNT; i++) { if (bnx2x_is_reg_in_chip(bp, ®_addrs[i]) && IS_REG_IN_PRESET(reg_addrs[i].presets, preset)) { for (j = 0; j < reg_addrs[i].size; j++) *p++ = REG_RD(bp, reg_addrs[i].addr + j*4); } } /* Read the CAM registers */ if (bnx2x_is_wreg_in_chip(bp, wreg_addr_p) && IS_REG_IN_PRESET(wreg_addr_p->presets, preset)) { for (i = 0; i < wreg_addr_p->size; i++) { *p++ = REG_RD(bp, wreg_addr_p->addr + i*4); /* In case of wreg_addr register, read additional registers from read_regs array */ for (j = 0; j < wreg_addr_p->read_regs_count; j++) { addr = *(wreg_addr_p->read_regs); *p++ = REG_RD(bp, addr + j*4); } } } /* Paged registers are supported in E2 & E3 only */ if (CHIP_IS_E2(bp) || CHIP_IS_E3(bp)) { /* Read "paged" registers */ bnx2x_read_pages_regs(bp, p, preset); } return 0; } static void __bnx2x_get_regs(struct bnx2x *bp, u32 *p) { u32 preset_idx; /* Read all registers, by reading all preset registers */ for (preset_idx = 1; preset_idx <= DUMP_MAX_PRESETS; preset_idx++) { /* Skip presets with IOR */ if ((preset_idx == 2) || (preset_idx == 5) || (preset_idx == 8) || (preset_idx == 11)) continue; __bnx2x_get_preset_regs(bp, p, preset_idx); p += __bnx2x_get_preset_regs_len(bp, preset_idx); } } static void bnx2x_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *_p) { u32 *p = _p; struct bnx2x *bp = netdev_priv(dev); struct dump_header dump_hdr = {0}; regs->version = 2; memset(p, 0, regs->len); if (!netif_running(bp->dev)) return; /* Disable parity attentions as long as following dump may * cause false alarms by reading never written registers. We * will re-enable parity attentions right after the dump. */ bnx2x_disable_blocks_parity(bp); dump_hdr.header_size = (sizeof(struct dump_header) / 4) - 1; dump_hdr.preset = DUMP_ALL_PRESETS; dump_hdr.version = BNX2X_DUMP_VERSION; /* dump_meta_data presents OR of CHIP and PATH. */ if (CHIP_IS_E1(bp)) { dump_hdr.dump_meta_data = DUMP_CHIP_E1; } else if (CHIP_IS_E1H(bp)) { dump_hdr.dump_meta_data = DUMP_CHIP_E1H; } else if (CHIP_IS_E2(bp)) { dump_hdr.dump_meta_data = DUMP_CHIP_E2 | (BP_PATH(bp) ? DUMP_PATH_1 : DUMP_PATH_0); } else if (CHIP_IS_E3A0(bp)) { dump_hdr.dump_meta_data = DUMP_CHIP_E3A0 | (BP_PATH(bp) ? DUMP_PATH_1 : DUMP_PATH_0); } else if (CHIP_IS_E3B0(bp)) { dump_hdr.dump_meta_data = DUMP_CHIP_E3B0 | (BP_PATH(bp) ? DUMP_PATH_1 : DUMP_PATH_0); } memcpy(p, &dump_hdr, sizeof(struct dump_header)); p += dump_hdr.header_size + 1; /* This isn't really an error, but since attention handling is going * to print the GRC timeouts using this macro, we use the same. */ BNX2X_ERR("Generating register dump. Might trigger harmless GRC timeouts\n"); /* Actually read the registers */ __bnx2x_get_regs(bp, p); /* Re-enable parity attentions */ bnx2x_clear_blocks_parity(bp); bnx2x_enable_blocks_parity(bp); } static int bnx2x_get_preset_regs_len(struct net_device *dev, u32 preset) { struct bnx2x *bp = netdev_priv(dev); int regdump_len = 0; regdump_len = __bnx2x_get_preset_regs_len(bp, preset); regdump_len *= 4; regdump_len += sizeof(struct dump_header); return regdump_len; } static int bnx2x_set_dump(struct net_device *dev, struct ethtool_dump *val) { struct bnx2x *bp = netdev_priv(dev); /* Use the ethtool_dump "flag" field as the dump preset index */ if (val->flag < 1 || val->flag > DUMP_MAX_PRESETS) return -EINVAL; bp->dump_preset_idx = val->flag; return 0; } static int bnx2x_get_dump_flag(struct net_device *dev, struct ethtool_dump *dump) { struct bnx2x *bp = netdev_priv(dev); dump->version = BNX2X_DUMP_VERSION; dump->flag = bp->dump_preset_idx; /* Calculate the requested preset idx length */ dump->len = bnx2x_get_preset_regs_len(dev, bp->dump_preset_idx); DP(BNX2X_MSG_ETHTOOL, "Get dump preset %d length=%d\n", bp->dump_preset_idx, dump->len); return 0; } static int bnx2x_get_dump_data(struct net_device *dev, struct ethtool_dump *dump, void *buffer) { u32 *p = buffer; struct bnx2x *bp = netdev_priv(dev); struct dump_header dump_hdr = {0}; /* Disable parity attentions as long as following dump may * cause false alarms by reading never written registers. We * will re-enable parity attentions right after the dump. */ bnx2x_disable_blocks_parity(bp); dump_hdr.header_size = (sizeof(struct dump_header) / 4) - 1; dump_hdr.preset = bp->dump_preset_idx; dump_hdr.version = BNX2X_DUMP_VERSION; DP(BNX2X_MSG_ETHTOOL, "Get dump data of preset %d\n", dump_hdr.preset); /* dump_meta_data presents OR of CHIP and PATH. */ if (CHIP_IS_E1(bp)) { dump_hdr.dump_meta_data = DUMP_CHIP_E1; } else if (CHIP_IS_E1H(bp)) { dump_hdr.dump_meta_data = DUMP_CHIP_E1H; } else if (CHIP_IS_E2(bp)) { dump_hdr.dump_meta_data = DUMP_CHIP_E2 | (BP_PATH(bp) ? DUMP_PATH_1 : DUMP_PATH_0); } else if (CHIP_IS_E3A0(bp)) { dump_hdr.dump_meta_data = DUMP_CHIP_E3A0 | (BP_PATH(bp) ? DUMP_PATH_1 : DUMP_PATH_0); } else if (CHIP_IS_E3B0(bp)) { dump_hdr.dump_meta_data = DUMP_CHIP_E3B0 | (BP_PATH(bp) ? DUMP_PATH_1 : DUMP_PATH_0); } memcpy(p, &dump_hdr, sizeof(struct dump_header)); p += dump_hdr.header_size + 1; /* Actually read the registers */ __bnx2x_get_preset_regs(bp, p, dump_hdr.preset); /* Re-enable parity attentions */ bnx2x_clear_blocks_parity(bp); bnx2x_enable_blocks_parity(bp); return 0; } static void bnx2x_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) { struct bnx2x *bp = netdev_priv(dev); char version[ETHTOOL_FWVERS_LEN]; int ext_dev_info_offset; u32 mbi; strlcpy(info->driver, DRV_MODULE_NAME, sizeof(info->driver)); strlcpy(info->version, DRV_MODULE_VERSION, sizeof(info->version)); memset(version, 0, sizeof(version)); snprintf(version, ETHTOOL_FWVERS_LEN, " storm %d.%d.%d.%d", BCM_5710_FW_MAJOR_VERSION, BCM_5710_FW_MINOR_VERSION, BCM_5710_FW_REVISION_VERSION, BCM_5710_FW_ENGINEERING_VERSION); strlcat(info->version, version, sizeof(info->version)); if (SHMEM2_HAS(bp, extended_dev_info_shared_addr)) { ext_dev_info_offset = SHMEM2_RD(bp, extended_dev_info_shared_addr); mbi = REG_RD(bp, ext_dev_info_offset + offsetof(struct extended_dev_info_shared_cfg, mbi_version)); if (mbi) { memset(version, 0, sizeof(version)); snprintf(version, ETHTOOL_FWVERS_LEN, "mbi %d.%d.%d ", (mbi & 0xff000000) >> 24, (mbi & 0x00ff0000) >> 16, (mbi & 0x0000ff00) >> 8); strlcpy(info->fw_version, version, sizeof(info->fw_version)); } } memset(version, 0, sizeof(version)); bnx2x_fill_fw_str(bp, version, ETHTOOL_FWVERS_LEN); strlcat(info->fw_version, version, sizeof(info->fw_version)); strlcpy(info->bus_info, pci_name(bp->pdev), sizeof(info->bus_info)); } static void bnx2x_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol) { struct bnx2x *bp = netdev_priv(dev); if (bp->flags & NO_WOL_FLAG) { wol->supported = 0; wol->wolopts = 0; } else { wol->supported = WAKE_MAGIC; if (bp->wol) wol->wolopts = WAKE_MAGIC; else wol->wolopts = 0; } memset(&wol->sopass, 0, sizeof(wol->sopass)); } static int bnx2x_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol) { struct bnx2x *bp = netdev_priv(dev); if (wol->wolopts & ~WAKE_MAGIC) { DP(BNX2X_MSG_ETHTOOL, "WOL not supported\n"); return -EINVAL; } if (wol->wolopts & WAKE_MAGIC) { if (bp->flags & NO_WOL_FLAG) { DP(BNX2X_MSG_ETHTOOL, "WOL not supported\n"); return -EINVAL; } bp->wol = 1; } else bp->wol = 0; if (SHMEM2_HAS(bp, curr_cfg)) SHMEM2_WR(bp, curr_cfg, CURR_CFG_MET_OS); return 0; } static u32 bnx2x_get_msglevel(struct net_device *dev) { struct bnx2x *bp = netdev_priv(dev); return bp->msg_enable; } static void bnx2x_set_msglevel(struct net_device *dev, u32 level) { struct bnx2x *bp = netdev_priv(dev); if (capable(CAP_NET_ADMIN)) { /* dump MCP trace */ if (IS_PF(bp) && (level & BNX2X_MSG_MCP)) bnx2x_fw_dump_lvl(bp, KERN_INFO); bp->msg_enable = level; } } static int bnx2x_nway_reset(struct net_device *dev) { struct bnx2x *bp = netdev_priv(dev); if (!bp->port.pmf) return 0; if (netif_running(dev)) { bnx2x_stats_handle(bp, STATS_EVENT_STOP); bnx2x_force_link_reset(bp); bnx2x_link_set(bp); } return 0; } static u32 bnx2x_get_link(struct net_device *dev) { struct bnx2x *bp = netdev_priv(dev); if (bp->flags & MF_FUNC_DIS || (bp->state != BNX2X_STATE_OPEN)) return 0; if (IS_VF(bp)) return !test_bit(BNX2X_LINK_REPORT_LINK_DOWN, &bp->vf_link_vars.link_report_flags); return bp->link_vars.link_up; } static int bnx2x_get_eeprom_len(struct net_device *dev) { struct bnx2x *bp = netdev_priv(dev); return bp->common.flash_size; } /* Per pf misc lock must be acquired before the per port mcp lock. Otherwise, * had we done things the other way around, if two pfs from the same port would * attempt to access nvram at the same time, we could run into a scenario such * as: * pf A takes the port lock. * pf B succeeds in taking the same lock since they are from the same port. * pf A takes the per pf misc lock. Performs eeprom access. * pf A finishes. Unlocks the per pf misc lock. * Pf B takes the lock and proceeds to perform it's own access. * pf A unlocks the per port lock, while pf B is still working (!). * mcp takes the per port lock and corrupts pf B's access (and/or has it's own * access corrupted by pf B) */ static int bnx2x_acquire_nvram_lock(struct bnx2x *bp) { int port = BP_PORT(bp); int count, i; u32 val; /* acquire HW lock: protect against other PFs in PF Direct Assignment */ bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_NVRAM); /* adjust timeout for emulation/FPGA */ count = BNX2X_NVRAM_TIMEOUT_COUNT; if (CHIP_REV_IS_SLOW(bp)) count *= 100; /* request access to nvram interface */ REG_WR(bp, MCP_REG_MCPR_NVM_SW_ARB, (MCPR_NVM_SW_ARB_ARB_REQ_SET1 << port)); for (i = 0; i < count*10; i++) { val = REG_RD(bp, MCP_REG_MCPR_NVM_SW_ARB); if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)) break; udelay(5); } if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))) { DP(BNX2X_MSG_ETHTOOL | BNX2X_MSG_NVM, "cannot get access to nvram interface\n"); bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_NVRAM); return -EBUSY; } return 0; } static int bnx2x_release_nvram_lock(struct bnx2x *bp) { int port = BP_PORT(bp); int count, i; u32 val; /* adjust timeout for emulation/FPGA */ count = BNX2X_NVRAM_TIMEOUT_COUNT; if (CHIP_REV_IS_SLOW(bp)) count *= 100; /* relinquish nvram interface */ REG_WR(bp, MCP_REG_MCPR_NVM_SW_ARB, (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << port)); for (i = 0; i < count*10; i++) { val = REG_RD(bp, MCP_REG_MCPR_NVM_SW_ARB); if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))) break; udelay(5); } if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)) { DP(BNX2X_MSG_ETHTOOL | BNX2X_MSG_NVM, "cannot free access to nvram interface\n"); return -EBUSY; } /* release HW lock: protect against other PFs in PF Direct Assignment */ bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_NVRAM); return 0; } static void bnx2x_enable_nvram_access(struct bnx2x *bp) { u32 val; val = REG_RD(bp, MCP_REG_MCPR_NVM_ACCESS_ENABLE); /* enable both bits, even on read */ REG_WR(bp, MCP_REG_MCPR_NVM_ACCESS_ENABLE, (val | MCPR_NVM_ACCESS_ENABLE_EN | MCPR_NVM_ACCESS_ENABLE_WR_EN)); } static void bnx2x_disable_nvram_access(struct bnx2x *bp) { u32 val; val = REG_RD(bp, MCP_REG_MCPR_NVM_ACCESS_ENABLE); /* disable both bits, even after read */ REG_WR(bp, MCP_REG_MCPR_NVM_ACCESS_ENABLE, (val & ~(MCPR_NVM_ACCESS_ENABLE_EN | MCPR_NVM_ACCESS_ENABLE_WR_EN))); } static int bnx2x_nvram_read_dword(struct bnx2x *bp, u32 offset, __be32 *ret_val, u32 cmd_flags) { int count, i, rc; u32 val; /* build the command word */ cmd_flags |= MCPR_NVM_COMMAND_DOIT; /* need to clear DONE bit separately */ REG_WR(bp, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE); /* address of the NVRAM to read from */ REG_WR(bp, MCP_REG_MCPR_NVM_ADDR, (offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE)); /* issue a read command */ REG_WR(bp, MCP_REG_MCPR_NVM_COMMAND, cmd_flags); /* adjust timeout for emulation/FPGA */ count = BNX2X_NVRAM_TIMEOUT_COUNT; if (CHIP_REV_IS_SLOW(bp)) count *= 100; /* wait for completion */ *ret_val = 0; rc = -EBUSY; for (i = 0; i < count; i++) { udelay(5); val = REG_RD(bp, MCP_REG_MCPR_NVM_COMMAND); if (val & MCPR_NVM_COMMAND_DONE) { val = REG_RD(bp, MCP_REG_MCPR_NVM_READ); /* we read nvram data in cpu order * but ethtool sees it as an array of bytes * converting to big-endian will do the work */ *ret_val = cpu_to_be32(val); rc = 0; break; } } if (rc == -EBUSY) DP(BNX2X_MSG_ETHTOOL | BNX2X_MSG_NVM, "nvram read timeout expired\n"); return rc; } int bnx2x_nvram_read(struct bnx2x *bp, u32 offset, u8 *ret_buf, int buf_size) { int rc; u32 cmd_flags; __be32 val; if ((offset & 0x03) || (buf_size & 0x03) || (buf_size == 0)) { DP(BNX2X_MSG_ETHTOOL | BNX2X_MSG_NVM, "Invalid parameter: offset 0x%x buf_size 0x%x\n", offset, buf_size); return -EINVAL; } if (offset + buf_size > bp->common.flash_size) { DP(BNX2X_MSG_ETHTOOL | BNX2X_MSG_NVM, "Invalid parameter: offset (0x%x) + buf_size (0x%x) > flash_size (0x%x)\n", offset, buf_size, bp->common.flash_size); return -EINVAL; } /* request access to nvram interface */ rc = bnx2x_acquire_nvram_lock(bp); if (rc) return rc; /* enable access to nvram interface */ bnx2x_enable_nvram_access(bp); /* read the first word(s) */ cmd_flags = MCPR_NVM_COMMAND_FIRST; while ((buf_size > sizeof(u32)) && (rc == 0)) { rc = bnx2x_nvram_read_dword(bp, offset, &val, cmd_flags); memcpy(ret_buf, &val, 4); /* advance to the next dword */ offset += sizeof(u32); ret_buf += sizeof(u32); buf_size -= sizeof(u32); cmd_flags = 0; } if (rc == 0) { cmd_flags |= MCPR_NVM_COMMAND_LAST; rc = bnx2x_nvram_read_dword(bp, offset, &val, cmd_flags); memcpy(ret_buf, &val, 4); } /* disable access to nvram interface */ bnx2x_disable_nvram_access(bp); bnx2x_release_nvram_lock(bp); return rc; } static int bnx2x_nvram_read32(struct bnx2x *bp, u32 offset, u32 *buf, int buf_size) { int rc; rc = bnx2x_nvram_read(bp, offset, (u8 *)buf, buf_size); if (!rc) { __be32 *be = (__be32 *)buf; while ((buf_size -= 4) >= 0) *buf++ = be32_to_cpu(*be++); } return rc; } static bool bnx2x_is_nvm_accessible(struct bnx2x *bp) { int rc = 1; u16 pm = 0; struct net_device *dev = pci_get_drvdata(bp->pdev); if (bp->pdev->pm_cap) rc = pci_read_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_CTRL, &pm); if ((rc && !netif_running(dev)) || (!rc && ((pm & PCI_PM_CTRL_STATE_MASK) != (__force u16)PCI_D0))) return false; return true; } static int bnx2x_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom, u8 *eebuf) { struct bnx2x *bp = netdev_priv(dev); if (!bnx2x_is_nvm_accessible(bp)) { DP(BNX2X_MSG_ETHTOOL | BNX2X_MSG_NVM, "cannot access eeprom when the interface is down\n"); return -EAGAIN; } DP(BNX2X_MSG_ETHTOOL | BNX2X_MSG_NVM, "ethtool_eeprom: cmd %d\n" " magic 0x%x offset 0x%x (%d) len 0x%x (%d)\n", eeprom->cmd, eeprom->magic, eeprom->offset, eeprom->offset, eeprom->len, eeprom->len); /* parameters already validated in ethtool_get_eeprom */ return bnx2x_nvram_read(bp, eeprom->offset, eebuf, eeprom->len); } static int bnx2x_get_module_eeprom(struct net_device *dev, struct ethtool_eeprom *ee, u8 *data) { struct bnx2x *bp = netdev_priv(dev); int rc = -EINVAL, phy_idx; u8 *user_data = data; unsigned int start_addr = ee->offset, xfer_size = 0; if (!bnx2x_is_nvm_accessible(bp)) { DP(BNX2X_MSG_ETHTOOL | BNX2X_MSG_NVM, "cannot access eeprom when the interface is down\n"); return -EAGAIN; } phy_idx = bnx2x_get_cur_phy_idx(bp); /* Read A0 section */ if (start_addr < ETH_MODULE_SFF_8079_LEN) { /* Limit transfer size to the A0 section boundary */ if (start_addr + ee->len > ETH_MODULE_SFF_8079_LEN) xfer_size = ETH_MODULE_SFF_8079_LEN - start_addr; else xfer_size = ee->len; bnx2x_acquire_phy_lock(bp); rc = bnx2x_read_sfp_module_eeprom(&bp->link_params.phy[phy_idx], &bp->link_params, I2C_DEV_ADDR_A0, start_addr, xfer_size, user_data); bnx2x_release_phy_lock(bp); if (rc) { DP(BNX2X_MSG_ETHTOOL, "Failed reading A0 section\n"); return -EINVAL; } user_data += xfer_size; start_addr += xfer_size; } /* Read A2 section */ if ((start_addr >= ETH_MODULE_SFF_8079_LEN) && (start_addr < ETH_MODULE_SFF_8472_LEN)) { xfer_size = ee->len - xfer_size; /* Limit transfer size to the A2 section boundary */ if (start_addr + xfer_size > ETH_MODULE_SFF_8472_LEN) xfer_size = ETH_MODULE_SFF_8472_LEN - start_addr; start_addr -= ETH_MODULE_SFF_8079_LEN; bnx2x_acquire_phy_lock(bp); rc = bnx2x_read_sfp_module_eeprom(&bp->link_params.phy[phy_idx], &bp->link_params, I2C_DEV_ADDR_A2, start_addr, xfer_size, user_data); bnx2x_release_phy_lock(bp); if (rc) { DP(BNX2X_MSG_ETHTOOL, "Failed reading A2 section\n"); return -EINVAL; } } return rc; } static int bnx2x_get_module_info(struct net_device *dev, struct ethtool_modinfo *modinfo) { struct bnx2x *bp = netdev_priv(dev); int phy_idx, rc; u8 sff8472_comp, diag_type; if (!bnx2x_is_nvm_accessible(bp)) { DP(BNX2X_MSG_ETHTOOL | BNX2X_MSG_NVM, "cannot access eeprom when the interface is down\n"); return -EAGAIN; } phy_idx = bnx2x_get_cur_phy_idx(bp); bnx2x_acquire_phy_lock(bp); rc = bnx2x_read_sfp_module_eeprom(&bp->link_params.phy[phy_idx], &bp->link_params, I2C_DEV_ADDR_A0, SFP_EEPROM_SFF_8472_COMP_ADDR, SFP_EEPROM_SFF_8472_COMP_SIZE, &sff8472_comp); bnx2x_release_phy_lock(bp); if (rc) { DP(BNX2X_MSG_ETHTOOL, "Failed reading SFF-8472 comp field\n"); return -EINVAL; } bnx2x_acquire_phy_lock(bp); rc = bnx2x_read_sfp_module_eeprom(&bp->link_params.phy[phy_idx], &bp->link_params, I2C_DEV_ADDR_A0, SFP_EEPROM_DIAG_TYPE_ADDR, SFP_EEPROM_DIAG_TYPE_SIZE, &diag_type); bnx2x_release_phy_lock(bp); if (rc) { DP(BNX2X_MSG_ETHTOOL, "Failed reading Diag Type field\n"); return -EINVAL; } if (!sff8472_comp || (diag_type & SFP_EEPROM_DIAG_ADDR_CHANGE_REQ)) { modinfo->type = ETH_MODULE_SFF_8079; modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN; } else { modinfo->type = ETH_MODULE_SFF_8472; modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN; } return 0; } static int bnx2x_nvram_write_dword(struct bnx2x *bp, u32 offset, u32 val, u32 cmd_flags) { int count, i, rc; /* build the command word */ cmd_flags |= MCPR_NVM_COMMAND_DOIT | MCPR_NVM_COMMAND_WR; /* need to clear DONE bit separately */ REG_WR(bp, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE); /* write the data */ REG_WR(bp, MCP_REG_MCPR_NVM_WRITE, val); /* address of the NVRAM to write to */ REG_WR(bp, MCP_REG_MCPR_NVM_ADDR, (offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE)); /* issue the write command */ REG_WR(bp, MCP_REG_MCPR_NVM_COMMAND, cmd_flags); /* adjust timeout for emulation/FPGA */ count = BNX2X_NVRAM_TIMEOUT_COUNT; if (CHIP_REV_IS_SLOW(bp)) count *= 100; /* wait for completion */ rc = -EBUSY; for (i = 0; i < count; i++) { udelay(5); val = REG_RD(bp, MCP_REG_MCPR_NVM_COMMAND); if (val & MCPR_NVM_COMMAND_DONE) { rc = 0; break; } } if (rc == -EBUSY) DP(BNX2X_MSG_ETHTOOL | BNX2X_MSG_NVM, "nvram write timeout expired\n"); return rc; } #define BYTE_OFFSET(offset) (8 * (offset & 0x03)) static int bnx2x_nvram_write1(struct bnx2x *bp, u32 offset, u8 *data_buf, int buf_size) { int rc; u32 cmd_flags, align_offset, val; __be32 val_be; if (offset + buf_size > bp->common.flash_size) { DP(BNX2X_MSG_ETHTOOL | BNX2X_MSG_NVM, "Invalid parameter: offset (0x%x) + buf_size (0x%x) > flash_size (0x%x)\n", offset, buf_size, bp->common.flash_size); return -EINVAL; } /* request access to nvram interface */ rc = bnx2x_acquire_nvram_lock(bp); if (rc) return rc; /* enable access to nvram interface */ bnx2x_enable_nvram_access(bp); cmd_flags = (MCPR_NVM_COMMAND_FIRST | MCPR_NVM_COMMAND_LAST); align_offset = (offset & ~0x03); rc = bnx2x_nvram_read_dword(bp, align_offset, &val_be, cmd_flags); if (rc == 0) { /* nvram data is returned as an array of bytes * convert it back to cpu order */ val = be32_to_cpu(val_be); val &= ~le32_to_cpu((__force __le32) (0xff << BYTE_OFFSET(offset))); val |= le32_to_cpu((__force __le32) (*data_buf << BYTE_OFFSET(offset))); rc = bnx2x_nvram_write_dword(bp, align_offset, val, cmd_flags); } /* disable access to nvram interface */ bnx2x_disable_nvram_access(bp); bnx2x_release_nvram_lock(bp); return rc; } static int bnx2x_nvram_write(struct bnx2x *bp, u32 offset, u8 *data_buf, int buf_size) { int rc; u32 cmd_flags; u32 val; u32 written_so_far; if (buf_size == 1) /* ethtool */ return bnx2x_nvram_write1(bp, offset, data_buf, buf_size); if ((offset & 0x03) || (buf_size & 0x03) || (buf_size == 0)) { DP(BNX2X_MSG_ETHTOOL | BNX2X_MSG_NVM, "Invalid parameter: offset 0x%x buf_size 0x%x\n", offset, buf_size); return -EINVAL; } if (offset + buf_size > bp->common.flash_size) { DP(BNX2X_MSG_ETHTOOL | BNX2X_MSG_NVM, "Invalid parameter: offset (0x%x) + buf_size (0x%x) > flash_size (0x%x)\n", offset, buf_size, bp->common.flash_size); return -EINVAL; } /* request access to nvram interface */ rc = bnx2x_acquire_nvram_lock(bp); if (rc) return rc; /* enable access to nvram interface */ bnx2x_enable_nvram_access(bp); written_so_far = 0; cmd_flags = MCPR_NVM_COMMAND_FIRST; while ((written_so_far < buf_size) && (rc == 0)) { if (written_so_far == (buf_size - sizeof(u32))) cmd_flags |= MCPR_NVM_COMMAND_LAST; else if (((offset + 4) % BNX2X_NVRAM_PAGE_SIZE) == 0) cmd_flags |= MCPR_NVM_COMMAND_LAST; else if ((offset % BNX2X_NVRAM_PAGE_SIZE) == 0) cmd_flags |= MCPR_NVM_COMMAND_FIRST; memcpy(&val, data_buf, 4); /* Notice unlike bnx2x_nvram_read_dword() this will not * change val using be32_to_cpu(), which causes data to flip * if the eeprom is read and then written back. This is due * to tools utilizing this functionality that would break * if this would be resolved. */ rc = bnx2x_nvram_write_dword(bp, offset, val, cmd_flags); /* advance to the next dword */ offset += sizeof(u32); data_buf += sizeof(u32); written_so_far += sizeof(u32); /* At end of each 4Kb page, release nvram lock to allow MFW * chance to take it for its own use. */ if ((cmd_flags & MCPR_NVM_COMMAND_LAST) && (written_so_far < buf_size)) { DP(BNX2X_MSG_ETHTOOL | BNX2X_MSG_NVM, "Releasing NVM lock after offset 0x%x\n", (u32)(offset - sizeof(u32))); bnx2x_release_nvram_lock(bp); usleep_range(1000, 2000); rc = bnx2x_acquire_nvram_lock(bp); if (rc) return rc; } cmd_flags = 0; } /* disable access to nvram interface */ bnx2x_disable_nvram_access(bp); bnx2x_release_nvram_lock(bp); return rc; } static int bnx2x_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom, u8 *eebuf) { struct bnx2x *bp = netdev_priv(dev); int port = BP_PORT(bp); int rc = 0; u32 ext_phy_config; if (!bnx2x_is_nvm_accessible(bp)) { DP(BNX2X_MSG_ETHTOOL | BNX2X_MSG_NVM, "cannot access eeprom when the interface is down\n"); return -EAGAIN; } DP(BNX2X_MSG_ETHTOOL | BNX2X_MSG_NVM, "ethtool_eeprom: cmd %d\n" " magic 0x%x offset 0x%x (%d) len 0x%x (%d)\n", eeprom->cmd, eeprom->magic, eeprom->offset, eeprom->offset, eeprom->len, eeprom->len); /* parameters already validated in ethtool_set_eeprom */ /* PHY eeprom can be accessed only by the PMF */ if ((eeprom->magic >= 0x50485900) && (eeprom->magic <= 0x504859FF) && !bp->port.pmf) { DP(BNX2X_MSG_ETHTOOL | BNX2X_MSG_NVM, "wrong magic or interface is not pmf\n"); return -EINVAL; } ext_phy_config = SHMEM_RD(bp, dev_info.port_hw_config[port].external_phy_config); if (eeprom->magic == 0x50485950) { /* 'PHYP' (0x50485950): prepare phy for FW upgrade */ bnx2x_stats_handle(bp, STATS_EVENT_STOP); bnx2x_acquire_phy_lock(bp); rc |= bnx2x_link_reset(&bp->link_params, &bp->link_vars, 0); if (XGXS_EXT_PHY_TYPE(ext_phy_config) == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_SFX7101) bnx2x_set_gpio(bp, MISC_REGISTERS_GPIO_0, MISC_REGISTERS_GPIO_HIGH, port); bnx2x_release_phy_lock(bp); bnx2x_link_report(bp); } else if (eeprom->magic == 0x50485952) { /* 'PHYR' (0x50485952): re-init link after FW upgrade */ if (bp->state == BNX2X_STATE_OPEN) { bnx2x_acquire_phy_lock(bp); rc |= bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1); rc |= bnx2x_phy_init(&bp->link_params, &bp->link_vars); bnx2x_release_phy_lock(bp); bnx2x_calc_fc_adv(bp); } } else if (eeprom->magic == 0x53985943) { /* 'PHYC' (0x53985943): PHY FW upgrade completed */ if (XGXS_EXT_PHY_TYPE(ext_phy_config) == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_SFX7101) { /* DSP Remove Download Mode */ bnx2x_set_gpio(bp, MISC_REGISTERS_GPIO_0, MISC_REGISTERS_GPIO_LOW, port); bnx2x_acquire_phy_lock(bp); bnx2x_sfx7101_sp_sw_reset(bp, &bp->link_params.phy[EXT_PHY1]); /* wait 0.5 sec to allow it to run */ msleep(500); bnx2x_ext_phy_hw_reset(bp, port); msleep(500); bnx2x_release_phy_lock(bp); } } else rc = bnx2x_nvram_write(bp, eeprom->offset, eebuf, eeprom->len); return rc; } static int bnx2x_get_coalesce(struct net_device *dev, struct ethtool_coalesce *coal) { struct bnx2x *bp = netdev_priv(dev); memset(coal, 0, sizeof(struct ethtool_coalesce)); coal->rx_coalesce_usecs = bp->rx_ticks; coal->tx_coalesce_usecs = bp->tx_ticks; return 0; } static int bnx2x_set_coalesce(struct net_device *dev, struct ethtool_coalesce *coal) { struct bnx2x *bp = netdev_priv(dev); bp->rx_ticks = (u16)coal->rx_coalesce_usecs; if (bp->rx_ticks > BNX2X_MAX_COALESCE_TOUT) bp->rx_ticks = BNX2X_MAX_COALESCE_TOUT; bp->tx_ticks = (u16)coal->tx_coalesce_usecs; if (bp->tx_ticks > BNX2X_MAX_COALESCE_TOUT) bp->tx_ticks = BNX2X_MAX_COALESCE_TOUT; if (netif_running(dev)) bnx2x_update_coalesce(bp); return 0; } static void bnx2x_get_ringparam(struct net_device *dev, struct ethtool_ringparam *ering) { struct bnx2x *bp = netdev_priv(dev); ering->rx_max_pending = MAX_RX_AVAIL; /* If size isn't already set, we give an estimation of the number * of buffers we'll have. We're neglecting some possible conditions * [we couldn't know for certain at this point if number of queues * might shrink] but the number would be correct for the likely * scenario. */ if (bp->rx_ring_size) ering->rx_pending = bp->rx_ring_size; else if (BNX2X_NUM_RX_QUEUES(bp)) ering->rx_pending = MAX_RX_AVAIL / BNX2X_NUM_RX_QUEUES(bp); else ering->rx_pending = MAX_RX_AVAIL; ering->tx_max_pending = IS_MF_FCOE_AFEX(bp) ? 0 : MAX_TX_AVAIL; ering->tx_pending = bp->tx_ring_size; } static int bnx2x_set_ringparam(struct net_device *dev, struct ethtool_ringparam *ering) { struct bnx2x *bp = netdev_priv(dev); DP(BNX2X_MSG_ETHTOOL, "set ring params command parameters: rx_pending = %d, tx_pending = %d\n", ering->rx_pending, ering->tx_pending); if (pci_num_vf(bp->pdev)) { DP(BNX2X_MSG_IOV, "VFs are enabled, can not change ring parameters\n"); return -EPERM; } if (bp->recovery_state != BNX2X_RECOVERY_DONE) { DP(BNX2X_MSG_ETHTOOL, "Handling parity error recovery. Try again later\n"); return -EAGAIN; } if ((ering->rx_pending > MAX_RX_AVAIL) || (ering->rx_pending < (bp->disable_tpa ? MIN_RX_SIZE_NONTPA : MIN_RX_SIZE_TPA)) || (ering->tx_pending > (IS_MF_STORAGE_ONLY(bp) ? 0 : MAX_TX_AVAIL)) || (ering->tx_pending <= MAX_SKB_FRAGS + 4)) { DP(BNX2X_MSG_ETHTOOL, "Command parameters not supported\n"); return -EINVAL; } bp->rx_ring_size = ering->rx_pending; bp->tx_ring_size = ering->tx_pending; return bnx2x_reload_if_running(dev); } static void bnx2x_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause) { struct bnx2x *bp = netdev_priv(dev); int cfg_idx = bnx2x_get_link_cfg_idx(bp); int cfg_reg; epause->autoneg = (bp->link_params.req_flow_ctrl[cfg_idx] == BNX2X_FLOW_CTRL_AUTO); if (!epause->autoneg) cfg_reg = bp->link_params.req_flow_ctrl[cfg_idx]; else cfg_reg = bp->link_params.req_fc_auto_adv; epause->rx_pause = ((cfg_reg & BNX2X_FLOW_CTRL_RX) == BNX2X_FLOW_CTRL_RX); epause->tx_pause = ((cfg_reg & BNX2X_FLOW_CTRL_TX) == BNX2X_FLOW_CTRL_TX); DP(BNX2X_MSG_ETHTOOL, "ethtool_pauseparam: cmd %d\n" " autoneg %d rx_pause %d tx_pause %d\n", epause->cmd, epause->autoneg, epause->rx_pause, epause->tx_pause); } static int bnx2x_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause) { struct bnx2x *bp = netdev_priv(dev); u32 cfg_idx = bnx2x_get_link_cfg_idx(bp); if (IS_MF(bp)) return 0; DP(BNX2X_MSG_ETHTOOL, "ethtool_pauseparam: cmd %d\n" " autoneg %d rx_pause %d tx_pause %d\n", epause->cmd, epause->autoneg, epause->rx_pause, epause->tx_pause); bp->link_params.req_flow_ctrl[cfg_idx] = BNX2X_FLOW_CTRL_AUTO; if (epause->rx_pause) bp->link_params.req_flow_ctrl[cfg_idx] |= BNX2X_FLOW_CTRL_RX; if (epause->tx_pause) bp->link_params.req_flow_ctrl[cfg_idx] |= BNX2X_FLOW_CTRL_TX; if (bp->link_params.req_flow_ctrl[cfg_idx] == BNX2X_FLOW_CTRL_AUTO) bp->link_params.req_flow_ctrl[cfg_idx] = BNX2X_FLOW_CTRL_NONE; if (epause->autoneg) { if (!(bp->port.supported[cfg_idx] & SUPPORTED_Autoneg)) { DP(BNX2X_MSG_ETHTOOL, "autoneg not supported\n"); return -EINVAL; } if (bp->link_params.req_line_speed[cfg_idx] == SPEED_AUTO_NEG) { bp->link_params.req_flow_ctrl[cfg_idx] = BNX2X_FLOW_CTRL_AUTO; } bp->link_params.req_fc_auto_adv = 0; if (epause->rx_pause) bp->link_params.req_fc_auto_adv |= BNX2X_FLOW_CTRL_RX; if (epause->tx_pause) bp->link_params.req_fc_auto_adv |= BNX2X_FLOW_CTRL_TX; if (!bp->link_params.req_fc_auto_adv) bp->link_params.req_fc_auto_adv |= BNX2X_FLOW_CTRL_NONE; } DP(BNX2X_MSG_ETHTOOL, "req_flow_ctrl 0x%x\n", bp->link_params.req_flow_ctrl[cfg_idx]); if (netif_running(dev)) { bnx2x_stats_handle(bp, STATS_EVENT_STOP); bnx2x_force_link_reset(bp); bnx2x_link_set(bp); } return 0; } static const char bnx2x_tests_str_arr[BNX2X_NUM_TESTS_SF][ETH_GSTRING_LEN] = { "register_test (offline) ", "memory_test (offline) ", "int_loopback_test (offline)", "ext_loopback_test (offline)", "nvram_test (online) ", "interrupt_test (online) ", "link_test (online) " }; enum { BNX2X_PRI_FLAG_ISCSI, BNX2X_PRI_FLAG_FCOE, BNX2X_PRI_FLAG_STORAGE, BNX2X_PRI_FLAG_LEN, }; static const char bnx2x_private_arr[BNX2X_PRI_FLAG_LEN][ETH_GSTRING_LEN] = { "iSCSI offload support", "FCoE offload support", "Storage only interface" }; static u32 bnx2x_eee_to_adv(u32 eee_adv) { u32 modes = 0; if (eee_adv & SHMEM_EEE_100M_ADV) modes |= ADVERTISED_100baseT_Full; if (eee_adv & SHMEM_EEE_1G_ADV) modes |= ADVERTISED_1000baseT_Full; if (eee_adv & SHMEM_EEE_10G_ADV) modes |= ADVERTISED_10000baseT_Full; return modes; } static u32 bnx2x_adv_to_eee(u32 modes, u32 shift) { u32 eee_adv = 0; if (modes & ADVERTISED_100baseT_Full) eee_adv |= SHMEM_EEE_100M_ADV; if (modes & ADVERTISED_1000baseT_Full) eee_adv |= SHMEM_EEE_1G_ADV; if (modes & ADVERTISED_10000baseT_Full) eee_adv |= SHMEM_EEE_10G_ADV; return eee_adv << shift; } static int bnx2x_get_eee(struct net_device *dev, struct ethtool_eee *edata) { struct bnx2x *bp = netdev_priv(dev); u32 eee_cfg; if (!SHMEM2_HAS(bp, eee_status[BP_PORT(bp)])) { DP(BNX2X_MSG_ETHTOOL, "BC Version does not support EEE\n"); return -EOPNOTSUPP; } eee_cfg = bp->link_vars.eee_status; edata->supported = bnx2x_eee_to_adv((eee_cfg & SHMEM_EEE_SUPPORTED_MASK) >> SHMEM_EEE_SUPPORTED_SHIFT); edata->advertised = bnx2x_eee_to_adv((eee_cfg & SHMEM_EEE_ADV_STATUS_MASK) >> SHMEM_EEE_ADV_STATUS_SHIFT); edata->lp_advertised = bnx2x_eee_to_adv((eee_cfg & SHMEM_EEE_LP_ADV_STATUS_MASK) >> SHMEM_EEE_LP_ADV_STATUS_SHIFT); /* SHMEM value is in 16u units --> Convert to 1u units. */ edata->tx_lpi_timer = (eee_cfg & SHMEM_EEE_TIMER_MASK) << 4; edata->eee_enabled = (eee_cfg & SHMEM_EEE_REQUESTED_BIT) ? 1 : 0; edata->eee_active = (eee_cfg & SHMEM_EEE_ACTIVE_BIT) ? 1 : 0; edata->tx_lpi_enabled = (eee_cfg & SHMEM_EEE_LPI_REQUESTED_BIT) ? 1 : 0; return 0; } static int bnx2x_set_eee(struct net_device *dev, struct ethtool_eee *edata) { struct bnx2x *bp = netdev_priv(dev); u32 eee_cfg; u32 advertised; if (IS_MF(bp)) return 0; if (!SHMEM2_HAS(bp, eee_status[BP_PORT(bp)])) { DP(BNX2X_MSG_ETHTOOL, "BC Version does not support EEE\n"); return -EOPNOTSUPP; } eee_cfg = bp->link_vars.eee_status; if (!(eee_cfg & SHMEM_EEE_SUPPORTED_MASK)) { DP(BNX2X_MSG_ETHTOOL, "Board does not support EEE!\n"); return -EOPNOTSUPP; } advertised = bnx2x_adv_to_eee(edata->advertised, SHMEM_EEE_ADV_STATUS_SHIFT); if ((advertised != (eee_cfg & SHMEM_EEE_ADV_STATUS_MASK))) { DP(BNX2X_MSG_ETHTOOL, "Direct manipulation of EEE advertisement is not supported\n"); return -EINVAL; } if (edata->tx_lpi_timer > EEE_MODE_TIMER_MASK) { DP(BNX2X_MSG_ETHTOOL, "Maximal Tx Lpi timer supported is %x(u)\n", EEE_MODE_TIMER_MASK); return -EINVAL; } if (edata->tx_lpi_enabled && (edata->tx_lpi_timer < EEE_MODE_NVRAM_AGGRESSIVE_TIME)) { DP(BNX2X_MSG_ETHTOOL, "Minimal Tx Lpi timer supported is %d(u)\n", EEE_MODE_NVRAM_AGGRESSIVE_TIME); return -EINVAL; } /* All is well; Apply changes*/ if (edata->eee_enabled) bp->link_params.eee_mode |= EEE_MODE_ADV_LPI; else bp->link_params.eee_mode &= ~EEE_MODE_ADV_LPI; if (edata->tx_lpi_enabled) bp->link_params.eee_mode |= EEE_MODE_ENABLE_LPI; else bp->link_params.eee_mode &= ~EEE_MODE_ENABLE_LPI; bp->link_params.eee_mode &= ~EEE_MODE_TIMER_MASK; bp->link_params.eee_mode |= (edata->tx_lpi_timer & EEE_MODE_TIMER_MASK) | EEE_MODE_OVERRIDE_NVRAM | EEE_MODE_OUTPUT_TIME; /* Restart link to propagate changes */ if (netif_running(dev)) { bnx2x_stats_handle(bp, STATS_EVENT_STOP); bnx2x_force_link_reset(bp); bnx2x_link_set(bp); } return 0; } enum { BNX2X_CHIP_E1_OFST = 0, BNX2X_CHIP_E1H_OFST, BNX2X_CHIP_E2_OFST, BNX2X_CHIP_E3_OFST, BNX2X_CHIP_E3B0_OFST, BNX2X_CHIP_MAX_OFST }; #define BNX2X_CHIP_MASK_E1 (1 << BNX2X_CHIP_E1_OFST) #define BNX2X_CHIP_MASK_E1H (1 << BNX2X_CHIP_E1H_OFST) #define BNX2X_CHIP_MASK_E2 (1 << BNX2X_CHIP_E2_OFST) #define BNX2X_CHIP_MASK_E3 (1 << BNX2X_CHIP_E3_OFST) #define BNX2X_CHIP_MASK_E3B0 (1 << BNX2X_CHIP_E3B0_OFST) #define BNX2X_CHIP_MASK_ALL ((1 << BNX2X_CHIP_MAX_OFST) - 1) #define BNX2X_CHIP_MASK_E1X (BNX2X_CHIP_MASK_E1 | BNX2X_CHIP_MASK_E1H) static int bnx2x_test_registers(struct bnx2x *bp) { int idx, i, rc = -ENODEV; u32 wr_val = 0, hw; int port = BP_PORT(bp); static const struct { u32 hw; u32 offset0; u32 offset1; u32 mask; } reg_tbl[] = { /* 0 */ { BNX2X_CHIP_MASK_ALL, BRB1_REG_PAUSE_LOW_THRESHOLD_0, 4, 0x000003ff }, { BNX2X_CHIP_MASK_ALL, DORQ_REG_DB_ADDR0, 4, 0xffffffff }, { BNX2X_CHIP_MASK_E1X, HC_REG_AGG_INT_0, 4, 0x000003ff }, { BNX2X_CHIP_MASK_ALL, PBF_REG_MAC_IF0_ENABLE, 4, 0x00000001 }, { BNX2X_CHIP_MASK_E1X | BNX2X_CHIP_MASK_E2 | BNX2X_CHIP_MASK_E3, PBF_REG_P0_INIT_CRD, 4, 0x000007ff }, { BNX2X_CHIP_MASK_E3B0, PBF_REG_INIT_CRD_Q0, 4, 0x000007ff }, { BNX2X_CHIP_MASK_ALL, PRS_REG_CID_PORT_0, 4, 0x00ffffff }, { BNX2X_CHIP_MASK_ALL, PXP2_REG_PSWRQ_CDU0_L2P, 4, 0x000fffff }, { BNX2X_CHIP_MASK_ALL, PXP2_REG_RQ_CDU0_EFIRST_MEM_ADDR, 8, 0x0003ffff }, { BNX2X_CHIP_MASK_ALL, PXP2_REG_PSWRQ_TM0_L2P, 4, 0x000fffff }, /* 10 */ { BNX2X_CHIP_MASK_ALL, PXP2_REG_RQ_USDM0_EFIRST_MEM_ADDR, 8, 0x0003ffff }, { BNX2X_CHIP_MASK_ALL, PXP2_REG_PSWRQ_TSDM0_L2P, 4, 0x000fffff }, { BNX2X_CHIP_MASK_ALL, QM_REG_CONNNUM_0, 4, 0x000fffff }, { BNX2X_CHIP_MASK_ALL, TM_REG_LIN0_MAX_ACTIVE_CID, 4, 0x0003ffff }, { BNX2X_CHIP_MASK_ALL, SRC_REG_KEYRSS0_0, 40, 0xffffffff }, { BNX2X_CHIP_MASK_ALL, SRC_REG_KEYRSS0_7, 40, 0xffffffff }, { BNX2X_CHIP_MASK_ALL, XCM_REG_WU_DA_SET_TMR_CNT_FLG_CMD00, 4, 0x00000001 }, { BNX2X_CHIP_MASK_ALL, XCM_REG_WU_DA_CNT_CMD00, 4, 0x00000003 }, { BNX2X_CHIP_MASK_ALL, XCM_REG_GLB_DEL_ACK_MAX_CNT_0, 4, 0x000000ff }, { BNX2X_CHIP_MASK_ALL, NIG_REG_LLH0_T_BIT, 4, 0x00000001 }, /* 20 */ { BNX2X_CHIP_MASK_E1X | BNX2X_CHIP_MASK_E2, NIG_REG_EMAC0_IN_EN, 4, 0x00000001 }, { BNX2X_CHIP_MASK_E1X | BNX2X_CHIP_MASK_E2, NIG_REG_BMAC0_IN_EN, 4, 0x00000001 }, { BNX2X_CHIP_MASK_ALL, NIG_REG_XCM0_OUT_EN, 4, 0x00000001 }, { BNX2X_CHIP_MASK_ALL, NIG_REG_BRB0_OUT_EN, 4, 0x00000001 }, { BNX2X_CHIP_MASK_ALL, NIG_REG_LLH0_XCM_MASK, 4, 0x00000007 }, { BNX2X_CHIP_MASK_ALL, NIG_REG_LLH0_ACPI_PAT_6_LEN, 68, 0x000000ff }, { BNX2X_CHIP_MASK_ALL, NIG_REG_LLH0_ACPI_PAT_0_CRC, 68, 0xffffffff }, { BNX2X_CHIP_MASK_ALL, NIG_REG_LLH0_DEST_MAC_0_0, 160, 0xffffffff }, { BNX2X_CHIP_MASK_ALL, NIG_REG_LLH0_DEST_IP_0_1, 160, 0xffffffff }, { BNX2X_CHIP_MASK_ALL, NIG_REG_LLH0_IPV4_IPV6_0, 160, 0x00000001 }, /* 30 */ { BNX2X_CHIP_MASK_ALL, NIG_REG_LLH0_DEST_UDP_0, 160, 0x0000ffff }, { BNX2X_CHIP_MASK_ALL, NIG_REG_LLH0_DEST_TCP_0, 160, 0x0000ffff }, { BNX2X_CHIP_MASK_ALL, NIG_REG_LLH0_VLAN_ID_0, 160, 0x00000fff }, { BNX2X_CHIP_MASK_E1X | BNX2X_CHIP_MASK_E2, NIG_REG_XGXS_SERDES0_MODE_SEL, 4, 0x00000001 }, { BNX2X_CHIP_MASK_ALL, NIG_REG_LED_CONTROL_OVERRIDE_TRAFFIC_P0, 4, 0x00000001}, { BNX2X_CHIP_MASK_ALL, NIG_REG_STATUS_INTERRUPT_PORT0, 4, 0x07ffffff }, { BNX2X_CHIP_MASK_E1X | BNX2X_CHIP_MASK_E2, NIG_REG_XGXS0_CTRL_EXTREMOTEMDIOST, 24, 0x00000001 }, { BNX2X_CHIP_MASK_E1X | BNX2X_CHIP_MASK_E2, NIG_REG_SERDES0_CTRL_PHY_ADDR, 16, 0x0000001f }, { BNX2X_CHIP_MASK_ALL, 0xffffffff, 0, 0x00000000 } }; if (!bnx2x_is_nvm_accessible(bp)) { DP(BNX2X_MSG_ETHTOOL | BNX2X_MSG_NVM, "cannot access eeprom when the interface is down\n"); return rc; } if (CHIP_IS_E1(bp)) hw = BNX2X_CHIP_MASK_E1; else if (CHIP_IS_E1H(bp)) hw = BNX2X_CHIP_MASK_E1H; else if (CHIP_IS_E2(bp)) hw = BNX2X_CHIP_MASK_E2; else if (CHIP_IS_E3B0(bp)) hw = BNX2X_CHIP_MASK_E3B0; else /* e3 A0 */ hw = BNX2X_CHIP_MASK_E3; /* Repeat the test twice: * First by writing 0x00000000, second by writing 0xffffffff */ for (idx = 0; idx < 2; idx++) { switch (idx) { case 0: wr_val = 0; break; case 1: wr_val = 0xffffffff; break; } for (i = 0; reg_tbl[i].offset0 != 0xffffffff; i++) { u32 offset, mask, save_val, val; if (!(hw & reg_tbl[i].hw)) continue; offset = reg_tbl[i].offset0 + port*reg_tbl[i].offset1; mask = reg_tbl[i].mask; save_val = REG_RD(bp, offset); REG_WR(bp, offset, wr_val & mask); val = REG_RD(bp, offset); /* Restore the original register's value */ REG_WR(bp, offset, save_val); /* verify value is as expected */ if ((val & mask) != (wr_val & mask)) { DP(BNX2X_MSG_ETHTOOL, "offset 0x%x: val 0x%x != 0x%x mask 0x%x\n", offset, val, wr_val, mask); goto test_reg_exit; } } } rc = 0; test_reg_exit: return rc; } static int bnx2x_test_memory(struct bnx2x *bp) { int i, j, rc = -ENODEV; u32 val, index; static const struct { u32 offset; int size; } mem_tbl[] = { { CCM_REG_XX_DESCR_TABLE, CCM_REG_XX_DESCR_TABLE_SIZE }, { CFC_REG_ACTIVITY_COUNTER, CFC_REG_ACTIVITY_COUNTER_SIZE }, { CFC_REG_LINK_LIST, CFC_REG_LINK_LIST_SIZE }, { DMAE_REG_CMD_MEM, DMAE_REG_CMD_MEM_SIZE }, { TCM_REG_XX_DESCR_TABLE, TCM_REG_XX_DESCR_TABLE_SIZE }, { UCM_REG_XX_DESCR_TABLE, UCM_REG_XX_DESCR_TABLE_SIZE }, { XCM_REG_XX_DESCR_TABLE, XCM_REG_XX_DESCR_TABLE_SIZE }, { 0xffffffff, 0 } }; static const struct { char *name; u32 offset; u32 hw_mask[BNX2X_CHIP_MAX_OFST]; } prty_tbl[] = { { "CCM_PRTY_STS", CCM_REG_CCM_PRTY_STS, {0x3ffc0, 0, 0, 0} }, { "CFC_PRTY_STS", CFC_REG_CFC_PRTY_STS, {0x2, 0x2, 0, 0} }, { "DMAE_PRTY_STS", DMAE_REG_DMAE_PRTY_STS, {0, 0, 0, 0} }, { "TCM_PRTY_STS", TCM_REG_TCM_PRTY_STS, {0x3ffc0, 0, 0, 0} }, { "UCM_PRTY_STS", UCM_REG_UCM_PRTY_STS, {0x3ffc0, 0, 0, 0} }, { "XCM_PRTY_STS", XCM_REG_XCM_PRTY_STS, {0x3ffc1, 0, 0, 0} }, { NULL, 0xffffffff, {0, 0, 0, 0} } }; if (!bnx2x_is_nvm_accessible(bp)) { DP(BNX2X_MSG_ETHTOOL | BNX2X_MSG_NVM, "cannot access eeprom when the interface is down\n"); return rc; } if (CHIP_IS_E1(bp)) index = BNX2X_CHIP_E1_OFST; else if (CHIP_IS_E1H(bp)) index = BNX2X_CHIP_E1H_OFST; else if (CHIP_IS_E2(bp)) index = BNX2X_CHIP_E2_OFST; else /* e3 */ index = BNX2X_CHIP_E3_OFST; /* pre-Check the parity status */ for (i = 0; prty_tbl[i].offset != 0xffffffff; i++) { val = REG_RD(bp, prty_tbl[i].offset); if (val & ~(prty_tbl[i].hw_mask[index])) { DP(BNX2X_MSG_ETHTOOL, "%s is 0x%x\n", prty_tbl[i].name, val); goto test_mem_exit; } } /* Go through all the memories */ for (i = 0; mem_tbl[i].offset != 0xffffffff; i++) for (j = 0; j < mem_tbl[i].size; j++) REG_RD(bp, mem_tbl[i].offset + j*4); /* Check the parity status */ for (i = 0; prty_tbl[i].offset != 0xffffffff; i++) { val = REG_RD(bp, prty_tbl[i].offset); if (val & ~(prty_tbl[i].hw_mask[index])) { DP(BNX2X_MSG_ETHTOOL, "%s is 0x%x\n", prty_tbl[i].name, val); goto test_mem_exit; } } rc = 0; test_mem_exit: return rc; } static void bnx2x_wait_for_link(struct bnx2x *bp, u8 link_up, u8 is_serdes) { int cnt = 1400; if (link_up) { while (bnx2x_link_test(bp, is_serdes) && cnt--) msleep(20); if (cnt <= 0 && bnx2x_link_test(bp, is_serdes)) DP(BNX2X_MSG_ETHTOOL, "Timeout waiting for link up\n"); cnt = 1400; while (!bp->link_vars.link_up && cnt--) msleep(20); if (cnt <= 0 && !bp->link_vars.link_up) DP(BNX2X_MSG_ETHTOOL, "Timeout waiting for link init\n"); } } static int bnx2x_run_loopback(struct bnx2x *bp, int loopback_mode) { unsigned int pkt_size, num_pkts, i; struct sk_buff *skb; unsigned char *packet; struct bnx2x_fastpath *fp_rx = &bp->fp[0]; struct bnx2x_fastpath *fp_tx = &bp->fp[0]; struct bnx2x_fp_txdata *txdata = fp_tx->txdata_ptr[0]; u16 tx_start_idx, tx_idx; u16 rx_start_idx, rx_idx; u16 pkt_prod, bd_prod; struct sw_tx_bd *tx_buf; struct eth_tx_start_bd *tx_start_bd; dma_addr_t mapping; union eth_rx_cqe *cqe; u8 cqe_fp_flags, cqe_fp_type; struct sw_rx_bd *rx_buf; u16 len; int rc = -ENODEV; u8 *data; struct netdev_queue *txq = netdev_get_tx_queue(bp->dev, txdata->txq_index); /* check the loopback mode */ switch (loopback_mode) { case BNX2X_PHY_LOOPBACK: if (bp->link_params.loopback_mode != LOOPBACK_XGXS) { DP(BNX2X_MSG_ETHTOOL, "PHY loopback not supported\n"); return -EINVAL; } break; case BNX2X_MAC_LOOPBACK: if (CHIP_IS_E3(bp)) { int cfg_idx = bnx2x_get_link_cfg_idx(bp); if (bp->port.supported[cfg_idx] & (SUPPORTED_10000baseT_Full | SUPPORTED_20000baseMLD2_Full | SUPPORTED_20000baseKR2_Full)) bp->link_params.loopback_mode = LOOPBACK_XMAC; else bp->link_params.loopback_mode = LOOPBACK_UMAC; } else bp->link_params.loopback_mode = LOOPBACK_BMAC; bnx2x_phy_init(&bp->link_params, &bp->link_vars); break; case BNX2X_EXT_LOOPBACK: if (bp->link_params.loopback_mode != LOOPBACK_EXT) { DP(BNX2X_MSG_ETHTOOL, "Can't configure external loopback\n"); return -EINVAL; } break; default: DP(BNX2X_MSG_ETHTOOL, "Command parameters not supported\n"); return -EINVAL; } /* prepare the loopback packet */ pkt_size = (((bp->dev->mtu < ETH_MAX_PACKET_SIZE) ? bp->dev->mtu : ETH_MAX_PACKET_SIZE) + ETH_HLEN); skb = netdev_alloc_skb(bp->dev, fp_rx->rx_buf_size); if (!skb) { DP(BNX2X_MSG_ETHTOOL, "Can't allocate skb\n"); rc = -ENOMEM; goto test_loopback_exit; } packet = skb_put(skb, pkt_size); memcpy(packet, bp->dev->dev_addr, ETH_ALEN); eth_zero_addr(packet + ETH_ALEN); memset(packet + 2*ETH_ALEN, 0x77, (ETH_HLEN - 2*ETH_ALEN)); for (i = ETH_HLEN; i < pkt_size; i++) packet[i] = (unsigned char) (i & 0xff); mapping = dma_map_single(&bp->pdev->dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE); if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) { rc = -ENOMEM; dev_kfree_skb(skb); DP(BNX2X_MSG_ETHTOOL, "Unable to map SKB\n"); goto test_loopback_exit; } /* send the loopback packet */ num_pkts = 0; tx_start_idx = le16_to_cpu(*txdata->tx_cons_sb); rx_start_idx = le16_to_cpu(*fp_rx->rx_cons_sb); netdev_tx_sent_queue(txq, skb->len); pkt_prod = txdata->tx_pkt_prod++; tx_buf = &txdata->tx_buf_ring[TX_BD(pkt_prod)]; tx_buf->first_bd = txdata->tx_bd_prod; tx_buf->skb = skb; tx_buf->flags = 0; bd_prod = TX_BD(txdata->tx_bd_prod); tx_start_bd = &txdata->tx_desc_ring[bd_prod].start_bd; tx_start_bd->addr_hi = cpu_to_le32(U64_HI(mapping)); tx_start_bd->addr_lo = cpu_to_le32(U64_LO(mapping)); tx_start_bd->nbd = cpu_to_le16(2); /* start + pbd */ tx_start_bd->nbytes = cpu_to_le16(skb_headlen(skb)); tx_start_bd->vlan_or_ethertype = cpu_to_le16(pkt_prod); tx_start_bd->bd_flags.as_bitfield = ETH_TX_BD_FLAGS_START_BD; SET_FLAG(tx_start_bd->general_data, ETH_TX_START_BD_HDR_NBDS, 1); SET_FLAG(tx_start_bd->general_data, ETH_TX_START_BD_PARSE_NBDS, 0); /* turn on parsing and get a BD */ bd_prod = TX_BD(NEXT_TX_IDX(bd_prod)); if (CHIP_IS_E1x(bp)) { u16 global_data = 0; struct eth_tx_parse_bd_e1x *pbd_e1x = &txdata->tx_desc_ring[bd_prod].parse_bd_e1x; memset(pbd_e1x, 0, sizeof(struct eth_tx_parse_bd_e1x)); SET_FLAG(global_data, ETH_TX_PARSE_BD_E1X_ETH_ADDR_TYPE, UNICAST_ADDRESS); pbd_e1x->global_data = cpu_to_le16(global_data); } else { u32 parsing_data = 0; struct eth_tx_parse_bd_e2 *pbd_e2 = &txdata->tx_desc_ring[bd_prod].parse_bd_e2; memset(pbd_e2, 0, sizeof(struct eth_tx_parse_bd_e2)); SET_FLAG(parsing_data, ETH_TX_PARSE_BD_E2_ETH_ADDR_TYPE, UNICAST_ADDRESS); pbd_e2->parsing_data = cpu_to_le32(parsing_data); } wmb(); txdata->tx_db.data.prod += 2; /* make sure descriptor update is observed by the HW */ wmb(); DOORBELL_RELAXED(bp, txdata->cid, txdata->tx_db.raw); mmiowb(); barrier(); num_pkts++; txdata->tx_bd_prod += 2; /* start + pbd */ udelay(100); tx_idx = le16_to_cpu(*txdata->tx_cons_sb); if (tx_idx != tx_start_idx + num_pkts) goto test_loopback_exit; /* Unlike HC IGU won't generate an interrupt for status block * updates that have been performed while interrupts were * disabled. */ if (bp->common.int_block == INT_BLOCK_IGU) { /* Disable local BHes to prevent a dead-lock situation between * sch_direct_xmit() and bnx2x_run_loopback() (calling * bnx2x_tx_int()), as both are taking netif_tx_lock(). */ local_bh_disable(); bnx2x_tx_int(bp, txdata); local_bh_enable(); } rx_idx = le16_to_cpu(*fp_rx->rx_cons_sb); if (rx_idx != rx_start_idx + num_pkts) goto test_loopback_exit; cqe = &fp_rx->rx_comp_ring[RCQ_BD(fp_rx->rx_comp_cons)]; cqe_fp_flags = cqe->fast_path_cqe.type_error_flags; cqe_fp_type = cqe_fp_flags & ETH_FAST_PATH_RX_CQE_TYPE; if (!CQE_TYPE_FAST(cqe_fp_type) || (cqe_fp_flags & ETH_RX_ERROR_FALGS)) goto test_loopback_rx_exit; len = le16_to_cpu(cqe->fast_path_cqe.pkt_len_or_gro_seg_len); if (len != pkt_size) goto test_loopback_rx_exit; rx_buf = &fp_rx->rx_buf_ring[RX_BD(fp_rx->rx_bd_cons)]; dma_sync_single_for_cpu(&bp->pdev->dev, dma_unmap_addr(rx_buf, mapping), fp_rx->rx_buf_size, DMA_FROM_DEVICE); data = rx_buf->data + NET_SKB_PAD + cqe->fast_path_cqe.placement_offset; for (i = ETH_HLEN; i < pkt_size; i++) if (*(data + i) != (unsigned char) (i & 0xff)) goto test_loopback_rx_exit; rc = 0; test_loopback_rx_exit: fp_rx->rx_bd_cons = NEXT_RX_IDX(fp_rx->rx_bd_cons); fp_rx->rx_bd_prod = NEXT_RX_IDX(fp_rx->rx_bd_prod); fp_rx->rx_comp_cons = NEXT_RCQ_IDX(fp_rx->rx_comp_cons); fp_rx->rx_comp_prod = NEXT_RCQ_IDX(fp_rx->rx_comp_prod); /* Update producers */ bnx2x_update_rx_prod(bp, fp_rx, fp_rx->rx_bd_prod, fp_rx->rx_comp_prod, fp_rx->rx_sge_prod); test_loopback_exit: bp->link_params.loopback_mode = LOOPBACK_NONE; return rc; } static int bnx2x_test_loopback(struct bnx2x *bp) { int rc = 0, res; if (BP_NOMCP(bp)) return rc; if (!netif_running(bp->dev)) return BNX2X_LOOPBACK_FAILED; bnx2x_netif_stop(bp, 1); bnx2x_acquire_phy_lock(bp); res = bnx2x_run_loopback(bp, BNX2X_PHY_LOOPBACK); if (res) { DP(BNX2X_MSG_ETHTOOL, " PHY loopback failed (res %d)\n", res); rc |= BNX2X_PHY_LOOPBACK_FAILED; } res = bnx2x_run_loopback(bp, BNX2X_MAC_LOOPBACK); if (res) { DP(BNX2X_MSG_ETHTOOL, " MAC loopback failed (res %d)\n", res); rc |= BNX2X_MAC_LOOPBACK_FAILED; } bnx2x_release_phy_lock(bp); bnx2x_netif_start(bp); return rc; } static int bnx2x_test_ext_loopback(struct bnx2x *bp) { int rc; u8 is_serdes = (bp->link_vars.link_status & LINK_STATUS_SERDES_LINK) > 0; if (BP_NOMCP(bp)) return -ENODEV; if (!netif_running(bp->dev)) return BNX2X_EXT_LOOPBACK_FAILED; bnx2x_nic_unload(bp, UNLOAD_NORMAL, false); rc = bnx2x_nic_load(bp, LOAD_LOOPBACK_EXT); if (rc) { DP(BNX2X_MSG_ETHTOOL, "Can't perform self-test, nic_load (for external lb) failed\n"); return -ENODEV; } bnx2x_wait_for_link(bp, 1, is_serdes); bnx2x_netif_stop(bp, 1); rc = bnx2x_run_loopback(bp, BNX2X_EXT_LOOPBACK); if (rc) DP(BNX2X_MSG_ETHTOOL, "EXT loopback failed (res %d)\n", rc); bnx2x_netif_start(bp); return rc; } struct code_entry { u32 sram_start_addr; u32 code_attribute; #define CODE_IMAGE_TYPE_MASK 0xf0800003 #define CODE_IMAGE_VNTAG_PROFILES_DATA 0xd0000003 #define CODE_IMAGE_LENGTH_MASK 0x007ffffc #define CODE_IMAGE_TYPE_EXTENDED_DIR 0xe0000000 u32 nvm_start_addr; }; #define CODE_ENTRY_MAX 16 #define CODE_ENTRY_EXTENDED_DIR_IDX 15 #define MAX_IMAGES_IN_EXTENDED_DIR 64 #define NVRAM_DIR_OFFSET 0x14 #define EXTENDED_DIR_EXISTS(code) \ ((code & CODE_IMAGE_TYPE_MASK) == CODE_IMAGE_TYPE_EXTENDED_DIR && \ (code & CODE_IMAGE_LENGTH_MASK) != 0) #define CRC32_RESIDUAL 0xdebb20e3 #define CRC_BUFF_SIZE 256 static int bnx2x_nvram_crc(struct bnx2x *bp, int offset, int size, u8 *buff) { u32 crc = ~0; int rc = 0, done = 0; DP(BNX2X_MSG_ETHTOOL | BNX2X_MSG_NVM, "NVRAM CRC from 0x%08x to 0x%08x\n", offset, offset + size); while (done < size) { int count = min_t(int, size - done, CRC_BUFF_SIZE); rc = bnx2x_nvram_read(bp, offset + done, buff, count); if (rc) return rc; crc = crc32_le(crc, buff, count); done += count; } if (crc != CRC32_RESIDUAL) rc = -EINVAL; return rc; } static int bnx2x_test_nvram_dir(struct bnx2x *bp, struct code_entry *entry, u8 *buff) { size_t size = entry->code_attribute & CODE_IMAGE_LENGTH_MASK; u32 type = entry->code_attribute & CODE_IMAGE_TYPE_MASK; int rc; /* Zero-length images and AFEX profiles do not have CRC */ if (size == 0 || type == CODE_IMAGE_VNTAG_PROFILES_DATA) return 0; rc = bnx2x_nvram_crc(bp, entry->nvm_start_addr, size, buff); if (rc) DP(BNX2X_MSG_ETHTOOL | BNX2X_MSG_NVM, "image %x has failed crc test (rc %d)\n", type, rc); return rc; } static int bnx2x_test_dir_entry(struct bnx2x *bp, u32 addr, u8 *buff) { int rc; struct code_entry entry; rc = bnx2x_nvram_read32(bp, addr, (u32 *)&entry, sizeof(entry)); if (rc) return rc; return bnx2x_test_nvram_dir(bp, &entry, buff); } static int bnx2x_test_nvram_ext_dirs(struct bnx2x *bp, u8 *buff) { u32 rc, cnt, dir_offset = NVRAM_DIR_OFFSET; struct code_entry entry; int i; rc = bnx2x_nvram_read32(bp, dir_offset + sizeof(entry) * CODE_ENTRY_EXTENDED_DIR_IDX, (u32 *)&entry, sizeof(entry)); if (rc) return rc; if (!EXTENDED_DIR_EXISTS(entry.code_attribute)) return 0; rc = bnx2x_nvram_read32(bp, entry.nvm_start_addr, &cnt, sizeof(u32)); if (rc) return rc; dir_offset = entry.nvm_start_addr + 8; for (i = 0; i < cnt && i < MAX_IMAGES_IN_EXTENDED_DIR; i++) { rc = bnx2x_test_dir_entry(bp, dir_offset + sizeof(struct code_entry) * i, buff); if (rc) return rc; } return 0; } static int bnx2x_test_nvram_dirs(struct bnx2x *bp, u8 *buff) { u32 rc, dir_offset = NVRAM_DIR_OFFSET; int i; DP(BNX2X_MSG_ETHTOOL | BNX2X_MSG_NVM, "NVRAM DIRS CRC test-set\n"); for (i = 0; i < CODE_ENTRY_EXTENDED_DIR_IDX; i++) { rc = bnx2x_test_dir_entry(bp, dir_offset + sizeof(struct code_entry) * i, buff); if (rc) return rc; } return bnx2x_test_nvram_ext_dirs(bp, buff); } struct crc_pair { int offset; int size; }; static int bnx2x_test_nvram_tbl(struct bnx2x *bp, const struct crc_pair *nvram_tbl, u8 *buf) { int i; for (i = 0; nvram_tbl[i].size; i++) { int rc = bnx2x_nvram_crc(bp, nvram_tbl[i].offset, nvram_tbl[i].size, buf); if (rc) { DP(BNX2X_MSG_ETHTOOL | BNX2X_MSG_NVM, "nvram_tbl[%d] has failed crc test (rc %d)\n", i, rc); return rc; } } return 0; } static int bnx2x_test_nvram(struct bnx2x *bp) { static const struct crc_pair nvram_tbl[] = { { 0, 0x14 }, /* bootstrap */ { 0x14, 0xec }, /* dir */ { 0x100, 0x350 }, /* manuf_info */ { 0x450, 0xf0 }, /* feature_info */ { 0x640, 0x64 }, /* upgrade_key_info */ { 0x708, 0x70 }, /* manuf_key_info */ { 0, 0 } }; static const struct crc_pair nvram_tbl2[] = { { 0x7e8, 0x350 }, /* manuf_info2 */ { 0xb38, 0xf0 }, /* feature_info */ { 0, 0 } }; u8 *buf; int rc; u32 magic; if (BP_NOMCP(bp)) return 0; buf = kmalloc(CRC_BUFF_SIZE, GFP_KERNEL); if (!buf) { DP(BNX2X_MSG_ETHTOOL | BNX2X_MSG_NVM, "kmalloc failed\n"); rc = -ENOMEM; goto test_nvram_exit; } rc = bnx2x_nvram_read32(bp, 0, &magic, sizeof(magic)); if (rc) { DP(BNX2X_MSG_ETHTOOL | BNX2X_MSG_NVM, "magic value read (rc %d)\n", rc); goto test_nvram_exit; } if (magic != 0x669955aa) { DP(BNX2X_MSG_ETHTOOL | BNX2X_MSG_NVM, "wrong magic value (0x%08x)\n", magic); rc = -ENODEV; goto test_nvram_exit; } DP(BNX2X_MSG_ETHTOOL | BNX2X_MSG_NVM, "Port 0 CRC test-set\n"); rc = bnx2x_test_nvram_tbl(bp, nvram_tbl, buf); if (rc) goto test_nvram_exit; if (!CHIP_IS_E1x(bp) && !CHIP_IS_57811xx(bp)) { u32 hide = SHMEM_RD(bp, dev_info.shared_hw_config.config2) & SHARED_HW_CFG_HIDE_PORT1; if (!hide) { DP(BNX2X_MSG_ETHTOOL | BNX2X_MSG_NVM, "Port 1 CRC test-set\n"); rc = bnx2x_test_nvram_tbl(bp, nvram_tbl2, buf); if (rc) goto test_nvram_exit; } } rc = bnx2x_test_nvram_dirs(bp, buf); test_nvram_exit: kfree(buf); return rc; } /* Send an EMPTY ramrod on the first queue */ static int bnx2x_test_intr(struct bnx2x *bp) { struct bnx2x_queue_state_params params = {NULL}; if (!netif_running(bp->dev)) { DP(BNX2X_MSG_ETHTOOL | BNX2X_MSG_NVM, "cannot access eeprom when the interface is down\n"); return -ENODEV; } params.q_obj = &bp->sp_objs->q_obj; params.cmd = BNX2X_Q_CMD_EMPTY; __set_bit(RAMROD_COMP_WAIT, ¶ms.ramrod_flags); return bnx2x_queue_state_change(bp, ¶ms); } static void bnx2x_self_test(struct net_device *dev, struct ethtool_test *etest, u64 *buf) { struct bnx2x *bp = netdev_priv(dev); u8 is_serdes, link_up; int rc, cnt = 0; if (pci_num_vf(bp->pdev)) { DP(BNX2X_MSG_IOV, "VFs are enabled, can not perform self test\n"); return; } if (bp->recovery_state != BNX2X_RECOVERY_DONE) { netdev_err(bp->dev, "Handling parity error recovery. Try again later\n"); etest->flags |= ETH_TEST_FL_FAILED; return; } DP(BNX2X_MSG_ETHTOOL, "Self-test command parameters: offline = %d, external_lb = %d\n", (etest->flags & ETH_TEST_FL_OFFLINE), (etest->flags & ETH_TEST_FL_EXTERNAL_LB)>>2); memset(buf, 0, sizeof(u64) * BNX2X_NUM_TESTS(bp)); if (bnx2x_test_nvram(bp) != 0) { if (!IS_MF(bp)) buf[4] = 1; else buf[0] = 1; etest->flags |= ETH_TEST_FL_FAILED; } if (!netif_running(dev)) { DP(BNX2X_MSG_ETHTOOL, "Interface is down\n"); return; } is_serdes = (bp->link_vars.link_status & LINK_STATUS_SERDES_LINK) > 0; link_up = bp->link_vars.link_up; /* offline tests are not supported in MF mode */ if ((etest->flags & ETH_TEST_FL_OFFLINE) && !IS_MF(bp)) { int port = BP_PORT(bp); u32 val; /* save current value of input enable for TX port IF */ val = REG_RD(bp, NIG_REG_EGRESS_UMP0_IN_EN + port*4); /* disable input for TX port IF */ REG_WR(bp, NIG_REG_EGRESS_UMP0_IN_EN + port*4, 0); bnx2x_nic_unload(bp, UNLOAD_NORMAL, false); rc = bnx2x_nic_load(bp, LOAD_DIAG); if (rc) { etest->flags |= ETH_TEST_FL_FAILED; DP(BNX2X_MSG_ETHTOOL, "Can't perform self-test, nic_load (for offline) failed\n"); return; } /* wait until link state is restored */ bnx2x_wait_for_link(bp, 1, is_serdes); if (bnx2x_test_registers(bp) != 0) { buf[0] = 1; etest->flags |= ETH_TEST_FL_FAILED; } if (bnx2x_test_memory(bp) != 0) { buf[1] = 1; etest->flags |= ETH_TEST_FL_FAILED; } buf[2] = bnx2x_test_loopback(bp); /* internal LB */ if (buf[2] != 0) etest->flags |= ETH_TEST_FL_FAILED; if (etest->flags & ETH_TEST_FL_EXTERNAL_LB) { buf[3] = bnx2x_test_ext_loopback(bp); /* external LB */ if (buf[3] != 0) etest->flags |= ETH_TEST_FL_FAILED; etest->flags |= ETH_TEST_FL_EXTERNAL_LB_DONE; } bnx2x_nic_unload(bp, UNLOAD_NORMAL, false); /* restore input for TX port IF */ REG_WR(bp, NIG_REG_EGRESS_UMP0_IN_EN + port*4, val); rc = bnx2x_nic_load(bp, LOAD_NORMAL); if (rc) { etest->flags |= ETH_TEST_FL_FAILED; DP(BNX2X_MSG_ETHTOOL, "Can't perform self-test, nic_load (for online) failed\n"); return; } /* wait until link state is restored */ bnx2x_wait_for_link(bp, link_up, is_serdes); } if (bnx2x_test_intr(bp) != 0) { if (!IS_MF(bp)) buf[5] = 1; else buf[1] = 1; etest->flags |= ETH_TEST_FL_FAILED; } if (link_up) { cnt = 100; while (bnx2x_link_test(bp, is_serdes) && --cnt) msleep(20); } if (!cnt) { if (!IS_MF(bp)) buf[6] = 1; else buf[2] = 1; etest->flags |= ETH_TEST_FL_FAILED; } } #define IS_PORT_STAT(i) (bnx2x_stats_arr[i].is_port_stat) #define HIDE_PORT_STAT(bp) IS_VF(bp) /* ethtool statistics are displayed for all regular ethernet queues and the * fcoe L2 queue if not disabled */ static int bnx2x_num_stat_queues(struct bnx2x *bp) { return BNX2X_NUM_ETH_QUEUES(bp); } static int bnx2x_get_sset_count(struct net_device *dev, int stringset) { struct bnx2x *bp = netdev_priv(dev); int i, num_strings = 0; switch (stringset) { case ETH_SS_STATS: if (is_multi(bp)) { num_strings = bnx2x_num_stat_queues(bp) * BNX2X_NUM_Q_STATS; } else num_strings = 0; if (HIDE_PORT_STAT(bp)) { for (i = 0; i < BNX2X_NUM_STATS; i++) if (!IS_PORT_STAT(i)) num_strings++; } else num_strings += BNX2X_NUM_STATS; return num_strings; case ETH_SS_TEST: return BNX2X_NUM_TESTS(bp); case ETH_SS_PRIV_FLAGS: return BNX2X_PRI_FLAG_LEN; default: return -EINVAL; } } static u32 bnx2x_get_private_flags(struct net_device *dev) { struct bnx2x *bp = netdev_priv(dev); u32 flags = 0; flags |= (!(bp->flags & NO_ISCSI_FLAG) ? 1 : 0) << BNX2X_PRI_FLAG_ISCSI; flags |= (!(bp->flags & NO_FCOE_FLAG) ? 1 : 0) << BNX2X_PRI_FLAG_FCOE; flags |= (!!IS_MF_STORAGE_ONLY(bp)) << BNX2X_PRI_FLAG_STORAGE; return flags; } static void bnx2x_get_strings(struct net_device *dev, u32 stringset, u8 *buf) { struct bnx2x *bp = netdev_priv(dev); int i, j, k, start; char queue_name[MAX_QUEUE_NAME_LEN+1]; switch (stringset) { case ETH_SS_STATS: k = 0; if (is_multi(bp)) { for_each_eth_queue(bp, i) { memset(queue_name, 0, sizeof(queue_name)); snprintf(queue_name, sizeof(queue_name), "%d", i); for (j = 0; j < BNX2X_NUM_Q_STATS; j++) snprintf(buf + (k + j)*ETH_GSTRING_LEN, ETH_GSTRING_LEN, bnx2x_q_stats_arr[j].string, queue_name); k += BNX2X_NUM_Q_STATS; } } for (i = 0, j = 0; i < BNX2X_NUM_STATS; i++) { if (HIDE_PORT_STAT(bp) && IS_PORT_STAT(i)) continue; strcpy(buf + (k + j)*ETH_GSTRING_LEN, bnx2x_stats_arr[i].string); j++; } break; case ETH_SS_TEST: /* First 4 tests cannot be done in MF mode */ if (!IS_MF(bp)) start = 0; else start = 4; memcpy(buf, bnx2x_tests_str_arr + start, ETH_GSTRING_LEN * BNX2X_NUM_TESTS(bp)); break; case ETH_SS_PRIV_FLAGS: memcpy(buf, bnx2x_private_arr, ETH_GSTRING_LEN * BNX2X_PRI_FLAG_LEN); break; } } static void bnx2x_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *stats, u64 *buf) { struct bnx2x *bp = netdev_priv(dev); u32 *hw_stats, *offset; int i, j, k = 0; if (is_multi(bp)) { for_each_eth_queue(bp, i) { hw_stats = (u32 *)&bp->fp_stats[i].eth_q_stats; for (j = 0; j < BNX2X_NUM_Q_STATS; j++) { if (bnx2x_q_stats_arr[j].size == 0) { /* skip this counter */ buf[k + j] = 0; continue; } offset = (hw_stats + bnx2x_q_stats_arr[j].offset); if (bnx2x_q_stats_arr[j].size == 4) { /* 4-byte counter */ buf[k + j] = (u64) *offset; continue; } /* 8-byte counter */ buf[k + j] = HILO_U64(*offset, *(offset + 1)); } k += BNX2X_NUM_Q_STATS; } } hw_stats = (u32 *)&bp->eth_stats; for (i = 0, j = 0; i < BNX2X_NUM_STATS; i++) { if (HIDE_PORT_STAT(bp) && IS_PORT_STAT(i)) continue; if (bnx2x_stats_arr[i].size == 0) { /* skip this counter */ buf[k + j] = 0; j++; continue; } offset = (hw_stats + bnx2x_stats_arr[i].offset); if (bnx2x_stats_arr[i].size == 4) { /* 4-byte counter */ buf[k + j] = (u64) *offset; j++; continue; } /* 8-byte counter */ buf[k + j] = HILO_U64(*offset, *(offset + 1)); j++; } } static int bnx2x_set_phys_id(struct net_device *dev, enum ethtool_phys_id_state state) { struct bnx2x *bp = netdev_priv(dev); if (!bnx2x_is_nvm_accessible(bp)) { DP(BNX2X_MSG_ETHTOOL | BNX2X_MSG_NVM, "cannot access eeprom when the interface is down\n"); return -EAGAIN; } switch (state) { case ETHTOOL_ID_ACTIVE: return 1; /* cycle on/off once per second */ case ETHTOOL_ID_ON: bnx2x_acquire_phy_lock(bp); bnx2x_set_led(&bp->link_params, &bp->link_vars, LED_MODE_ON, SPEED_1000); bnx2x_release_phy_lock(bp); break; case ETHTOOL_ID_OFF: bnx2x_acquire_phy_lock(bp); bnx2x_set_led(&bp->link_params, &bp->link_vars, LED_MODE_FRONT_PANEL_OFF, 0); bnx2x_release_phy_lock(bp); break; case ETHTOOL_ID_INACTIVE: bnx2x_acquire_phy_lock(bp); bnx2x_set_led(&bp->link_params, &bp->link_vars, LED_MODE_OPER, bp->link_vars.line_speed); bnx2x_release_phy_lock(bp); } return 0; } static int bnx2x_get_rss_flags(struct bnx2x *bp, struct ethtool_rxnfc *info) { switch (info->flow_type) { case TCP_V4_FLOW: case TCP_V6_FLOW: info->data = RXH_IP_SRC | RXH_IP_DST | RXH_L4_B_0_1 | RXH_L4_B_2_3; break; case UDP_V4_FLOW: if (bp->rss_conf_obj.udp_rss_v4) info->data = RXH_IP_SRC | RXH_IP_DST | RXH_L4_B_0_1 | RXH_L4_B_2_3; else info->data = RXH_IP_SRC | RXH_IP_DST; break; case UDP_V6_FLOW: if (bp->rss_conf_obj.udp_rss_v6) info->data = RXH_IP_SRC | RXH_IP_DST | RXH_L4_B_0_1 | RXH_L4_B_2_3; else info->data = RXH_IP_SRC | RXH_IP_DST; break; case IPV4_FLOW: case IPV6_FLOW: info->data = RXH_IP_SRC | RXH_IP_DST; break; default: info->data = 0; break; } return 0; } static int bnx2x_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info, u32 *rules __always_unused) { struct bnx2x *bp = netdev_priv(dev); switch (info->cmd) { case ETHTOOL_GRXRINGS: info->data = BNX2X_NUM_ETH_QUEUES(bp); return 0; case ETHTOOL_GRXFH: return bnx2x_get_rss_flags(bp, info); default: DP(BNX2X_MSG_ETHTOOL, "Command parameters not supported\n"); return -EOPNOTSUPP; } } static int bnx2x_set_rss_flags(struct bnx2x *bp, struct ethtool_rxnfc *info) { int udp_rss_requested; DP(BNX2X_MSG_ETHTOOL, "Set rss flags command parameters: flow type = %d, data = %llu\n", info->flow_type, info->data); switch (info->flow_type) { case TCP_V4_FLOW: case TCP_V6_FLOW: /* For TCP only 4-tupple hash is supported */ if (info->data ^ (RXH_IP_SRC | RXH_IP_DST | RXH_L4_B_0_1 | RXH_L4_B_2_3)) { DP(BNX2X_MSG_ETHTOOL, "Command parameters not supported\n"); return -EINVAL; } return 0; case UDP_V4_FLOW: case UDP_V6_FLOW: /* For UDP either 2-tupple hash or 4-tupple hash is supported */ if (info->data == (RXH_IP_SRC | RXH_IP_DST | RXH_L4_B_0_1 | RXH_L4_B_2_3)) udp_rss_requested = 1; else if (info->data == (RXH_IP_SRC | RXH_IP_DST)) udp_rss_requested = 0; else return -EINVAL; if (CHIP_IS_E1x(bp) && udp_rss_requested) { DP(BNX2X_MSG_ETHTOOL, "57710, 57711 boards don't support RSS according to UDP 4-tuple\n"); return -EINVAL; } if ((info->flow_type == UDP_V4_FLOW) && (bp->rss_conf_obj.udp_rss_v4 != udp_rss_requested)) { bp->rss_conf_obj.udp_rss_v4 = udp_rss_requested; DP(BNX2X_MSG_ETHTOOL, "rss re-configured, UDP 4-tupple %s\n", udp_rss_requested ? "enabled" : "disabled"); if (bp->state == BNX2X_STATE_OPEN) return bnx2x_rss(bp, &bp->rss_conf_obj, false, true); } else if ((info->flow_type == UDP_V6_FLOW) && (bp->rss_conf_obj.udp_rss_v6 != udp_rss_requested)) { bp->rss_conf_obj.udp_rss_v6 = udp_rss_requested; DP(BNX2X_MSG_ETHTOOL, "rss re-configured, UDP 4-tupple %s\n", udp_rss_requested ? "enabled" : "disabled"); if (bp->state == BNX2X_STATE_OPEN) return bnx2x_rss(bp, &bp->rss_conf_obj, false, true); } return 0; case IPV4_FLOW: case IPV6_FLOW: /* For IP only 2-tupple hash is supported */ if (info->data ^ (RXH_IP_SRC | RXH_IP_DST)) { DP(BNX2X_MSG_ETHTOOL, "Command parameters not supported\n"); return -EINVAL; } return 0; case SCTP_V4_FLOW: case AH_ESP_V4_FLOW: case AH_V4_FLOW: case ESP_V4_FLOW: case SCTP_V6_FLOW: case AH_ESP_V6_FLOW: case AH_V6_FLOW: case ESP_V6_FLOW: case IP_USER_FLOW: case ETHER_FLOW: /* RSS is not supported for these protocols */ if (info->data) { DP(BNX2X_MSG_ETHTOOL, "Command parameters not supported\n"); return -EINVAL; } return 0; default: return -EINVAL; } } static int bnx2x_set_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info) { struct bnx2x *bp = netdev_priv(dev); switch (info->cmd) { case ETHTOOL_SRXFH: return bnx2x_set_rss_flags(bp, info); default: DP(BNX2X_MSG_ETHTOOL, "Command parameters not supported\n"); return -EOPNOTSUPP; } } static u32 bnx2x_get_rxfh_indir_size(struct net_device *dev) { return T_ETH_INDIRECTION_TABLE_SIZE; } static int bnx2x_get_rxfh(struct net_device *dev, u32 *indir, u8 *key, u8 *hfunc) { struct bnx2x *bp = netdev_priv(dev); u8 ind_table[T_ETH_INDIRECTION_TABLE_SIZE] = {0}; size_t i; if (hfunc) *hfunc = ETH_RSS_HASH_TOP; if (!indir) return 0; /* Get the current configuration of the RSS indirection table */ bnx2x_get_rss_ind_table(&bp->rss_conf_obj, ind_table); /* * We can't use a memcpy() as an internal storage of an * indirection table is a u8 array while indir->ring_index * points to an array of u32. * * Indirection table contains the FW Client IDs, so we need to * align the returned table to the Client ID of the leading RSS * queue. */ for (i = 0; i < T_ETH_INDIRECTION_TABLE_SIZE; i++) indir[i] = ind_table[i] - bp->fp->cl_id; return 0; } static int bnx2x_set_rxfh(struct net_device *dev, const u32 *indir, const u8 *key, const u8 hfunc) { struct bnx2x *bp = netdev_priv(dev); size_t i; /* We require at least one supported parameter to be changed and no * change in any of the unsupported parameters */ if (key || (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP)) return -EOPNOTSUPP; if (!indir) return 0; for (i = 0; i < T_ETH_INDIRECTION_TABLE_SIZE; i++) { /* * The same as in bnx2x_get_rxfh: we can't use a memcpy() * as an internal storage of an indirection table is a u8 array * while indir->ring_index points to an array of u32. * * Indirection table contains the FW Client IDs, so we need to * align the received table to the Client ID of the leading RSS * queue */ bp->rss_conf_obj.ind_table[i] = indir[i] + bp->fp->cl_id; } if (bp->state == BNX2X_STATE_OPEN) return bnx2x_config_rss_eth(bp, false); return 0; } /** * bnx2x_get_channels - gets the number of RSS queues. * * @dev: net device * @channels: returns the number of max / current queues */ static void bnx2x_get_channels(struct net_device *dev, struct ethtool_channels *channels) { struct bnx2x *bp = netdev_priv(dev); channels->max_combined = BNX2X_MAX_RSS_COUNT(bp); channels->combined_count = BNX2X_NUM_ETH_QUEUES(bp); } /** * bnx2x_change_num_queues - change the number of RSS queues. * * @bp: bnx2x private structure * * Re-configure interrupt mode to get the new number of MSI-X * vectors and re-add NAPI objects. */ static void bnx2x_change_num_queues(struct bnx2x *bp, int num_rss) { bnx2x_disable_msi(bp); bp->num_ethernet_queues = num_rss; bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues; BNX2X_DEV_INFO("set number of queues to %d\n", bp->num_queues); bnx2x_set_int_mode(bp); } /** * bnx2x_set_channels - sets the number of RSS queues. * * @dev: net device * @channels: includes the number of queues requested */ static int bnx2x_set_channels(struct net_device *dev, struct ethtool_channels *channels) { struct bnx2x *bp = netdev_priv(dev); DP(BNX2X_MSG_ETHTOOL, "set-channels command parameters: rx = %d, tx = %d, other = %d, combined = %d\n", channels->rx_count, channels->tx_count, channels->other_count, channels->combined_count); if (pci_num_vf(bp->pdev)) { DP(BNX2X_MSG_IOV, "VFs are enabled, can not set channels\n"); return -EPERM; } /* We don't support separate rx / tx channels. * We don't allow setting 'other' channels. */ if (channels->rx_count || channels->tx_count || channels->other_count || (channels->combined_count == 0) || (channels->combined_count > BNX2X_MAX_RSS_COUNT(bp))) { DP(BNX2X_MSG_ETHTOOL, "command parameters not supported\n"); return -EINVAL; } /* Check if there was a change in the active parameters */ if (channels->combined_count == BNX2X_NUM_ETH_QUEUES(bp)) { DP(BNX2X_MSG_ETHTOOL, "No change in active parameters\n"); return 0; } /* Set the requested number of queues in bp context. * Note that the actual number of queues created during load may be * less than requested if memory is low. */ if (unlikely(!netif_running(dev))) { bnx2x_change_num_queues(bp, channels->combined_count); return 0; } bnx2x_nic_unload(bp, UNLOAD_NORMAL, true); bnx2x_change_num_queues(bp, channels->combined_count); return bnx2x_nic_load(bp, LOAD_NORMAL); } static int bnx2x_get_ts_info(struct net_device *dev, struct ethtool_ts_info *info) { struct bnx2x *bp = netdev_priv(dev); if (bp->flags & PTP_SUPPORTED) { info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE | SOF_TIMESTAMPING_RX_SOFTWARE | SOF_TIMESTAMPING_SOFTWARE | SOF_TIMESTAMPING_TX_HARDWARE | SOF_TIMESTAMPING_RX_HARDWARE | SOF_TIMESTAMPING_RAW_HARDWARE; if (bp->ptp_clock) info->phc_index = ptp_clock_index(bp->ptp_clock); else info->phc_index = -1; info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) | (1 << HWTSTAMP_FILTER_PTP_V1_L4_EVENT) | (1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT) | (1 << HWTSTAMP_FILTER_PTP_V2_EVENT); info->tx_types = (1 << HWTSTAMP_TX_OFF)|(1 << HWTSTAMP_TX_ON); return 0; } return ethtool_op_get_ts_info(dev, info); } static const struct ethtool_ops bnx2x_ethtool_ops = { .get_drvinfo = bnx2x_get_drvinfo, .get_regs_len = bnx2x_get_regs_len, .get_regs = bnx2x_get_regs, .get_dump_flag = bnx2x_get_dump_flag, .get_dump_data = bnx2x_get_dump_data, .set_dump = bnx2x_set_dump, .get_wol = bnx2x_get_wol, .set_wol = bnx2x_set_wol, .get_msglevel = bnx2x_get_msglevel, .set_msglevel = bnx2x_set_msglevel, .nway_reset = bnx2x_nway_reset, .get_link = bnx2x_get_link, .get_eeprom_len = bnx2x_get_eeprom_len, .get_eeprom = bnx2x_get_eeprom, .set_eeprom = bnx2x_set_eeprom, .get_coalesce = bnx2x_get_coalesce, .set_coalesce = bnx2x_set_coalesce, .get_ringparam = bnx2x_get_ringparam, .set_ringparam = bnx2x_set_ringparam, .get_pauseparam = bnx2x_get_pauseparam, .set_pauseparam = bnx2x_set_pauseparam, .self_test = bnx2x_self_test, .get_sset_count = bnx2x_get_sset_count, .get_priv_flags = bnx2x_get_private_flags, .get_strings = bnx2x_get_strings, .set_phys_id = bnx2x_set_phys_id, .get_ethtool_stats = bnx2x_get_ethtool_stats, .get_rxnfc = bnx2x_get_rxnfc, .set_rxnfc = bnx2x_set_rxnfc, .get_rxfh_indir_size = bnx2x_get_rxfh_indir_size, .get_rxfh = bnx2x_get_rxfh, .set_rxfh = bnx2x_set_rxfh, .get_channels = bnx2x_get_channels, .set_channels = bnx2x_set_channels, .get_module_info = bnx2x_get_module_info, .get_module_eeprom = bnx2x_get_module_eeprom, .get_eee = bnx2x_get_eee, .set_eee = bnx2x_set_eee, .get_ts_info = bnx2x_get_ts_info, .get_link_ksettings = bnx2x_get_link_ksettings, .set_link_ksettings = bnx2x_set_link_ksettings, }; static const struct ethtool_ops bnx2x_vf_ethtool_ops = { .get_drvinfo = bnx2x_get_drvinfo, .get_msglevel = bnx2x_get_msglevel, .set_msglevel = bnx2x_set_msglevel, .get_link = bnx2x_get_link, .get_coalesce = bnx2x_get_coalesce, .get_ringparam = bnx2x_get_ringparam, .set_ringparam = bnx2x_set_ringparam, .get_sset_count = bnx2x_get_sset_count, .get_strings = bnx2x_get_strings, .get_ethtool_stats = bnx2x_get_ethtool_stats, .get_rxnfc = bnx2x_get_rxnfc, .set_rxnfc = bnx2x_set_rxnfc, .get_rxfh_indir_size = bnx2x_get_rxfh_indir_size, .get_rxfh = bnx2x_get_rxfh, .set_rxfh = bnx2x_set_rxfh, .get_channels = bnx2x_get_channels, .set_channels = bnx2x_set_channels, .get_link_ksettings = bnx2x_get_vf_link_ksettings, }; void bnx2x_set_ethtool_ops(struct bnx2x *bp, struct net_device *netdev) { netdev->ethtool_ops = (IS_PF(bp)) ? &bnx2x_ethtool_ops : &bnx2x_vf_ethtool_ops; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1