Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Rasesh Mody | 738 | 95.35% | 7 | 70.00% |
Ivan Vecera | 30 | 3.88% | 1 | 10.00% |
Ben Hutchings | 5 | 0.65% | 1 | 10.00% |
Joe Perches | 1 | 0.13% | 1 | 10.00% |
Total | 774 | 10 |
/* * Linux network driver for QLogic BR-series Converged Network Adapter. * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License (GPL) Version 2 as * published by the Free Software Foundation * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. */ /* * Copyright (c) 2005-2014 Brocade Communications Systems, Inc. * Copyright (c) 2014-2015 QLogic Corporation * All rights reserved * www.qlogic.com */ /* File for interrupt macros and functions */ #ifndef __BNA_HW_DEFS_H__ #define __BNA_HW_DEFS_H__ #include "bfi_reg.h" /* SW imposed limits */ #define BFI_ENET_DEF_TXQ 1 #define BFI_ENET_DEF_RXP 1 #define BFI_ENET_DEF_UCAM 1 #define BFI_ENET_DEF_RITSZ 1 #define BFI_ENET_MAX_MCAM 256 #define BFI_INVALID_RID -1 #define BFI_IBIDX_SIZE 4 #define BFI_VLAN_WORD_SHIFT 5 /* 32 bits */ #define BFI_VLAN_WORD_MASK 0x1F #define BFI_VLAN_BLOCK_SHIFT 9 /* 512 bits */ #define BFI_VLAN_BMASK_ALL 0xFF #define BFI_COALESCING_TIMER_UNIT 5 /* 5us */ #define BFI_MAX_COALESCING_TIMEO 0xFF /* in 5us units */ #define BFI_MAX_INTERPKT_COUNT 0xFF #define BFI_MAX_INTERPKT_TIMEO 0xF /* in 0.5us units */ #define BFI_TX_COALESCING_TIMEO 20 /* 20 * 5 = 100us */ #define BFI_TX_INTERPKT_COUNT 12 /* Pkt Cnt = 12 */ #define BFI_TX_INTERPKT_TIMEO 15 /* 15 * 0.5 = 7.5us */ #define BFI_RX_COALESCING_TIMEO 12 /* 12 * 5 = 60us */ #define BFI_RX_INTERPKT_COUNT 6 /* Pkt Cnt = 6 */ #define BFI_RX_INTERPKT_TIMEO 3 /* 3 * 0.5 = 1.5us */ #define BFI_TXQ_WI_SIZE 64 /* bytes */ #define BFI_RXQ_WI_SIZE 8 /* bytes */ #define BFI_CQ_WI_SIZE 16 /* bytes */ #define BFI_TX_MAX_WRR_QUOTA 0xFFF #define BFI_TX_MAX_VECTORS_PER_WI 4 #define BFI_TX_MAX_VECTORS_PER_PKT 0xFF #define BFI_TX_MAX_DATA_PER_VECTOR 0xFFFF #define BFI_TX_MAX_DATA_PER_PKT 0xFFFFFF /* Small Q buffer size */ #define BFI_SMALL_RXBUF_SIZE 128 #define BFI_TX_MAX_PRIO 8 #define BFI_TX_PRIO_MAP_ALL 0xFF /* * * Register definitions and macros * */ #define BNA_PCI_REG_CT_ADDRSZ (0x40000) #define ct_reg_addr_init(_bna, _pcidev) \ { \ struct bna_reg_offset reg_offset[] = \ {{HOSTFN0_INT_STATUS, HOSTFN0_INT_MSK}, \ {HOSTFN1_INT_STATUS, HOSTFN1_INT_MSK}, \ {HOSTFN2_INT_STATUS, HOSTFN2_INT_MSK}, \ {HOSTFN3_INT_STATUS, HOSTFN3_INT_MSK} }; \ \ (_bna)->regs.fn_int_status = (_pcidev)->pci_bar_kva + \ reg_offset[(_pcidev)->pci_func].fn_int_status;\ (_bna)->regs.fn_int_mask = (_pcidev)->pci_bar_kva + \ reg_offset[(_pcidev)->pci_func].fn_int_mask;\ } #define ct_bit_defn_init(_bna, _pcidev) \ { \ (_bna)->bits.mbox_status_bits = (__HFN_INT_MBOX_LPU0 | \ __HFN_INT_MBOX_LPU1); \ (_bna)->bits.mbox_mask_bits = (__HFN_INT_MBOX_LPU0 | \ __HFN_INT_MBOX_LPU1); \ (_bna)->bits.error_status_bits = (__HFN_INT_ERR_MASK); \ (_bna)->bits.error_mask_bits = (__HFN_INT_ERR_MASK); \ (_bna)->bits.halt_status_bits = __HFN_INT_LL_HALT; \ (_bna)->bits.halt_mask_bits = __HFN_INT_LL_HALT; \ } #define ct2_reg_addr_init(_bna, _pcidev) \ { \ (_bna)->regs.fn_int_status = (_pcidev)->pci_bar_kva + \ CT2_HOSTFN_INT_STATUS; \ (_bna)->regs.fn_int_mask = (_pcidev)->pci_bar_kva + \ CT2_HOSTFN_INTR_MASK; \ } #define ct2_bit_defn_init(_bna, _pcidev) \ { \ (_bna)->bits.mbox_status_bits = (__HFN_INT_MBOX_LPU0_CT2 | \ __HFN_INT_MBOX_LPU1_CT2); \ (_bna)->bits.mbox_mask_bits = (__HFN_INT_MBOX_LPU0_CT2 | \ __HFN_INT_MBOX_LPU1_CT2); \ (_bna)->bits.error_status_bits = (__HFN_INT_ERR_MASK_CT2); \ (_bna)->bits.error_mask_bits = (__HFN_INT_ERR_MASK_CT2); \ (_bna)->bits.halt_status_bits = __HFN_INT_CPQ_HALT_CT2; \ (_bna)->bits.halt_mask_bits = __HFN_INT_CPQ_HALT_CT2; \ } #define bna_reg_addr_init(_bna, _pcidev) \ { \ switch ((_pcidev)->device_id) { \ case PCI_DEVICE_ID_BROCADE_CT: \ ct_reg_addr_init((_bna), (_pcidev)); \ ct_bit_defn_init((_bna), (_pcidev)); \ break; \ case BFA_PCI_DEVICE_ID_CT2: \ ct2_reg_addr_init((_bna), (_pcidev)); \ ct2_bit_defn_init((_bna), (_pcidev)); \ break; \ } \ } #define bna_port_id_get(_bna) ((_bna)->ioceth.ioc.port_id) /* Interrupt related bits, flags and macros */ #define IB_STATUS_BITS 0x0000ffff #define BNA_IS_MBOX_INTR(_bna, _intr_status) \ ((_intr_status) & (_bna)->bits.mbox_status_bits) #define BNA_IS_HALT_INTR(_bna, _intr_status) \ ((_intr_status) & (_bna)->bits.halt_status_bits) #define BNA_IS_ERR_INTR(_bna, _intr_status) \ ((_intr_status) & (_bna)->bits.error_status_bits) #define BNA_IS_MBOX_ERR_INTR(_bna, _intr_status) \ (BNA_IS_MBOX_INTR(_bna, _intr_status) | \ BNA_IS_ERR_INTR(_bna, _intr_status)) #define BNA_IS_INTX_DATA_INTR(_intr_status) \ ((_intr_status) & IB_STATUS_BITS) #define bna_halt_clear(_bna) \ do { \ u32 init_halt; \ init_halt = readl((_bna)->ioceth.ioc.ioc_regs.ll_halt); \ init_halt &= ~__FW_INIT_HALT_P; \ writel(init_halt, (_bna)->ioceth.ioc.ioc_regs.ll_halt); \ init_halt = readl((_bna)->ioceth.ioc.ioc_regs.ll_halt); \ } while (0) #define bna_intx_disable(_bna, _cur_mask) \ { \ (_cur_mask) = readl((_bna)->regs.fn_int_mask); \ writel(0xffffffff, (_bna)->regs.fn_int_mask); \ } #define bna_intx_enable(bna, new_mask) \ writel((new_mask), (bna)->regs.fn_int_mask) #define bna_mbox_intr_disable(bna) \ do { \ u32 mask; \ mask = readl((bna)->regs.fn_int_mask); \ writel((mask | (bna)->bits.mbox_mask_bits | \ (bna)->bits.error_mask_bits), (bna)->regs.fn_int_mask); \ mask = readl((bna)->regs.fn_int_mask); \ } while (0) #define bna_mbox_intr_enable(bna) \ do { \ u32 mask; \ mask = readl((bna)->regs.fn_int_mask); \ writel((mask & ~((bna)->bits.mbox_mask_bits | \ (bna)->bits.error_mask_bits)), (bna)->regs.fn_int_mask);\ mask = readl((bna)->regs.fn_int_mask); \ } while (0) #define bna_intr_status_get(_bna, _status) \ { \ (_status) = readl((_bna)->regs.fn_int_status); \ if (_status) { \ writel(((_status) & ~(_bna)->bits.mbox_status_bits), \ (_bna)->regs.fn_int_status); \ } \ } /* * MAX ACK EVENTS : No. of acks that can be accumulated in driver, * before acking to h/w. The no. of bits is 16 in the doorbell register, * however we keep this limited to 15 bits. * This is because around the edge of 64K boundary (16 bits), one * single poll can make the accumulated ACK counter cross the 64K boundary, * causing problems, when we try to ack with a value greater than 64K. * 15 bits (32K) should be large enough to accumulate, anyways, and the max. * acked events to h/w can be (32K + max poll weight) (currently 64). */ #define BNA_IB_MAX_ACK_EVENTS BIT(15) /* These macros build the data portion of the TxQ/RxQ doorbell */ #define BNA_DOORBELL_Q_PRD_IDX(_pi) (0x80000000 | (_pi)) #define BNA_DOORBELL_Q_STOP (0x40000000) /* These macros build the data portion of the IB doorbell */ #define BNA_DOORBELL_IB_INT_ACK(_timeout, _events) \ (0x80000000 | ((_timeout) << 16) | (_events)) #define BNA_DOORBELL_IB_INT_DISABLE (0x40000000) /* Set the coalescing timer for the given ib */ #define bna_ib_coalescing_timer_set(_i_dbell, _cls_timer) \ ((_i_dbell)->doorbell_ack = BNA_DOORBELL_IB_INT_ACK((_cls_timer), 0)); /* Acks 'events' # of events for a given ib while disabling interrupts */ #define bna_ib_ack_disable_irq(_i_dbell, _events) \ (writel(BNA_DOORBELL_IB_INT_ACK(0, (_events)), \ (_i_dbell)->doorbell_addr)); /* Acks 'events' # of events for a given ib */ #define bna_ib_ack(_i_dbell, _events) \ (writel(((_i_dbell)->doorbell_ack | (_events)), \ (_i_dbell)->doorbell_addr)); #define bna_ib_start(_bna, _ib, _is_regular) \ { \ u32 intx_mask; \ struct bna_ib *ib = _ib; \ if ((ib->intr_type == BNA_INTR_T_INTX)) { \ bna_intx_disable((_bna), intx_mask); \ intx_mask &= ~(ib->intr_vector); \ bna_intx_enable((_bna), intx_mask); \ } \ bna_ib_coalescing_timer_set(&ib->door_bell, \ ib->coalescing_timeo); \ if (_is_regular) \ bna_ib_ack(&ib->door_bell, 0); \ } #define bna_ib_stop(_bna, _ib) \ { \ u32 intx_mask; \ struct bna_ib *ib = _ib; \ writel(BNA_DOORBELL_IB_INT_DISABLE, \ ib->door_bell.doorbell_addr); \ if (ib->intr_type == BNA_INTR_T_INTX) { \ bna_intx_disable((_bna), intx_mask); \ intx_mask |= ib->intr_vector; \ bna_intx_enable((_bna), intx_mask); \ } \ } #define bna_txq_prod_indx_doorbell(_tcb) \ (writel(BNA_DOORBELL_Q_PRD_IDX((_tcb)->producer_index), \ (_tcb)->q_dbell)); #define bna_rxq_prod_indx_doorbell(_rcb) \ (writel(BNA_DOORBELL_Q_PRD_IDX((_rcb)->producer_index), \ (_rcb)->q_dbell)); /* TxQ, RxQ, CQ related bits, offsets, macros */ /* TxQ Entry Opcodes */ #define BNA_TXQ_WI_SEND (0x402) /* Single Frame Transmission */ #define BNA_TXQ_WI_SEND_LSO (0x403) /* Multi-Frame Transmission */ #define BNA_TXQ_WI_EXTENSION (0x104) /* Extension WI */ /* TxQ Entry Control Flags */ #define BNA_TXQ_WI_CF_FCOE_CRC BIT(8) #define BNA_TXQ_WI_CF_IPID_MODE BIT(5) #define BNA_TXQ_WI_CF_INS_PRIO BIT(4) #define BNA_TXQ_WI_CF_INS_VLAN BIT(3) #define BNA_TXQ_WI_CF_UDP_CKSUM BIT(2) #define BNA_TXQ_WI_CF_TCP_CKSUM BIT(1) #define BNA_TXQ_WI_CF_IP_CKSUM BIT(0) #define BNA_TXQ_WI_L4_HDR_N_OFFSET(_hdr_size, _offset) \ (((_hdr_size) << 10) | ((_offset) & 0x3FF)) /* * Completion Q defines */ /* CQ Entry Flags */ #define BNA_CQ_EF_MAC_ERROR BIT(0) #define BNA_CQ_EF_FCS_ERROR BIT(1) #define BNA_CQ_EF_TOO_LONG BIT(2) #define BNA_CQ_EF_FC_CRC_OK BIT(3) #define BNA_CQ_EF_RSVD1 BIT(4) #define BNA_CQ_EF_L4_CKSUM_OK BIT(5) #define BNA_CQ_EF_L3_CKSUM_OK BIT(6) #define BNA_CQ_EF_HDS_HEADER BIT(7) #define BNA_CQ_EF_UDP BIT(8) #define BNA_CQ_EF_TCP BIT(9) #define BNA_CQ_EF_IP_OPTIONS BIT(10) #define BNA_CQ_EF_IPV6 BIT(11) #define BNA_CQ_EF_IPV4 BIT(12) #define BNA_CQ_EF_VLAN BIT(13) #define BNA_CQ_EF_RSS BIT(14) #define BNA_CQ_EF_RSVD2 BIT(15) #define BNA_CQ_EF_MCAST_MATCH BIT(16) #define BNA_CQ_EF_MCAST BIT(17) #define BNA_CQ_EF_BCAST BIT(18) #define BNA_CQ_EF_REMOTE BIT(19) #define BNA_CQ_EF_LOCAL BIT(20) /* CAT2 ASIC does not use bit 21 as per the SPEC. * Bit 31 is set in every end of frame completion */ #define BNA_CQ_EF_EOP BIT(31) /* Data structures */ struct bna_reg_offset { u32 fn_int_status; u32 fn_int_mask; }; struct bna_bit_defn { u32 mbox_status_bits; u32 mbox_mask_bits; u32 error_status_bits; u32 error_mask_bits; u32 halt_status_bits; u32 halt_mask_bits; }; struct bna_reg { void __iomem *fn_int_status; void __iomem *fn_int_mask; }; /* TxQ Vector (a.k.a. Tx-Buffer Descriptor) */ struct bna_dma_addr { u32 msb; u32 lsb; }; struct bna_txq_wi_vector { u16 reserved; u16 length; /* Only 14 LSB are valid */ struct bna_dma_addr host_addr; /* Tx-Buf DMA addr */ }; /* TxQ Entry Structure * * BEWARE: Load values into this structure with correct endianness. */ struct bna_txq_entry { union { struct { u8 reserved; u8 num_vectors; /* number of vectors present */ u16 opcode; /* Either */ /* BNA_TXQ_WI_SEND or */ /* BNA_TXQ_WI_SEND_LSO */ u16 flags; /* OR of all the flags */ u16 l4_hdr_size_n_offset; u16 vlan_tag; u16 lso_mss; /* Only 14 LSB are valid */ u32 frame_length; /* Only 24 LSB are valid */ } wi; struct { u16 reserved; u16 opcode; /* Must be */ /* BNA_TXQ_WI_EXTENSION */ u32 reserved2[3]; /* Place holder for */ /* removed vector (12 bytes) */ } wi_ext; } hdr; struct bna_txq_wi_vector vector[4]; }; /* RxQ Entry Structure */ struct bna_rxq_entry { /* Rx-Buffer */ struct bna_dma_addr host_addr; /* Rx-Buffer DMA address */ }; /* CQ Entry Structure */ struct bna_cq_entry { u32 flags; u16 vlan_tag; u16 length; u32 rss_hash; u8 valid; u8 reserved1; u8 reserved2; u8 rxq_id; }; #endif /* __BNA_HW_DEFS_H__ */
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1