Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Raghu Vatsavayi | 3391 | 100.00% | 11 | 100.00% |
Total | 3391 | 11 |
/********************************************************************** * Author: Cavium, Inc. * * Contact: support@cavium.com * Please include "LiquidIO" in the subject. * * Copyright (c) 2003-2016 Cavium, Inc. * * This file is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License, Version 2, as * published by the Free Software Foundation. * * This file is distributed in the hope that it will be useful, but * AS-IS and WITHOUT ANY WARRANTY; without even the implied warranty * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, TITLE, or * NONINFRINGEMENT. See the GNU General Public License for more details. ***********************************************************************/ #include <linux/pci.h> #include <linux/netdevice.h> #include "liquidio_common.h" #include "octeon_droq.h" #include "octeon_iq.h" #include "response_manager.h" #include "octeon_device.h" #include "octeon_main.h" #include "cn66xx_regs.h" #include "cn66xx_device.h" int lio_cn6xxx_soft_reset(struct octeon_device *oct) { octeon_write_csr64(oct, CN6XXX_WIN_WR_MASK_REG, 0xFF); dev_dbg(&oct->pci_dev->dev, "BIST enabled for soft reset\n"); lio_pci_writeq(oct, 1, CN6XXX_CIU_SOFT_BIST); octeon_write_csr64(oct, CN6XXX_SLI_SCRATCH1, 0x1234ULL); lio_pci_readq(oct, CN6XXX_CIU_SOFT_RST); lio_pci_writeq(oct, 1, CN6XXX_CIU_SOFT_RST); /* make sure that the reset is written before starting timer */ mmiowb(); /* Wait for 10ms as Octeon resets. */ mdelay(100); if (octeon_read_csr64(oct, CN6XXX_SLI_SCRATCH1)) { dev_err(&oct->pci_dev->dev, "Soft reset failed\n"); return 1; } dev_dbg(&oct->pci_dev->dev, "Reset completed\n"); octeon_write_csr64(oct, CN6XXX_WIN_WR_MASK_REG, 0xFF); return 0; } void lio_cn6xxx_enable_error_reporting(struct octeon_device *oct) { u32 val; pci_read_config_dword(oct->pci_dev, CN6XXX_PCIE_DEVCTL, &val); if (val & 0x000c0000) { dev_err(&oct->pci_dev->dev, "PCI-E Link error detected: 0x%08x\n", val & 0x000c0000); } val |= 0xf; /* Enable Link error reporting */ dev_dbg(&oct->pci_dev->dev, "Enabling PCI-E error reporting..\n"); pci_write_config_dword(oct->pci_dev, CN6XXX_PCIE_DEVCTL, val); } void lio_cn6xxx_setup_pcie_mps(struct octeon_device *oct, enum octeon_pcie_mps mps) { u32 val; u64 r64; /* Read config register for MPS */ pci_read_config_dword(oct->pci_dev, CN6XXX_PCIE_DEVCTL, &val); if (mps == PCIE_MPS_DEFAULT) { mps = ((val & (0x7 << 5)) >> 5); } else { val &= ~(0x7 << 5); /* Turn off any MPS bits */ val |= (mps << 5); /* Set MPS */ pci_write_config_dword(oct->pci_dev, CN6XXX_PCIE_DEVCTL, val); } /* Set MPS in DPI_SLI_PRT0_CFG to the same value. */ r64 = lio_pci_readq(oct, CN6XXX_DPI_SLI_PRTX_CFG(oct->pcie_port)); r64 |= (mps << 4); lio_pci_writeq(oct, r64, CN6XXX_DPI_SLI_PRTX_CFG(oct->pcie_port)); } void lio_cn6xxx_setup_pcie_mrrs(struct octeon_device *oct, enum octeon_pcie_mrrs mrrs) { u32 val; u64 r64; /* Read config register for MRRS */ pci_read_config_dword(oct->pci_dev, CN6XXX_PCIE_DEVCTL, &val); if (mrrs == PCIE_MRRS_DEFAULT) { mrrs = ((val & (0x7 << 12)) >> 12); } else { val &= ~(0x7 << 12); /* Turn off any MRRS bits */ val |= (mrrs << 12); /* Set MRRS */ pci_write_config_dword(oct->pci_dev, CN6XXX_PCIE_DEVCTL, val); } /* Set MRRS in SLI_S2M_PORT0_CTL to the same value. */ r64 = octeon_read_csr64(oct, CN6XXX_SLI_S2M_PORTX_CTL(oct->pcie_port)); r64 |= mrrs; octeon_write_csr64(oct, CN6XXX_SLI_S2M_PORTX_CTL(oct->pcie_port), r64); /* Set MRRS in DPI_SLI_PRT0_CFG to the same value. */ r64 = lio_pci_readq(oct, CN6XXX_DPI_SLI_PRTX_CFG(oct->pcie_port)); r64 |= mrrs; lio_pci_writeq(oct, r64, CN6XXX_DPI_SLI_PRTX_CFG(oct->pcie_port)); } u32 lio_cn6xxx_coprocessor_clock(struct octeon_device *oct) { /* Bits 29:24 of MIO_RST_BOOT holds the ref. clock multiplier * for SLI. */ return ((lio_pci_readq(oct, CN6XXX_MIO_RST_BOOT) >> 24) & 0x3f) * 50; } u32 lio_cn6xxx_get_oq_ticks(struct octeon_device *oct, u32 time_intr_in_us) { /* This gives the SLI clock per microsec */ u32 oqticks_per_us = lio_cn6xxx_coprocessor_clock(oct); /* core clock per us / oq ticks will be fractional. TO avoid that * we use the method below. */ /* This gives the clock cycles per millisecond */ oqticks_per_us *= 1000; /* This gives the oq ticks (1024 core clock cycles) per millisecond */ oqticks_per_us /= 1024; /* time_intr is in microseconds. The next 2 steps gives the oq ticks * corressponding to time_intr. */ oqticks_per_us *= time_intr_in_us; oqticks_per_us /= 1000; return oqticks_per_us; } void lio_cn6xxx_setup_global_input_regs(struct octeon_device *oct) { /* Select Round-Robin Arb, ES, RO, NS for Input Queues */ octeon_write_csr(oct, CN6XXX_SLI_PKT_INPUT_CONTROL, CN6XXX_INPUT_CTL_MASK); /* Instruction Read Size - Max 4 instructions per PCIE Read */ octeon_write_csr64(oct, CN6XXX_SLI_PKT_INSTR_RD_SIZE, 0xFFFFFFFFFFFFFFFFULL); /* Select PCIE Port for all Input rings. */ octeon_write_csr64(oct, CN6XXX_SLI_IN_PCIE_PORT, (oct->pcie_port * 0x5555555555555555ULL)); } static void lio_cn66xx_setup_pkt_ctl_regs(struct octeon_device *oct) { u64 pktctl; struct octeon_cn6xxx *cn6xxx = (struct octeon_cn6xxx *)oct->chip; pktctl = octeon_read_csr64(oct, CN6XXX_SLI_PKT_CTL); /* 66XX SPECIFIC */ if (CFG_GET_OQ_MAX_Q(cn6xxx->conf) <= 4) /* Disable RING_EN if only upto 4 rings are used. */ pktctl &= ~(1 << 4); else pktctl |= (1 << 4); if (CFG_GET_IS_SLI_BP_ON(cn6xxx->conf)) pktctl |= 0xF; else /* Disable per-port backpressure. */ pktctl &= ~0xF; octeon_write_csr64(oct, CN6XXX_SLI_PKT_CTL, pktctl); } void lio_cn6xxx_setup_global_output_regs(struct octeon_device *oct) { u32 time_threshold; struct octeon_cn6xxx *cn6xxx = (struct octeon_cn6xxx *)oct->chip; /* / Select PCI-E Port for all Output queues */ octeon_write_csr64(oct, CN6XXX_SLI_PKT_PCIE_PORT64, (oct->pcie_port * 0x5555555555555555ULL)); if (CFG_GET_IS_SLI_BP_ON(cn6xxx->conf)) { octeon_write_csr64(oct, CN6XXX_SLI_OQ_WMARK, 32); } else { /* / Set Output queue watermark to 0 to disable backpressure */ octeon_write_csr64(oct, CN6XXX_SLI_OQ_WMARK, 0); } /* / Select Packet count instead of bytes for SLI_PKTi_CNTS[CNT] */ octeon_write_csr(oct, CN6XXX_SLI_PKT_OUT_BMODE, 0); /* Select ES, RO, NS setting from register for Output Queue Packet * Address */ octeon_write_csr(oct, CN6XXX_SLI_PKT_DPADDR, 0xFFFFFFFF); /* No Relaxed Ordering, No Snoop, 64-bit swap for Output * Queue ScatterList */ octeon_write_csr(oct, CN6XXX_SLI_PKT_SLIST_ROR, 0); octeon_write_csr(oct, CN6XXX_SLI_PKT_SLIST_NS, 0); /* / ENDIAN_SPECIFIC CHANGES - 0 works for LE. */ #ifdef __BIG_ENDIAN_BITFIELD octeon_write_csr64(oct, CN6XXX_SLI_PKT_SLIST_ES64, 0x5555555555555555ULL); #else octeon_write_csr64(oct, CN6XXX_SLI_PKT_SLIST_ES64, 0ULL); #endif /* / No Relaxed Ordering, No Snoop, 64-bit swap for Output Queue Data */ octeon_write_csr(oct, CN6XXX_SLI_PKT_DATA_OUT_ROR, 0); octeon_write_csr(oct, CN6XXX_SLI_PKT_DATA_OUT_NS, 0); octeon_write_csr64(oct, CN6XXX_SLI_PKT_DATA_OUT_ES64, 0x5555555555555555ULL); /* / Set up interrupt packet and time threshold */ octeon_write_csr(oct, CN6XXX_SLI_OQ_INT_LEVEL_PKTS, (u32)CFG_GET_OQ_INTR_PKT(cn6xxx->conf)); time_threshold = lio_cn6xxx_get_oq_ticks(oct, (u32) CFG_GET_OQ_INTR_TIME(cn6xxx->conf)); octeon_write_csr(oct, CN6XXX_SLI_OQ_INT_LEVEL_TIME, time_threshold); } static int lio_cn6xxx_setup_device_regs(struct octeon_device *oct) { lio_cn6xxx_setup_pcie_mps(oct, PCIE_MPS_DEFAULT); lio_cn6xxx_setup_pcie_mrrs(oct, PCIE_MRRS_512B); lio_cn6xxx_enable_error_reporting(oct); lio_cn6xxx_setup_global_input_regs(oct); lio_cn66xx_setup_pkt_ctl_regs(oct); lio_cn6xxx_setup_global_output_regs(oct); /* Default error timeout value should be 0x200000 to avoid host hang * when reads invalid register */ octeon_write_csr64(oct, CN6XXX_SLI_WINDOW_CTL, 0x200000ULL); return 0; } void lio_cn6xxx_setup_iq_regs(struct octeon_device *oct, u32 iq_no) { struct octeon_instr_queue *iq = oct->instr_queue[iq_no]; octeon_write_csr64(oct, CN6XXX_SLI_IQ_PKT_INSTR_HDR64(iq_no), 0); /* Write the start of the input queue's ring and its size */ octeon_write_csr64(oct, CN6XXX_SLI_IQ_BASE_ADDR64(iq_no), iq->base_addr_dma); octeon_write_csr(oct, CN6XXX_SLI_IQ_SIZE(iq_no), iq->max_count); /* Remember the doorbell & instruction count register addr for this * queue */ iq->doorbell_reg = oct->mmio[0].hw_addr + CN6XXX_SLI_IQ_DOORBELL(iq_no); iq->inst_cnt_reg = oct->mmio[0].hw_addr + CN6XXX_SLI_IQ_INSTR_COUNT(iq_no); dev_dbg(&oct->pci_dev->dev, "InstQ[%d]:dbell reg @ 0x%p instcnt_reg @ 0x%p\n", iq_no, iq->doorbell_reg, iq->inst_cnt_reg); /* Store the current instruction counter * (used in flush_iq calculation) */ iq->reset_instr_cnt = readl(iq->inst_cnt_reg); } static void lio_cn66xx_setup_iq_regs(struct octeon_device *oct, u32 iq_no) { lio_cn6xxx_setup_iq_regs(oct, iq_no); /* Backpressure for this queue - WMARK set to all F's. This effectively * disables the backpressure mechanism. */ octeon_write_csr64(oct, CN66XX_SLI_IQ_BP64(iq_no), (0xFFFFFFFFULL << 32)); } void lio_cn6xxx_setup_oq_regs(struct octeon_device *oct, u32 oq_no) { u32 intr; struct octeon_droq *droq = oct->droq[oq_no]; octeon_write_csr64(oct, CN6XXX_SLI_OQ_BASE_ADDR64(oq_no), droq->desc_ring_dma); octeon_write_csr(oct, CN6XXX_SLI_OQ_SIZE(oq_no), droq->max_count); octeon_write_csr(oct, CN6XXX_SLI_OQ_BUFF_INFO_SIZE(oq_no), droq->buffer_size); /* Get the mapped address of the pkt_sent and pkts_credit regs */ droq->pkts_sent_reg = oct->mmio[0].hw_addr + CN6XXX_SLI_OQ_PKTS_SENT(oq_no); droq->pkts_credit_reg = oct->mmio[0].hw_addr + CN6XXX_SLI_OQ_PKTS_CREDIT(oq_no); /* Enable this output queue to generate Packet Timer Interrupt */ intr = octeon_read_csr(oct, CN6XXX_SLI_PKT_TIME_INT_ENB); intr |= (1 << oq_no); octeon_write_csr(oct, CN6XXX_SLI_PKT_TIME_INT_ENB, intr); /* Enable this output queue to generate Packet Timer Interrupt */ intr = octeon_read_csr(oct, CN6XXX_SLI_PKT_CNT_INT_ENB); intr |= (1 << oq_no); octeon_write_csr(oct, CN6XXX_SLI_PKT_CNT_INT_ENB, intr); } int lio_cn6xxx_enable_io_queues(struct octeon_device *oct) { u32 mask; mask = octeon_read_csr(oct, CN6XXX_SLI_PKT_INSTR_SIZE); mask |= oct->io_qmask.iq64B; octeon_write_csr(oct, CN6XXX_SLI_PKT_INSTR_SIZE, mask); mask = octeon_read_csr(oct, CN6XXX_SLI_PKT_INSTR_ENB); mask |= oct->io_qmask.iq; octeon_write_csr(oct, CN6XXX_SLI_PKT_INSTR_ENB, mask); mask = octeon_read_csr(oct, CN6XXX_SLI_PKT_OUT_ENB); mask |= oct->io_qmask.oq; octeon_write_csr(oct, CN6XXX_SLI_PKT_OUT_ENB, mask); return 0; } void lio_cn6xxx_disable_io_queues(struct octeon_device *oct) { int i; u32 mask, loop = HZ; u32 d32; /* Reset the Enable bits for Input Queues. */ mask = octeon_read_csr(oct, CN6XXX_SLI_PKT_INSTR_ENB); mask ^= oct->io_qmask.iq; octeon_write_csr(oct, CN6XXX_SLI_PKT_INSTR_ENB, mask); /* Wait until hardware indicates that the queues are out of reset. */ mask = (u32)oct->io_qmask.iq; d32 = octeon_read_csr(oct, CN6XXX_SLI_PORT_IN_RST_IQ); while (((d32 & mask) != mask) && loop--) { d32 = octeon_read_csr(oct, CN6XXX_SLI_PORT_IN_RST_IQ); schedule_timeout_uninterruptible(1); } /* Reset the doorbell register for each Input queue. */ for (i = 0; i < MAX_OCTEON_INSTR_QUEUES(oct); i++) { if (!(oct->io_qmask.iq & BIT_ULL(i))) continue; octeon_write_csr(oct, CN6XXX_SLI_IQ_DOORBELL(i), 0xFFFFFFFF); d32 = octeon_read_csr(oct, CN6XXX_SLI_IQ_DOORBELL(i)); } /* Reset the Enable bits for Output Queues. */ mask = octeon_read_csr(oct, CN6XXX_SLI_PKT_OUT_ENB); mask ^= oct->io_qmask.oq; octeon_write_csr(oct, CN6XXX_SLI_PKT_OUT_ENB, mask); /* Wait until hardware indicates that the queues are out of reset. */ loop = HZ; mask = (u32)oct->io_qmask.oq; d32 = octeon_read_csr(oct, CN6XXX_SLI_PORT_IN_RST_OQ); while (((d32 & mask) != mask) && loop--) { d32 = octeon_read_csr(oct, CN6XXX_SLI_PORT_IN_RST_OQ); schedule_timeout_uninterruptible(1); } ; /* Reset the doorbell register for each Output queue. */ for (i = 0; i < MAX_OCTEON_OUTPUT_QUEUES(oct); i++) { if (!(oct->io_qmask.oq & BIT_ULL(i))) continue; octeon_write_csr(oct, CN6XXX_SLI_OQ_PKTS_CREDIT(i), 0xFFFFFFFF); d32 = octeon_read_csr(oct, CN6XXX_SLI_OQ_PKTS_CREDIT(i)); d32 = octeon_read_csr(oct, CN6XXX_SLI_OQ_PKTS_SENT(i)); octeon_write_csr(oct, CN6XXX_SLI_OQ_PKTS_SENT(i), d32); } d32 = octeon_read_csr(oct, CN6XXX_SLI_PKT_CNT_INT); if (d32) octeon_write_csr(oct, CN6XXX_SLI_PKT_CNT_INT, d32); d32 = octeon_read_csr(oct, CN6XXX_SLI_PKT_TIME_INT); if (d32) octeon_write_csr(oct, CN6XXX_SLI_PKT_TIME_INT, d32); } void lio_cn6xxx_bar1_idx_setup(struct octeon_device *oct, u64 core_addr, u32 idx, int valid) { u64 bar1; if (valid == 0) { bar1 = lio_pci_readq(oct, CN6XXX_BAR1_REG(idx, oct->pcie_port)); lio_pci_writeq(oct, (bar1 & 0xFFFFFFFEULL), CN6XXX_BAR1_REG(idx, oct->pcie_port)); bar1 = lio_pci_readq(oct, CN6XXX_BAR1_REG(idx, oct->pcie_port)); return; } /* Bits 17:4 of the PCI_BAR1_INDEXx stores bits 35:22 of * the Core Addr */ lio_pci_writeq(oct, (((core_addr >> 22) << 4) | PCI_BAR1_MASK), CN6XXX_BAR1_REG(idx, oct->pcie_port)); bar1 = lio_pci_readq(oct, CN6XXX_BAR1_REG(idx, oct->pcie_port)); } void lio_cn6xxx_bar1_idx_write(struct octeon_device *oct, u32 idx, u32 mask) { lio_pci_writeq(oct, mask, CN6XXX_BAR1_REG(idx, oct->pcie_port)); } u32 lio_cn6xxx_bar1_idx_read(struct octeon_device *oct, u32 idx) { return (u32)lio_pci_readq(oct, CN6XXX_BAR1_REG(idx, oct->pcie_port)); } u32 lio_cn6xxx_update_read_index(struct octeon_instr_queue *iq) { u32 new_idx = readl(iq->inst_cnt_reg); /* The new instr cnt reg is a 32-bit counter that can roll over. We have * noted the counter's initial value at init time into * reset_instr_cnt */ if (iq->reset_instr_cnt < new_idx) new_idx -= iq->reset_instr_cnt; else new_idx += (0xffffffff - iq->reset_instr_cnt) + 1; /* Modulo of the new index with the IQ size will give us * the new index. */ new_idx %= iq->max_count; return new_idx; } void lio_cn6xxx_enable_interrupt(struct octeon_device *oct, u8 unused __attribute__((unused))) { struct octeon_cn6xxx *cn6xxx = (struct octeon_cn6xxx *)oct->chip; u64 mask = cn6xxx->intr_mask64 | CN6XXX_INTR_DMA0_FORCE; /* Enable Interrupt */ writeq(mask, cn6xxx->intr_enb_reg64); } void lio_cn6xxx_disable_interrupt(struct octeon_device *oct, u8 unused __attribute__((unused))) { struct octeon_cn6xxx *cn6xxx = (struct octeon_cn6xxx *)oct->chip; /* Disable Interrupts */ writeq(0, cn6xxx->intr_enb_reg64); /* make sure interrupts are really disabled */ mmiowb(); } static void lio_cn6xxx_get_pcie_qlmport(struct octeon_device *oct) { /* CN63xx Pass2 and newer parts implements the SLI_MAC_NUMBER register * to determine the PCIE port # */ oct->pcie_port = octeon_read_csr(oct, CN6XXX_SLI_MAC_NUMBER) & 0xff; dev_dbg(&oct->pci_dev->dev, "Using PCIE Port %d\n", oct->pcie_port); } static void lio_cn6xxx_process_pcie_error_intr(struct octeon_device *oct, u64 intr64) { dev_err(&oct->pci_dev->dev, "Error Intr: 0x%016llx\n", CVM_CAST64(intr64)); } static int lio_cn6xxx_process_droq_intr_regs(struct octeon_device *oct) { struct octeon_droq *droq; int oq_no; u32 pkt_count, droq_time_mask, droq_mask, droq_int_enb; u32 droq_cnt_enb, droq_cnt_mask; droq_cnt_enb = octeon_read_csr(oct, CN6XXX_SLI_PKT_CNT_INT_ENB); droq_cnt_mask = octeon_read_csr(oct, CN6XXX_SLI_PKT_CNT_INT); droq_mask = droq_cnt_mask & droq_cnt_enb; droq_time_mask = octeon_read_csr(oct, CN6XXX_SLI_PKT_TIME_INT); droq_int_enb = octeon_read_csr(oct, CN6XXX_SLI_PKT_TIME_INT_ENB); droq_mask |= (droq_time_mask & droq_int_enb); droq_mask &= oct->io_qmask.oq; oct->droq_intr = 0; for (oq_no = 0; oq_no < MAX_OCTEON_OUTPUT_QUEUES(oct); oq_no++) { if (!(droq_mask & BIT_ULL(oq_no))) continue; droq = oct->droq[oq_no]; pkt_count = octeon_droq_check_hw_for_pkts(droq); if (pkt_count) { oct->droq_intr |= BIT_ULL(oq_no); if (droq->ops.poll_mode) { u32 value; u32 reg; struct octeon_cn6xxx *cn6xxx = (struct octeon_cn6xxx *)oct->chip; /* disable interrupts for this droq */ spin_lock (&cn6xxx->lock_for_droq_int_enb_reg); reg = CN6XXX_SLI_PKT_TIME_INT_ENB; value = octeon_read_csr(oct, reg); value &= ~(1 << oq_no); octeon_write_csr(oct, reg, value); reg = CN6XXX_SLI_PKT_CNT_INT_ENB; value = octeon_read_csr(oct, reg); value &= ~(1 << oq_no); octeon_write_csr(oct, reg, value); /* Ensure that the enable register is written. */ mmiowb(); spin_unlock(&cn6xxx->lock_for_droq_int_enb_reg); } } } droq_time_mask &= oct->io_qmask.oq; droq_cnt_mask &= oct->io_qmask.oq; /* Reset the PKT_CNT/TIME_INT registers. */ if (droq_time_mask) octeon_write_csr(oct, CN6XXX_SLI_PKT_TIME_INT, droq_time_mask); if (droq_cnt_mask) /* reset PKT_CNT register:66xx */ octeon_write_csr(oct, CN6XXX_SLI_PKT_CNT_INT, droq_cnt_mask); return 0; } irqreturn_t lio_cn6xxx_process_interrupt_regs(void *dev) { struct octeon_device *oct = (struct octeon_device *)dev; struct octeon_cn6xxx *cn6xxx = (struct octeon_cn6xxx *)oct->chip; u64 intr64; intr64 = readq(cn6xxx->intr_sum_reg64); /* If our device has interrupted, then proceed. * Also check for all f's if interrupt was triggered on an error * and the PCI read fails. */ if (!intr64 || (intr64 == 0xFFFFFFFFFFFFFFFFULL)) return IRQ_NONE; oct->int_status = 0; if (intr64 & CN6XXX_INTR_ERR) lio_cn6xxx_process_pcie_error_intr(oct, intr64); if (intr64 & CN6XXX_INTR_PKT_DATA) { lio_cn6xxx_process_droq_intr_regs(oct); oct->int_status |= OCT_DEV_INTR_PKT_DATA; } if (intr64 & CN6XXX_INTR_DMA0_FORCE) oct->int_status |= OCT_DEV_INTR_DMA0_FORCE; if (intr64 & CN6XXX_INTR_DMA1_FORCE) oct->int_status |= OCT_DEV_INTR_DMA1_FORCE; /* Clear the current interrupts */ writeq(intr64, cn6xxx->intr_sum_reg64); return IRQ_HANDLED; } void lio_cn6xxx_setup_reg_address(struct octeon_device *oct, void *chip, struct octeon_reg_list *reg_list) { u8 __iomem *bar0_pciaddr = oct->mmio[0].hw_addr; struct octeon_cn6xxx *cn6xxx = (struct octeon_cn6xxx *)chip; reg_list->pci_win_wr_addr_hi = (u32 __iomem *)(bar0_pciaddr + CN6XXX_WIN_WR_ADDR_HI); reg_list->pci_win_wr_addr_lo = (u32 __iomem *)(bar0_pciaddr + CN6XXX_WIN_WR_ADDR_LO); reg_list->pci_win_wr_addr = (u64 __iomem *)(bar0_pciaddr + CN6XXX_WIN_WR_ADDR64); reg_list->pci_win_rd_addr_hi = (u32 __iomem *)(bar0_pciaddr + CN6XXX_WIN_RD_ADDR_HI); reg_list->pci_win_rd_addr_lo = (u32 __iomem *)(bar0_pciaddr + CN6XXX_WIN_RD_ADDR_LO); reg_list->pci_win_rd_addr = (u64 __iomem *)(bar0_pciaddr + CN6XXX_WIN_RD_ADDR64); reg_list->pci_win_wr_data_hi = (u32 __iomem *)(bar0_pciaddr + CN6XXX_WIN_WR_DATA_HI); reg_list->pci_win_wr_data_lo = (u32 __iomem *)(bar0_pciaddr + CN6XXX_WIN_WR_DATA_LO); reg_list->pci_win_wr_data = (u64 __iomem *)(bar0_pciaddr + CN6XXX_WIN_WR_DATA64); reg_list->pci_win_rd_data_hi = (u32 __iomem *)(bar0_pciaddr + CN6XXX_WIN_RD_DATA_HI); reg_list->pci_win_rd_data_lo = (u32 __iomem *)(bar0_pciaddr + CN6XXX_WIN_RD_DATA_LO); reg_list->pci_win_rd_data = (u64 __iomem *)(bar0_pciaddr + CN6XXX_WIN_RD_DATA64); lio_cn6xxx_get_pcie_qlmport(oct); cn6xxx->intr_sum_reg64 = bar0_pciaddr + CN6XXX_SLI_INT_SUM64; cn6xxx->intr_mask64 = CN6XXX_INTR_MASK; cn6xxx->intr_enb_reg64 = bar0_pciaddr + CN6XXX_SLI_INT_ENB64(oct->pcie_port); } int lio_setup_cn66xx_octeon_device(struct octeon_device *oct) { struct octeon_cn6xxx *cn6xxx = (struct octeon_cn6xxx *)oct->chip; if (octeon_map_pci_barx(oct, 0, 0)) return 1; if (octeon_map_pci_barx(oct, 1, MAX_BAR1_IOREMAP_SIZE)) { dev_err(&oct->pci_dev->dev, "%s CN66XX BAR1 map failed\n", __func__); octeon_unmap_pci_barx(oct, 0); return 1; } spin_lock_init(&cn6xxx->lock_for_droq_int_enb_reg); oct->fn_list.setup_iq_regs = lio_cn66xx_setup_iq_regs; oct->fn_list.setup_oq_regs = lio_cn6xxx_setup_oq_regs; oct->fn_list.soft_reset = lio_cn6xxx_soft_reset; oct->fn_list.setup_device_regs = lio_cn6xxx_setup_device_regs; oct->fn_list.update_iq_read_idx = lio_cn6xxx_update_read_index; oct->fn_list.bar1_idx_setup = lio_cn6xxx_bar1_idx_setup; oct->fn_list.bar1_idx_write = lio_cn6xxx_bar1_idx_write; oct->fn_list.bar1_idx_read = lio_cn6xxx_bar1_idx_read; oct->fn_list.process_interrupt_regs = lio_cn6xxx_process_interrupt_regs; oct->fn_list.enable_interrupt = lio_cn6xxx_enable_interrupt; oct->fn_list.disable_interrupt = lio_cn6xxx_disable_interrupt; oct->fn_list.enable_io_queues = lio_cn6xxx_enable_io_queues; oct->fn_list.disable_io_queues = lio_cn6xxx_disable_io_queues; lio_cn6xxx_setup_reg_address(oct, oct->chip, &oct->reg_list); cn6xxx->conf = (struct octeon_config *) oct_get_config_info(oct, LIO_210SV); if (!cn6xxx->conf) { dev_err(&oct->pci_dev->dev, "%s No Config found for CN66XX\n", __func__); octeon_unmap_pci_barx(oct, 0); octeon_unmap_pci_barx(oct, 1); return 1; } oct->coproc_clock_rate = 1000000ULL * lio_cn6xxx_coprocessor_clock(oct); return 0; } int lio_validate_cn6xxx_config_info(struct octeon_device *oct, struct octeon_config *conf6xxx) { if (CFG_GET_IQ_MAX_Q(conf6xxx) > CN6XXX_MAX_INPUT_QUEUES) { dev_err(&oct->pci_dev->dev, "%s: Num IQ (%d) exceeds Max (%d)\n", __func__, CFG_GET_IQ_MAX_Q(conf6xxx), CN6XXX_MAX_INPUT_QUEUES); return 1; } if (CFG_GET_OQ_MAX_Q(conf6xxx) > CN6XXX_MAX_OUTPUT_QUEUES) { dev_err(&oct->pci_dev->dev, "%s: Num OQ (%d) exceeds Max (%d)\n", __func__, CFG_GET_OQ_MAX_Q(conf6xxx), CN6XXX_MAX_OUTPUT_QUEUES); return 1; } if (CFG_GET_IQ_INSTR_TYPE(conf6xxx) != OCTEON_32BYTE_INSTR && CFG_GET_IQ_INSTR_TYPE(conf6xxx) != OCTEON_64BYTE_INSTR) { dev_err(&oct->pci_dev->dev, "%s: Invalid instr type for IQ\n", __func__); return 1; } if (!CFG_GET_OQ_REFILL_THRESHOLD(conf6xxx)) { dev_err(&oct->pci_dev->dev, "%s: Invalid parameter for OQ\n", __func__); return 1; } if (!(CFG_GET_OQ_INTR_TIME(conf6xxx))) { dev_err(&oct->pci_dev->dev, "%s: No Time Interrupt for OQ\n", __func__); return 1; } return 0; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1