Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Sunil Goutham | 6066 | 83.31% | 20 | 55.56% |
Vadim Lomovtsev | 421 | 5.78% | 5 | 13.89% |
Jerin Jacob | 260 | 3.57% | 1 | 2.78% |
Thanneeru Srinivasulu | 203 | 2.79% | 2 | 5.56% |
Zyta Szpak | 149 | 2.05% | 1 | 2.78% |
Pavel Fedin | 81 | 1.11% | 1 | 2.78% |
Aleksey Makarov | 58 | 0.80% | 2 | 5.56% |
Radoslaw Biernacki | 33 | 0.45% | 1 | 2.78% |
Lorenzo Bianconi | 6 | 0.08% | 1 | 2.78% |
David Daney | 3 | 0.04% | 1 | 2.78% |
Robert Richter | 1 | 0.01% | 1 | 2.78% |
Total | 7281 | 36 |
/* * Copyright (C) 2015 Cavium, Inc. * * This program is free software; you can redistribute it and/or modify it * under the terms of version 2 of the GNU General Public License * as published by the Free Software Foundation. */ #include <linux/module.h> #include <linux/interrupt.h> #include <linux/pci.h> #include <linux/etherdevice.h> #include <linux/of.h> #include <linux/if_vlan.h> #include "nic_reg.h" #include "nic.h" #include "q_struct.h" #include "thunder_bgx.h" #define DRV_NAME "nicpf" #define DRV_VERSION "1.0" #define NIC_VF_PER_MBX_REG 64 struct hw_info { u8 bgx_cnt; u8 chans_per_lmac; u8 chans_per_bgx; /* Rx/Tx chans */ u8 chans_per_rgx; u8 chans_per_lbk; u16 cpi_cnt; u16 rssi_cnt; u16 rss_ind_tbl_size; u16 tl4_cnt; u16 tl3_cnt; u8 tl2_cnt; u8 tl1_cnt; bool tl1_per_bgx; /* TL1 per BGX or per LMAC */ }; struct nicpf { struct pci_dev *pdev; struct hw_info *hw; u8 node; unsigned int flags; u8 num_vf_en; /* No of VF enabled */ bool vf_enabled[MAX_NUM_VFS_SUPPORTED]; void __iomem *reg_base; /* Register start address */ u8 num_sqs_en; /* Secondary qsets enabled */ u64 nicvf[MAX_NUM_VFS_SUPPORTED]; u8 vf_sqs[MAX_NUM_VFS_SUPPORTED][MAX_SQS_PER_VF]; u8 pqs_vf[MAX_NUM_VFS_SUPPORTED]; bool sqs_used[MAX_NUM_VFS_SUPPORTED]; struct pkind_cfg pkind; #define NIC_SET_VF_LMAC_MAP(bgx, lmac) (((bgx & 0xF) << 4) | (lmac & 0xF)) #define NIC_GET_BGX_FROM_VF_LMAC_MAP(map) ((map >> 4) & 0xF) #define NIC_GET_LMAC_FROM_VF_LMAC_MAP(map) (map & 0xF) u8 *vf_lmac_map; u16 cpi_base[MAX_NUM_VFS_SUPPORTED]; u16 rssi_base[MAX_NUM_VFS_SUPPORTED]; /* MSI-X */ u8 num_vec; bool irq_allocated[NIC_PF_MSIX_VECTORS]; char irq_name[NIC_PF_MSIX_VECTORS][20]; }; /* Supported devices */ static const struct pci_device_id nic_id_table[] = { { PCI_DEVICE(PCI_VENDOR_ID_CAVIUM, PCI_DEVICE_ID_THUNDER_NIC_PF) }, { 0, } /* end of table */ }; MODULE_AUTHOR("Sunil Goutham"); MODULE_DESCRIPTION("Cavium Thunder NIC Physical Function Driver"); MODULE_LICENSE("GPL v2"); MODULE_VERSION(DRV_VERSION); MODULE_DEVICE_TABLE(pci, nic_id_table); /* The Cavium ThunderX network controller can *only* be found in SoCs * containing the ThunderX ARM64 CPU implementation. All accesses to the device * registers on this platform are implicitly strongly ordered with respect * to memory accesses. So writeq_relaxed() and readq_relaxed() are safe to use * with no memory barriers in this driver. The readq()/writeq() functions add * explicit ordering operation which in this case are redundant, and only * add overhead. */ /* Register read/write APIs */ static void nic_reg_write(struct nicpf *nic, u64 offset, u64 val) { writeq_relaxed(val, nic->reg_base + offset); } static u64 nic_reg_read(struct nicpf *nic, u64 offset) { return readq_relaxed(nic->reg_base + offset); } /* PF -> VF mailbox communication APIs */ static void nic_enable_mbx_intr(struct nicpf *nic) { int vf_cnt = pci_sriov_get_totalvfs(nic->pdev); #define INTR_MASK(vfs) ((vfs < 64) ? (BIT_ULL(vfs) - 1) : (~0ull)) /* Clear it, to avoid spurious interrupts (if any) */ nic_reg_write(nic, NIC_PF_MAILBOX_INT, INTR_MASK(vf_cnt)); /* Enable mailbox interrupt for all VFs */ nic_reg_write(nic, NIC_PF_MAILBOX_ENA_W1S, INTR_MASK(vf_cnt)); /* One mailbox intr enable reg per 64 VFs */ if (vf_cnt > 64) { nic_reg_write(nic, NIC_PF_MAILBOX_INT + sizeof(u64), INTR_MASK(vf_cnt - 64)); nic_reg_write(nic, NIC_PF_MAILBOX_ENA_W1S + sizeof(u64), INTR_MASK(vf_cnt - 64)); } } static void nic_clear_mbx_intr(struct nicpf *nic, int vf, int mbx_reg) { nic_reg_write(nic, NIC_PF_MAILBOX_INT + (mbx_reg << 3), BIT_ULL(vf)); } static u64 nic_get_mbx_addr(int vf) { return NIC_PF_VF_0_127_MAILBOX_0_1 + (vf << NIC_VF_NUM_SHIFT); } /* Send a mailbox message to VF * @vf: vf to which this message to be sent * @mbx: Message to be sent */ static void nic_send_msg_to_vf(struct nicpf *nic, int vf, union nic_mbx *mbx) { void __iomem *mbx_addr = nic->reg_base + nic_get_mbx_addr(vf); u64 *msg = (u64 *)mbx; /* In first revision HW, mbox interrupt is triggerred * when PF writes to MBOX(1), in next revisions when * PF writes to MBOX(0) */ if (pass1_silicon(nic->pdev)) { /* see the comment for nic_reg_write()/nic_reg_read() * functions above */ writeq_relaxed(msg[0], mbx_addr); writeq_relaxed(msg[1], mbx_addr + 8); } else { writeq_relaxed(msg[1], mbx_addr + 8); writeq_relaxed(msg[0], mbx_addr); } } /* Responds to VF's READY message with VF's * ID, node, MAC address e.t.c * @vf: VF which sent READY message */ static void nic_mbx_send_ready(struct nicpf *nic, int vf) { union nic_mbx mbx = {}; int bgx_idx, lmac; const char *mac; mbx.nic_cfg.msg = NIC_MBOX_MSG_READY; mbx.nic_cfg.vf_id = vf; mbx.nic_cfg.tns_mode = NIC_TNS_BYPASS_MODE; if (vf < nic->num_vf_en) { bgx_idx = NIC_GET_BGX_FROM_VF_LMAC_MAP(nic->vf_lmac_map[vf]); lmac = NIC_GET_LMAC_FROM_VF_LMAC_MAP(nic->vf_lmac_map[vf]); mac = bgx_get_lmac_mac(nic->node, bgx_idx, lmac); if (mac) ether_addr_copy((u8 *)&mbx.nic_cfg.mac_addr, mac); } mbx.nic_cfg.sqs_mode = (vf >= nic->num_vf_en) ? true : false; mbx.nic_cfg.node_id = nic->node; mbx.nic_cfg.loopback_supported = vf < nic->num_vf_en; nic_send_msg_to_vf(nic, vf, &mbx); } /* ACKs VF's mailbox message * @vf: VF to which ACK to be sent */ static void nic_mbx_send_ack(struct nicpf *nic, int vf) { union nic_mbx mbx = {}; mbx.msg.msg = NIC_MBOX_MSG_ACK; nic_send_msg_to_vf(nic, vf, &mbx); } /* NACKs VF's mailbox message that PF is not able to * complete the action * @vf: VF to which ACK to be sent */ static void nic_mbx_send_nack(struct nicpf *nic, int vf) { union nic_mbx mbx = {}; mbx.msg.msg = NIC_MBOX_MSG_NACK; nic_send_msg_to_vf(nic, vf, &mbx); } /* Flush all in flight receive packets to memory and * bring down an active RQ */ static int nic_rcv_queue_sw_sync(struct nicpf *nic) { u16 timeout = ~0x00; nic_reg_write(nic, NIC_PF_SW_SYNC_RX, 0x01); /* Wait till sync cycle is finished */ while (timeout) { if (nic_reg_read(nic, NIC_PF_SW_SYNC_RX_DONE) & 0x1) break; timeout--; } nic_reg_write(nic, NIC_PF_SW_SYNC_RX, 0x00); if (!timeout) { dev_err(&nic->pdev->dev, "Receive queue software sync failed"); return 1; } return 0; } /* Get BGX Rx/Tx stats and respond to VF's request */ static void nic_get_bgx_stats(struct nicpf *nic, struct bgx_stats_msg *bgx) { int bgx_idx, lmac; union nic_mbx mbx = {}; bgx_idx = NIC_GET_BGX_FROM_VF_LMAC_MAP(nic->vf_lmac_map[bgx->vf_id]); lmac = NIC_GET_LMAC_FROM_VF_LMAC_MAP(nic->vf_lmac_map[bgx->vf_id]); mbx.bgx_stats.msg = NIC_MBOX_MSG_BGX_STATS; mbx.bgx_stats.vf_id = bgx->vf_id; mbx.bgx_stats.rx = bgx->rx; mbx.bgx_stats.idx = bgx->idx; if (bgx->rx) mbx.bgx_stats.stats = bgx_get_rx_stats(nic->node, bgx_idx, lmac, bgx->idx); else mbx.bgx_stats.stats = bgx_get_tx_stats(nic->node, bgx_idx, lmac, bgx->idx); nic_send_msg_to_vf(nic, bgx->vf_id, &mbx); } /* Update hardware min/max frame size */ static int nic_update_hw_frs(struct nicpf *nic, int new_frs, int vf) { int bgx, lmac, lmac_cnt; u64 lmac_credits; if ((new_frs > NIC_HW_MAX_FRS) || (new_frs < NIC_HW_MIN_FRS)) return 1; bgx = NIC_GET_BGX_FROM_VF_LMAC_MAP(nic->vf_lmac_map[vf]); lmac = NIC_GET_LMAC_FROM_VF_LMAC_MAP(nic->vf_lmac_map[vf]); lmac += bgx * MAX_LMAC_PER_BGX; new_frs += VLAN_ETH_HLEN + ETH_FCS_LEN + 4; /* Update corresponding LMAC credits */ lmac_cnt = bgx_get_lmac_count(nic->node, bgx); lmac_credits = nic_reg_read(nic, NIC_PF_LMAC_0_7_CREDIT + (lmac * 8)); lmac_credits &= ~(0xFFFFFULL << 12); lmac_credits |= (((((48 * 1024) / lmac_cnt) - new_frs) / 16) << 12); nic_reg_write(nic, NIC_PF_LMAC_0_7_CREDIT + (lmac * 8), lmac_credits); /* Enforce MTU in HW * This config is supported only from 88xx pass 2.0 onwards. */ if (!pass1_silicon(nic->pdev)) nic_reg_write(nic, NIC_PF_LMAC_0_7_CFG2 + (lmac * 8), new_frs); return 0; } /* Set minimum transmit packet size */ static void nic_set_tx_pkt_pad(struct nicpf *nic, int size) { int lmac, max_lmac; u16 sdevid; u64 lmac_cfg; /* There is a issue in HW where-in while sending GSO sized * pkts as part of TSO, if pkt len falls below this size * NIC will zero PAD packet and also updates IP total length. * Hence set this value to lessthan min pkt size of MAC+IP+TCP * headers, BGX will do the padding to transmit 64 byte pkt. */ if (size > 52) size = 52; pci_read_config_word(nic->pdev, PCI_SUBSYSTEM_ID, &sdevid); /* 81xx's RGX has only one LMAC */ if (sdevid == PCI_SUBSYS_DEVID_81XX_NIC_PF) max_lmac = ((nic->hw->bgx_cnt - 1) * MAX_LMAC_PER_BGX) + 1; else max_lmac = nic->hw->bgx_cnt * MAX_LMAC_PER_BGX; for (lmac = 0; lmac < max_lmac; lmac++) { lmac_cfg = nic_reg_read(nic, NIC_PF_LMAC_0_7_CFG | (lmac << 3)); lmac_cfg &= ~(0xF << 2); lmac_cfg |= ((size / 4) << 2); nic_reg_write(nic, NIC_PF_LMAC_0_7_CFG | (lmac << 3), lmac_cfg); } } /* Function to check number of LMACs present and set VF::LMAC mapping. * Mapping will be used while initializing channels. */ static void nic_set_lmac_vf_mapping(struct nicpf *nic) { unsigned bgx_map = bgx_get_map(nic->node); int bgx, next_bgx_lmac = 0; int lmac, lmac_cnt = 0; u64 lmac_credit; nic->num_vf_en = 0; for (bgx = 0; bgx < nic->hw->bgx_cnt; bgx++) { if (!(bgx_map & (1 << bgx))) continue; lmac_cnt = bgx_get_lmac_count(nic->node, bgx); for (lmac = 0; lmac < lmac_cnt; lmac++) nic->vf_lmac_map[next_bgx_lmac++] = NIC_SET_VF_LMAC_MAP(bgx, lmac); nic->num_vf_en += lmac_cnt; /* Program LMAC credits */ lmac_credit = (1ull << 1); /* channel credit enable */ lmac_credit |= (0x1ff << 2); /* Max outstanding pkt count */ /* 48KB BGX Tx buffer size, each unit is of size 16bytes */ lmac_credit |= (((((48 * 1024) / lmac_cnt) - NIC_HW_MAX_FRS) / 16) << 12); lmac = bgx * MAX_LMAC_PER_BGX; for (; lmac < lmac_cnt + (bgx * MAX_LMAC_PER_BGX); lmac++) nic_reg_write(nic, NIC_PF_LMAC_0_7_CREDIT + (lmac * 8), lmac_credit); /* On CN81XX there are only 8 VFs but max possible no of * interfaces are 9. */ if (nic->num_vf_en >= pci_sriov_get_totalvfs(nic->pdev)) { nic->num_vf_en = pci_sriov_get_totalvfs(nic->pdev); break; } } } static void nic_get_hw_info(struct nicpf *nic) { u16 sdevid; struct hw_info *hw = nic->hw; pci_read_config_word(nic->pdev, PCI_SUBSYSTEM_ID, &sdevid); switch (sdevid) { case PCI_SUBSYS_DEVID_88XX_NIC_PF: hw->bgx_cnt = MAX_BGX_PER_CN88XX; hw->chans_per_lmac = 16; hw->chans_per_bgx = 128; hw->cpi_cnt = 2048; hw->rssi_cnt = 4096; hw->rss_ind_tbl_size = NIC_MAX_RSS_IDR_TBL_SIZE; hw->tl3_cnt = 256; hw->tl2_cnt = 64; hw->tl1_cnt = 2; hw->tl1_per_bgx = true; break; case PCI_SUBSYS_DEVID_81XX_NIC_PF: hw->bgx_cnt = MAX_BGX_PER_CN81XX; hw->chans_per_lmac = 8; hw->chans_per_bgx = 32; hw->chans_per_rgx = 8; hw->chans_per_lbk = 24; hw->cpi_cnt = 512; hw->rssi_cnt = 256; hw->rss_ind_tbl_size = 32; /* Max RSSI / Max interfaces */ hw->tl3_cnt = 64; hw->tl2_cnt = 16; hw->tl1_cnt = 10; hw->tl1_per_bgx = false; break; case PCI_SUBSYS_DEVID_83XX_NIC_PF: hw->bgx_cnt = MAX_BGX_PER_CN83XX; hw->chans_per_lmac = 8; hw->chans_per_bgx = 32; hw->chans_per_lbk = 64; hw->cpi_cnt = 2048; hw->rssi_cnt = 1024; hw->rss_ind_tbl_size = 64; /* Max RSSI / Max interfaces */ hw->tl3_cnt = 256; hw->tl2_cnt = 64; hw->tl1_cnt = 18; hw->tl1_per_bgx = false; break; } hw->tl4_cnt = MAX_QUEUES_PER_QSET * pci_sriov_get_totalvfs(nic->pdev); } #define BGX0_BLOCK 8 #define BGX1_BLOCK 9 static void nic_init_hw(struct nicpf *nic) { int i; u64 cqm_cfg; /* Enable NIC HW block */ nic_reg_write(nic, NIC_PF_CFG, 0x3); /* Enable backpressure */ nic_reg_write(nic, NIC_PF_BP_CFG, (1ULL << 6) | 0x03); /* TNS and TNS bypass modes are present only on 88xx * Also offset of this CSR has changed in 81xx and 83xx. */ if (nic->pdev->subsystem_device == PCI_SUBSYS_DEVID_88XX_NIC_PF) { /* Disable TNS mode on both interfaces */ nic_reg_write(nic, NIC_PF_INTF_0_1_SEND_CFG, (NIC_TNS_BYPASS_MODE << 7) | BGX0_BLOCK | (1ULL << 16)); nic_reg_write(nic, NIC_PF_INTF_0_1_SEND_CFG | (1 << 8), (NIC_TNS_BYPASS_MODE << 7) | BGX1_BLOCK | (1ULL << 16)); } else { /* Configure timestamp generation timeout to 10us */ for (i = 0; i < nic->hw->bgx_cnt; i++) nic_reg_write(nic, NIC_PF_INTFX_SEND_CFG | (i << 3), (1ULL << 16)); } nic_reg_write(nic, NIC_PF_INTF_0_1_BP_CFG, (1ULL << 63) | BGX0_BLOCK); nic_reg_write(nic, NIC_PF_INTF_0_1_BP_CFG + (1 << 8), (1ULL << 63) | BGX1_BLOCK); /* PKIND configuration */ nic->pkind.minlen = 0; nic->pkind.maxlen = NIC_HW_MAX_FRS + VLAN_ETH_HLEN + ETH_FCS_LEN + 4; nic->pkind.lenerr_en = 1; nic->pkind.rx_hdr = 0; nic->pkind.hdr_sl = 0; for (i = 0; i < NIC_MAX_PKIND; i++) nic_reg_write(nic, NIC_PF_PKIND_0_15_CFG | (i << 3), *(u64 *)&nic->pkind); nic_set_tx_pkt_pad(nic, NIC_HW_MIN_FRS); /* Timer config */ nic_reg_write(nic, NIC_PF_INTR_TIMER_CFG, NICPF_CLK_PER_INT_TICK); /* Enable VLAN ethertype matching and stripping */ nic_reg_write(nic, NIC_PF_RX_ETYPE_0_7, (2 << 19) | (ETYPE_ALG_VLAN_STRIP << 16) | ETH_P_8021Q); /* Check if HW expected value is higher (could be in future chips) */ cqm_cfg = nic_reg_read(nic, NIC_PF_CQM_CFG); if (cqm_cfg < NICPF_CQM_MIN_DROP_LEVEL) nic_reg_write(nic, NIC_PF_CQM_CFG, NICPF_CQM_MIN_DROP_LEVEL); } /* Channel parse index configuration */ static void nic_config_cpi(struct nicpf *nic, struct cpi_cfg_msg *cfg) { struct hw_info *hw = nic->hw; u32 vnic, bgx, lmac, chan; u32 padd, cpi_count = 0; u64 cpi_base, cpi, rssi_base, rssi; u8 qset, rq_idx = 0; vnic = cfg->vf_id; bgx = NIC_GET_BGX_FROM_VF_LMAC_MAP(nic->vf_lmac_map[vnic]); lmac = NIC_GET_LMAC_FROM_VF_LMAC_MAP(nic->vf_lmac_map[vnic]); chan = (lmac * hw->chans_per_lmac) + (bgx * hw->chans_per_bgx); cpi_base = vnic * NIC_MAX_CPI_PER_LMAC; rssi_base = vnic * hw->rss_ind_tbl_size; /* Rx channel configuration */ nic_reg_write(nic, NIC_PF_CHAN_0_255_RX_BP_CFG | (chan << 3), (1ull << 63) | (vnic << 0)); nic_reg_write(nic, NIC_PF_CHAN_0_255_RX_CFG | (chan << 3), ((u64)cfg->cpi_alg << 62) | (cpi_base << 48)); if (cfg->cpi_alg == CPI_ALG_NONE) cpi_count = 1; else if (cfg->cpi_alg == CPI_ALG_VLAN) /* 3 bits of PCP */ cpi_count = 8; else if (cfg->cpi_alg == CPI_ALG_VLAN16) /* 3 bits PCP + DEI */ cpi_count = 16; else if (cfg->cpi_alg == CPI_ALG_DIFF) /* 6bits DSCP */ cpi_count = NIC_MAX_CPI_PER_LMAC; /* RSS Qset, Qidx mapping */ qset = cfg->vf_id; rssi = rssi_base; for (; rssi < (rssi_base + cfg->rq_cnt); rssi++) { nic_reg_write(nic, NIC_PF_RSSI_0_4097_RQ | (rssi << 3), (qset << 3) | rq_idx); rq_idx++; } rssi = 0; cpi = cpi_base; for (; cpi < (cpi_base + cpi_count); cpi++) { /* Determine port to channel adder */ if (cfg->cpi_alg != CPI_ALG_DIFF) padd = cpi % cpi_count; else padd = cpi % 8; /* 3 bits CS out of 6bits DSCP */ /* Leave RSS_SIZE as '0' to disable RSS */ if (pass1_silicon(nic->pdev)) { nic_reg_write(nic, NIC_PF_CPI_0_2047_CFG | (cpi << 3), (vnic << 24) | (padd << 16) | (rssi_base + rssi)); } else { /* Set MPI_ALG to '0' to disable MCAM parsing */ nic_reg_write(nic, NIC_PF_CPI_0_2047_CFG | (cpi << 3), (padd << 16)); /* MPI index is same as CPI if MPI_ALG is not enabled */ nic_reg_write(nic, NIC_PF_MPI_0_2047_CFG | (cpi << 3), (vnic << 24) | (rssi_base + rssi)); } if ((rssi + 1) >= cfg->rq_cnt) continue; if (cfg->cpi_alg == CPI_ALG_VLAN) rssi++; else if (cfg->cpi_alg == CPI_ALG_VLAN16) rssi = ((cpi - cpi_base) & 0xe) >> 1; else if (cfg->cpi_alg == CPI_ALG_DIFF) rssi = ((cpi - cpi_base) & 0x38) >> 3; } nic->cpi_base[cfg->vf_id] = cpi_base; nic->rssi_base[cfg->vf_id] = rssi_base; } /* Responsds to VF with its RSS indirection table size */ static void nic_send_rss_size(struct nicpf *nic, int vf) { union nic_mbx mbx = {}; mbx.rss_size.msg = NIC_MBOX_MSG_RSS_SIZE; mbx.rss_size.ind_tbl_size = nic->hw->rss_ind_tbl_size; nic_send_msg_to_vf(nic, vf, &mbx); } /* Receive side scaling configuration * configure: * - RSS index * - indir table i.e hash::RQ mapping * - no of hash bits to consider */ static void nic_config_rss(struct nicpf *nic, struct rss_cfg_msg *cfg) { u8 qset, idx = 0; u64 cpi_cfg, cpi_base, rssi_base, rssi; u64 idx_addr; rssi_base = nic->rssi_base[cfg->vf_id] + cfg->tbl_offset; rssi = rssi_base; for (; rssi < (rssi_base + cfg->tbl_len); rssi++) { u8 svf = cfg->ind_tbl[idx] >> 3; if (svf) qset = nic->vf_sqs[cfg->vf_id][svf - 1]; else qset = cfg->vf_id; nic_reg_write(nic, NIC_PF_RSSI_0_4097_RQ | (rssi << 3), (qset << 3) | (cfg->ind_tbl[idx] & 0x7)); idx++; } cpi_base = nic->cpi_base[cfg->vf_id]; if (pass1_silicon(nic->pdev)) idx_addr = NIC_PF_CPI_0_2047_CFG; else idx_addr = NIC_PF_MPI_0_2047_CFG; cpi_cfg = nic_reg_read(nic, idx_addr | (cpi_base << 3)); cpi_cfg &= ~(0xFULL << 20); cpi_cfg |= (cfg->hash_bits << 20); nic_reg_write(nic, idx_addr | (cpi_base << 3), cpi_cfg); } /* 4 level transmit side scheduler configutation * for TNS bypass mode * * Sample configuration for SQ0 on 88xx * VNIC0-SQ0 -> TL4(0) -> TL3[0] -> TL2[0] -> TL1[0] -> BGX0 * VNIC1-SQ0 -> TL4(8) -> TL3[2] -> TL2[0] -> TL1[0] -> BGX0 * VNIC2-SQ0 -> TL4(16) -> TL3[4] -> TL2[1] -> TL1[0] -> BGX0 * VNIC3-SQ0 -> TL4(24) -> TL3[6] -> TL2[1] -> TL1[0] -> BGX0 * VNIC4-SQ0 -> TL4(512) -> TL3[128] -> TL2[32] -> TL1[1] -> BGX1 * VNIC5-SQ0 -> TL4(520) -> TL3[130] -> TL2[32] -> TL1[1] -> BGX1 * VNIC6-SQ0 -> TL4(528) -> TL3[132] -> TL2[33] -> TL1[1] -> BGX1 * VNIC7-SQ0 -> TL4(536) -> TL3[134] -> TL2[33] -> TL1[1] -> BGX1 */ static void nic_tx_channel_cfg(struct nicpf *nic, u8 vnic, struct sq_cfg_msg *sq) { struct hw_info *hw = nic->hw; u32 bgx, lmac, chan; u32 tl2, tl3, tl4; u32 rr_quantum; u8 sq_idx = sq->sq_num; u8 pqs_vnic; int svf; if (sq->sqs_mode) pqs_vnic = nic->pqs_vf[vnic]; else pqs_vnic = vnic; bgx = NIC_GET_BGX_FROM_VF_LMAC_MAP(nic->vf_lmac_map[pqs_vnic]); lmac = NIC_GET_LMAC_FROM_VF_LMAC_MAP(nic->vf_lmac_map[pqs_vnic]); /* 24 bytes for FCS, IPG and preamble */ rr_quantum = ((NIC_HW_MAX_FRS + 24) / 4); /* For 88xx 0-511 TL4 transmits via BGX0 and * 512-1023 TL4s transmit via BGX1. */ if (hw->tl1_per_bgx) { tl4 = bgx * (hw->tl4_cnt / hw->bgx_cnt); if (!sq->sqs_mode) { tl4 += (lmac * MAX_QUEUES_PER_QSET); } else { for (svf = 0; svf < MAX_SQS_PER_VF; svf++) { if (nic->vf_sqs[pqs_vnic][svf] == vnic) break; } tl4 += (MAX_LMAC_PER_BGX * MAX_QUEUES_PER_QSET); tl4 += (lmac * MAX_QUEUES_PER_QSET * MAX_SQS_PER_VF); tl4 += (svf * MAX_QUEUES_PER_QSET); } } else { tl4 = (vnic * MAX_QUEUES_PER_QSET); } tl4 += sq_idx; tl3 = tl4 / (hw->tl4_cnt / hw->tl3_cnt); nic_reg_write(nic, NIC_PF_QSET_0_127_SQ_0_7_CFG2 | ((u64)vnic << NIC_QS_ID_SHIFT) | ((u32)sq_idx << NIC_Q_NUM_SHIFT), tl4); nic_reg_write(nic, NIC_PF_TL4_0_1023_CFG | (tl4 << 3), ((u64)vnic << 27) | ((u32)sq_idx << 24) | rr_quantum); nic_reg_write(nic, NIC_PF_TL3_0_255_CFG | (tl3 << 3), rr_quantum); /* On 88xx 0-127 channels are for BGX0 and * 127-255 channels for BGX1. * * On 81xx/83xx TL3_CHAN reg should be configured with channel * within LMAC i.e 0-7 and not the actual channel number like on 88xx */ chan = (lmac * hw->chans_per_lmac) + (bgx * hw->chans_per_bgx); if (hw->tl1_per_bgx) nic_reg_write(nic, NIC_PF_TL3_0_255_CHAN | (tl3 << 3), chan); else nic_reg_write(nic, NIC_PF_TL3_0_255_CHAN | (tl3 << 3), 0); /* Enable backpressure on the channel */ nic_reg_write(nic, NIC_PF_CHAN_0_255_TX_CFG | (chan << 3), 1); tl2 = tl3 >> 2; nic_reg_write(nic, NIC_PF_TL3A_0_63_CFG | (tl2 << 3), tl2); nic_reg_write(nic, NIC_PF_TL2_0_63_CFG | (tl2 << 3), rr_quantum); /* No priorities as of now */ nic_reg_write(nic, NIC_PF_TL2_0_63_PRI | (tl2 << 3), 0x00); /* Unlike 88xx where TL2s 0-31 transmits to TL1 '0' and rest to TL1 '1' * on 81xx/83xx TL2 needs to be configured to transmit to one of the * possible LMACs. * * This register doesn't exist on 88xx. */ if (!hw->tl1_per_bgx) nic_reg_write(nic, NIC_PF_TL2_LMAC | (tl2 << 3), lmac + (bgx * MAX_LMAC_PER_BGX)); } /* Send primary nicvf pointer to secondary QS's VF */ static void nic_send_pnicvf(struct nicpf *nic, int sqs) { union nic_mbx mbx = {}; mbx.nicvf.msg = NIC_MBOX_MSG_PNICVF_PTR; mbx.nicvf.nicvf = nic->nicvf[nic->pqs_vf[sqs]]; nic_send_msg_to_vf(nic, sqs, &mbx); } /* Send SQS's nicvf pointer to primary QS's VF */ static void nic_send_snicvf(struct nicpf *nic, struct nicvf_ptr *nicvf) { union nic_mbx mbx = {}; int sqs_id = nic->vf_sqs[nicvf->vf_id][nicvf->sqs_id]; mbx.nicvf.msg = NIC_MBOX_MSG_SNICVF_PTR; mbx.nicvf.sqs_id = nicvf->sqs_id; mbx.nicvf.nicvf = nic->nicvf[sqs_id]; nic_send_msg_to_vf(nic, nicvf->vf_id, &mbx); } /* Find next available Qset that can be assigned as a * secondary Qset to a VF. */ static int nic_nxt_avail_sqs(struct nicpf *nic) { int sqs; for (sqs = 0; sqs < nic->num_sqs_en; sqs++) { if (!nic->sqs_used[sqs]) nic->sqs_used[sqs] = true; else continue; return sqs + nic->num_vf_en; } return -1; } /* Allocate additional Qsets for requested VF */ static void nic_alloc_sqs(struct nicpf *nic, struct sqs_alloc *sqs) { union nic_mbx mbx = {}; int idx, alloc_qs = 0; int sqs_id; if (!nic->num_sqs_en) goto send_mbox; for (idx = 0; idx < sqs->qs_count; idx++) { sqs_id = nic_nxt_avail_sqs(nic); if (sqs_id < 0) break; nic->vf_sqs[sqs->vf_id][idx] = sqs_id; nic->pqs_vf[sqs_id] = sqs->vf_id; alloc_qs++; } send_mbox: mbx.sqs_alloc.msg = NIC_MBOX_MSG_ALLOC_SQS; mbx.sqs_alloc.vf_id = sqs->vf_id; mbx.sqs_alloc.qs_count = alloc_qs; nic_send_msg_to_vf(nic, sqs->vf_id, &mbx); } static int nic_config_loopback(struct nicpf *nic, struct set_loopback *lbk) { int bgx_idx, lmac_idx; if (lbk->vf_id >= nic->num_vf_en) return -1; bgx_idx = NIC_GET_BGX_FROM_VF_LMAC_MAP(nic->vf_lmac_map[lbk->vf_id]); lmac_idx = NIC_GET_LMAC_FROM_VF_LMAC_MAP(nic->vf_lmac_map[lbk->vf_id]); bgx_lmac_internal_loopback(nic->node, bgx_idx, lmac_idx, lbk->enable); /* Enable moving average calculation. * Keep the LVL/AVG delay to HW enforced minimum so that, not too many * packets sneek in between average calculations. */ nic_reg_write(nic, NIC_PF_CQ_AVG_CFG, (BIT_ULL(20) | 0x2ull << 14 | 0x1)); nic_reg_write(nic, NIC_PF_RRM_AVG_CFG, (BIT_ULL(20) | 0x3ull << 14 | 0x1)); return 0; } /* Reset statistics counters */ static int nic_reset_stat_counters(struct nicpf *nic, int vf, struct reset_stat_cfg *cfg) { int i, stat, qnum; u64 reg_addr; for (i = 0; i < RX_STATS_ENUM_LAST; i++) { if (cfg->rx_stat_mask & BIT(i)) { reg_addr = NIC_PF_VNIC_0_127_RX_STAT_0_13 | (vf << NIC_QS_ID_SHIFT) | (i << 3); nic_reg_write(nic, reg_addr, 0); } } for (i = 0; i < TX_STATS_ENUM_LAST; i++) { if (cfg->tx_stat_mask & BIT(i)) { reg_addr = NIC_PF_VNIC_0_127_TX_STAT_0_4 | (vf << NIC_QS_ID_SHIFT) | (i << 3); nic_reg_write(nic, reg_addr, 0); } } for (i = 0; i <= 15; i++) { qnum = i >> 1; stat = i & 1 ? 1 : 0; reg_addr = (vf << NIC_QS_ID_SHIFT) | (qnum << NIC_Q_NUM_SHIFT) | (stat << 3); if (cfg->rq_stat_mask & BIT(i)) { reg_addr |= NIC_PF_QSET_0_127_RQ_0_7_STAT_0_1; nic_reg_write(nic, reg_addr, 0); } if (cfg->sq_stat_mask & BIT(i)) { reg_addr |= NIC_PF_QSET_0_127_SQ_0_7_STAT_0_1; nic_reg_write(nic, reg_addr, 0); } } return 0; } static void nic_enable_tunnel_parsing(struct nicpf *nic, int vf) { u64 prot_def = (IPV6_PROT << 32) | (IPV4_PROT << 16) | ET_PROT; u64 vxlan_prot_def = (IPV6_PROT_DEF << 32) | (IPV4_PROT_DEF) << 16 | ET_PROT_DEF; /* Configure tunnel parsing parameters */ nic_reg_write(nic, NIC_PF_RX_GENEVE_DEF, (1ULL << 63 | UDP_GENEVE_PORT_NUM)); nic_reg_write(nic, NIC_PF_RX_GENEVE_PROT_DEF, ((7ULL << 61) | prot_def)); nic_reg_write(nic, NIC_PF_RX_NVGRE_PROT_DEF, ((7ULL << 61) | prot_def)); nic_reg_write(nic, NIC_PF_RX_VXLAN_DEF_0_1, ((1ULL << 63) | UDP_VXLAN_PORT_NUM)); nic_reg_write(nic, NIC_PF_RX_VXLAN_PROT_DEF, ((0xfULL << 60) | vxlan_prot_def)); } static void nic_enable_vf(struct nicpf *nic, int vf, bool enable) { int bgx, lmac; nic->vf_enabled[vf] = enable; if (vf >= nic->num_vf_en) return; bgx = NIC_GET_BGX_FROM_VF_LMAC_MAP(nic->vf_lmac_map[vf]); lmac = NIC_GET_LMAC_FROM_VF_LMAC_MAP(nic->vf_lmac_map[vf]); bgx_lmac_rx_tx_enable(nic->node, bgx, lmac, enable); } static void nic_pause_frame(struct nicpf *nic, int vf, struct pfc *cfg) { int bgx, lmac; struct pfc pfc; union nic_mbx mbx = {}; if (vf >= nic->num_vf_en) return; bgx = NIC_GET_BGX_FROM_VF_LMAC_MAP(nic->vf_lmac_map[vf]); lmac = NIC_GET_LMAC_FROM_VF_LMAC_MAP(nic->vf_lmac_map[vf]); if (cfg->get) { bgx_lmac_get_pfc(nic->node, bgx, lmac, &pfc); mbx.pfc.msg = NIC_MBOX_MSG_PFC; mbx.pfc.autoneg = pfc.autoneg; mbx.pfc.fc_rx = pfc.fc_rx; mbx.pfc.fc_tx = pfc.fc_tx; nic_send_msg_to_vf(nic, vf, &mbx); } else { bgx_lmac_set_pfc(nic->node, bgx, lmac, cfg); nic_mbx_send_ack(nic, vf); } } /* Enable or disable HW timestamping by BGX for pkts received on a LMAC */ static void nic_config_timestamp(struct nicpf *nic, int vf, struct set_ptp *ptp) { struct pkind_cfg *pkind; u8 lmac, bgx_idx; u64 pkind_val, pkind_idx; if (vf >= nic->num_vf_en) return; bgx_idx = NIC_GET_BGX_FROM_VF_LMAC_MAP(nic->vf_lmac_map[vf]); lmac = NIC_GET_LMAC_FROM_VF_LMAC_MAP(nic->vf_lmac_map[vf]); pkind_idx = lmac + bgx_idx * MAX_LMAC_PER_BGX; pkind_val = nic_reg_read(nic, NIC_PF_PKIND_0_15_CFG | (pkind_idx << 3)); pkind = (struct pkind_cfg *)&pkind_val; if (ptp->enable && !pkind->hdr_sl) { /* Skiplen to exclude 8byte timestamp while parsing pkt * If not configured, will result in L2 errors. */ pkind->hdr_sl = 4; /* Adjust max packet length allowed */ pkind->maxlen += (pkind->hdr_sl * 2); bgx_config_timestamping(nic->node, bgx_idx, lmac, true); nic_reg_write(nic, NIC_PF_RX_ETYPE_0_7 | (1 << 3), (ETYPE_ALG_ENDPARSE << 16) | ETH_P_1588); } else if (!ptp->enable && pkind->hdr_sl) { pkind->maxlen -= (pkind->hdr_sl * 2); pkind->hdr_sl = 0; bgx_config_timestamping(nic->node, bgx_idx, lmac, false); nic_reg_write(nic, NIC_PF_RX_ETYPE_0_7 | (1 << 3), (ETYPE_ALG_SKIP << 16) | ETH_P_8021Q); } nic_reg_write(nic, NIC_PF_PKIND_0_15_CFG | (pkind_idx << 3), pkind_val); } /* Get BGX LMAC link status and update corresponding VF * if there is a change, valid only if internal L2 switch * is not present otherwise VF link is always treated as up */ static void nic_link_status_get(struct nicpf *nic, u8 vf) { union nic_mbx mbx = {}; struct bgx_link_status link; u8 bgx, lmac; mbx.link_status.msg = NIC_MBOX_MSG_BGX_LINK_CHANGE; /* Get BGX, LMAC indices for the VF */ bgx = NIC_GET_BGX_FROM_VF_LMAC_MAP(nic->vf_lmac_map[vf]); lmac = NIC_GET_LMAC_FROM_VF_LMAC_MAP(nic->vf_lmac_map[vf]); /* Get interface link status */ bgx_get_lmac_link_state(nic->node, bgx, lmac, &link); /* Send a mbox message to VF with current link status */ mbx.link_status.link_up = link.link_up; mbx.link_status.duplex = link.duplex; mbx.link_status.speed = link.speed; mbx.link_status.mac_type = link.mac_type; /* reply with link status */ nic_send_msg_to_vf(nic, vf, &mbx); } /* Interrupt handler to handle mailbox messages from VFs */ static void nic_handle_mbx_intr(struct nicpf *nic, int vf) { union nic_mbx mbx = {}; u64 *mbx_data; u64 mbx_addr; u64 reg_addr; u64 cfg; int bgx, lmac; int i; int ret = 0; mbx_addr = nic_get_mbx_addr(vf); mbx_data = (u64 *)&mbx; for (i = 0; i < NIC_PF_VF_MAILBOX_SIZE; i++) { *mbx_data = nic_reg_read(nic, mbx_addr); mbx_data++; mbx_addr += sizeof(u64); } dev_dbg(&nic->pdev->dev, "%s: Mailbox msg 0x%02x from VF%d\n", __func__, mbx.msg.msg, vf); switch (mbx.msg.msg) { case NIC_MBOX_MSG_READY: nic_mbx_send_ready(nic, vf); return; case NIC_MBOX_MSG_QS_CFG: reg_addr = NIC_PF_QSET_0_127_CFG | (mbx.qs.num << NIC_QS_ID_SHIFT); cfg = mbx.qs.cfg; /* Check if its a secondary Qset */ if (vf >= nic->num_vf_en) { cfg = cfg & (~0x7FULL); /* Assign this Qset to primary Qset's VF */ cfg |= nic->pqs_vf[vf]; } nic_reg_write(nic, reg_addr, cfg); break; case NIC_MBOX_MSG_RQ_CFG: reg_addr = NIC_PF_QSET_0_127_RQ_0_7_CFG | (mbx.rq.qs_num << NIC_QS_ID_SHIFT) | (mbx.rq.rq_num << NIC_Q_NUM_SHIFT); nic_reg_write(nic, reg_addr, mbx.rq.cfg); /* Enable CQE_RX2_S extension in CQE_RX descriptor. * This gets appended by default on 81xx/83xx chips, * for consistency enabling the same on 88xx pass2 * where this is introduced. */ if (pass2_silicon(nic->pdev)) nic_reg_write(nic, NIC_PF_RX_CFG, 0x01); if (!pass1_silicon(nic->pdev)) nic_enable_tunnel_parsing(nic, vf); break; case NIC_MBOX_MSG_RQ_BP_CFG: reg_addr = NIC_PF_QSET_0_127_RQ_0_7_BP_CFG | (mbx.rq.qs_num << NIC_QS_ID_SHIFT) | (mbx.rq.rq_num << NIC_Q_NUM_SHIFT); nic_reg_write(nic, reg_addr, mbx.rq.cfg); break; case NIC_MBOX_MSG_RQ_SW_SYNC: ret = nic_rcv_queue_sw_sync(nic); break; case NIC_MBOX_MSG_RQ_DROP_CFG: reg_addr = NIC_PF_QSET_0_127_RQ_0_7_DROP_CFG | (mbx.rq.qs_num << NIC_QS_ID_SHIFT) | (mbx.rq.rq_num << NIC_Q_NUM_SHIFT); nic_reg_write(nic, reg_addr, mbx.rq.cfg); break; case NIC_MBOX_MSG_SQ_CFG: reg_addr = NIC_PF_QSET_0_127_SQ_0_7_CFG | (mbx.sq.qs_num << NIC_QS_ID_SHIFT) | (mbx.sq.sq_num << NIC_Q_NUM_SHIFT); nic_reg_write(nic, reg_addr, mbx.sq.cfg); nic_tx_channel_cfg(nic, mbx.qs.num, &mbx.sq); break; case NIC_MBOX_MSG_SET_MAC: if (vf >= nic->num_vf_en) { ret = -1; /* NACK */ break; } lmac = mbx.mac.vf_id; bgx = NIC_GET_BGX_FROM_VF_LMAC_MAP(nic->vf_lmac_map[lmac]); lmac = NIC_GET_LMAC_FROM_VF_LMAC_MAP(nic->vf_lmac_map[lmac]); bgx_set_lmac_mac(nic->node, bgx, lmac, mbx.mac.mac_addr); break; case NIC_MBOX_MSG_SET_MAX_FRS: ret = nic_update_hw_frs(nic, mbx.frs.max_frs, mbx.frs.vf_id); break; case NIC_MBOX_MSG_CPI_CFG: nic_config_cpi(nic, &mbx.cpi_cfg); break; case NIC_MBOX_MSG_RSS_SIZE: nic_send_rss_size(nic, vf); return; case NIC_MBOX_MSG_RSS_CFG: case NIC_MBOX_MSG_RSS_CFG_CONT: nic_config_rss(nic, &mbx.rss_cfg); break; case NIC_MBOX_MSG_CFG_DONE: /* Last message of VF config msg sequence */ nic_enable_vf(nic, vf, true); break; case NIC_MBOX_MSG_SHUTDOWN: /* First msg in VF teardown sequence */ if (vf >= nic->num_vf_en) nic->sqs_used[vf - nic->num_vf_en] = false; nic->pqs_vf[vf] = 0; nic_enable_vf(nic, vf, false); break; case NIC_MBOX_MSG_ALLOC_SQS: nic_alloc_sqs(nic, &mbx.sqs_alloc); return; case NIC_MBOX_MSG_NICVF_PTR: nic->nicvf[vf] = mbx.nicvf.nicvf; break; case NIC_MBOX_MSG_PNICVF_PTR: nic_send_pnicvf(nic, vf); return; case NIC_MBOX_MSG_SNICVF_PTR: nic_send_snicvf(nic, &mbx.nicvf); return; case NIC_MBOX_MSG_BGX_STATS: nic_get_bgx_stats(nic, &mbx.bgx_stats); return; case NIC_MBOX_MSG_LOOPBACK: ret = nic_config_loopback(nic, &mbx.lbk); break; case NIC_MBOX_MSG_RESET_STAT_COUNTER: ret = nic_reset_stat_counters(nic, vf, &mbx.reset_stat); break; case NIC_MBOX_MSG_PFC: nic_pause_frame(nic, vf, &mbx.pfc); return; case NIC_MBOX_MSG_PTP_CFG: nic_config_timestamp(nic, vf, &mbx.ptp); break; case NIC_MBOX_MSG_RESET_XCAST: if (vf >= nic->num_vf_en) { ret = -1; /* NACK */ break; } bgx = NIC_GET_BGX_FROM_VF_LMAC_MAP(nic->vf_lmac_map[vf]); lmac = NIC_GET_LMAC_FROM_VF_LMAC_MAP(nic->vf_lmac_map[vf]); bgx_reset_xcast_mode(nic->node, bgx, lmac, vf < NIC_VF_PER_MBX_REG ? vf : vf - NIC_VF_PER_MBX_REG); break; case NIC_MBOX_MSG_ADD_MCAST: if (vf >= nic->num_vf_en) { ret = -1; /* NACK */ break; } bgx = NIC_GET_BGX_FROM_VF_LMAC_MAP(nic->vf_lmac_map[vf]); lmac = NIC_GET_LMAC_FROM_VF_LMAC_MAP(nic->vf_lmac_map[vf]); bgx_set_dmac_cam_filter(nic->node, bgx, lmac, mbx.xcast.mac, vf < NIC_VF_PER_MBX_REG ? vf : vf - NIC_VF_PER_MBX_REG); break; case NIC_MBOX_MSG_SET_XCAST: if (vf >= nic->num_vf_en) { ret = -1; /* NACK */ break; } bgx = NIC_GET_BGX_FROM_VF_LMAC_MAP(nic->vf_lmac_map[vf]); lmac = NIC_GET_LMAC_FROM_VF_LMAC_MAP(nic->vf_lmac_map[vf]); bgx_set_xcast_mode(nic->node, bgx, lmac, mbx.xcast.mode); break; case NIC_MBOX_MSG_BGX_LINK_CHANGE: if (vf >= nic->num_vf_en) { ret = -1; /* NACK */ break; } nic_link_status_get(nic, vf); return; default: dev_err(&nic->pdev->dev, "Invalid msg from VF%d, msg 0x%x\n", vf, mbx.msg.msg); break; } if (!ret) { nic_mbx_send_ack(nic, vf); } else if (mbx.msg.msg != NIC_MBOX_MSG_READY) { dev_err(&nic->pdev->dev, "NACK for MBOX 0x%02x from VF %d\n", mbx.msg.msg, vf); nic_mbx_send_nack(nic, vf); } } static irqreturn_t nic_mbx_intr_handler(int irq, void *nic_irq) { struct nicpf *nic = (struct nicpf *)nic_irq; int mbx; u64 intr; u8 vf; if (irq == pci_irq_vector(nic->pdev, NIC_PF_INTR_ID_MBOX0)) mbx = 0; else mbx = 1; intr = nic_reg_read(nic, NIC_PF_MAILBOX_INT + (mbx << 3)); dev_dbg(&nic->pdev->dev, "PF interrupt Mbox%d 0x%llx\n", mbx, intr); for (vf = 0; vf < NIC_VF_PER_MBX_REG; vf++) { if (intr & (1ULL << vf)) { dev_dbg(&nic->pdev->dev, "Intr from VF %d\n", vf + (mbx * NIC_VF_PER_MBX_REG)); nic_handle_mbx_intr(nic, vf + (mbx * NIC_VF_PER_MBX_REG)); nic_clear_mbx_intr(nic, vf, mbx); } } return IRQ_HANDLED; } static void nic_free_all_interrupts(struct nicpf *nic) { int irq; for (irq = 0; irq < nic->num_vec; irq++) { if (nic->irq_allocated[irq]) free_irq(pci_irq_vector(nic->pdev, irq), nic); nic->irq_allocated[irq] = false; } } static int nic_register_interrupts(struct nicpf *nic) { int i, ret; nic->num_vec = pci_msix_vec_count(nic->pdev); /* Enable MSI-X */ ret = pci_alloc_irq_vectors(nic->pdev, nic->num_vec, nic->num_vec, PCI_IRQ_MSIX); if (ret < 0) { dev_err(&nic->pdev->dev, "Request for #%d msix vectors failed, returned %d\n", nic->num_vec, ret); return 1; } /* Register mailbox interrupt handler */ for (i = NIC_PF_INTR_ID_MBOX0; i < nic->num_vec; i++) { sprintf(nic->irq_name[i], "NICPF Mbox%d", (i - NIC_PF_INTR_ID_MBOX0)); ret = request_irq(pci_irq_vector(nic->pdev, i), nic_mbx_intr_handler, 0, nic->irq_name[i], nic); if (ret) goto fail; nic->irq_allocated[i] = true; } /* Enable mailbox interrupt */ nic_enable_mbx_intr(nic); return 0; fail: dev_err(&nic->pdev->dev, "Request irq failed\n"); nic_free_all_interrupts(nic); pci_free_irq_vectors(nic->pdev); nic->num_vec = 0; return ret; } static void nic_unregister_interrupts(struct nicpf *nic) { nic_free_all_interrupts(nic); pci_free_irq_vectors(nic->pdev); nic->num_vec = 0; } static int nic_num_sqs_en(struct nicpf *nic, int vf_en) { int pos, sqs_per_vf = MAX_SQS_PER_VF_SINGLE_NODE; u16 total_vf; /* Secondary Qsets are needed only if CPU count is * morethan MAX_QUEUES_PER_QSET. */ if (num_online_cpus() <= MAX_QUEUES_PER_QSET) return 0; /* Check if its a multi-node environment */ if (nr_node_ids > 1) sqs_per_vf = MAX_SQS_PER_VF; pos = pci_find_ext_capability(nic->pdev, PCI_EXT_CAP_ID_SRIOV); pci_read_config_word(nic->pdev, (pos + PCI_SRIOV_TOTAL_VF), &total_vf); return min(total_vf - vf_en, vf_en * sqs_per_vf); } static int nic_sriov_init(struct pci_dev *pdev, struct nicpf *nic) { int pos = 0; int vf_en; int err; u16 total_vf_cnt; pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV); if (!pos) { dev_err(&pdev->dev, "SRIOV capability is not found in PCIe config space\n"); return -ENODEV; } pci_read_config_word(pdev, (pos + PCI_SRIOV_TOTAL_VF), &total_vf_cnt); if (total_vf_cnt < nic->num_vf_en) nic->num_vf_en = total_vf_cnt; if (!total_vf_cnt) return 0; vf_en = nic->num_vf_en; nic->num_sqs_en = nic_num_sqs_en(nic, nic->num_vf_en); vf_en += nic->num_sqs_en; err = pci_enable_sriov(pdev, vf_en); if (err) { dev_err(&pdev->dev, "SRIOV enable failed, num VF is %d\n", vf_en); nic->num_vf_en = 0; return err; } dev_info(&pdev->dev, "SRIOV enabled, number of VF available %d\n", vf_en); nic->flags |= NIC_SRIOV_ENABLED; return 0; } static int nic_probe(struct pci_dev *pdev, const struct pci_device_id *ent) { struct device *dev = &pdev->dev; struct nicpf *nic; u8 max_lmac; int err; BUILD_BUG_ON(sizeof(union nic_mbx) > 16); nic = devm_kzalloc(dev, sizeof(*nic), GFP_KERNEL); if (!nic) return -ENOMEM; nic->hw = devm_kzalloc(dev, sizeof(struct hw_info), GFP_KERNEL); if (!nic->hw) return -ENOMEM; pci_set_drvdata(pdev, nic); nic->pdev = pdev; err = pci_enable_device(pdev); if (err) { dev_err(dev, "Failed to enable PCI device\n"); pci_set_drvdata(pdev, NULL); return err; } err = pci_request_regions(pdev, DRV_NAME); if (err) { dev_err(dev, "PCI request regions failed 0x%x\n", err); goto err_disable_device; } err = pci_set_dma_mask(pdev, DMA_BIT_MASK(48)); if (err) { dev_err(dev, "Unable to get usable DMA configuration\n"); goto err_release_regions; } err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(48)); if (err) { dev_err(dev, "Unable to get 48-bit DMA for consistent allocations\n"); goto err_release_regions; } /* MAP PF's configuration registers */ nic->reg_base = pcim_iomap(pdev, PCI_CFG_REG_BAR_NUM, 0); if (!nic->reg_base) { dev_err(dev, "Cannot map config register space, aborting\n"); err = -ENOMEM; goto err_release_regions; } nic->node = nic_get_node_id(pdev); /* Get HW capability info */ nic_get_hw_info(nic); /* Allocate memory for LMAC tracking elements */ err = -ENOMEM; max_lmac = nic->hw->bgx_cnt * MAX_LMAC_PER_BGX; nic->vf_lmac_map = devm_kmalloc_array(dev, max_lmac, sizeof(u8), GFP_KERNEL); if (!nic->vf_lmac_map) goto err_release_regions; /* Initialize hardware */ nic_init_hw(nic); nic_set_lmac_vf_mapping(nic); /* Register interrupts */ err = nic_register_interrupts(nic); if (err) goto err_release_regions; /* Configure SRIOV */ err = nic_sriov_init(pdev, nic); if (err) goto err_unregister_interrupts; return 0; err_unregister_interrupts: nic_unregister_interrupts(nic); err_release_regions: pci_release_regions(pdev); err_disable_device: pci_disable_device(pdev); pci_set_drvdata(pdev, NULL); return err; } static void nic_remove(struct pci_dev *pdev) { struct nicpf *nic = pci_get_drvdata(pdev); if (!nic) return; if (nic->flags & NIC_SRIOV_ENABLED) pci_disable_sriov(pdev); nic_unregister_interrupts(nic); pci_release_regions(pdev); pci_disable_device(pdev); pci_set_drvdata(pdev, NULL); } static struct pci_driver nic_driver = { .name = DRV_NAME, .id_table = nic_id_table, .probe = nic_probe, .remove = nic_remove, }; static int __init nic_init_module(void) { pr_info("%s, ver %s\n", DRV_NAME, DRV_VERSION); return pci_register_driver(&nic_driver); } static void __exit nic_cleanup_module(void) { pci_unregister_driver(&nic_driver); } module_init(nic_init_module); module_exit(nic_cleanup_module);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1