Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Christoph Lameter | 3338 | 89.51% | 1 | 5.56% |
Divy Le Ray | 178 | 4.77% | 1 | 5.56% |
Stephen Hemminger | 136 | 3.65% | 5 | 27.78% |
Joe Perches | 30 | 0.80% | 2 | 11.11% |
Scott Bardone | 21 | 0.56% | 1 | 5.56% |
Jiri Pirko | 11 | 0.29% | 2 | 11.11% |
François Romieu | 7 | 0.19% | 1 | 5.56% |
Tejun Heo | 3 | 0.08% | 1 | 5.56% |
Jarod Wilson | 2 | 0.05% | 1 | 5.56% |
Julia Lawall | 1 | 0.03% | 1 | 5.56% |
Jeff Kirsher | 1 | 0.03% | 1 | 5.56% |
Lucas De Marchi | 1 | 0.03% | 1 | 5.56% |
Total | 3729 | 18 |
/***************************************************************************** * * * File: pm3393.c * * $Revision: 1.16 $ * * $Date: 2005/05/14 00:59:32 $ * * Description: * * PMC/SIERRA (pm3393) MAC-PHY functionality. * * part of the Chelsio 10Gb Ethernet Driver. * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License, version 2, as * * published by the Free Software Foundation. * * * * You should have received a copy of the GNU General Public License along * * with this program; if not, see <http://www.gnu.org/licenses/>. * * * * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED * * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF * * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. * * * * http://www.chelsio.com * * * * Copyright (c) 2003 - 2005 Chelsio Communications, Inc. * * All rights reserved. * * * * Maintainers: maintainers@chelsio.com * * * * Authors: Dimitrios Michailidis <dm@chelsio.com> * * Tina Yang <tainay@chelsio.com> * * Felix Marti <felix@chelsio.com> * * Scott Bardone <sbardone@chelsio.com> * * Kurt Ottaway <kottaway@chelsio.com> * * Frank DiMambro <frank@chelsio.com> * * * * History: * * * ****************************************************************************/ #include "common.h" #include "regs.h" #include "gmac.h" #include "elmer0.h" #include "suni1x10gexp_regs.h" #include <linux/crc32.h> #include <linux/slab.h> #define OFFSET(REG_ADDR) ((REG_ADDR) << 2) #define IPG 12 #define TXXG_CONF1_VAL ((IPG << SUNI1x10GEXP_BITOFF_TXXG_IPGT) | \ SUNI1x10GEXP_BITMSK_TXXG_32BIT_ALIGN | SUNI1x10GEXP_BITMSK_TXXG_CRCEN | \ SUNI1x10GEXP_BITMSK_TXXG_PADEN) #define RXXG_CONF1_VAL (SUNI1x10GEXP_BITMSK_RXXG_PUREP | 0x14 | \ SUNI1x10GEXP_BITMSK_RXXG_FLCHK | SUNI1x10GEXP_BITMSK_RXXG_CRC_STRIP) /* Update statistics every 15 minutes */ #define STATS_TICK_SECS (15 * 60) enum { /* RMON registers */ RxOctetsReceivedOK = SUNI1x10GEXP_REG_MSTAT_COUNTER_1_LOW, RxUnicastFramesReceivedOK = SUNI1x10GEXP_REG_MSTAT_COUNTER_4_LOW, RxMulticastFramesReceivedOK = SUNI1x10GEXP_REG_MSTAT_COUNTER_5_LOW, RxBroadcastFramesReceivedOK = SUNI1x10GEXP_REG_MSTAT_COUNTER_6_LOW, RxPAUSEMACCtrlFramesReceived = SUNI1x10GEXP_REG_MSTAT_COUNTER_8_LOW, RxFrameCheckSequenceErrors = SUNI1x10GEXP_REG_MSTAT_COUNTER_10_LOW, RxFramesLostDueToInternalMACErrors = SUNI1x10GEXP_REG_MSTAT_COUNTER_11_LOW, RxSymbolErrors = SUNI1x10GEXP_REG_MSTAT_COUNTER_12_LOW, RxInRangeLengthErrors = SUNI1x10GEXP_REG_MSTAT_COUNTER_13_LOW, RxFramesTooLongErrors = SUNI1x10GEXP_REG_MSTAT_COUNTER_15_LOW, RxJabbers = SUNI1x10GEXP_REG_MSTAT_COUNTER_16_LOW, RxFragments = SUNI1x10GEXP_REG_MSTAT_COUNTER_17_LOW, RxUndersizedFrames = SUNI1x10GEXP_REG_MSTAT_COUNTER_18_LOW, RxJumboFramesReceivedOK = SUNI1x10GEXP_REG_MSTAT_COUNTER_25_LOW, RxJumboOctetsReceivedOK = SUNI1x10GEXP_REG_MSTAT_COUNTER_26_LOW, TxOctetsTransmittedOK = SUNI1x10GEXP_REG_MSTAT_COUNTER_33_LOW, TxFramesLostDueToInternalMACTransmissionError = SUNI1x10GEXP_REG_MSTAT_COUNTER_35_LOW, TxTransmitSystemError = SUNI1x10GEXP_REG_MSTAT_COUNTER_36_LOW, TxUnicastFramesTransmittedOK = SUNI1x10GEXP_REG_MSTAT_COUNTER_38_LOW, TxMulticastFramesTransmittedOK = SUNI1x10GEXP_REG_MSTAT_COUNTER_40_LOW, TxBroadcastFramesTransmittedOK = SUNI1x10GEXP_REG_MSTAT_COUNTER_42_LOW, TxPAUSEMACCtrlFramesTransmitted = SUNI1x10GEXP_REG_MSTAT_COUNTER_43_LOW, TxJumboFramesReceivedOK = SUNI1x10GEXP_REG_MSTAT_COUNTER_51_LOW, TxJumboOctetsReceivedOK = SUNI1x10GEXP_REG_MSTAT_COUNTER_52_LOW }; struct _cmac_instance { u8 enabled; u8 fc; u8 mac_addr[6]; }; static int pmread(struct cmac *cmac, u32 reg, u32 * data32) { t1_tpi_read(cmac->adapter, OFFSET(reg), data32); return 0; } static int pmwrite(struct cmac *cmac, u32 reg, u32 data32) { t1_tpi_write(cmac->adapter, OFFSET(reg), data32); return 0; } /* Port reset. */ static int pm3393_reset(struct cmac *cmac) { return 0; } /* * Enable interrupts for the PM3393 * * 1. Enable PM3393 BLOCK interrupts. * 2. Enable PM3393 Master Interrupt bit(INTE) * 3. Enable ELMER's PM3393 bit. * 4. Enable Terminator external interrupt. */ static int pm3393_interrupt_enable(struct cmac *cmac) { u32 pl_intr; /* PM3393 - Enabling all hardware block interrupts. */ pmwrite(cmac, SUNI1x10GEXP_REG_SERDES_3125_INTERRUPT_ENABLE, 0xffff); pmwrite(cmac, SUNI1x10GEXP_REG_XRF_INTERRUPT_ENABLE, 0xffff); pmwrite(cmac, SUNI1x10GEXP_REG_XRF_DIAG_INTERRUPT_ENABLE, 0xffff); pmwrite(cmac, SUNI1x10GEXP_REG_RXOAM_INTERRUPT_ENABLE, 0xffff); /* Don't interrupt on statistics overflow, we are polling */ pmwrite(cmac, SUNI1x10GEXP_REG_MSTAT_INTERRUPT_MASK_0, 0); pmwrite(cmac, SUNI1x10GEXP_REG_MSTAT_INTERRUPT_MASK_1, 0); pmwrite(cmac, SUNI1x10GEXP_REG_MSTAT_INTERRUPT_MASK_2, 0); pmwrite(cmac, SUNI1x10GEXP_REG_MSTAT_INTERRUPT_MASK_3, 0); pmwrite(cmac, SUNI1x10GEXP_REG_IFLX_FIFO_OVERFLOW_ENABLE, 0xffff); pmwrite(cmac, SUNI1x10GEXP_REG_PL4ODP_INTERRUPT_MASK, 0xffff); pmwrite(cmac, SUNI1x10GEXP_REG_XTEF_INTERRUPT_ENABLE, 0xffff); pmwrite(cmac, SUNI1x10GEXP_REG_TXOAM_INTERRUPT_ENABLE, 0xffff); pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_CONFIG_3, 0xffff); pmwrite(cmac, SUNI1x10GEXP_REG_PL4IO_LOCK_DETECT_MASK, 0xffff); pmwrite(cmac, SUNI1x10GEXP_REG_TXXG_CONFIG_3, 0xffff); pmwrite(cmac, SUNI1x10GEXP_REG_PL4IDU_INTERRUPT_MASK, 0xffff); pmwrite(cmac, SUNI1x10GEXP_REG_EFLX_FIFO_OVERFLOW_ERROR_ENABLE, 0xffff); /* PM3393 - Global interrupt enable */ /* TBD XXX Disable for now until we figure out why error interrupts keep asserting. */ pmwrite(cmac, SUNI1x10GEXP_REG_GLOBAL_INTERRUPT_ENABLE, 0 /*SUNI1x10GEXP_BITMSK_TOP_INTE */ ); /* TERMINATOR - PL_INTERUPTS_EXT */ pl_intr = readl(cmac->adapter->regs + A_PL_ENABLE); pl_intr |= F_PL_INTR_EXT; writel(pl_intr, cmac->adapter->regs + A_PL_ENABLE); return 0; } static int pm3393_interrupt_disable(struct cmac *cmac) { u32 elmer; /* PM3393 - Enabling HW interrupt blocks. */ pmwrite(cmac, SUNI1x10GEXP_REG_SERDES_3125_INTERRUPT_ENABLE, 0); pmwrite(cmac, SUNI1x10GEXP_REG_XRF_INTERRUPT_ENABLE, 0); pmwrite(cmac, SUNI1x10GEXP_REG_XRF_DIAG_INTERRUPT_ENABLE, 0); pmwrite(cmac, SUNI1x10GEXP_REG_RXOAM_INTERRUPT_ENABLE, 0); pmwrite(cmac, SUNI1x10GEXP_REG_MSTAT_INTERRUPT_MASK_0, 0); pmwrite(cmac, SUNI1x10GEXP_REG_MSTAT_INTERRUPT_MASK_1, 0); pmwrite(cmac, SUNI1x10GEXP_REG_MSTAT_INTERRUPT_MASK_2, 0); pmwrite(cmac, SUNI1x10GEXP_REG_MSTAT_INTERRUPT_MASK_3, 0); pmwrite(cmac, SUNI1x10GEXP_REG_IFLX_FIFO_OVERFLOW_ENABLE, 0); pmwrite(cmac, SUNI1x10GEXP_REG_PL4ODP_INTERRUPT_MASK, 0); pmwrite(cmac, SUNI1x10GEXP_REG_XTEF_INTERRUPT_ENABLE, 0); pmwrite(cmac, SUNI1x10GEXP_REG_TXOAM_INTERRUPT_ENABLE, 0); pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_CONFIG_3, 0); pmwrite(cmac, SUNI1x10GEXP_REG_PL4IO_LOCK_DETECT_MASK, 0); pmwrite(cmac, SUNI1x10GEXP_REG_TXXG_CONFIG_3, 0); pmwrite(cmac, SUNI1x10GEXP_REG_PL4IDU_INTERRUPT_MASK, 0); pmwrite(cmac, SUNI1x10GEXP_REG_EFLX_FIFO_OVERFLOW_ERROR_ENABLE, 0); /* PM3393 - Global interrupt enable */ pmwrite(cmac, SUNI1x10GEXP_REG_GLOBAL_INTERRUPT_ENABLE, 0); /* ELMER - External chip interrupts. */ t1_tpi_read(cmac->adapter, A_ELMER0_INT_ENABLE, &elmer); elmer &= ~ELMER0_GP_BIT1; t1_tpi_write(cmac->adapter, A_ELMER0_INT_ENABLE, elmer); /* TERMINATOR - PL_INTERUPTS_EXT */ /* DO NOT DISABLE TERMINATOR's EXTERNAL INTERRUPTS. ANOTHER CHIP * COULD WANT THEM ENABLED. We disable PM3393 at the ELMER level. */ return 0; } static int pm3393_interrupt_clear(struct cmac *cmac) { u32 elmer; u32 pl_intr; u32 val32; /* PM3393 - Clearing HW interrupt blocks. Note, this assumes * bit WCIMODE=0 for a clear-on-read. */ pmread(cmac, SUNI1x10GEXP_REG_SERDES_3125_INTERRUPT_STATUS, &val32); pmread(cmac, SUNI1x10GEXP_REG_XRF_INTERRUPT_STATUS, &val32); pmread(cmac, SUNI1x10GEXP_REG_XRF_DIAG_INTERRUPT_STATUS, &val32); pmread(cmac, SUNI1x10GEXP_REG_RXOAM_INTERRUPT_STATUS, &val32); pmread(cmac, SUNI1x10GEXP_REG_PL4ODP_INTERRUPT, &val32); pmread(cmac, SUNI1x10GEXP_REG_XTEF_INTERRUPT_STATUS, &val32); pmread(cmac, SUNI1x10GEXP_REG_IFLX_FIFO_OVERFLOW_INTERRUPT, &val32); pmread(cmac, SUNI1x10GEXP_REG_TXOAM_INTERRUPT_STATUS, &val32); pmread(cmac, SUNI1x10GEXP_REG_RXXG_INTERRUPT, &val32); pmread(cmac, SUNI1x10GEXP_REG_TXXG_INTERRUPT, &val32); pmread(cmac, SUNI1x10GEXP_REG_PL4IDU_INTERRUPT, &val32); pmread(cmac, SUNI1x10GEXP_REG_EFLX_FIFO_OVERFLOW_ERROR_INDICATION, &val32); pmread(cmac, SUNI1x10GEXP_REG_PL4IO_LOCK_DETECT_STATUS, &val32); pmread(cmac, SUNI1x10GEXP_REG_PL4IO_LOCK_DETECT_CHANGE, &val32); /* PM3393 - Global interrupt status */ pmread(cmac, SUNI1x10GEXP_REG_MASTER_INTERRUPT_STATUS, &val32); /* ELMER - External chip interrupts. */ t1_tpi_read(cmac->adapter, A_ELMER0_INT_CAUSE, &elmer); elmer |= ELMER0_GP_BIT1; t1_tpi_write(cmac->adapter, A_ELMER0_INT_CAUSE, elmer); /* TERMINATOR - PL_INTERUPTS_EXT */ pl_intr = readl(cmac->adapter->regs + A_PL_CAUSE); pl_intr |= F_PL_INTR_EXT; writel(pl_intr, cmac->adapter->regs + A_PL_CAUSE); return 0; } /* Interrupt handler */ static int pm3393_interrupt_handler(struct cmac *cmac) { u32 master_intr_status; /* Read the master interrupt status register. */ pmread(cmac, SUNI1x10GEXP_REG_MASTER_INTERRUPT_STATUS, &master_intr_status); if (netif_msg_intr(cmac->adapter)) dev_dbg(&cmac->adapter->pdev->dev, "PM3393 intr cause 0x%x\n", master_intr_status); /* TBD XXX Lets just clear everything for now */ pm3393_interrupt_clear(cmac); return 0; } static int pm3393_enable(struct cmac *cmac, int which) { if (which & MAC_DIRECTION_RX) pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_CONFIG_1, (RXXG_CONF1_VAL | SUNI1x10GEXP_BITMSK_RXXG_RXEN)); if (which & MAC_DIRECTION_TX) { u32 val = TXXG_CONF1_VAL | SUNI1x10GEXP_BITMSK_TXXG_TXEN0; if (cmac->instance->fc & PAUSE_RX) val |= SUNI1x10GEXP_BITMSK_TXXG_FCRX; if (cmac->instance->fc & PAUSE_TX) val |= SUNI1x10GEXP_BITMSK_TXXG_FCTX; pmwrite(cmac, SUNI1x10GEXP_REG_TXXG_CONFIG_1, val); } cmac->instance->enabled |= which; return 0; } static int pm3393_enable_port(struct cmac *cmac, int which) { /* Clear port statistics */ pmwrite(cmac, SUNI1x10GEXP_REG_MSTAT_CONTROL, SUNI1x10GEXP_BITMSK_MSTAT_CLEAR); udelay(2); memset(&cmac->stats, 0, sizeof(struct cmac_statistics)); pm3393_enable(cmac, which); /* * XXX This should be done by the PHY and preferably not at all. * The PHY doesn't give us link status indication on its own so have * the link management code query it instead. */ t1_link_changed(cmac->adapter, 0); return 0; } static int pm3393_disable(struct cmac *cmac, int which) { if (which & MAC_DIRECTION_RX) pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_CONFIG_1, RXXG_CONF1_VAL); if (which & MAC_DIRECTION_TX) pmwrite(cmac, SUNI1x10GEXP_REG_TXXG_CONFIG_1, TXXG_CONF1_VAL); /* * The disable is graceful. Give the PM3393 time. Can't wait very * long here, we may be holding locks. */ udelay(20); cmac->instance->enabled &= ~which; return 0; } static int pm3393_loopback_enable(struct cmac *cmac) { return 0; } static int pm3393_loopback_disable(struct cmac *cmac) { return 0; } static int pm3393_set_mtu(struct cmac *cmac, int mtu) { int enabled = cmac->instance->enabled; mtu += ETH_HLEN + ETH_FCS_LEN; /* Disable Rx/Tx MAC before configuring it. */ if (enabled) pm3393_disable(cmac, MAC_DIRECTION_RX | MAC_DIRECTION_TX); pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_MAX_FRAME_LENGTH, mtu); pmwrite(cmac, SUNI1x10GEXP_REG_TXXG_MAX_FRAME_SIZE, mtu); if (enabled) pm3393_enable(cmac, enabled); return 0; } static int pm3393_set_rx_mode(struct cmac *cmac, struct t1_rx_mode *rm) { int enabled = cmac->instance->enabled & MAC_DIRECTION_RX; u32 rx_mode; /* Disable MAC RX before reconfiguring it */ if (enabled) pm3393_disable(cmac, MAC_DIRECTION_RX); pmread(cmac, SUNI1x10GEXP_REG_RXXG_ADDRESS_FILTER_CONTROL_2, &rx_mode); rx_mode &= ~(SUNI1x10GEXP_BITMSK_RXXG_PMODE | SUNI1x10GEXP_BITMSK_RXXG_MHASH_EN); pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_ADDRESS_FILTER_CONTROL_2, (u16)rx_mode); if (t1_rx_mode_promisc(rm)) { /* Promiscuous mode. */ rx_mode |= SUNI1x10GEXP_BITMSK_RXXG_PMODE; } if (t1_rx_mode_allmulti(rm)) { /* Accept all multicast. */ pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_MULTICAST_HASH_LOW, 0xffff); pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_MULTICAST_HASH_MIDLOW, 0xffff); pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_MULTICAST_HASH_MIDHIGH, 0xffff); pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_MULTICAST_HASH_HIGH, 0xffff); rx_mode |= SUNI1x10GEXP_BITMSK_RXXG_MHASH_EN; } else if (t1_rx_mode_mc_cnt(rm)) { /* Accept one or more multicast(s). */ struct netdev_hw_addr *ha; int bit; u16 mc_filter[4] = { 0, }; netdev_for_each_mc_addr(ha, t1_get_netdev(rm)) { /* bit[23:28] */ bit = (ether_crc(ETH_ALEN, ha->addr) >> 23) & 0x3f; mc_filter[bit >> 4] |= 1 << (bit & 0xf); } pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_MULTICAST_HASH_LOW, mc_filter[0]); pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_MULTICAST_HASH_MIDLOW, mc_filter[1]); pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_MULTICAST_HASH_MIDHIGH, mc_filter[2]); pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_MULTICAST_HASH_HIGH, mc_filter[3]); rx_mode |= SUNI1x10GEXP_BITMSK_RXXG_MHASH_EN; } pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_ADDRESS_FILTER_CONTROL_2, (u16)rx_mode); if (enabled) pm3393_enable(cmac, MAC_DIRECTION_RX); return 0; } static int pm3393_get_speed_duplex_fc(struct cmac *cmac, int *speed, int *duplex, int *fc) { if (speed) *speed = SPEED_10000; if (duplex) *duplex = DUPLEX_FULL; if (fc) *fc = cmac->instance->fc; return 0; } static int pm3393_set_speed_duplex_fc(struct cmac *cmac, int speed, int duplex, int fc) { if (speed >= 0 && speed != SPEED_10000) return -1; if (duplex >= 0 && duplex != DUPLEX_FULL) return -1; if (fc & ~(PAUSE_TX | PAUSE_RX)) return -1; if (fc != cmac->instance->fc) { cmac->instance->fc = (u8) fc; if (cmac->instance->enabled & MAC_DIRECTION_TX) pm3393_enable(cmac, MAC_DIRECTION_TX); } return 0; } #define RMON_UPDATE(mac, name, stat_name) \ { \ t1_tpi_read((mac)->adapter, OFFSET(name), &val0); \ t1_tpi_read((mac)->adapter, OFFSET((name)+1), &val1); \ t1_tpi_read((mac)->adapter, OFFSET((name)+2), &val2); \ (mac)->stats.stat_name = (u64)(val0 & 0xffff) | \ ((u64)(val1 & 0xffff) << 16) | \ ((u64)(val2 & 0xff) << 32) | \ ((mac)->stats.stat_name & \ 0xffffff0000000000ULL); \ if (ro & \ (1ULL << ((name - SUNI1x10GEXP_REG_MSTAT_COUNTER_0_LOW) >> 2))) \ (mac)->stats.stat_name += 1ULL << 40; \ } static const struct cmac_statistics *pm3393_update_statistics(struct cmac *mac, int flag) { u64 ro; u32 val0, val1, val2, val3; /* Snap the counters */ pmwrite(mac, SUNI1x10GEXP_REG_MSTAT_CONTROL, SUNI1x10GEXP_BITMSK_MSTAT_SNAP); /* Counter rollover, clear on read */ pmread(mac, SUNI1x10GEXP_REG_MSTAT_COUNTER_ROLLOVER_0, &val0); pmread(mac, SUNI1x10GEXP_REG_MSTAT_COUNTER_ROLLOVER_1, &val1); pmread(mac, SUNI1x10GEXP_REG_MSTAT_COUNTER_ROLLOVER_2, &val2); pmread(mac, SUNI1x10GEXP_REG_MSTAT_COUNTER_ROLLOVER_3, &val3); ro = ((u64)val0 & 0xffff) | (((u64)val1 & 0xffff) << 16) | (((u64)val2 & 0xffff) << 32) | (((u64)val3 & 0xffff) << 48); /* Rx stats */ RMON_UPDATE(mac, RxOctetsReceivedOK, RxOctetsOK); RMON_UPDATE(mac, RxUnicastFramesReceivedOK, RxUnicastFramesOK); RMON_UPDATE(mac, RxMulticastFramesReceivedOK, RxMulticastFramesOK); RMON_UPDATE(mac, RxBroadcastFramesReceivedOK, RxBroadcastFramesOK); RMON_UPDATE(mac, RxPAUSEMACCtrlFramesReceived, RxPauseFrames); RMON_UPDATE(mac, RxFrameCheckSequenceErrors, RxFCSErrors); RMON_UPDATE(mac, RxFramesLostDueToInternalMACErrors, RxInternalMACRcvError); RMON_UPDATE(mac, RxSymbolErrors, RxSymbolErrors); RMON_UPDATE(mac, RxInRangeLengthErrors, RxInRangeLengthErrors); RMON_UPDATE(mac, RxFramesTooLongErrors , RxFrameTooLongErrors); RMON_UPDATE(mac, RxJabbers, RxJabberErrors); RMON_UPDATE(mac, RxFragments, RxRuntErrors); RMON_UPDATE(mac, RxUndersizedFrames, RxRuntErrors); RMON_UPDATE(mac, RxJumboFramesReceivedOK, RxJumboFramesOK); RMON_UPDATE(mac, RxJumboOctetsReceivedOK, RxJumboOctetsOK); /* Tx stats */ RMON_UPDATE(mac, TxOctetsTransmittedOK, TxOctetsOK); RMON_UPDATE(mac, TxFramesLostDueToInternalMACTransmissionError, TxInternalMACXmitError); RMON_UPDATE(mac, TxTransmitSystemError, TxFCSErrors); RMON_UPDATE(mac, TxUnicastFramesTransmittedOK, TxUnicastFramesOK); RMON_UPDATE(mac, TxMulticastFramesTransmittedOK, TxMulticastFramesOK); RMON_UPDATE(mac, TxBroadcastFramesTransmittedOK, TxBroadcastFramesOK); RMON_UPDATE(mac, TxPAUSEMACCtrlFramesTransmitted, TxPauseFrames); RMON_UPDATE(mac, TxJumboFramesReceivedOK, TxJumboFramesOK); RMON_UPDATE(mac, TxJumboOctetsReceivedOK, TxJumboOctetsOK); return &mac->stats; } static int pm3393_macaddress_get(struct cmac *cmac, u8 mac_addr[6]) { memcpy(mac_addr, cmac->instance->mac_addr, ETH_ALEN); return 0; } static int pm3393_macaddress_set(struct cmac *cmac, u8 ma[6]) { u32 val, lo, mid, hi, enabled = cmac->instance->enabled; /* * MAC addr: 00:07:43:00:13:09 * * ma[5] = 0x09 * ma[4] = 0x13 * ma[3] = 0x00 * ma[2] = 0x43 * ma[1] = 0x07 * ma[0] = 0x00 * * The PM3393 requires byte swapping and reverse order entry * when programming MAC addresses: * * low_bits[15:0] = ma[1]:ma[0] * mid_bits[31:16] = ma[3]:ma[2] * high_bits[47:32] = ma[5]:ma[4] */ /* Store local copy */ memcpy(cmac->instance->mac_addr, ma, ETH_ALEN); lo = ((u32) ma[1] << 8) | (u32) ma[0]; mid = ((u32) ma[3] << 8) | (u32) ma[2]; hi = ((u32) ma[5] << 8) | (u32) ma[4]; /* Disable Rx/Tx MAC before configuring it. */ if (enabled) pm3393_disable(cmac, MAC_DIRECTION_RX | MAC_DIRECTION_TX); /* Set RXXG Station Address */ pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_SA_15_0, lo); pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_SA_31_16, mid); pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_SA_47_32, hi); /* Set TXXG Station Address */ pmwrite(cmac, SUNI1x10GEXP_REG_TXXG_SA_15_0, lo); pmwrite(cmac, SUNI1x10GEXP_REG_TXXG_SA_31_16, mid); pmwrite(cmac, SUNI1x10GEXP_REG_TXXG_SA_47_32, hi); /* Setup Exact Match Filter 1 with our MAC address * * Must disable exact match filter before configuring it. */ pmread(cmac, SUNI1x10GEXP_REG_RXXG_ADDRESS_FILTER_CONTROL_0, &val); val &= 0xff0f; pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_ADDRESS_FILTER_CONTROL_0, val); pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_EXACT_MATCH_ADDR_1_LOW, lo); pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_EXACT_MATCH_ADDR_1_MID, mid); pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_EXACT_MATCH_ADDR_1_HIGH, hi); val |= 0x0090; pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_ADDRESS_FILTER_CONTROL_0, val); if (enabled) pm3393_enable(cmac, enabled); return 0; } static void pm3393_destroy(struct cmac *cmac) { kfree(cmac); } static const struct cmac_ops pm3393_ops = { .destroy = pm3393_destroy, .reset = pm3393_reset, .interrupt_enable = pm3393_interrupt_enable, .interrupt_disable = pm3393_interrupt_disable, .interrupt_clear = pm3393_interrupt_clear, .interrupt_handler = pm3393_interrupt_handler, .enable = pm3393_enable_port, .disable = pm3393_disable, .loopback_enable = pm3393_loopback_enable, .loopback_disable = pm3393_loopback_disable, .set_mtu = pm3393_set_mtu, .set_rx_mode = pm3393_set_rx_mode, .get_speed_duplex_fc = pm3393_get_speed_duplex_fc, .set_speed_duplex_fc = pm3393_set_speed_duplex_fc, .statistics_update = pm3393_update_statistics, .macaddress_get = pm3393_macaddress_get, .macaddress_set = pm3393_macaddress_set }; static struct cmac *pm3393_mac_create(adapter_t *adapter, int index) { struct cmac *cmac; cmac = kzalloc(sizeof(*cmac) + sizeof(cmac_instance), GFP_KERNEL); if (!cmac) return NULL; cmac->ops = &pm3393_ops; cmac->instance = (cmac_instance *) (cmac + 1); cmac->adapter = adapter; cmac->instance->fc = PAUSE_TX | PAUSE_RX; t1_tpi_write(adapter, OFFSET(0x0001), 0x00008000); t1_tpi_write(adapter, OFFSET(0x0001), 0x00000000); t1_tpi_write(adapter, OFFSET(0x2308), 0x00009800); t1_tpi_write(adapter, OFFSET(0x2305), 0x00001001); /* PL4IO Enable */ t1_tpi_write(adapter, OFFSET(0x2320), 0x00008800); t1_tpi_write(adapter, OFFSET(0x2321), 0x00008800); t1_tpi_write(adapter, OFFSET(0x2322), 0x00008800); t1_tpi_write(adapter, OFFSET(0x2323), 0x00008800); t1_tpi_write(adapter, OFFSET(0x2324), 0x00008800); t1_tpi_write(adapter, OFFSET(0x2325), 0x00008800); t1_tpi_write(adapter, OFFSET(0x2326), 0x00008800); t1_tpi_write(adapter, OFFSET(0x2327), 0x00008800); t1_tpi_write(adapter, OFFSET(0x2328), 0x00008800); t1_tpi_write(adapter, OFFSET(0x2329), 0x00008800); t1_tpi_write(adapter, OFFSET(0x232a), 0x00008800); t1_tpi_write(adapter, OFFSET(0x232b), 0x00008800); t1_tpi_write(adapter, OFFSET(0x232c), 0x00008800); t1_tpi_write(adapter, OFFSET(0x232d), 0x00008800); t1_tpi_write(adapter, OFFSET(0x232e), 0x00008800); t1_tpi_write(adapter, OFFSET(0x232f), 0x00008800); t1_tpi_write(adapter, OFFSET(0x230d), 0x00009c00); t1_tpi_write(adapter, OFFSET(0x2304), 0x00000202); /* PL4IO Calendar Repetitions */ t1_tpi_write(adapter, OFFSET(0x3200), 0x00008080); /* EFLX Enable */ t1_tpi_write(adapter, OFFSET(0x3210), 0x00000000); /* EFLX Channel Deprovision */ t1_tpi_write(adapter, OFFSET(0x3203), 0x00000000); /* EFLX Low Limit */ t1_tpi_write(adapter, OFFSET(0x3204), 0x00000040); /* EFLX High Limit */ t1_tpi_write(adapter, OFFSET(0x3205), 0x000002cc); /* EFLX Almost Full */ t1_tpi_write(adapter, OFFSET(0x3206), 0x00000199); /* EFLX Almost Empty */ t1_tpi_write(adapter, OFFSET(0x3207), 0x00000240); /* EFLX Cut Through Threshold */ t1_tpi_write(adapter, OFFSET(0x3202), 0x00000000); /* EFLX Indirect Register Update */ t1_tpi_write(adapter, OFFSET(0x3210), 0x00000001); /* EFLX Channel Provision */ t1_tpi_write(adapter, OFFSET(0x3208), 0x0000ffff); /* EFLX Undocumented */ t1_tpi_write(adapter, OFFSET(0x320a), 0x0000ffff); /* EFLX Undocumented */ t1_tpi_write(adapter, OFFSET(0x320c), 0x0000ffff); /* EFLX enable overflow interrupt The other bit are undocumented */ t1_tpi_write(adapter, OFFSET(0x320e), 0x0000ffff); /* EFLX Undocumented */ t1_tpi_write(adapter, OFFSET(0x2200), 0x0000c000); /* IFLX Configuration - enable */ t1_tpi_write(adapter, OFFSET(0x2201), 0x00000000); /* IFLX Channel Deprovision */ t1_tpi_write(adapter, OFFSET(0x220e), 0x00000000); /* IFLX Low Limit */ t1_tpi_write(adapter, OFFSET(0x220f), 0x00000100); /* IFLX High Limit */ t1_tpi_write(adapter, OFFSET(0x2210), 0x00000c00); /* IFLX Almost Full Limit */ t1_tpi_write(adapter, OFFSET(0x2211), 0x00000599); /* IFLX Almost Empty Limit */ t1_tpi_write(adapter, OFFSET(0x220d), 0x00000000); /* IFLX Indirect Register Update */ t1_tpi_write(adapter, OFFSET(0x2201), 0x00000001); /* IFLX Channel Provision */ t1_tpi_write(adapter, OFFSET(0x2203), 0x0000ffff); /* IFLX Undocumented */ t1_tpi_write(adapter, OFFSET(0x2205), 0x0000ffff); /* IFLX Undocumented */ t1_tpi_write(adapter, OFFSET(0x2209), 0x0000ffff); /* IFLX Enable overflow interrupt. The other bit are undocumented */ t1_tpi_write(adapter, OFFSET(0x2241), 0xfffffffe); /* PL4MOS Undocumented */ t1_tpi_write(adapter, OFFSET(0x2242), 0x0000ffff); /* PL4MOS Undocumented */ t1_tpi_write(adapter, OFFSET(0x2243), 0x00000008); /* PL4MOS Starving Burst Size */ t1_tpi_write(adapter, OFFSET(0x2244), 0x00000008); /* PL4MOS Hungry Burst Size */ t1_tpi_write(adapter, OFFSET(0x2245), 0x00000008); /* PL4MOS Transfer Size */ t1_tpi_write(adapter, OFFSET(0x2240), 0x00000005); /* PL4MOS Disable */ t1_tpi_write(adapter, OFFSET(0x2280), 0x00002103); /* PL4ODP Training Repeat and SOP rule */ t1_tpi_write(adapter, OFFSET(0x2284), 0x00000000); /* PL4ODP MAX_T setting */ t1_tpi_write(adapter, OFFSET(0x3280), 0x00000087); /* PL4IDU Enable data forward, port state machine. Set ALLOW_NON_ZERO_OLB */ t1_tpi_write(adapter, OFFSET(0x3282), 0x0000001f); /* PL4IDU Enable Dip4 check error interrupts */ t1_tpi_write(adapter, OFFSET(0x3040), 0x0c32); /* # TXXG Config */ /* For T1 use timer based Mac flow control. */ t1_tpi_write(adapter, OFFSET(0x304d), 0x8000); t1_tpi_write(adapter, OFFSET(0x2040), 0x059c); /* # RXXG Config */ t1_tpi_write(adapter, OFFSET(0x2049), 0x0001); /* # RXXG Cut Through */ t1_tpi_write(adapter, OFFSET(0x2070), 0x0000); /* # Disable promiscuous mode */ /* Setup Exact Match Filter 0 to allow broadcast packets. */ t1_tpi_write(adapter, OFFSET(0x206e), 0x0000); /* # Disable Match Enable bit */ t1_tpi_write(adapter, OFFSET(0x204a), 0xffff); /* # low addr */ t1_tpi_write(adapter, OFFSET(0x204b), 0xffff); /* # mid addr */ t1_tpi_write(adapter, OFFSET(0x204c), 0xffff); /* # high addr */ t1_tpi_write(adapter, OFFSET(0x206e), 0x0009); /* # Enable Match Enable bit */ t1_tpi_write(adapter, OFFSET(0x0003), 0x0000); /* # NO SOP/ PAD_EN setup */ t1_tpi_write(adapter, OFFSET(0x0100), 0x0ff0); /* # RXEQB disabled */ t1_tpi_write(adapter, OFFSET(0x0101), 0x0f0f); /* # No Preemphasis */ return cmac; } static int pm3393_mac_reset(adapter_t * adapter) { u32 val; u32 x; u32 is_pl4_reset_finished; u32 is_pl4_outof_lock; u32 is_xaui_mabc_pll_locked; u32 successful_reset; int i; /* The following steps are required to properly reset * the PM3393. This information is provided in the * PM3393 datasheet (Issue 2: November 2002) * section 13.1 -- Device Reset. * * The PM3393 has three types of components that are * individually reset: * * DRESETB - Digital circuitry * PL4_ARESETB - PL4 analog circuitry * XAUI_ARESETB - XAUI bus analog circuitry * * Steps to reset PM3393 using RSTB pin: * * 1. Assert RSTB pin low ( write 0 ) * 2. Wait at least 1ms to initiate a complete initialization of device. * 3. Wait until all external clocks and REFSEL are stable. * 4. Wait minimum of 1ms. (after external clocks and REFEL are stable) * 5. De-assert RSTB ( write 1 ) * 6. Wait until internal timers to expires after ~14ms. * - Allows analog clock synthesizer(PL4CSU) to stabilize to * selected reference frequency before allowing the digital * portion of the device to operate. * 7. Wait at least 200us for XAUI interface to stabilize. * 8. Verify the PM3393 came out of reset successfully. * Set successful reset flag if everything worked else try again * a few more times. */ successful_reset = 0; for (i = 0; i < 3 && !successful_reset; i++) { /* 1 */ t1_tpi_read(adapter, A_ELMER0_GPO, &val); val &= ~1; t1_tpi_write(adapter, A_ELMER0_GPO, val); /* 2 */ msleep(1); /* 3 */ msleep(1); /* 4 */ msleep(2 /*1 extra ms for safety */ ); /* 5 */ val |= 1; t1_tpi_write(adapter, A_ELMER0_GPO, val); /* 6 */ msleep(15 /*1 extra ms for safety */ ); /* 7 */ msleep(1); /* 8 */ /* Has PL4 analog block come out of reset correctly? */ t1_tpi_read(adapter, OFFSET(SUNI1x10GEXP_REG_DEVICE_STATUS), &val); is_pl4_reset_finished = (val & SUNI1x10GEXP_BITMSK_TOP_EXPIRED); /* TBD XXX SUNI1x10GEXP_BITMSK_TOP_PL4_IS_DOOL gets locked later in the init sequence * figure out why? */ /* Have all PL4 block clocks locked? */ x = (SUNI1x10GEXP_BITMSK_TOP_PL4_ID_DOOL /*| SUNI1x10GEXP_BITMSK_TOP_PL4_IS_DOOL */ | SUNI1x10GEXP_BITMSK_TOP_PL4_ID_ROOL | SUNI1x10GEXP_BITMSK_TOP_PL4_IS_ROOL | SUNI1x10GEXP_BITMSK_TOP_PL4_OUT_ROOL); is_pl4_outof_lock = (val & x); /* ??? If this fails, might be able to software reset the XAUI part * and try to recover... thus saving us from doing another HW reset */ /* Has the XAUI MABC PLL circuitry stablized? */ is_xaui_mabc_pll_locked = (val & SUNI1x10GEXP_BITMSK_TOP_SXRA_EXPIRED); successful_reset = (is_pl4_reset_finished && !is_pl4_outof_lock && is_xaui_mabc_pll_locked); if (netif_msg_hw(adapter)) dev_dbg(&adapter->pdev->dev, "PM3393 HW reset %d: pl4_reset 0x%x, val 0x%x, " "is_pl4_outof_lock 0x%x, xaui_locked 0x%x\n", i, is_pl4_reset_finished, val, is_pl4_outof_lock, is_xaui_mabc_pll_locked); } return successful_reset ? 0 : 1; } const struct gmac t1_pm3393_ops = { .stats_update_period = STATS_TICK_SECS, .create = pm3393_mac_create, .reset = pm3393_mac_reset, };
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1