Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Joseph CHANG | 2916 | 37.62% | 1 | 1.06% |
Ben Dooks | 2127 | 27.44% | 31 | 32.98% |
Sascha Hauer | 1285 | 16.58% | 1 | 1.06% |
Tomasz Figa | 212 | 2.73% | 1 | 1.06% |
Zubair Lutfullah Kakakhel | 185 | 2.39% | 1 | 1.06% |
Andrew Ruder | 120 | 1.55% | 5 | 5.32% |
Yeasah Pell | 109 | 1.41% | 1 | 1.06% |
Michael Abbott | 95 | 1.23% | 1 | 1.06% |
Himangi Saraogi | 91 | 1.17% | 1 | 1.06% |
David S. Miller | 71 | 0.92% | 1 | 1.06% |
Alexander Beregalov | 60 | 0.77% | 1 | 1.06% |
Nikita Kiryanov | 57 | 0.74% | 3 | 3.19% |
Robert Jarzmik | 54 | 0.70% | 1 | 1.06% |
Wang Chen | 36 | 0.46% | 1 | 1.06% |
Baruch Siach | 32 | 0.41% | 1 | 1.06% |
Laurent Pinchart | 32 | 0.41% | 1 | 1.06% |
Harvey Hunt | 27 | 0.35% | 1 | 1.06% |
Michał Mirosław | 23 | 0.30% | 1 | 1.06% |
Mike Rapoport | 23 | 0.30% | 1 | 1.06% |
Vladimir Zapolskiy | 21 | 0.27% | 1 | 1.06% |
Kevin Hao | 18 | 0.23% | 1 | 1.06% |
Philippe Reynes | 17 | 0.22% | 1 | 1.06% |
Sylwester Nawrocki | 17 | 0.22% | 1 | 1.06% |
Dan Carpenter | 12 | 0.15% | 1 | 1.06% |
Peter Korsgaard | 11 | 0.14% | 1 | 1.06% |
Emilio López | 11 | 0.14% | 1 | 1.06% |
Henry Nestler | 10 | 0.13% | 2 | 2.13% |
Russell King | 9 | 0.12% | 2 | 2.13% |
Florian Westphal | 9 | 0.12% | 2 | 2.13% |
Mark Brown | 7 | 0.09% | 1 | 1.06% |
Tobias Klauser | 7 | 0.09% | 2 | 2.13% |
Matthew Leach | 6 | 0.08% | 1 | 1.06% |
Alexey Dobriyan | 4 | 0.05% | 2 | 2.13% |
Jiri Pirko | 4 | 0.05% | 2 | 2.13% |
Enrico Scholz | 4 | 0.05% | 1 | 1.06% |
Wolfram Sang | 4 | 0.05% | 1 | 1.06% |
Jingoo Han | 4 | 0.05% | 1 | 1.06% |
Daniel Mack | 3 | 0.04% | 1 | 1.06% |
Tejun Heo | 3 | 0.04% | 1 | 1.06% |
Sachin Kamat | 2 | 0.03% | 1 | 1.06% |
Thomas Gleixner | 2 | 0.03% | 1 | 1.06% |
Pradeep A. Dalvi | 2 | 0.03% | 1 | 1.06% |
Mathieu Malaterre | 1 | 0.01% | 1 | 1.06% |
Jeff Garzik | 1 | 0.01% | 1 | 1.06% |
Eric Dumazet | 1 | 0.01% | 1 | 1.06% |
Kay Sievers | 1 | 0.01% | 1 | 1.06% |
David Brownell | 1 | 0.01% | 1 | 1.06% |
Johannes Berg | 1 | 0.01% | 1 | 1.06% |
Danny Kukawka | 1 | 0.01% | 1 | 1.06% |
Eric W. Biedermann | 1 | 0.01% | 1 | 1.06% |
Joe Perches | 1 | 0.01% | 1 | 1.06% |
Barry Song | 1 | 0.01% | 1 | 1.06% |
Total | 7752 | 94 |
/* * Davicom DM9000 Fast Ethernet driver for Linux. * Copyright (C) 1997 Sten Wang * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * (C) Copyright 1997-1998 DAVICOM Semiconductor,Inc. All Rights Reserved. * * Additional updates, Copyright: * Ben Dooks <ben@simtec.co.uk> * Sascha Hauer <s.hauer@pengutronix.de> */ #include <linux/module.h> #include <linux/ioport.h> #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/interrupt.h> #include <linux/skbuff.h> #include <linux/spinlock.h> #include <linux/crc32.h> #include <linux/mii.h> #include <linux/of.h> #include <linux/of_net.h> #include <linux/ethtool.h> #include <linux/dm9000.h> #include <linux/delay.h> #include <linux/platform_device.h> #include <linux/irq.h> #include <linux/slab.h> #include <linux/regulator/consumer.h> #include <linux/gpio.h> #include <linux/of_gpio.h> #include <asm/delay.h> #include <asm/irq.h> #include <asm/io.h> #include "dm9000.h" /* Board/System/Debug information/definition ---------------- */ #define DM9000_PHY 0x40 /* PHY address 0x01 */ #define CARDNAME "dm9000" #define DRV_VERSION "1.31" /* * Transmit timeout, default 5 seconds. */ static int watchdog = 5000; module_param(watchdog, int, 0400); MODULE_PARM_DESC(watchdog, "transmit timeout in milliseconds"); /* * Debug messages level */ static int debug; module_param(debug, int, 0644); MODULE_PARM_DESC(debug, "dm9000 debug level (0-6)"); /* DM9000 register address locking. * * The DM9000 uses an address register to control where data written * to the data register goes. This means that the address register * must be preserved over interrupts or similar calls. * * During interrupt and other critical calls, a spinlock is used to * protect the system, but the calls themselves save the address * in the address register in case they are interrupting another * access to the device. * * For general accesses a lock is provided so that calls which are * allowed to sleep are serialised so that the address register does * not need to be saved. This lock also serves to serialise access * to the EEPROM and PHY access registers which are shared between * these two devices. */ /* The driver supports the original DM9000E, and now the two newer * devices, DM9000A and DM9000B. */ enum dm9000_type { TYPE_DM9000E, /* original DM9000 */ TYPE_DM9000A, TYPE_DM9000B }; /* Structure/enum declaration ------------------------------- */ struct board_info { void __iomem *io_addr; /* Register I/O base address */ void __iomem *io_data; /* Data I/O address */ u16 irq; /* IRQ */ u16 tx_pkt_cnt; u16 queue_pkt_len; u16 queue_start_addr; u16 queue_ip_summed; u16 dbug_cnt; u8 io_mode; /* 0:word, 2:byte */ u8 phy_addr; u8 imr_all; unsigned int flags; unsigned int in_timeout:1; unsigned int in_suspend:1; unsigned int wake_supported:1; enum dm9000_type type; void (*inblk)(void __iomem *port, void *data, int length); void (*outblk)(void __iomem *port, void *data, int length); void (*dumpblk)(void __iomem *port, int length); struct device *dev; /* parent device */ struct resource *addr_res; /* resources found */ struct resource *data_res; struct resource *addr_req; /* resources requested */ struct resource *data_req; int irq_wake; struct mutex addr_lock; /* phy and eeprom access lock */ struct delayed_work phy_poll; struct net_device *ndev; spinlock_t lock; struct mii_if_info mii; u32 msg_enable; u32 wake_state; int ip_summed; }; /* debug code */ #define dm9000_dbg(db, lev, msg...) do { \ if ((lev) < debug) { \ dev_dbg(db->dev, msg); \ } \ } while (0) static inline struct board_info *to_dm9000_board(struct net_device *dev) { return netdev_priv(dev); } /* DM9000 network board routine ---------------------------- */ /* * Read a byte from I/O port */ static u8 ior(struct board_info *db, int reg) { writeb(reg, db->io_addr); return readb(db->io_data); } /* * Write a byte to I/O port */ static void iow(struct board_info *db, int reg, int value) { writeb(reg, db->io_addr); writeb(value, db->io_data); } static void dm9000_reset(struct board_info *db) { dev_dbg(db->dev, "resetting device\n"); /* Reset DM9000, see DM9000 Application Notes V1.22 Jun 11, 2004 page 29 * The essential point is that we have to do a double reset, and the * instruction is to set LBK into MAC internal loopback mode. */ iow(db, DM9000_NCR, NCR_RST | NCR_MAC_LBK); udelay(100); /* Application note says at least 20 us */ if (ior(db, DM9000_NCR) & 1) dev_err(db->dev, "dm9000 did not respond to first reset\n"); iow(db, DM9000_NCR, 0); iow(db, DM9000_NCR, NCR_RST | NCR_MAC_LBK); udelay(100); if (ior(db, DM9000_NCR) & 1) dev_err(db->dev, "dm9000 did not respond to second reset\n"); } /* routines for sending block to chip */ static void dm9000_outblk_8bit(void __iomem *reg, void *data, int count) { iowrite8_rep(reg, data, count); } static void dm9000_outblk_16bit(void __iomem *reg, void *data, int count) { iowrite16_rep(reg, data, (count+1) >> 1); } static void dm9000_outblk_32bit(void __iomem *reg, void *data, int count) { iowrite32_rep(reg, data, (count+3) >> 2); } /* input block from chip to memory */ static void dm9000_inblk_8bit(void __iomem *reg, void *data, int count) { ioread8_rep(reg, data, count); } static void dm9000_inblk_16bit(void __iomem *reg, void *data, int count) { ioread16_rep(reg, data, (count+1) >> 1); } static void dm9000_inblk_32bit(void __iomem *reg, void *data, int count) { ioread32_rep(reg, data, (count+3) >> 2); } /* dump block from chip to null */ static void dm9000_dumpblk_8bit(void __iomem *reg, int count) { int i; int tmp; for (i = 0; i < count; i++) tmp = readb(reg); } static void dm9000_dumpblk_16bit(void __iomem *reg, int count) { int i; int tmp; count = (count + 1) >> 1; for (i = 0; i < count; i++) tmp = readw(reg); } static void dm9000_dumpblk_32bit(void __iomem *reg, int count) { int i; int tmp; count = (count + 3) >> 2; for (i = 0; i < count; i++) tmp = readl(reg); } /* * Sleep, either by using msleep() or if we are suspending, then * use mdelay() to sleep. */ static void dm9000_msleep(struct board_info *db, unsigned int ms) { if (db->in_suspend || db->in_timeout) mdelay(ms); else msleep(ms); } /* Read a word from phyxcer */ static int dm9000_phy_read(struct net_device *dev, int phy_reg_unused, int reg) { struct board_info *db = netdev_priv(dev); unsigned long flags; unsigned int reg_save; int ret; mutex_lock(&db->addr_lock); spin_lock_irqsave(&db->lock, flags); /* Save previous register address */ reg_save = readb(db->io_addr); /* Fill the phyxcer register into REG_0C */ iow(db, DM9000_EPAR, DM9000_PHY | reg); /* Issue phyxcer read command */ iow(db, DM9000_EPCR, EPCR_ERPRR | EPCR_EPOS); writeb(reg_save, db->io_addr); spin_unlock_irqrestore(&db->lock, flags); dm9000_msleep(db, 1); /* Wait read complete */ spin_lock_irqsave(&db->lock, flags); reg_save = readb(db->io_addr); iow(db, DM9000_EPCR, 0x0); /* Clear phyxcer read command */ /* The read data keeps on REG_0D & REG_0E */ ret = (ior(db, DM9000_EPDRH) << 8) | ior(db, DM9000_EPDRL); /* restore the previous address */ writeb(reg_save, db->io_addr); spin_unlock_irqrestore(&db->lock, flags); mutex_unlock(&db->addr_lock); dm9000_dbg(db, 5, "phy_read[%02x] -> %04x\n", reg, ret); return ret; } /* Write a word to phyxcer */ static void dm9000_phy_write(struct net_device *dev, int phyaddr_unused, int reg, int value) { struct board_info *db = netdev_priv(dev); unsigned long flags; unsigned long reg_save; dm9000_dbg(db, 5, "phy_write[%02x] = %04x\n", reg, value); if (!db->in_timeout) mutex_lock(&db->addr_lock); spin_lock_irqsave(&db->lock, flags); /* Save previous register address */ reg_save = readb(db->io_addr); /* Fill the phyxcer register into REG_0C */ iow(db, DM9000_EPAR, DM9000_PHY | reg); /* Fill the written data into REG_0D & REG_0E */ iow(db, DM9000_EPDRL, value); iow(db, DM9000_EPDRH, value >> 8); /* Issue phyxcer write command */ iow(db, DM9000_EPCR, EPCR_EPOS | EPCR_ERPRW); writeb(reg_save, db->io_addr); spin_unlock_irqrestore(&db->lock, flags); dm9000_msleep(db, 1); /* Wait write complete */ spin_lock_irqsave(&db->lock, flags); reg_save = readb(db->io_addr); iow(db, DM9000_EPCR, 0x0); /* Clear phyxcer write command */ /* restore the previous address */ writeb(reg_save, db->io_addr); spin_unlock_irqrestore(&db->lock, flags); if (!db->in_timeout) mutex_unlock(&db->addr_lock); } /* dm9000_set_io * * select the specified set of io routines to use with the * device */ static void dm9000_set_io(struct board_info *db, int byte_width) { /* use the size of the data resource to work out what IO * routines we want to use */ switch (byte_width) { case 1: db->dumpblk = dm9000_dumpblk_8bit; db->outblk = dm9000_outblk_8bit; db->inblk = dm9000_inblk_8bit; break; case 3: dev_dbg(db->dev, ": 3 byte IO, falling back to 16bit\n"); case 2: db->dumpblk = dm9000_dumpblk_16bit; db->outblk = dm9000_outblk_16bit; db->inblk = dm9000_inblk_16bit; break; case 4: default: db->dumpblk = dm9000_dumpblk_32bit; db->outblk = dm9000_outblk_32bit; db->inblk = dm9000_inblk_32bit; break; } } static void dm9000_schedule_poll(struct board_info *db) { if (db->type == TYPE_DM9000E) schedule_delayed_work(&db->phy_poll, HZ * 2); } static int dm9000_ioctl(struct net_device *dev, struct ifreq *req, int cmd) { struct board_info *dm = to_dm9000_board(dev); if (!netif_running(dev)) return -EINVAL; return generic_mii_ioctl(&dm->mii, if_mii(req), cmd, NULL); } static unsigned int dm9000_read_locked(struct board_info *db, int reg) { unsigned long flags; unsigned int ret; spin_lock_irqsave(&db->lock, flags); ret = ior(db, reg); spin_unlock_irqrestore(&db->lock, flags); return ret; } static int dm9000_wait_eeprom(struct board_info *db) { unsigned int status; int timeout = 8; /* wait max 8msec */ /* The DM9000 data sheets say we should be able to * poll the ERRE bit in EPCR to wait for the EEPROM * operation. From testing several chips, this bit * does not seem to work. * * We attempt to use the bit, but fall back to the * timeout (which is why we do not return an error * on expiry) to say that the EEPROM operation has * completed. */ while (1) { status = dm9000_read_locked(db, DM9000_EPCR); if ((status & EPCR_ERRE) == 0) break; msleep(1); if (timeout-- < 0) { dev_dbg(db->dev, "timeout waiting EEPROM\n"); break; } } return 0; } /* * Read a word data from EEPROM */ static void dm9000_read_eeprom(struct board_info *db, int offset, u8 *to) { unsigned long flags; if (db->flags & DM9000_PLATF_NO_EEPROM) { to[0] = 0xff; to[1] = 0xff; return; } mutex_lock(&db->addr_lock); spin_lock_irqsave(&db->lock, flags); iow(db, DM9000_EPAR, offset); iow(db, DM9000_EPCR, EPCR_ERPRR); spin_unlock_irqrestore(&db->lock, flags); dm9000_wait_eeprom(db); /* delay for at-least 150uS */ msleep(1); spin_lock_irqsave(&db->lock, flags); iow(db, DM9000_EPCR, 0x0); to[0] = ior(db, DM9000_EPDRL); to[1] = ior(db, DM9000_EPDRH); spin_unlock_irqrestore(&db->lock, flags); mutex_unlock(&db->addr_lock); } /* * Write a word data to SROM */ static void dm9000_write_eeprom(struct board_info *db, int offset, u8 *data) { unsigned long flags; if (db->flags & DM9000_PLATF_NO_EEPROM) return; mutex_lock(&db->addr_lock); spin_lock_irqsave(&db->lock, flags); iow(db, DM9000_EPAR, offset); iow(db, DM9000_EPDRH, data[1]); iow(db, DM9000_EPDRL, data[0]); iow(db, DM9000_EPCR, EPCR_WEP | EPCR_ERPRW); spin_unlock_irqrestore(&db->lock, flags); dm9000_wait_eeprom(db); mdelay(1); /* wait at least 150uS to clear */ spin_lock_irqsave(&db->lock, flags); iow(db, DM9000_EPCR, 0); spin_unlock_irqrestore(&db->lock, flags); mutex_unlock(&db->addr_lock); } /* ethtool ops */ static void dm9000_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) { struct board_info *dm = to_dm9000_board(dev); strlcpy(info->driver, CARDNAME, sizeof(info->driver)); strlcpy(info->version, DRV_VERSION, sizeof(info->version)); strlcpy(info->bus_info, to_platform_device(dm->dev)->name, sizeof(info->bus_info)); } static u32 dm9000_get_msglevel(struct net_device *dev) { struct board_info *dm = to_dm9000_board(dev); return dm->msg_enable; } static void dm9000_set_msglevel(struct net_device *dev, u32 value) { struct board_info *dm = to_dm9000_board(dev); dm->msg_enable = value; } static int dm9000_get_link_ksettings(struct net_device *dev, struct ethtool_link_ksettings *cmd) { struct board_info *dm = to_dm9000_board(dev); mii_ethtool_get_link_ksettings(&dm->mii, cmd); return 0; } static int dm9000_set_link_ksettings(struct net_device *dev, const struct ethtool_link_ksettings *cmd) { struct board_info *dm = to_dm9000_board(dev); return mii_ethtool_set_link_ksettings(&dm->mii, cmd); } static int dm9000_nway_reset(struct net_device *dev) { struct board_info *dm = to_dm9000_board(dev); return mii_nway_restart(&dm->mii); } static int dm9000_set_features(struct net_device *dev, netdev_features_t features) { struct board_info *dm = to_dm9000_board(dev); netdev_features_t changed = dev->features ^ features; unsigned long flags; if (!(changed & NETIF_F_RXCSUM)) return 0; spin_lock_irqsave(&dm->lock, flags); iow(dm, DM9000_RCSR, (features & NETIF_F_RXCSUM) ? RCSR_CSUM : 0); spin_unlock_irqrestore(&dm->lock, flags); return 0; } static u32 dm9000_get_link(struct net_device *dev) { struct board_info *dm = to_dm9000_board(dev); u32 ret; if (dm->flags & DM9000_PLATF_EXT_PHY) ret = mii_link_ok(&dm->mii); else ret = dm9000_read_locked(dm, DM9000_NSR) & NSR_LINKST ? 1 : 0; return ret; } #define DM_EEPROM_MAGIC (0x444D394B) static int dm9000_get_eeprom_len(struct net_device *dev) { return 128; } static int dm9000_get_eeprom(struct net_device *dev, struct ethtool_eeprom *ee, u8 *data) { struct board_info *dm = to_dm9000_board(dev); int offset = ee->offset; int len = ee->len; int i; /* EEPROM access is aligned to two bytes */ if ((len & 1) != 0 || (offset & 1) != 0) return -EINVAL; if (dm->flags & DM9000_PLATF_NO_EEPROM) return -ENOENT; ee->magic = DM_EEPROM_MAGIC; for (i = 0; i < len; i += 2) dm9000_read_eeprom(dm, (offset + i) / 2, data + i); return 0; } static int dm9000_set_eeprom(struct net_device *dev, struct ethtool_eeprom *ee, u8 *data) { struct board_info *dm = to_dm9000_board(dev); int offset = ee->offset; int len = ee->len; int done; /* EEPROM access is aligned to two bytes */ if (dm->flags & DM9000_PLATF_NO_EEPROM) return -ENOENT; if (ee->magic != DM_EEPROM_MAGIC) return -EINVAL; while (len > 0) { if (len & 1 || offset & 1) { int which = offset & 1; u8 tmp[2]; dm9000_read_eeprom(dm, offset / 2, tmp); tmp[which] = *data; dm9000_write_eeprom(dm, offset / 2, tmp); done = 1; } else { dm9000_write_eeprom(dm, offset / 2, data); done = 2; } data += done; offset += done; len -= done; } return 0; } static void dm9000_get_wol(struct net_device *dev, struct ethtool_wolinfo *w) { struct board_info *dm = to_dm9000_board(dev); memset(w, 0, sizeof(struct ethtool_wolinfo)); /* note, we could probably support wake-phy too */ w->supported = dm->wake_supported ? WAKE_MAGIC : 0; w->wolopts = dm->wake_state; } static int dm9000_set_wol(struct net_device *dev, struct ethtool_wolinfo *w) { struct board_info *dm = to_dm9000_board(dev); unsigned long flags; u32 opts = w->wolopts; u32 wcr = 0; if (!dm->wake_supported) return -EOPNOTSUPP; if (opts & ~WAKE_MAGIC) return -EINVAL; if (opts & WAKE_MAGIC) wcr |= WCR_MAGICEN; mutex_lock(&dm->addr_lock); spin_lock_irqsave(&dm->lock, flags); iow(dm, DM9000_WCR, wcr); spin_unlock_irqrestore(&dm->lock, flags); mutex_unlock(&dm->addr_lock); if (dm->wake_state != opts) { /* change in wol state, update IRQ state */ if (!dm->wake_state) irq_set_irq_wake(dm->irq_wake, 1); else if (dm->wake_state && !opts) irq_set_irq_wake(dm->irq_wake, 0); } dm->wake_state = opts; return 0; } static const struct ethtool_ops dm9000_ethtool_ops = { .get_drvinfo = dm9000_get_drvinfo, .get_msglevel = dm9000_get_msglevel, .set_msglevel = dm9000_set_msglevel, .nway_reset = dm9000_nway_reset, .get_link = dm9000_get_link, .get_wol = dm9000_get_wol, .set_wol = dm9000_set_wol, .get_eeprom_len = dm9000_get_eeprom_len, .get_eeprom = dm9000_get_eeprom, .set_eeprom = dm9000_set_eeprom, .get_link_ksettings = dm9000_get_link_ksettings, .set_link_ksettings = dm9000_set_link_ksettings, }; static void dm9000_show_carrier(struct board_info *db, unsigned carrier, unsigned nsr) { int lpa; struct net_device *ndev = db->ndev; struct mii_if_info *mii = &db->mii; unsigned ncr = dm9000_read_locked(db, DM9000_NCR); if (carrier) { lpa = mii->mdio_read(mii->dev, mii->phy_id, MII_LPA); dev_info(db->dev, "%s: link up, %dMbps, %s-duplex, lpa 0x%04X\n", ndev->name, (nsr & NSR_SPEED) ? 10 : 100, (ncr & NCR_FDX) ? "full" : "half", lpa); } else { dev_info(db->dev, "%s: link down\n", ndev->name); } } static void dm9000_poll_work(struct work_struct *w) { struct delayed_work *dw = to_delayed_work(w); struct board_info *db = container_of(dw, struct board_info, phy_poll); struct net_device *ndev = db->ndev; if (db->flags & DM9000_PLATF_SIMPLE_PHY && !(db->flags & DM9000_PLATF_EXT_PHY)) { unsigned nsr = dm9000_read_locked(db, DM9000_NSR); unsigned old_carrier = netif_carrier_ok(ndev) ? 1 : 0; unsigned new_carrier; new_carrier = (nsr & NSR_LINKST) ? 1 : 0; if (old_carrier != new_carrier) { if (netif_msg_link(db)) dm9000_show_carrier(db, new_carrier, nsr); if (!new_carrier) netif_carrier_off(ndev); else netif_carrier_on(ndev); } } else mii_check_media(&db->mii, netif_msg_link(db), 0); if (netif_running(ndev)) dm9000_schedule_poll(db); } /* dm9000_release_board * * release a board, and any mapped resources */ static void dm9000_release_board(struct platform_device *pdev, struct board_info *db) { /* unmap our resources */ iounmap(db->io_addr); iounmap(db->io_data); /* release the resources */ if (db->data_req) release_resource(db->data_req); kfree(db->data_req); if (db->addr_req) release_resource(db->addr_req); kfree(db->addr_req); } static unsigned char dm9000_type_to_char(enum dm9000_type type) { switch (type) { case TYPE_DM9000E: return 'e'; case TYPE_DM9000A: return 'a'; case TYPE_DM9000B: return 'b'; } return '?'; } /* * Set DM9000 multicast address */ static void dm9000_hash_table_unlocked(struct net_device *dev) { struct board_info *db = netdev_priv(dev); struct netdev_hw_addr *ha; int i, oft; u32 hash_val; u16 hash_table[4] = { 0, 0, 0, 0x8000 }; /* broadcast address */ u8 rcr = RCR_DIS_LONG | RCR_DIS_CRC | RCR_RXEN; dm9000_dbg(db, 1, "entering %s\n", __func__); for (i = 0, oft = DM9000_PAR; i < 6; i++, oft++) iow(db, oft, dev->dev_addr[i]); if (dev->flags & IFF_PROMISC) rcr |= RCR_PRMSC; if (dev->flags & IFF_ALLMULTI) rcr |= RCR_ALL; /* the multicast address in Hash Table : 64 bits */ netdev_for_each_mc_addr(ha, dev) { hash_val = ether_crc_le(6, ha->addr) & 0x3f; hash_table[hash_val / 16] |= (u16) 1 << (hash_val % 16); } /* Write the hash table to MAC MD table */ for (i = 0, oft = DM9000_MAR; i < 4; i++) { iow(db, oft++, hash_table[i]); iow(db, oft++, hash_table[i] >> 8); } iow(db, DM9000_RCR, rcr); } static void dm9000_hash_table(struct net_device *dev) { struct board_info *db = netdev_priv(dev); unsigned long flags; spin_lock_irqsave(&db->lock, flags); dm9000_hash_table_unlocked(dev); spin_unlock_irqrestore(&db->lock, flags); } static void dm9000_mask_interrupts(struct board_info *db) { iow(db, DM9000_IMR, IMR_PAR); } static void dm9000_unmask_interrupts(struct board_info *db) { iow(db, DM9000_IMR, db->imr_all); } /* * Initialize dm9000 board */ static void dm9000_init_dm9000(struct net_device *dev) { struct board_info *db = netdev_priv(dev); unsigned int imr; unsigned int ncr; dm9000_dbg(db, 1, "entering %s\n", __func__); dm9000_reset(db); dm9000_mask_interrupts(db); /* I/O mode */ db->io_mode = ior(db, DM9000_ISR) >> 6; /* ISR bit7:6 keeps I/O mode */ /* Checksum mode */ if (dev->hw_features & NETIF_F_RXCSUM) iow(db, DM9000_RCSR, (dev->features & NETIF_F_RXCSUM) ? RCSR_CSUM : 0); iow(db, DM9000_GPCR, GPCR_GEP_CNTL); /* Let GPIO0 output */ iow(db, DM9000_GPR, 0); /* If we are dealing with DM9000B, some extra steps are required: a * manual phy reset, and setting init params. */ if (db->type == TYPE_DM9000B) { dm9000_phy_write(dev, 0, MII_BMCR, BMCR_RESET); dm9000_phy_write(dev, 0, MII_DM_DSPCR, DSPCR_INIT_PARAM); } ncr = (db->flags & DM9000_PLATF_EXT_PHY) ? NCR_EXT_PHY : 0; /* if wol is needed, then always set NCR_WAKEEN otherwise we end * up dumping the wake events if we disable this. There is already * a wake-mask in DM9000_WCR */ if (db->wake_supported) ncr |= NCR_WAKEEN; iow(db, DM9000_NCR, ncr); /* Program operating register */ iow(db, DM9000_TCR, 0); /* TX Polling clear */ iow(db, DM9000_BPTR, 0x3f); /* Less 3Kb, 200us */ iow(db, DM9000_FCR, 0xff); /* Flow Control */ iow(db, DM9000_SMCR, 0); /* Special Mode */ /* clear TX status */ iow(db, DM9000_NSR, NSR_WAKEST | NSR_TX2END | NSR_TX1END); iow(db, DM9000_ISR, ISR_CLR_STATUS); /* Clear interrupt status */ /* Set address filter table */ dm9000_hash_table_unlocked(dev); imr = IMR_PAR | IMR_PTM | IMR_PRM; if (db->type != TYPE_DM9000E) imr |= IMR_LNKCHNG; db->imr_all = imr; /* Init Driver variable */ db->tx_pkt_cnt = 0; db->queue_pkt_len = 0; netif_trans_update(dev); } /* Our watchdog timed out. Called by the networking layer */ static void dm9000_timeout(struct net_device *dev) { struct board_info *db = netdev_priv(dev); u8 reg_save; unsigned long flags; /* Save previous register address */ spin_lock_irqsave(&db->lock, flags); db->in_timeout = 1; reg_save = readb(db->io_addr); netif_stop_queue(dev); dm9000_init_dm9000(dev); dm9000_unmask_interrupts(db); /* We can accept TX packets again */ netif_trans_update(dev); /* prevent tx timeout */ netif_wake_queue(dev); /* Restore previous register address */ writeb(reg_save, db->io_addr); db->in_timeout = 0; spin_unlock_irqrestore(&db->lock, flags); } static void dm9000_send_packet(struct net_device *dev, int ip_summed, u16 pkt_len) { struct board_info *dm = to_dm9000_board(dev); /* The DM9000 is not smart enough to leave fragmented packets alone. */ if (dm->ip_summed != ip_summed) { if (ip_summed == CHECKSUM_NONE) iow(dm, DM9000_TCCR, 0); else iow(dm, DM9000_TCCR, TCCR_IP | TCCR_UDP | TCCR_TCP); dm->ip_summed = ip_summed; } /* Set TX length to DM9000 */ iow(dm, DM9000_TXPLL, pkt_len); iow(dm, DM9000_TXPLH, pkt_len >> 8); /* Issue TX polling command */ iow(dm, DM9000_TCR, TCR_TXREQ); /* Cleared after TX complete */ } /* * Hardware start transmission. * Send a packet to media from the upper layer. */ static int dm9000_start_xmit(struct sk_buff *skb, struct net_device *dev) { unsigned long flags; struct board_info *db = netdev_priv(dev); dm9000_dbg(db, 3, "%s:\n", __func__); if (db->tx_pkt_cnt > 1) return NETDEV_TX_BUSY; spin_lock_irqsave(&db->lock, flags); /* Move data to DM9000 TX RAM */ writeb(DM9000_MWCMD, db->io_addr); (db->outblk)(db->io_data, skb->data, skb->len); dev->stats.tx_bytes += skb->len; db->tx_pkt_cnt++; /* TX control: First packet immediately send, second packet queue */ if (db->tx_pkt_cnt == 1) { dm9000_send_packet(dev, skb->ip_summed, skb->len); } else { /* Second packet */ db->queue_pkt_len = skb->len; db->queue_ip_summed = skb->ip_summed; netif_stop_queue(dev); } spin_unlock_irqrestore(&db->lock, flags); /* free this SKB */ dev_consume_skb_any(skb); return NETDEV_TX_OK; } /* * DM9000 interrupt handler * receive the packet to upper layer, free the transmitted packet */ static void dm9000_tx_done(struct net_device *dev, struct board_info *db) { int tx_status = ior(db, DM9000_NSR); /* Got TX status */ if (tx_status & (NSR_TX2END | NSR_TX1END)) { /* One packet sent complete */ db->tx_pkt_cnt--; dev->stats.tx_packets++; if (netif_msg_tx_done(db)) dev_dbg(db->dev, "tx done, NSR %02x\n", tx_status); /* Queue packet check & send */ if (db->tx_pkt_cnt > 0) dm9000_send_packet(dev, db->queue_ip_summed, db->queue_pkt_len); netif_wake_queue(dev); } } struct dm9000_rxhdr { u8 RxPktReady; u8 RxStatus; __le16 RxLen; } __packed; /* * Received a packet and pass to upper layer */ static void dm9000_rx(struct net_device *dev) { struct board_info *db = netdev_priv(dev); struct dm9000_rxhdr rxhdr; struct sk_buff *skb; u8 rxbyte, *rdptr; bool GoodPacket; int RxLen; /* Check packet ready or not */ do { ior(db, DM9000_MRCMDX); /* Dummy read */ /* Get most updated data */ rxbyte = readb(db->io_data); /* Status check: this byte must be 0 or 1 */ if (rxbyte & DM9000_PKT_ERR) { dev_warn(db->dev, "status check fail: %d\n", rxbyte); iow(db, DM9000_RCR, 0x00); /* Stop Device */ return; } if (!(rxbyte & DM9000_PKT_RDY)) return; /* A packet ready now & Get status/length */ GoodPacket = true; writeb(DM9000_MRCMD, db->io_addr); (db->inblk)(db->io_data, &rxhdr, sizeof(rxhdr)); RxLen = le16_to_cpu(rxhdr.RxLen); if (netif_msg_rx_status(db)) dev_dbg(db->dev, "RX: status %02x, length %04x\n", rxhdr.RxStatus, RxLen); /* Packet Status check */ if (RxLen < 0x40) { GoodPacket = false; if (netif_msg_rx_err(db)) dev_dbg(db->dev, "RX: Bad Packet (runt)\n"); } if (RxLen > DM9000_PKT_MAX) { dev_dbg(db->dev, "RST: RX Len:%x\n", RxLen); } /* rxhdr.RxStatus is identical to RSR register. */ if (rxhdr.RxStatus & (RSR_FOE | RSR_CE | RSR_AE | RSR_PLE | RSR_RWTO | RSR_LCS | RSR_RF)) { GoodPacket = false; if (rxhdr.RxStatus & RSR_FOE) { if (netif_msg_rx_err(db)) dev_dbg(db->dev, "fifo error\n"); dev->stats.rx_fifo_errors++; } if (rxhdr.RxStatus & RSR_CE) { if (netif_msg_rx_err(db)) dev_dbg(db->dev, "crc error\n"); dev->stats.rx_crc_errors++; } if (rxhdr.RxStatus & RSR_RF) { if (netif_msg_rx_err(db)) dev_dbg(db->dev, "length error\n"); dev->stats.rx_length_errors++; } } /* Move data from DM9000 */ if (GoodPacket && ((skb = netdev_alloc_skb(dev, RxLen + 4)) != NULL)) { skb_reserve(skb, 2); rdptr = skb_put(skb, RxLen - 4); /* Read received packet from RX SRAM */ (db->inblk)(db->io_data, rdptr, RxLen); dev->stats.rx_bytes += RxLen; /* Pass to upper layer */ skb->protocol = eth_type_trans(skb, dev); if (dev->features & NETIF_F_RXCSUM) { if ((((rxbyte & 0x1c) << 3) & rxbyte) == 0) skb->ip_summed = CHECKSUM_UNNECESSARY; else skb_checksum_none_assert(skb); } netif_rx(skb); dev->stats.rx_packets++; } else { /* need to dump the packet's data */ (db->dumpblk)(db->io_data, RxLen); } } while (rxbyte & DM9000_PKT_RDY); } static irqreturn_t dm9000_interrupt(int irq, void *dev_id) { struct net_device *dev = dev_id; struct board_info *db = netdev_priv(dev); int int_status; unsigned long flags; u8 reg_save; dm9000_dbg(db, 3, "entering %s\n", __func__); /* A real interrupt coming */ /* holders of db->lock must always block IRQs */ spin_lock_irqsave(&db->lock, flags); /* Save previous register address */ reg_save = readb(db->io_addr); dm9000_mask_interrupts(db); /* Got DM9000 interrupt status */ int_status = ior(db, DM9000_ISR); /* Got ISR */ iow(db, DM9000_ISR, int_status); /* Clear ISR status */ if (netif_msg_intr(db)) dev_dbg(db->dev, "interrupt status %02x\n", int_status); /* Received the coming packet */ if (int_status & ISR_PRS) dm9000_rx(dev); /* Transmit Interrupt check */ if (int_status & ISR_PTS) dm9000_tx_done(dev, db); if (db->type != TYPE_DM9000E) { if (int_status & ISR_LNKCHNG) { /* fire a link-change request */ schedule_delayed_work(&db->phy_poll, 1); } } dm9000_unmask_interrupts(db); /* Restore previous register address */ writeb(reg_save, db->io_addr); spin_unlock_irqrestore(&db->lock, flags); return IRQ_HANDLED; } static irqreturn_t dm9000_wol_interrupt(int irq, void *dev_id) { struct net_device *dev = dev_id; struct board_info *db = netdev_priv(dev); unsigned long flags; unsigned nsr, wcr; spin_lock_irqsave(&db->lock, flags); nsr = ior(db, DM9000_NSR); wcr = ior(db, DM9000_WCR); dev_dbg(db->dev, "%s: NSR=0x%02x, WCR=0x%02x\n", __func__, nsr, wcr); if (nsr & NSR_WAKEST) { /* clear, so we can avoid */ iow(db, DM9000_NSR, NSR_WAKEST); if (wcr & WCR_LINKST) dev_info(db->dev, "wake by link status change\n"); if (wcr & WCR_SAMPLEST) dev_info(db->dev, "wake by sample packet\n"); if (wcr & WCR_MAGICST) dev_info(db->dev, "wake by magic packet\n"); if (!(wcr & (WCR_LINKST | WCR_SAMPLEST | WCR_MAGICST))) dev_err(db->dev, "wake signalled with no reason? " "NSR=0x%02x, WSR=0x%02x\n", nsr, wcr); } spin_unlock_irqrestore(&db->lock, flags); return (nsr & NSR_WAKEST) ? IRQ_HANDLED : IRQ_NONE; } #ifdef CONFIG_NET_POLL_CONTROLLER /* *Used by netconsole */ static void dm9000_poll_controller(struct net_device *dev) { disable_irq(dev->irq); dm9000_interrupt(dev->irq, dev); enable_irq(dev->irq); } #endif /* * Open the interface. * The interface is opened whenever "ifconfig" actives it. */ static int dm9000_open(struct net_device *dev) { struct board_info *db = netdev_priv(dev); unsigned int irq_flags = irq_get_trigger_type(dev->irq); if (netif_msg_ifup(db)) dev_dbg(db->dev, "enabling %s\n", dev->name); /* If there is no IRQ type specified, tell the user that this is a * problem */ if (irq_flags == IRQF_TRIGGER_NONE) dev_warn(db->dev, "WARNING: no IRQ resource flags set.\n"); irq_flags |= IRQF_SHARED; /* GPIO0 on pre-activate PHY, Reg 1F is not set by reset */ iow(db, DM9000_GPR, 0); /* REG_1F bit0 activate phyxcer */ mdelay(1); /* delay needs by DM9000B */ /* Initialize DM9000 board */ dm9000_init_dm9000(dev); if (request_irq(dev->irq, dm9000_interrupt, irq_flags, dev->name, dev)) return -EAGAIN; /* Now that we have an interrupt handler hooked up we can unmask * our interrupts */ dm9000_unmask_interrupts(db); /* Init driver variable */ db->dbug_cnt = 0; mii_check_media(&db->mii, netif_msg_link(db), 1); netif_start_queue(dev); /* Poll initial link status */ schedule_delayed_work(&db->phy_poll, 1); return 0; } static void dm9000_shutdown(struct net_device *dev) { struct board_info *db = netdev_priv(dev); /* RESET device */ dm9000_phy_write(dev, 0, MII_BMCR, BMCR_RESET); /* PHY RESET */ iow(db, DM9000_GPR, 0x01); /* Power-Down PHY */ dm9000_mask_interrupts(db); iow(db, DM9000_RCR, 0x00); /* Disable RX */ } /* * Stop the interface. * The interface is stopped when it is brought. */ static int dm9000_stop(struct net_device *ndev) { struct board_info *db = netdev_priv(ndev); if (netif_msg_ifdown(db)) dev_dbg(db->dev, "shutting down %s\n", ndev->name); cancel_delayed_work_sync(&db->phy_poll); netif_stop_queue(ndev); netif_carrier_off(ndev); /* free interrupt */ free_irq(ndev->irq, ndev); dm9000_shutdown(ndev); return 0; } static const struct net_device_ops dm9000_netdev_ops = { .ndo_open = dm9000_open, .ndo_stop = dm9000_stop, .ndo_start_xmit = dm9000_start_xmit, .ndo_tx_timeout = dm9000_timeout, .ndo_set_rx_mode = dm9000_hash_table, .ndo_do_ioctl = dm9000_ioctl, .ndo_set_features = dm9000_set_features, .ndo_validate_addr = eth_validate_addr, .ndo_set_mac_address = eth_mac_addr, #ifdef CONFIG_NET_POLL_CONTROLLER .ndo_poll_controller = dm9000_poll_controller, #endif }; static struct dm9000_plat_data *dm9000_parse_dt(struct device *dev) { struct dm9000_plat_data *pdata; struct device_node *np = dev->of_node; const void *mac_addr; if (!IS_ENABLED(CONFIG_OF) || !np) return ERR_PTR(-ENXIO); pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL); if (!pdata) return ERR_PTR(-ENOMEM); if (of_find_property(np, "davicom,ext-phy", NULL)) pdata->flags |= DM9000_PLATF_EXT_PHY; if (of_find_property(np, "davicom,no-eeprom", NULL)) pdata->flags |= DM9000_PLATF_NO_EEPROM; mac_addr = of_get_mac_address(np); if (mac_addr) memcpy(pdata->dev_addr, mac_addr, sizeof(pdata->dev_addr)); return pdata; } /* * Search DM9000 board, allocate space and register it */ static int dm9000_probe(struct platform_device *pdev) { struct dm9000_plat_data *pdata = dev_get_platdata(&pdev->dev); struct board_info *db; /* Point a board information structure */ struct net_device *ndev; struct device *dev = &pdev->dev; const unsigned char *mac_src; int ret = 0; int iosize; int i; u32 id_val; int reset_gpios; enum of_gpio_flags flags; struct regulator *power; bool inv_mac_addr = false; power = devm_regulator_get(dev, "vcc"); if (IS_ERR(power)) { if (PTR_ERR(power) == -EPROBE_DEFER) return -EPROBE_DEFER; dev_dbg(dev, "no regulator provided\n"); } else { ret = regulator_enable(power); if (ret != 0) { dev_err(dev, "Failed to enable power regulator: %d\n", ret); return ret; } dev_dbg(dev, "regulator enabled\n"); } reset_gpios = of_get_named_gpio_flags(dev->of_node, "reset-gpios", 0, &flags); if (gpio_is_valid(reset_gpios)) { ret = devm_gpio_request_one(dev, reset_gpios, flags, "dm9000_reset"); if (ret) { dev_err(dev, "failed to request reset gpio %d: %d\n", reset_gpios, ret); return -ENODEV; } /* According to manual PWRST# Low Period Min 1ms */ msleep(2); gpio_set_value(reset_gpios, 1); /* Needs 3ms to read eeprom when PWRST is deasserted */ msleep(4); } if (!pdata) { pdata = dm9000_parse_dt(&pdev->dev); if (IS_ERR(pdata)) return PTR_ERR(pdata); } /* Init network device */ ndev = alloc_etherdev(sizeof(struct board_info)); if (!ndev) return -ENOMEM; SET_NETDEV_DEV(ndev, &pdev->dev); dev_dbg(&pdev->dev, "dm9000_probe()\n"); /* setup board info structure */ db = netdev_priv(ndev); db->dev = &pdev->dev; db->ndev = ndev; spin_lock_init(&db->lock); mutex_init(&db->addr_lock); INIT_DELAYED_WORK(&db->phy_poll, dm9000_poll_work); db->addr_res = platform_get_resource(pdev, IORESOURCE_MEM, 0); db->data_res = platform_get_resource(pdev, IORESOURCE_MEM, 1); if (!db->addr_res || !db->data_res) { dev_err(db->dev, "insufficient resources addr=%p data=%p\n", db->addr_res, db->data_res); ret = -ENOENT; goto out; } ndev->irq = platform_get_irq(pdev, 0); if (ndev->irq < 0) { dev_err(db->dev, "interrupt resource unavailable: %d\n", ndev->irq); ret = ndev->irq; goto out; } db->irq_wake = platform_get_irq(pdev, 1); if (db->irq_wake >= 0) { dev_dbg(db->dev, "wakeup irq %d\n", db->irq_wake); ret = request_irq(db->irq_wake, dm9000_wol_interrupt, IRQF_SHARED, dev_name(db->dev), ndev); if (ret) { dev_err(db->dev, "cannot get wakeup irq (%d)\n", ret); } else { /* test to see if irq is really wakeup capable */ ret = irq_set_irq_wake(db->irq_wake, 1); if (ret) { dev_err(db->dev, "irq %d cannot set wakeup (%d)\n", db->irq_wake, ret); ret = 0; } else { irq_set_irq_wake(db->irq_wake, 0); db->wake_supported = 1; } } } iosize = resource_size(db->addr_res); db->addr_req = request_mem_region(db->addr_res->start, iosize, pdev->name); if (db->addr_req == NULL) { dev_err(db->dev, "cannot claim address reg area\n"); ret = -EIO; goto out; } db->io_addr = ioremap(db->addr_res->start, iosize); if (db->io_addr == NULL) { dev_err(db->dev, "failed to ioremap address reg\n"); ret = -EINVAL; goto out; } iosize = resource_size(db->data_res); db->data_req = request_mem_region(db->data_res->start, iosize, pdev->name); if (db->data_req == NULL) { dev_err(db->dev, "cannot claim data reg area\n"); ret = -EIO; goto out; } db->io_data = ioremap(db->data_res->start, iosize); if (db->io_data == NULL) { dev_err(db->dev, "failed to ioremap data reg\n"); ret = -EINVAL; goto out; } /* fill in parameters for net-dev structure */ ndev->base_addr = (unsigned long)db->io_addr; /* ensure at least we have a default set of IO routines */ dm9000_set_io(db, iosize); /* check to see if anything is being over-ridden */ if (pdata != NULL) { /* check to see if the driver wants to over-ride the * default IO width */ if (pdata->flags & DM9000_PLATF_8BITONLY) dm9000_set_io(db, 1); if (pdata->flags & DM9000_PLATF_16BITONLY) dm9000_set_io(db, 2); if (pdata->flags & DM9000_PLATF_32BITONLY) dm9000_set_io(db, 4); /* check to see if there are any IO routine * over-rides */ if (pdata->inblk != NULL) db->inblk = pdata->inblk; if (pdata->outblk != NULL) db->outblk = pdata->outblk; if (pdata->dumpblk != NULL) db->dumpblk = pdata->dumpblk; db->flags = pdata->flags; } #ifdef CONFIG_DM9000_FORCE_SIMPLE_PHY_POLL db->flags |= DM9000_PLATF_SIMPLE_PHY; #endif dm9000_reset(db); /* try multiple times, DM9000 sometimes gets the read wrong */ for (i = 0; i < 8; i++) { id_val = ior(db, DM9000_VIDL); id_val |= (u32)ior(db, DM9000_VIDH) << 8; id_val |= (u32)ior(db, DM9000_PIDL) << 16; id_val |= (u32)ior(db, DM9000_PIDH) << 24; if (id_val == DM9000_ID) break; dev_err(db->dev, "read wrong id 0x%08x\n", id_val); } if (id_val != DM9000_ID) { dev_err(db->dev, "wrong id: 0x%08x\n", id_val); ret = -ENODEV; goto out; } /* Identify what type of DM9000 we are working on */ id_val = ior(db, DM9000_CHIPR); dev_dbg(db->dev, "dm9000 revision 0x%02x\n", id_val); switch (id_val) { case CHIPR_DM9000A: db->type = TYPE_DM9000A; break; case CHIPR_DM9000B: db->type = TYPE_DM9000B; break; default: dev_dbg(db->dev, "ID %02x => defaulting to DM9000E\n", id_val); db->type = TYPE_DM9000E; } /* dm9000a/b are capable of hardware checksum offload */ if (db->type == TYPE_DM9000A || db->type == TYPE_DM9000B) { ndev->hw_features = NETIF_F_RXCSUM | NETIF_F_IP_CSUM; ndev->features |= ndev->hw_features; } /* from this point we assume that we have found a DM9000 */ ndev->netdev_ops = &dm9000_netdev_ops; ndev->watchdog_timeo = msecs_to_jiffies(watchdog); ndev->ethtool_ops = &dm9000_ethtool_ops; db->msg_enable = NETIF_MSG_LINK; db->mii.phy_id_mask = 0x1f; db->mii.reg_num_mask = 0x1f; db->mii.force_media = 0; db->mii.full_duplex = 0; db->mii.dev = ndev; db->mii.mdio_read = dm9000_phy_read; db->mii.mdio_write = dm9000_phy_write; mac_src = "eeprom"; /* try reading the node address from the attached EEPROM */ for (i = 0; i < 6; i += 2) dm9000_read_eeprom(db, i / 2, ndev->dev_addr+i); if (!is_valid_ether_addr(ndev->dev_addr) && pdata != NULL) { mac_src = "platform data"; memcpy(ndev->dev_addr, pdata->dev_addr, ETH_ALEN); } if (!is_valid_ether_addr(ndev->dev_addr)) { /* try reading from mac */ mac_src = "chip"; for (i = 0; i < 6; i++) ndev->dev_addr[i] = ior(db, i+DM9000_PAR); } if (!is_valid_ether_addr(ndev->dev_addr)) { inv_mac_addr = true; eth_hw_addr_random(ndev); mac_src = "random"; } platform_set_drvdata(pdev, ndev); ret = register_netdev(ndev); if (ret == 0) { if (inv_mac_addr) dev_warn(db->dev, "%s: Invalid ethernet MAC address. Please set using ip\n", ndev->name); printk(KERN_INFO "%s: dm9000%c at %p,%p IRQ %d MAC: %pM (%s)\n", ndev->name, dm9000_type_to_char(db->type), db->io_addr, db->io_data, ndev->irq, ndev->dev_addr, mac_src); } return 0; out: dev_err(db->dev, "not found (%d).\n", ret); dm9000_release_board(pdev, db); free_netdev(ndev); return ret; } static int dm9000_drv_suspend(struct device *dev) { struct net_device *ndev = dev_get_drvdata(dev); struct board_info *db; if (ndev) { db = netdev_priv(ndev); db->in_suspend = 1; if (!netif_running(ndev)) return 0; netif_device_detach(ndev); /* only shutdown if not using WoL */ if (!db->wake_state) dm9000_shutdown(ndev); } return 0; } static int dm9000_drv_resume(struct device *dev) { struct net_device *ndev = dev_get_drvdata(dev); struct board_info *db = netdev_priv(ndev); if (ndev) { if (netif_running(ndev)) { /* reset if we were not in wake mode to ensure if * the device was powered off it is in a known state */ if (!db->wake_state) { dm9000_init_dm9000(ndev); dm9000_unmask_interrupts(db); } netif_device_attach(ndev); } db->in_suspend = 0; } return 0; } static const struct dev_pm_ops dm9000_drv_pm_ops = { .suspend = dm9000_drv_suspend, .resume = dm9000_drv_resume, }; static int dm9000_drv_remove(struct platform_device *pdev) { struct net_device *ndev = platform_get_drvdata(pdev); unregister_netdev(ndev); dm9000_release_board(pdev, netdev_priv(ndev)); free_netdev(ndev); /* free device structure */ dev_dbg(&pdev->dev, "released and freed device\n"); return 0; } #ifdef CONFIG_OF static const struct of_device_id dm9000_of_matches[] = { { .compatible = "davicom,dm9000", }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, dm9000_of_matches); #endif static struct platform_driver dm9000_driver = { .driver = { .name = "dm9000", .pm = &dm9000_drv_pm_ops, .of_match_table = of_match_ptr(dm9000_of_matches), }, .probe = dm9000_probe, .remove = dm9000_drv_remove, }; module_platform_driver(dm9000_driver); MODULE_AUTHOR("Sascha Hauer, Ben Dooks"); MODULE_DESCRIPTION("Davicom DM9000 network driver"); MODULE_LICENSE("GPL"); MODULE_ALIAS("platform:dm9000");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1