Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Igal Liberman | 5735 | 89.48% | 2 | 22.22% |
Florinel Iordache | 444 | 6.93% | 1 | 11.11% |
Yangbo Lu | 120 | 1.87% | 1 | 11.11% |
Radu Bulie | 77 | 1.20% | 1 | 11.11% |
Madalin Bucur | 24 | 0.37% | 1 | 11.11% |
Colin Ian King | 4 | 0.06% | 1 | 11.11% |
Andrew Lunn | 4 | 0.06% | 1 | 11.11% |
Denis Kirjanov | 1 | 0.02% | 1 | 11.11% |
Total | 6409 | 9 |
/* * Copyright 2008-2015 Freescale Semiconductor Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of Freescale Semiconductor nor the * names of its contributors may be used to endorse or promote products * derived from this software without specific prior written permission. * * * ALTERNATIVELY, this software may be distributed under the terms of the * GNU General Public License ("GPL") as published by the Free Software * Foundation, either version 2 of that License or (at your option) any * later version. * * THIS SOFTWARE IS PROVIDED BY Freescale Semiconductor ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL Freescale Semiconductor BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include "fman_dtsec.h" #include "fman.h" #include <linux/slab.h> #include <linux/bitrev.h> #include <linux/io.h> #include <linux/delay.h> #include <linux/phy.h> #include <linux/crc32.h> #include <linux/of_mdio.h> #include <linux/mii.h> /* TBI register addresses */ #define MII_TBICON 0x11 /* TBICON register bit fields */ #define TBICON_SOFT_RESET 0x8000 /* Soft reset */ #define TBICON_DISABLE_RX_DIS 0x2000 /* Disable receive disparity */ #define TBICON_DISABLE_TX_DIS 0x1000 /* Disable transmit disparity */ #define TBICON_AN_SENSE 0x0100 /* Auto-negotiation sense enable */ #define TBICON_CLK_SELECT 0x0020 /* Clock select */ #define TBICON_MI_MODE 0x0010 /* GMII mode (TBI if not set) */ #define TBIANA_SGMII 0x4001 #define TBIANA_1000X 0x01a0 /* Interrupt Mask Register (IMASK) */ #define DTSEC_IMASK_BREN 0x80000000 #define DTSEC_IMASK_RXCEN 0x40000000 #define DTSEC_IMASK_MSROEN 0x04000000 #define DTSEC_IMASK_GTSCEN 0x02000000 #define DTSEC_IMASK_BTEN 0x01000000 #define DTSEC_IMASK_TXCEN 0x00800000 #define DTSEC_IMASK_TXEEN 0x00400000 #define DTSEC_IMASK_LCEN 0x00040000 #define DTSEC_IMASK_CRLEN 0x00020000 #define DTSEC_IMASK_XFUNEN 0x00010000 #define DTSEC_IMASK_ABRTEN 0x00008000 #define DTSEC_IMASK_IFERREN 0x00004000 #define DTSEC_IMASK_MAGEN 0x00000800 #define DTSEC_IMASK_MMRDEN 0x00000400 #define DTSEC_IMASK_MMWREN 0x00000200 #define DTSEC_IMASK_GRSCEN 0x00000100 #define DTSEC_IMASK_TDPEEN 0x00000002 #define DTSEC_IMASK_RDPEEN 0x00000001 #define DTSEC_EVENTS_MASK \ ((u32)(DTSEC_IMASK_BREN | \ DTSEC_IMASK_RXCEN | \ DTSEC_IMASK_BTEN | \ DTSEC_IMASK_TXCEN | \ DTSEC_IMASK_TXEEN | \ DTSEC_IMASK_ABRTEN | \ DTSEC_IMASK_LCEN | \ DTSEC_IMASK_CRLEN | \ DTSEC_IMASK_XFUNEN | \ DTSEC_IMASK_IFERREN | \ DTSEC_IMASK_MAGEN | \ DTSEC_IMASK_TDPEEN | \ DTSEC_IMASK_RDPEEN)) /* dtsec timestamp event bits */ #define TMR_PEMASK_TSREEN 0x00010000 #define TMR_PEVENT_TSRE 0x00010000 /* Group address bit indication */ #define MAC_GROUP_ADDRESS 0x0000010000000000ULL /* Defaults */ #define DEFAULT_HALFDUP_RETRANSMIT 0xf #define DEFAULT_HALFDUP_COLL_WINDOW 0x37 #define DEFAULT_TX_PAUSE_TIME 0xf000 #define DEFAULT_RX_PREPEND 0 #define DEFAULT_PREAMBLE_LEN 7 #define DEFAULT_TX_PAUSE_TIME_EXTD 0 #define DEFAULT_NON_BACK_TO_BACK_IPG1 0x40 #define DEFAULT_NON_BACK_TO_BACK_IPG2 0x60 #define DEFAULT_MIN_IFG_ENFORCEMENT 0x50 #define DEFAULT_BACK_TO_BACK_IPG 0x60 #define DEFAULT_MAXIMUM_FRAME 0x600 /* register related defines (bits, field offsets..) */ #define DTSEC_ID2_INT_REDUCED_OFF 0x00010000 #define DTSEC_ECNTRL_GMIIM 0x00000040 #define DTSEC_ECNTRL_TBIM 0x00000020 #define DTSEC_ECNTRL_SGMIIM 0x00000002 #define DTSEC_ECNTRL_RPM 0x00000010 #define DTSEC_ECNTRL_R100M 0x00000008 #define DTSEC_ECNTRL_QSGMIIM 0x00000001 #define TCTRL_TTSE 0x00000040 #define TCTRL_GTS 0x00000020 #define RCTRL_PAL_MASK 0x001f0000 #define RCTRL_PAL_SHIFT 16 #define RCTRL_GHTX 0x00000400 #define RCTRL_RTSE 0x00000040 #define RCTRL_GRS 0x00000020 #define RCTRL_MPROM 0x00000008 #define RCTRL_RSF 0x00000004 #define RCTRL_UPROM 0x00000001 #define MACCFG1_SOFT_RESET 0x80000000 #define MACCFG1_RX_FLOW 0x00000020 #define MACCFG1_TX_FLOW 0x00000010 #define MACCFG1_TX_EN 0x00000001 #define MACCFG1_RX_EN 0x00000004 #define MACCFG2_NIBBLE_MODE 0x00000100 #define MACCFG2_BYTE_MODE 0x00000200 #define MACCFG2_PAD_CRC_EN 0x00000004 #define MACCFG2_FULL_DUPLEX 0x00000001 #define MACCFG2_PREAMBLE_LENGTH_MASK 0x0000f000 #define MACCFG2_PREAMBLE_LENGTH_SHIFT 12 #define IPGIFG_NON_BACK_TO_BACK_IPG_1_SHIFT 24 #define IPGIFG_NON_BACK_TO_BACK_IPG_2_SHIFT 16 #define IPGIFG_MIN_IFG_ENFORCEMENT_SHIFT 8 #define IPGIFG_NON_BACK_TO_BACK_IPG_1 0x7F000000 #define IPGIFG_NON_BACK_TO_BACK_IPG_2 0x007F0000 #define IPGIFG_MIN_IFG_ENFORCEMENT 0x0000FF00 #define IPGIFG_BACK_TO_BACK_IPG 0x0000007F #define HAFDUP_EXCESS_DEFER 0x00010000 #define HAFDUP_COLLISION_WINDOW 0x000003ff #define HAFDUP_RETRANSMISSION_MAX_SHIFT 12 #define HAFDUP_RETRANSMISSION_MAX 0x0000f000 #define NUM_OF_HASH_REGS 8 /* Number of hash table registers */ #define PTV_PTE_MASK 0xffff0000 #define PTV_PT_MASK 0x0000ffff #define PTV_PTE_SHIFT 16 #define MAX_PACKET_ALIGNMENT 31 #define MAX_INTER_PACKET_GAP 0x7f #define MAX_RETRANSMISSION 0x0f #define MAX_COLLISION_WINDOW 0x03ff /* Hash table size (32 bits*8 regs) */ #define DTSEC_HASH_TABLE_SIZE 256 /* Extended Hash table size (32 bits*16 regs) */ #define EXTENDED_HASH_TABLE_SIZE 512 /* dTSEC Memory Map registers */ struct dtsec_regs { /* dTSEC General Control and Status Registers */ u32 tsec_id; /* 0x000 ETSEC_ID register */ u32 tsec_id2; /* 0x004 ETSEC_ID2 register */ u32 ievent; /* 0x008 Interrupt event register */ u32 imask; /* 0x00C Interrupt mask register */ u32 reserved0010[1]; u32 ecntrl; /* 0x014 E control register */ u32 ptv; /* 0x018 Pause time value register */ u32 tbipa; /* 0x01C TBI PHY address register */ u32 tmr_ctrl; /* 0x020 Time-stamp Control register */ u32 tmr_pevent; /* 0x024 Time-stamp event register */ u32 tmr_pemask; /* 0x028 Timer event mask register */ u32 reserved002c[5]; u32 tctrl; /* 0x040 Transmit control register */ u32 reserved0044[3]; u32 rctrl; /* 0x050 Receive control register */ u32 reserved0054[11]; u32 igaddr[8]; /* 0x080-0x09C Individual/group address */ u32 gaddr[8]; /* 0x0A0-0x0BC Group address registers 0-7 */ u32 reserved00c0[16]; u32 maccfg1; /* 0x100 MAC configuration #1 */ u32 maccfg2; /* 0x104 MAC configuration #2 */ u32 ipgifg; /* 0x108 IPG/IFG */ u32 hafdup; /* 0x10C Half-duplex */ u32 maxfrm; /* 0x110 Maximum frame */ u32 reserved0114[10]; u32 ifstat; /* 0x13C Interface status */ u32 macstnaddr1; /* 0x140 Station Address,part 1 */ u32 macstnaddr2; /* 0x144 Station Address,part 2 */ struct { u32 exact_match1; /* octets 1-4 */ u32 exact_match2; /* octets 5-6 */ } macaddr[15]; /* 0x148-0x1BC mac exact match addresses 1-15 */ u32 reserved01c0[16]; u32 tr64; /* 0x200 Tx and Rx 64 byte frame counter */ u32 tr127; /* 0x204 Tx and Rx 65 to 127 byte frame counter */ u32 tr255; /* 0x208 Tx and Rx 128 to 255 byte frame counter */ u32 tr511; /* 0x20C Tx and Rx 256 to 511 byte frame counter */ u32 tr1k; /* 0x210 Tx and Rx 512 to 1023 byte frame counter */ u32 trmax; /* 0x214 Tx and Rx 1024 to 1518 byte frame counter */ u32 trmgv; /* 0x218 Tx and Rx 1519 to 1522 byte good VLAN frame count */ u32 rbyt; /* 0x21C receive byte counter */ u32 rpkt; /* 0x220 receive packet counter */ u32 rfcs; /* 0x224 receive FCS error counter */ u32 rmca; /* 0x228 RMCA Rx multicast packet counter */ u32 rbca; /* 0x22C Rx broadcast packet counter */ u32 rxcf; /* 0x230 Rx control frame packet counter */ u32 rxpf; /* 0x234 Rx pause frame packet counter */ u32 rxuo; /* 0x238 Rx unknown OP code counter */ u32 raln; /* 0x23C Rx alignment error counter */ u32 rflr; /* 0x240 Rx frame length error counter */ u32 rcde; /* 0x244 Rx code error counter */ u32 rcse; /* 0x248 Rx carrier sense error counter */ u32 rund; /* 0x24C Rx undersize packet counter */ u32 rovr; /* 0x250 Rx oversize packet counter */ u32 rfrg; /* 0x254 Rx fragments counter */ u32 rjbr; /* 0x258 Rx jabber counter */ u32 rdrp; /* 0x25C Rx drop */ u32 tbyt; /* 0x260 Tx byte counter */ u32 tpkt; /* 0x264 Tx packet counter */ u32 tmca; /* 0x268 Tx multicast packet counter */ u32 tbca; /* 0x26C Tx broadcast packet counter */ u32 txpf; /* 0x270 Tx pause control frame counter */ u32 tdfr; /* 0x274 Tx deferral packet counter */ u32 tedf; /* 0x278 Tx excessive deferral packet counter */ u32 tscl; /* 0x27C Tx single collision packet counter */ u32 tmcl; /* 0x280 Tx multiple collision packet counter */ u32 tlcl; /* 0x284 Tx late collision packet counter */ u32 txcl; /* 0x288 Tx excessive collision packet counter */ u32 tncl; /* 0x28C Tx total collision counter */ u32 reserved0290[1]; u32 tdrp; /* 0x294 Tx drop frame counter */ u32 tjbr; /* 0x298 Tx jabber frame counter */ u32 tfcs; /* 0x29C Tx FCS error counter */ u32 txcf; /* 0x2A0 Tx control frame counter */ u32 tovr; /* 0x2A4 Tx oversize frame counter */ u32 tund; /* 0x2A8 Tx undersize frame counter */ u32 tfrg; /* 0x2AC Tx fragments frame counter */ u32 car1; /* 0x2B0 carry register one register* */ u32 car2; /* 0x2B4 carry register two register* */ u32 cam1; /* 0x2B8 carry register one mask register */ u32 cam2; /* 0x2BC carry register two mask register */ u32 reserved02c0[848]; }; /* struct dtsec_cfg - dTSEC configuration * Transmit half-duplex flow control, under software control for 10/100-Mbps * half-duplex media. If set, back pressure is applied to media by raising * carrier. * halfdup_retransmit: * Number of retransmission attempts following a collision. * If this is exceeded dTSEC aborts transmission due to excessive collisions. * The standard specifies the attempt limit to be 15. * halfdup_coll_window: * The number of bytes of the frame during which collisions may occur. * The default value of 55 corresponds to the frame byte at the end of the * standard 512-bit slot time window. If collisions are detected after this * byte, the late collision event is asserted and transmission of current * frame is aborted. * tx_pad_crc: * Pad and append CRC. If set, the MAC pads all ransmitted short frames and * appends a CRC to every frame regardless of padding requirement. * tx_pause_time: * Transmit pause time value. This pause value is used as part of the pause * frame to be sent when a transmit pause frame is initiated. * If set to 0 this disables transmission of pause frames. * preamble_len: * Length, in bytes, of the preamble field preceding each Ethernet * start-of-frame delimiter byte. The default value of 0x7 should be used in * order to guarantee reliable operation with IEEE 802.3 compliant hardware. * rx_prepend: * Packet alignment padding length. The specified number of bytes (1-31) * of zero padding are inserted before the start of each received frame. * For Ethernet, where optional preamble extraction is enabled, the padding * appears before the preamble, otherwise the padding precedes the * layer 2 header. * * This structure contains basic dTSEC configuration and must be passed to * init() function. A default set of configuration values can be * obtained by calling set_dflts(). */ struct dtsec_cfg { u16 halfdup_retransmit; u16 halfdup_coll_window; bool tx_pad_crc; u16 tx_pause_time; bool ptp_tsu_en; bool ptp_exception_en; u32 preamble_len; u32 rx_prepend; u16 tx_pause_time_extd; u16 maximum_frame; u32 non_back_to_back_ipg1; u32 non_back_to_back_ipg2; u32 min_ifg_enforcement; u32 back_to_back_ipg; }; struct fman_mac { /* pointer to dTSEC memory mapped registers */ struct dtsec_regs __iomem *regs; /* MAC address of device */ u64 addr; /* Ethernet physical interface */ phy_interface_t phy_if; u16 max_speed; void *dev_id; /* device cookie used by the exception cbs */ fman_mac_exception_cb *exception_cb; fman_mac_exception_cb *event_cb; /* Number of individual addresses in registers for this station */ u8 num_of_ind_addr_in_regs; /* pointer to driver's global address hash table */ struct eth_hash_t *multicast_addr_hash; /* pointer to driver's individual address hash table */ struct eth_hash_t *unicast_addr_hash; u8 mac_id; u32 exceptions; bool ptp_tsu_enabled; bool en_tsu_err_exception; struct dtsec_cfg *dtsec_drv_param; void *fm; struct fman_rev_info fm_rev_info; bool basex_if; struct phy_device *tbiphy; }; static void set_dflts(struct dtsec_cfg *cfg) { cfg->halfdup_retransmit = DEFAULT_HALFDUP_RETRANSMIT; cfg->halfdup_coll_window = DEFAULT_HALFDUP_COLL_WINDOW; cfg->tx_pad_crc = true; cfg->tx_pause_time = DEFAULT_TX_PAUSE_TIME; /* PHY address 0 is reserved (DPAA RM) */ cfg->rx_prepend = DEFAULT_RX_PREPEND; cfg->ptp_tsu_en = true; cfg->ptp_exception_en = true; cfg->preamble_len = DEFAULT_PREAMBLE_LEN; cfg->tx_pause_time_extd = DEFAULT_TX_PAUSE_TIME_EXTD; cfg->non_back_to_back_ipg1 = DEFAULT_NON_BACK_TO_BACK_IPG1; cfg->non_back_to_back_ipg2 = DEFAULT_NON_BACK_TO_BACK_IPG2; cfg->min_ifg_enforcement = DEFAULT_MIN_IFG_ENFORCEMENT; cfg->back_to_back_ipg = DEFAULT_BACK_TO_BACK_IPG; cfg->maximum_frame = DEFAULT_MAXIMUM_FRAME; } static int init(struct dtsec_regs __iomem *regs, struct dtsec_cfg *cfg, phy_interface_t iface, u16 iface_speed, u8 *macaddr, u32 exception_mask, u8 tbi_addr) { bool is_rgmii, is_sgmii, is_qsgmii; int i; u32 tmp; /* Soft reset */ iowrite32be(MACCFG1_SOFT_RESET, ®s->maccfg1); iowrite32be(0, ®s->maccfg1); /* dtsec_id2 */ tmp = ioread32be(®s->tsec_id2); /* check RGMII support */ if (iface == PHY_INTERFACE_MODE_RGMII || iface == PHY_INTERFACE_MODE_RGMII_ID || iface == PHY_INTERFACE_MODE_RGMII_RXID || iface == PHY_INTERFACE_MODE_RGMII_TXID || iface == PHY_INTERFACE_MODE_RMII) if (tmp & DTSEC_ID2_INT_REDUCED_OFF) return -EINVAL; if (iface == PHY_INTERFACE_MODE_SGMII || iface == PHY_INTERFACE_MODE_MII) if (tmp & DTSEC_ID2_INT_REDUCED_OFF) return -EINVAL; is_rgmii = iface == PHY_INTERFACE_MODE_RGMII || iface == PHY_INTERFACE_MODE_RGMII_ID || iface == PHY_INTERFACE_MODE_RGMII_RXID || iface == PHY_INTERFACE_MODE_RGMII_TXID; is_sgmii = iface == PHY_INTERFACE_MODE_SGMII; is_qsgmii = iface == PHY_INTERFACE_MODE_QSGMII; tmp = 0; if (is_rgmii || iface == PHY_INTERFACE_MODE_GMII) tmp |= DTSEC_ECNTRL_GMIIM; if (is_sgmii) tmp |= (DTSEC_ECNTRL_SGMIIM | DTSEC_ECNTRL_TBIM); if (is_qsgmii) tmp |= (DTSEC_ECNTRL_SGMIIM | DTSEC_ECNTRL_TBIM | DTSEC_ECNTRL_QSGMIIM); if (is_rgmii) tmp |= DTSEC_ECNTRL_RPM; if (iface_speed == SPEED_100) tmp |= DTSEC_ECNTRL_R100M; iowrite32be(tmp, ®s->ecntrl); tmp = 0; if (cfg->tx_pause_time) tmp |= cfg->tx_pause_time; if (cfg->tx_pause_time_extd) tmp |= cfg->tx_pause_time_extd << PTV_PTE_SHIFT; iowrite32be(tmp, ®s->ptv); tmp = 0; tmp |= (cfg->rx_prepend << RCTRL_PAL_SHIFT) & RCTRL_PAL_MASK; /* Accept short frames */ tmp |= RCTRL_RSF; iowrite32be(tmp, ®s->rctrl); /* Assign a Phy Address to the TBI (TBIPA). * Done also in cases where TBI is not selected to avoid conflict with * the external PHY's Physical address */ iowrite32be(tbi_addr, ®s->tbipa); iowrite32be(0, ®s->tmr_ctrl); if (cfg->ptp_tsu_en) { tmp = 0; tmp |= TMR_PEVENT_TSRE; iowrite32be(tmp, ®s->tmr_pevent); if (cfg->ptp_exception_en) { tmp = 0; tmp |= TMR_PEMASK_TSREEN; iowrite32be(tmp, ®s->tmr_pemask); } } tmp = 0; tmp |= MACCFG1_RX_FLOW; tmp |= MACCFG1_TX_FLOW; iowrite32be(tmp, ®s->maccfg1); tmp = 0; if (iface_speed < SPEED_1000) tmp |= MACCFG2_NIBBLE_MODE; else if (iface_speed == SPEED_1000) tmp |= MACCFG2_BYTE_MODE; tmp |= (cfg->preamble_len << MACCFG2_PREAMBLE_LENGTH_SHIFT) & MACCFG2_PREAMBLE_LENGTH_MASK; if (cfg->tx_pad_crc) tmp |= MACCFG2_PAD_CRC_EN; /* Full Duplex */ tmp |= MACCFG2_FULL_DUPLEX; iowrite32be(tmp, ®s->maccfg2); tmp = (((cfg->non_back_to_back_ipg1 << IPGIFG_NON_BACK_TO_BACK_IPG_1_SHIFT) & IPGIFG_NON_BACK_TO_BACK_IPG_1) | ((cfg->non_back_to_back_ipg2 << IPGIFG_NON_BACK_TO_BACK_IPG_2_SHIFT) & IPGIFG_NON_BACK_TO_BACK_IPG_2) | ((cfg->min_ifg_enforcement << IPGIFG_MIN_IFG_ENFORCEMENT_SHIFT) & IPGIFG_MIN_IFG_ENFORCEMENT) | (cfg->back_to_back_ipg & IPGIFG_BACK_TO_BACK_IPG)); iowrite32be(tmp, ®s->ipgifg); tmp = 0; tmp |= HAFDUP_EXCESS_DEFER; tmp |= ((cfg->halfdup_retransmit << HAFDUP_RETRANSMISSION_MAX_SHIFT) & HAFDUP_RETRANSMISSION_MAX); tmp |= (cfg->halfdup_coll_window & HAFDUP_COLLISION_WINDOW); iowrite32be(tmp, ®s->hafdup); /* Initialize Maximum frame length */ iowrite32be(cfg->maximum_frame, ®s->maxfrm); iowrite32be(0xffffffff, ®s->cam1); iowrite32be(0xffffffff, ®s->cam2); iowrite32be(exception_mask, ®s->imask); iowrite32be(0xffffffff, ®s->ievent); tmp = (u32)((macaddr[5] << 24) | (macaddr[4] << 16) | (macaddr[3] << 8) | macaddr[2]); iowrite32be(tmp, ®s->macstnaddr1); tmp = (u32)((macaddr[1] << 24) | (macaddr[0] << 16)); iowrite32be(tmp, ®s->macstnaddr2); /* HASH */ for (i = 0; i < NUM_OF_HASH_REGS; i++) { /* Initialize IADDRx */ iowrite32be(0, ®s->igaddr[i]); /* Initialize GADDRx */ iowrite32be(0, ®s->gaddr[i]); } return 0; } static void set_mac_address(struct dtsec_regs __iomem *regs, u8 *adr) { u32 tmp; tmp = (u32)((adr[5] << 24) | (adr[4] << 16) | (adr[3] << 8) | adr[2]); iowrite32be(tmp, ®s->macstnaddr1); tmp = (u32)((adr[1] << 24) | (adr[0] << 16)); iowrite32be(tmp, ®s->macstnaddr2); } static void set_bucket(struct dtsec_regs __iomem *regs, int bucket, bool enable) { int reg_idx = (bucket >> 5) & 0xf; int bit_idx = bucket & 0x1f; u32 bit_mask = 0x80000000 >> bit_idx; u32 __iomem *reg; if (reg_idx > 7) reg = ®s->gaddr[reg_idx - 8]; else reg = ®s->igaddr[reg_idx]; if (enable) iowrite32be(ioread32be(reg) | bit_mask, reg); else iowrite32be(ioread32be(reg) & (~bit_mask), reg); } static int check_init_parameters(struct fman_mac *dtsec) { if (dtsec->max_speed >= SPEED_10000) { pr_err("1G MAC driver supports 1G or lower speeds\n"); return -EINVAL; } if (dtsec->addr == 0) { pr_err("Ethernet MAC Must have a valid MAC Address\n"); return -EINVAL; } if ((dtsec->dtsec_drv_param)->rx_prepend > MAX_PACKET_ALIGNMENT) { pr_err("packetAlignmentPadding can't be > than %d\n", MAX_PACKET_ALIGNMENT); return -EINVAL; } if (((dtsec->dtsec_drv_param)->non_back_to_back_ipg1 > MAX_INTER_PACKET_GAP) || ((dtsec->dtsec_drv_param)->non_back_to_back_ipg2 > MAX_INTER_PACKET_GAP) || ((dtsec->dtsec_drv_param)->back_to_back_ipg > MAX_INTER_PACKET_GAP)) { pr_err("Inter packet gap can't be greater than %d\n", MAX_INTER_PACKET_GAP); return -EINVAL; } if ((dtsec->dtsec_drv_param)->halfdup_retransmit > MAX_RETRANSMISSION) { pr_err("maxRetransmission can't be greater than %d\n", MAX_RETRANSMISSION); return -EINVAL; } if ((dtsec->dtsec_drv_param)->halfdup_coll_window > MAX_COLLISION_WINDOW) { pr_err("collisionWindow can't be greater than %d\n", MAX_COLLISION_WINDOW); return -EINVAL; /* If Auto negotiation process is disabled, need to set up the PHY * using the MII Management Interface */ } if (!dtsec->exception_cb) { pr_err("uninitialized exception_cb\n"); return -EINVAL; } if (!dtsec->event_cb) { pr_err("uninitialized event_cb\n"); return -EINVAL; } return 0; } static int get_exception_flag(enum fman_mac_exceptions exception) { u32 bit_mask; switch (exception) { case FM_MAC_EX_1G_BAB_RX: bit_mask = DTSEC_IMASK_BREN; break; case FM_MAC_EX_1G_RX_CTL: bit_mask = DTSEC_IMASK_RXCEN; break; case FM_MAC_EX_1G_GRATEFUL_TX_STP_COMPLET: bit_mask = DTSEC_IMASK_GTSCEN; break; case FM_MAC_EX_1G_BAB_TX: bit_mask = DTSEC_IMASK_BTEN; break; case FM_MAC_EX_1G_TX_CTL: bit_mask = DTSEC_IMASK_TXCEN; break; case FM_MAC_EX_1G_TX_ERR: bit_mask = DTSEC_IMASK_TXEEN; break; case FM_MAC_EX_1G_LATE_COL: bit_mask = DTSEC_IMASK_LCEN; break; case FM_MAC_EX_1G_COL_RET_LMT: bit_mask = DTSEC_IMASK_CRLEN; break; case FM_MAC_EX_1G_TX_FIFO_UNDRN: bit_mask = DTSEC_IMASK_XFUNEN; break; case FM_MAC_EX_1G_MAG_PCKT: bit_mask = DTSEC_IMASK_MAGEN; break; case FM_MAC_EX_1G_MII_MNG_RD_COMPLET: bit_mask = DTSEC_IMASK_MMRDEN; break; case FM_MAC_EX_1G_MII_MNG_WR_COMPLET: bit_mask = DTSEC_IMASK_MMWREN; break; case FM_MAC_EX_1G_GRATEFUL_RX_STP_COMPLET: bit_mask = DTSEC_IMASK_GRSCEN; break; case FM_MAC_EX_1G_DATA_ERR: bit_mask = DTSEC_IMASK_TDPEEN; break; case FM_MAC_EX_1G_RX_MIB_CNT_OVFL: bit_mask = DTSEC_IMASK_MSROEN; break; default: bit_mask = 0; break; } return bit_mask; } static bool is_init_done(struct dtsec_cfg *dtsec_drv_params) { /* Checks if dTSEC driver parameters were initialized */ if (!dtsec_drv_params) return true; return false; } static u16 dtsec_get_max_frame_length(struct fman_mac *dtsec) { struct dtsec_regs __iomem *regs = dtsec->regs; if (is_init_done(dtsec->dtsec_drv_param)) return 0; return (u16)ioread32be(®s->maxfrm); } static void dtsec_isr(void *handle) { struct fman_mac *dtsec = (struct fman_mac *)handle; struct dtsec_regs __iomem *regs = dtsec->regs; u32 event; /* do not handle MDIO events */ event = ioread32be(®s->ievent) & (u32)(~(DTSEC_IMASK_MMRDEN | DTSEC_IMASK_MMWREN)); event &= ioread32be(®s->imask); iowrite32be(event, ®s->ievent); if (event & DTSEC_IMASK_BREN) dtsec->exception_cb(dtsec->dev_id, FM_MAC_EX_1G_BAB_RX); if (event & DTSEC_IMASK_RXCEN) dtsec->exception_cb(dtsec->dev_id, FM_MAC_EX_1G_RX_CTL); if (event & DTSEC_IMASK_GTSCEN) dtsec->exception_cb(dtsec->dev_id, FM_MAC_EX_1G_GRATEFUL_TX_STP_COMPLET); if (event & DTSEC_IMASK_BTEN) dtsec->exception_cb(dtsec->dev_id, FM_MAC_EX_1G_BAB_TX); if (event & DTSEC_IMASK_TXCEN) dtsec->exception_cb(dtsec->dev_id, FM_MAC_EX_1G_TX_CTL); if (event & DTSEC_IMASK_TXEEN) dtsec->exception_cb(dtsec->dev_id, FM_MAC_EX_1G_TX_ERR); if (event & DTSEC_IMASK_LCEN) dtsec->exception_cb(dtsec->dev_id, FM_MAC_EX_1G_LATE_COL); if (event & DTSEC_IMASK_CRLEN) dtsec->exception_cb(dtsec->dev_id, FM_MAC_EX_1G_COL_RET_LMT); if (event & DTSEC_IMASK_XFUNEN) { /* FM_TX_LOCKUP_ERRATA_DTSEC6 Errata workaround */ if (dtsec->fm_rev_info.major == 2) { u32 tpkt1, tmp_reg1, tpkt2, tmp_reg2, i; /* a. Write 0x00E0_0C00 to DTSEC_ID * This is a read only register * b. Read and save the value of TPKT */ tpkt1 = ioread32be(®s->tpkt); /* c. Read the register at dTSEC address offset 0x32C */ tmp_reg1 = ioread32be(®s->reserved02c0[27]); /* d. Compare bits [9:15] to bits [25:31] of the * register at address offset 0x32C. */ if ((tmp_reg1 & 0x007F0000) != (tmp_reg1 & 0x0000007F)) { /* If they are not equal, save the value of * this register and wait for at least * MAXFRM*16 ns */ usleep_range((u32)(min (dtsec_get_max_frame_length(dtsec) * 16 / 1000, 1)), (u32) (min(dtsec_get_max_frame_length (dtsec) * 16 / 1000, 1) + 1)); } /* e. Read and save TPKT again and read the register * at dTSEC address offset 0x32C again */ tpkt2 = ioread32be(®s->tpkt); tmp_reg2 = ioread32be(®s->reserved02c0[27]); /* f. Compare the value of TPKT saved in step b to * value read in step e. Also compare bits [9:15] of * the register at offset 0x32C saved in step d to the * value of bits [9:15] saved in step e. If the two * registers values are unchanged, then the transmit * portion of the dTSEC controller is locked up and * the user should proceed to the recover sequence. */ if ((tpkt1 == tpkt2) && ((tmp_reg1 & 0x007F0000) == (tmp_reg2 & 0x007F0000))) { /* recover sequence */ /* a.Write a 1 to RCTRL[GRS] */ iowrite32be(ioread32be(®s->rctrl) | RCTRL_GRS, ®s->rctrl); /* b.Wait until IEVENT[GRSC]=1, or at least * 100 us has elapsed. */ for (i = 0; i < 100; i++) { if (ioread32be(®s->ievent) & DTSEC_IMASK_GRSCEN) break; udelay(1); } if (ioread32be(®s->ievent) & DTSEC_IMASK_GRSCEN) iowrite32be(DTSEC_IMASK_GRSCEN, ®s->ievent); else pr_debug("Rx lockup due to Tx lockup\n"); /* c.Write a 1 to bit n of FM_RSTC * (offset 0x0CC of FPM) */ fman_reset_mac(dtsec->fm, dtsec->mac_id); /* d.Wait 4 Tx clocks (32 ns) */ udelay(1); /* e.Write a 0 to bit n of FM_RSTC. */ /* cleared by FMAN */ } } dtsec->exception_cb(dtsec->dev_id, FM_MAC_EX_1G_TX_FIFO_UNDRN); } if (event & DTSEC_IMASK_MAGEN) dtsec->exception_cb(dtsec->dev_id, FM_MAC_EX_1G_MAG_PCKT); if (event & DTSEC_IMASK_GRSCEN) dtsec->exception_cb(dtsec->dev_id, FM_MAC_EX_1G_GRATEFUL_RX_STP_COMPLET); if (event & DTSEC_IMASK_TDPEEN) dtsec->exception_cb(dtsec->dev_id, FM_MAC_EX_1G_DATA_ERR); if (event & DTSEC_IMASK_RDPEEN) dtsec->exception_cb(dtsec->dev_id, FM_MAC_1G_RX_DATA_ERR); /* masked interrupts */ WARN_ON(event & DTSEC_IMASK_ABRTEN); WARN_ON(event & DTSEC_IMASK_IFERREN); } static void dtsec_1588_isr(void *handle) { struct fman_mac *dtsec = (struct fman_mac *)handle; struct dtsec_regs __iomem *regs = dtsec->regs; u32 event; if (dtsec->ptp_tsu_enabled) { event = ioread32be(®s->tmr_pevent); event &= ioread32be(®s->tmr_pemask); if (event) { iowrite32be(event, ®s->tmr_pevent); WARN_ON(event & TMR_PEVENT_TSRE); dtsec->exception_cb(dtsec->dev_id, FM_MAC_EX_1G_1588_TS_RX_ERR); } } } static void free_init_resources(struct fman_mac *dtsec) { fman_unregister_intr(dtsec->fm, FMAN_MOD_MAC, dtsec->mac_id, FMAN_INTR_TYPE_ERR); fman_unregister_intr(dtsec->fm, FMAN_MOD_MAC, dtsec->mac_id, FMAN_INTR_TYPE_NORMAL); /* release the driver's group hash table */ free_hash_table(dtsec->multicast_addr_hash); dtsec->multicast_addr_hash = NULL; /* release the driver's individual hash table */ free_hash_table(dtsec->unicast_addr_hash); dtsec->unicast_addr_hash = NULL; } int dtsec_cfg_max_frame_len(struct fman_mac *dtsec, u16 new_val) { if (is_init_done(dtsec->dtsec_drv_param)) return -EINVAL; dtsec->dtsec_drv_param->maximum_frame = new_val; return 0; } int dtsec_cfg_pad_and_crc(struct fman_mac *dtsec, bool new_val) { if (is_init_done(dtsec->dtsec_drv_param)) return -EINVAL; dtsec->dtsec_drv_param->tx_pad_crc = new_val; return 0; } static void graceful_start(struct fman_mac *dtsec, enum comm_mode mode) { struct dtsec_regs __iomem *regs = dtsec->regs; if (mode & COMM_MODE_TX) iowrite32be(ioread32be(®s->tctrl) & ~TCTRL_GTS, ®s->tctrl); if (mode & COMM_MODE_RX) iowrite32be(ioread32be(®s->rctrl) & ~RCTRL_GRS, ®s->rctrl); } static void graceful_stop(struct fman_mac *dtsec, enum comm_mode mode) { struct dtsec_regs __iomem *regs = dtsec->regs; u32 tmp; /* Graceful stop - Assert the graceful Rx stop bit */ if (mode & COMM_MODE_RX) { tmp = ioread32be(®s->rctrl) | RCTRL_GRS; iowrite32be(tmp, ®s->rctrl); if (dtsec->fm_rev_info.major == 2) { /* Workaround for dTSEC Errata A002 */ usleep_range(100, 200); } else { /* Workaround for dTSEC Errata A004839 */ usleep_range(10, 50); } } /* Graceful stop - Assert the graceful Tx stop bit */ if (mode & COMM_MODE_TX) { if (dtsec->fm_rev_info.major == 2) { /* dTSEC Errata A004: Do not use TCTRL[GTS]=1 */ pr_debug("GTS not supported due to DTSEC_A004 Errata.\n"); } else { tmp = ioread32be(®s->tctrl) | TCTRL_GTS; iowrite32be(tmp, ®s->tctrl); /* Workaround for dTSEC Errata A0012, A0014 */ usleep_range(10, 50); } } } int dtsec_enable(struct fman_mac *dtsec, enum comm_mode mode) { struct dtsec_regs __iomem *regs = dtsec->regs; u32 tmp; if (!is_init_done(dtsec->dtsec_drv_param)) return -EINVAL; /* Enable */ tmp = ioread32be(®s->maccfg1); if (mode & COMM_MODE_RX) tmp |= MACCFG1_RX_EN; if (mode & COMM_MODE_TX) tmp |= MACCFG1_TX_EN; iowrite32be(tmp, ®s->maccfg1); /* Graceful start - clear the graceful Rx/Tx stop bit */ graceful_start(dtsec, mode); return 0; } int dtsec_disable(struct fman_mac *dtsec, enum comm_mode mode) { struct dtsec_regs __iomem *regs = dtsec->regs; u32 tmp; if (!is_init_done(dtsec->dtsec_drv_param)) return -EINVAL; /* Graceful stop - Assert the graceful Rx/Tx stop bit */ graceful_stop(dtsec, mode); tmp = ioread32be(®s->maccfg1); if (mode & COMM_MODE_RX) tmp &= ~MACCFG1_RX_EN; if (mode & COMM_MODE_TX) tmp &= ~MACCFG1_TX_EN; iowrite32be(tmp, ®s->maccfg1); return 0; } int dtsec_set_tx_pause_frames(struct fman_mac *dtsec, u8 __maybe_unused priority, u16 pause_time, u16 __maybe_unused thresh_time) { struct dtsec_regs __iomem *regs = dtsec->regs; enum comm_mode mode = COMM_MODE_NONE; u32 ptv = 0; if (!is_init_done(dtsec->dtsec_drv_param)) return -EINVAL; if ((ioread32be(®s->rctrl) & RCTRL_GRS) == 0) mode |= COMM_MODE_RX; if ((ioread32be(®s->tctrl) & TCTRL_GTS) == 0) mode |= COMM_MODE_TX; graceful_stop(dtsec, mode); if (pause_time) { /* FM_BAD_TX_TS_IN_B_2_B_ERRATA_DTSEC_A003 Errata workaround */ if (dtsec->fm_rev_info.major == 2 && pause_time <= 320) { pr_warn("pause-time: %d illegal.Should be > 320\n", pause_time); return -EINVAL; } ptv = ioread32be(®s->ptv); ptv &= PTV_PTE_MASK; ptv |= pause_time & PTV_PT_MASK; iowrite32be(ptv, ®s->ptv); /* trigger the transmission of a flow-control pause frame */ iowrite32be(ioread32be(®s->maccfg1) | MACCFG1_TX_FLOW, ®s->maccfg1); } else iowrite32be(ioread32be(®s->maccfg1) & ~MACCFG1_TX_FLOW, ®s->maccfg1); graceful_start(dtsec, mode); return 0; } int dtsec_accept_rx_pause_frames(struct fman_mac *dtsec, bool en) { struct dtsec_regs __iomem *regs = dtsec->regs; enum comm_mode mode = COMM_MODE_NONE; u32 tmp; if (!is_init_done(dtsec->dtsec_drv_param)) return -EINVAL; if ((ioread32be(®s->rctrl) & RCTRL_GRS) == 0) mode |= COMM_MODE_RX; if ((ioread32be(®s->tctrl) & TCTRL_GTS) == 0) mode |= COMM_MODE_TX; graceful_stop(dtsec, mode); tmp = ioread32be(®s->maccfg1); if (en) tmp |= MACCFG1_RX_FLOW; else tmp &= ~MACCFG1_RX_FLOW; iowrite32be(tmp, ®s->maccfg1); graceful_start(dtsec, mode); return 0; } int dtsec_modify_mac_address(struct fman_mac *dtsec, enet_addr_t *enet_addr) { struct dtsec_regs __iomem *regs = dtsec->regs; enum comm_mode mode = COMM_MODE_NONE; if (!is_init_done(dtsec->dtsec_drv_param)) return -EINVAL; if ((ioread32be(®s->rctrl) & RCTRL_GRS) == 0) mode |= COMM_MODE_RX; if ((ioread32be(®s->tctrl) & TCTRL_GTS) == 0) mode |= COMM_MODE_TX; graceful_stop(dtsec, mode); /* Initialize MAC Station Address registers (1 & 2) * Station address have to be swapped (big endian to little endian */ dtsec->addr = ENET_ADDR_TO_UINT64(*enet_addr); set_mac_address(dtsec->regs, (u8 *)(*enet_addr)); graceful_start(dtsec, mode); return 0; } int dtsec_add_hash_mac_address(struct fman_mac *dtsec, enet_addr_t *eth_addr) { struct dtsec_regs __iomem *regs = dtsec->regs; struct eth_hash_entry *hash_entry; u64 addr; s32 bucket; u32 crc = 0xFFFFFFFF; bool mcast, ghtx; if (!is_init_done(dtsec->dtsec_drv_param)) return -EINVAL; addr = ENET_ADDR_TO_UINT64(*eth_addr); ghtx = (bool)((ioread32be(®s->rctrl) & RCTRL_GHTX) ? true : false); mcast = (bool)((addr & MAC_GROUP_ADDRESS) ? true : false); /* Cannot handle unicast mac addr when GHTX is on */ if (ghtx && !mcast) { pr_err("Could not compute hash bucket\n"); return -EINVAL; } crc = crc32_le(crc, (u8 *)eth_addr, ETH_ALEN); crc = bitrev32(crc); /* considering the 9 highest order bits in crc H[8:0]: *if ghtx = 0 H[8:6] (highest order 3 bits) identify the hash register *and H[5:1] (next 5 bits) identify the hash bit *if ghts = 1 H[8:5] (highest order 4 bits) identify the hash register *and H[4:0] (next 5 bits) identify the hash bit. * *In bucket index output the low 5 bits identify the hash register *bit, while the higher 4 bits identify the hash register */ if (ghtx) { bucket = (s32)((crc >> 23) & 0x1ff); } else { bucket = (s32)((crc >> 24) & 0xff); /* if !ghtx and mcast the bit must be set in gaddr instead of *igaddr. */ if (mcast) bucket += 0x100; } set_bucket(dtsec->regs, bucket, true); /* Create element to be added to the driver hash table */ hash_entry = kmalloc(sizeof(*hash_entry), GFP_ATOMIC); if (!hash_entry) return -ENOMEM; hash_entry->addr = addr; INIT_LIST_HEAD(&hash_entry->node); if (addr & MAC_GROUP_ADDRESS) /* Group Address */ list_add_tail(&hash_entry->node, &dtsec->multicast_addr_hash->lsts[bucket]); else list_add_tail(&hash_entry->node, &dtsec->unicast_addr_hash->lsts[bucket]); return 0; } int dtsec_set_allmulti(struct fman_mac *dtsec, bool enable) { u32 tmp; struct dtsec_regs __iomem *regs = dtsec->regs; if (!is_init_done(dtsec->dtsec_drv_param)) return -EINVAL; tmp = ioread32be(®s->rctrl); if (enable) tmp |= RCTRL_MPROM; else tmp &= ~RCTRL_MPROM; iowrite32be(tmp, ®s->rctrl); return 0; } int dtsec_set_tstamp(struct fman_mac *dtsec, bool enable) { struct dtsec_regs __iomem *regs = dtsec->regs; u32 rctrl, tctrl; if (!is_init_done(dtsec->dtsec_drv_param)) return -EINVAL; rctrl = ioread32be(®s->rctrl); tctrl = ioread32be(®s->tctrl); if (enable) { rctrl |= RCTRL_RTSE; tctrl |= TCTRL_TTSE; } else { rctrl &= ~RCTRL_RTSE; tctrl &= ~TCTRL_TTSE; } iowrite32be(rctrl, ®s->rctrl); iowrite32be(tctrl, ®s->tctrl); return 0; } int dtsec_del_hash_mac_address(struct fman_mac *dtsec, enet_addr_t *eth_addr) { struct dtsec_regs __iomem *regs = dtsec->regs; struct list_head *pos; struct eth_hash_entry *hash_entry = NULL; u64 addr; s32 bucket; u32 crc = 0xFFFFFFFF; bool mcast, ghtx; if (!is_init_done(dtsec->dtsec_drv_param)) return -EINVAL; addr = ENET_ADDR_TO_UINT64(*eth_addr); ghtx = (bool)((ioread32be(®s->rctrl) & RCTRL_GHTX) ? true : false); mcast = (bool)((addr & MAC_GROUP_ADDRESS) ? true : false); /* Cannot handle unicast mac addr when GHTX is on */ if (ghtx && !mcast) { pr_err("Could not compute hash bucket\n"); return -EINVAL; } crc = crc32_le(crc, (u8 *)eth_addr, ETH_ALEN); crc = bitrev32(crc); if (ghtx) { bucket = (s32)((crc >> 23) & 0x1ff); } else { bucket = (s32)((crc >> 24) & 0xff); /* if !ghtx and mcast the bit must be set * in gaddr instead of igaddr. */ if (mcast) bucket += 0x100; } if (addr & MAC_GROUP_ADDRESS) { /* Group Address */ list_for_each(pos, &dtsec->multicast_addr_hash->lsts[bucket]) { hash_entry = ETH_HASH_ENTRY_OBJ(pos); if (hash_entry->addr == addr) { list_del_init(&hash_entry->node); kfree(hash_entry); break; } } if (list_empty(&dtsec->multicast_addr_hash->lsts[bucket])) set_bucket(dtsec->regs, bucket, false); } else { /* Individual Address */ list_for_each(pos, &dtsec->unicast_addr_hash->lsts[bucket]) { hash_entry = ETH_HASH_ENTRY_OBJ(pos); if (hash_entry->addr == addr) { list_del_init(&hash_entry->node); kfree(hash_entry); break; } } if (list_empty(&dtsec->unicast_addr_hash->lsts[bucket])) set_bucket(dtsec->regs, bucket, false); } /* address does not exist */ WARN_ON(!hash_entry); return 0; } int dtsec_set_promiscuous(struct fman_mac *dtsec, bool new_val) { struct dtsec_regs __iomem *regs = dtsec->regs; u32 tmp; if (!is_init_done(dtsec->dtsec_drv_param)) return -EINVAL; /* Set unicast promiscuous */ tmp = ioread32be(®s->rctrl); if (new_val) tmp |= RCTRL_UPROM; else tmp &= ~RCTRL_UPROM; iowrite32be(tmp, ®s->rctrl); /* Set multicast promiscuous */ tmp = ioread32be(®s->rctrl); if (new_val) tmp |= RCTRL_MPROM; else tmp &= ~RCTRL_MPROM; iowrite32be(tmp, ®s->rctrl); return 0; } int dtsec_adjust_link(struct fman_mac *dtsec, u16 speed) { struct dtsec_regs __iomem *regs = dtsec->regs; enum comm_mode mode = COMM_MODE_NONE; u32 tmp; if (!is_init_done(dtsec->dtsec_drv_param)) return -EINVAL; if ((ioread32be(®s->rctrl) & RCTRL_GRS) == 0) mode |= COMM_MODE_RX; if ((ioread32be(®s->tctrl) & TCTRL_GTS) == 0) mode |= COMM_MODE_TX; graceful_stop(dtsec, mode); tmp = ioread32be(®s->maccfg2); /* Full Duplex */ tmp |= MACCFG2_FULL_DUPLEX; tmp &= ~(MACCFG2_NIBBLE_MODE | MACCFG2_BYTE_MODE); if (speed < SPEED_1000) tmp |= MACCFG2_NIBBLE_MODE; else if (speed == SPEED_1000) tmp |= MACCFG2_BYTE_MODE; iowrite32be(tmp, ®s->maccfg2); tmp = ioread32be(®s->ecntrl); if (speed == SPEED_100) tmp |= DTSEC_ECNTRL_R100M; else tmp &= ~DTSEC_ECNTRL_R100M; iowrite32be(tmp, ®s->ecntrl); graceful_start(dtsec, mode); return 0; } int dtsec_restart_autoneg(struct fman_mac *dtsec) { u16 tmp_reg16; if (!is_init_done(dtsec->dtsec_drv_param)) return -EINVAL; tmp_reg16 = phy_read(dtsec->tbiphy, MII_BMCR); tmp_reg16 &= ~(BMCR_SPEED100 | BMCR_SPEED1000); tmp_reg16 |= (BMCR_ANENABLE | BMCR_ANRESTART | BMCR_FULLDPLX | BMCR_SPEED1000); phy_write(dtsec->tbiphy, MII_BMCR, tmp_reg16); return 0; } int dtsec_get_version(struct fman_mac *dtsec, u32 *mac_version) { struct dtsec_regs __iomem *regs = dtsec->regs; if (!is_init_done(dtsec->dtsec_drv_param)) return -EINVAL; *mac_version = ioread32be(®s->tsec_id); return 0; } int dtsec_set_exception(struct fman_mac *dtsec, enum fman_mac_exceptions exception, bool enable) { struct dtsec_regs __iomem *regs = dtsec->regs; u32 bit_mask = 0; if (!is_init_done(dtsec->dtsec_drv_param)) return -EINVAL; if (exception != FM_MAC_EX_1G_1588_TS_RX_ERR) { bit_mask = get_exception_flag(exception); if (bit_mask) { if (enable) dtsec->exceptions |= bit_mask; else dtsec->exceptions &= ~bit_mask; } else { pr_err("Undefined exception\n"); return -EINVAL; } if (enable) iowrite32be(ioread32be(®s->imask) | bit_mask, ®s->imask); else iowrite32be(ioread32be(®s->imask) & ~bit_mask, ®s->imask); } else { if (!dtsec->ptp_tsu_enabled) { pr_err("Exception valid for 1588 only\n"); return -EINVAL; } switch (exception) { case FM_MAC_EX_1G_1588_TS_RX_ERR: if (enable) { dtsec->en_tsu_err_exception = true; iowrite32be(ioread32be(®s->tmr_pemask) | TMR_PEMASK_TSREEN, ®s->tmr_pemask); } else { dtsec->en_tsu_err_exception = false; iowrite32be(ioread32be(®s->tmr_pemask) & ~TMR_PEMASK_TSREEN, ®s->tmr_pemask); } break; default: pr_err("Undefined exception\n"); return -EINVAL; } } return 0; } int dtsec_init(struct fman_mac *dtsec) { struct dtsec_regs __iomem *regs = dtsec->regs; struct dtsec_cfg *dtsec_drv_param; int err; u16 max_frm_ln; enet_addr_t eth_addr; if (is_init_done(dtsec->dtsec_drv_param)) return -EINVAL; if (DEFAULT_RESET_ON_INIT && (fman_reset_mac(dtsec->fm, dtsec->mac_id) != 0)) { pr_err("Can't reset MAC!\n"); return -EINVAL; } err = check_init_parameters(dtsec); if (err) return err; dtsec_drv_param = dtsec->dtsec_drv_param; MAKE_ENET_ADDR_FROM_UINT64(dtsec->addr, eth_addr); err = init(dtsec->regs, dtsec_drv_param, dtsec->phy_if, dtsec->max_speed, (u8 *)eth_addr, dtsec->exceptions, dtsec->tbiphy->mdio.addr); if (err) { free_init_resources(dtsec); pr_err("DTSEC version doesn't support this i/f mode\n"); return err; } if (dtsec->phy_if == PHY_INTERFACE_MODE_SGMII) { u16 tmp_reg16; /* Configure the TBI PHY Control Register */ tmp_reg16 = TBICON_CLK_SELECT | TBICON_SOFT_RESET; phy_write(dtsec->tbiphy, MII_TBICON, tmp_reg16); tmp_reg16 = TBICON_CLK_SELECT; phy_write(dtsec->tbiphy, MII_TBICON, tmp_reg16); tmp_reg16 = (BMCR_RESET | BMCR_ANENABLE | BMCR_FULLDPLX | BMCR_SPEED1000); phy_write(dtsec->tbiphy, MII_BMCR, tmp_reg16); if (dtsec->basex_if) tmp_reg16 = TBIANA_1000X; else tmp_reg16 = TBIANA_SGMII; phy_write(dtsec->tbiphy, MII_ADVERTISE, tmp_reg16); tmp_reg16 = (BMCR_ANENABLE | BMCR_ANRESTART | BMCR_FULLDPLX | BMCR_SPEED1000); phy_write(dtsec->tbiphy, MII_BMCR, tmp_reg16); } /* Max Frame Length */ max_frm_ln = (u16)ioread32be(®s->maxfrm); err = fman_set_mac_max_frame(dtsec->fm, dtsec->mac_id, max_frm_ln); if (err) { pr_err("Setting max frame length failed\n"); free_init_resources(dtsec); return -EINVAL; } dtsec->multicast_addr_hash = alloc_hash_table(EXTENDED_HASH_TABLE_SIZE); if (!dtsec->multicast_addr_hash) { free_init_resources(dtsec); pr_err("MC hash table is failed\n"); return -ENOMEM; } dtsec->unicast_addr_hash = alloc_hash_table(DTSEC_HASH_TABLE_SIZE); if (!dtsec->unicast_addr_hash) { free_init_resources(dtsec); pr_err("UC hash table is failed\n"); return -ENOMEM; } /* register err intr handler for dtsec to FPM (err) */ fman_register_intr(dtsec->fm, FMAN_MOD_MAC, dtsec->mac_id, FMAN_INTR_TYPE_ERR, dtsec_isr, dtsec); /* register 1588 intr handler for TMR to FPM (normal) */ fman_register_intr(dtsec->fm, FMAN_MOD_MAC, dtsec->mac_id, FMAN_INTR_TYPE_NORMAL, dtsec_1588_isr, dtsec); kfree(dtsec_drv_param); dtsec->dtsec_drv_param = NULL; return 0; } int dtsec_free(struct fman_mac *dtsec) { free_init_resources(dtsec); kfree(dtsec->dtsec_drv_param); dtsec->dtsec_drv_param = NULL; kfree(dtsec); return 0; } struct fman_mac *dtsec_config(struct fman_mac_params *params) { struct fman_mac *dtsec; struct dtsec_cfg *dtsec_drv_param; void __iomem *base_addr; base_addr = params->base_addr; /* allocate memory for the UCC GETH data structure. */ dtsec = kzalloc(sizeof(*dtsec), GFP_KERNEL); if (!dtsec) return NULL; /* allocate memory for the d_tsec driver parameters data structure. */ dtsec_drv_param = kzalloc(sizeof(*dtsec_drv_param), GFP_KERNEL); if (!dtsec_drv_param) goto err_dtsec; /* Plant parameter structure pointer */ dtsec->dtsec_drv_param = dtsec_drv_param; set_dflts(dtsec_drv_param); dtsec->regs = base_addr; dtsec->addr = ENET_ADDR_TO_UINT64(params->addr); dtsec->max_speed = params->max_speed; dtsec->phy_if = params->phy_if; dtsec->mac_id = params->mac_id; dtsec->exceptions = (DTSEC_IMASK_BREN | DTSEC_IMASK_RXCEN | DTSEC_IMASK_BTEN | DTSEC_IMASK_TXCEN | DTSEC_IMASK_TXEEN | DTSEC_IMASK_ABRTEN | DTSEC_IMASK_LCEN | DTSEC_IMASK_CRLEN | DTSEC_IMASK_XFUNEN | DTSEC_IMASK_IFERREN | DTSEC_IMASK_MAGEN | DTSEC_IMASK_TDPEEN | DTSEC_IMASK_RDPEEN); dtsec->exception_cb = params->exception_cb; dtsec->event_cb = params->event_cb; dtsec->dev_id = params->dev_id; dtsec->ptp_tsu_enabled = dtsec->dtsec_drv_param->ptp_tsu_en; dtsec->en_tsu_err_exception = dtsec->dtsec_drv_param->ptp_exception_en; dtsec->fm = params->fm; dtsec->basex_if = params->basex_if; if (!params->internal_phy_node) { pr_err("TBI PHY node is not available\n"); goto err_dtsec_drv_param; } dtsec->tbiphy = of_phy_find_device(params->internal_phy_node); if (!dtsec->tbiphy) { pr_err("of_phy_find_device (TBI PHY) failed\n"); goto err_dtsec_drv_param; } put_device(&dtsec->tbiphy->mdio.dev); /* Save FMan revision */ fman_get_revision(dtsec->fm, &dtsec->fm_rev_info); return dtsec; err_dtsec_drv_param: kfree(dtsec_drv_param); err_dtsec: kfree(dtsec); return NULL; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1