Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Salil | 15552 | 38.65% | 11 | 5.58% |
Jian Shen | 9673 | 24.04% | 37 | 18.78% |
Li Peng | 7266 | 18.06% | 35 | 17.77% |
Lin Yun Sheng | 3182 | 7.91% | 42 | 21.32% |
Fuyun Liang | 2094 | 5.20% | 25 | 12.69% |
Huazhong Tan | 2007 | 4.99% | 24 | 12.18% |
Xi Wang | 156 | 0.39% | 4 | 2.03% |
Zhongzhu Liu | 123 | 0.31% | 3 | 1.52% |
Shiju Jose | 105 | 0.26% | 6 | 3.05% |
qumingguang | 58 | 0.14% | 2 | 1.02% |
Kees Cook | 12 | 0.03% | 1 | 0.51% |
Andrew Lunn | 8 | 0.02% | 3 | 1.52% |
Colin Ian King | 4 | 0.01% | 3 | 1.52% |
David S. Miller | 1 | 0.00% | 1 | 0.51% |
Total | 40241 | 197 |
// SPDX-License-Identifier: GPL-2.0+ // Copyright (c) 2016-2017 Hisilicon Limited. #include <linux/acpi.h> #include <linux/device.h> #include <linux/etherdevice.h> #include <linux/init.h> #include <linux/interrupt.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/netdevice.h> #include <linux/pci.h> #include <linux/platform_device.h> #include <linux/if_vlan.h> #include <net/rtnetlink.h> #include "hclge_cmd.h" #include "hclge_dcb.h" #include "hclge_main.h" #include "hclge_mbx.h" #include "hclge_mdio.h" #include "hclge_tm.h" #include "hclge_err.h" #include "hnae3.h" #define HCLGE_NAME "hclge" #define HCLGE_STATS_READ(p, offset) (*((u64 *)((u8 *)(p) + (offset)))) #define HCLGE_MAC_STATS_FIELD_OFF(f) (offsetof(struct hclge_mac_stats, f)) #define HCLGE_BUF_SIZE_UNIT 256 static int hclge_set_mac_mtu(struct hclge_dev *hdev, int new_mps); static int hclge_init_vlan_config(struct hclge_dev *hdev); static int hclge_reset_ae_dev(struct hnae3_ae_dev *ae_dev); static int hclge_set_umv_space(struct hclge_dev *hdev, u16 space_size, u16 *allocated_size, bool is_alloc); static struct hnae3_ae_algo ae_algo; static const struct pci_device_id ae_algo_pci_tbl[] = { {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_GE), 0}, {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE), 0}, {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA), 0}, {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA_MACSEC), 0}, {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA), 0}, {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA_MACSEC), 0}, {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_MACSEC), 0}, /* required last entry */ {0, } }; MODULE_DEVICE_TABLE(pci, ae_algo_pci_tbl); static const u32 cmdq_reg_addr_list[] = {HCLGE_CMDQ_TX_ADDR_L_REG, HCLGE_CMDQ_TX_ADDR_H_REG, HCLGE_CMDQ_TX_DEPTH_REG, HCLGE_CMDQ_TX_TAIL_REG, HCLGE_CMDQ_TX_HEAD_REG, HCLGE_CMDQ_RX_ADDR_L_REG, HCLGE_CMDQ_RX_ADDR_H_REG, HCLGE_CMDQ_RX_DEPTH_REG, HCLGE_CMDQ_RX_TAIL_REG, HCLGE_CMDQ_RX_HEAD_REG, HCLGE_VECTOR0_CMDQ_SRC_REG, HCLGE_CMDQ_INTR_STS_REG, HCLGE_CMDQ_INTR_EN_REG, HCLGE_CMDQ_INTR_GEN_REG}; static const u32 common_reg_addr_list[] = {HCLGE_MISC_VECTOR_REG_BASE, HCLGE_VECTOR0_OTER_EN_REG, HCLGE_MISC_RESET_STS_REG, HCLGE_MISC_VECTOR_INT_STS, HCLGE_GLOBAL_RESET_REG, HCLGE_FUN_RST_ING, HCLGE_GRO_EN_REG}; static const u32 ring_reg_addr_list[] = {HCLGE_RING_RX_ADDR_L_REG, HCLGE_RING_RX_ADDR_H_REG, HCLGE_RING_RX_BD_NUM_REG, HCLGE_RING_RX_BD_LENGTH_REG, HCLGE_RING_RX_MERGE_EN_REG, HCLGE_RING_RX_TAIL_REG, HCLGE_RING_RX_HEAD_REG, HCLGE_RING_RX_FBD_NUM_REG, HCLGE_RING_RX_OFFSET_REG, HCLGE_RING_RX_FBD_OFFSET_REG, HCLGE_RING_RX_STASH_REG, HCLGE_RING_RX_BD_ERR_REG, HCLGE_RING_TX_ADDR_L_REG, HCLGE_RING_TX_ADDR_H_REG, HCLGE_RING_TX_BD_NUM_REG, HCLGE_RING_TX_PRIORITY_REG, HCLGE_RING_TX_TC_REG, HCLGE_RING_TX_MERGE_EN_REG, HCLGE_RING_TX_TAIL_REG, HCLGE_RING_TX_HEAD_REG, HCLGE_RING_TX_FBD_NUM_REG, HCLGE_RING_TX_OFFSET_REG, HCLGE_RING_TX_EBD_NUM_REG, HCLGE_RING_TX_EBD_OFFSET_REG, HCLGE_RING_TX_BD_ERR_REG, HCLGE_RING_EN_REG}; static const u32 tqp_intr_reg_addr_list[] = {HCLGE_TQP_INTR_CTRL_REG, HCLGE_TQP_INTR_GL0_REG, HCLGE_TQP_INTR_GL1_REG, HCLGE_TQP_INTR_GL2_REG, HCLGE_TQP_INTR_RL_REG}; static const char hns3_nic_test_strs[][ETH_GSTRING_LEN] = { "App Loopback test", "Serdes serial Loopback test", "Serdes parallel Loopback test", "Phy Loopback test" }; static const struct hclge_comm_stats_str g_mac_stats_string[] = { {"mac_tx_mac_pause_num", HCLGE_MAC_STATS_FIELD_OFF(mac_tx_mac_pause_num)}, {"mac_rx_mac_pause_num", HCLGE_MAC_STATS_FIELD_OFF(mac_rx_mac_pause_num)}, {"mac_tx_pfc_pri0_pkt_num", HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri0_pkt_num)}, {"mac_tx_pfc_pri1_pkt_num", HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri1_pkt_num)}, {"mac_tx_pfc_pri2_pkt_num", HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri2_pkt_num)}, {"mac_tx_pfc_pri3_pkt_num", HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri3_pkt_num)}, {"mac_tx_pfc_pri4_pkt_num", HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri4_pkt_num)}, {"mac_tx_pfc_pri5_pkt_num", HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri5_pkt_num)}, {"mac_tx_pfc_pri6_pkt_num", HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri6_pkt_num)}, {"mac_tx_pfc_pri7_pkt_num", HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri7_pkt_num)}, {"mac_rx_pfc_pri0_pkt_num", HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri0_pkt_num)}, {"mac_rx_pfc_pri1_pkt_num", HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri1_pkt_num)}, {"mac_rx_pfc_pri2_pkt_num", HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri2_pkt_num)}, {"mac_rx_pfc_pri3_pkt_num", HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri3_pkt_num)}, {"mac_rx_pfc_pri4_pkt_num", HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri4_pkt_num)}, {"mac_rx_pfc_pri5_pkt_num", HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri5_pkt_num)}, {"mac_rx_pfc_pri6_pkt_num", HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri6_pkt_num)}, {"mac_rx_pfc_pri7_pkt_num", HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri7_pkt_num)}, {"mac_tx_total_pkt_num", HCLGE_MAC_STATS_FIELD_OFF(mac_tx_total_pkt_num)}, {"mac_tx_total_oct_num", HCLGE_MAC_STATS_FIELD_OFF(mac_tx_total_oct_num)}, {"mac_tx_good_pkt_num", HCLGE_MAC_STATS_FIELD_OFF(mac_tx_good_pkt_num)}, {"mac_tx_bad_pkt_num", HCLGE_MAC_STATS_FIELD_OFF(mac_tx_bad_pkt_num)}, {"mac_tx_good_oct_num", HCLGE_MAC_STATS_FIELD_OFF(mac_tx_good_oct_num)}, {"mac_tx_bad_oct_num", HCLGE_MAC_STATS_FIELD_OFF(mac_tx_bad_oct_num)}, {"mac_tx_uni_pkt_num", HCLGE_MAC_STATS_FIELD_OFF(mac_tx_uni_pkt_num)}, {"mac_tx_multi_pkt_num", HCLGE_MAC_STATS_FIELD_OFF(mac_tx_multi_pkt_num)}, {"mac_tx_broad_pkt_num", HCLGE_MAC_STATS_FIELD_OFF(mac_tx_broad_pkt_num)}, {"mac_tx_undersize_pkt_num", HCLGE_MAC_STATS_FIELD_OFF(mac_tx_undersize_pkt_num)}, {"mac_tx_oversize_pkt_num", HCLGE_MAC_STATS_FIELD_OFF(mac_tx_oversize_pkt_num)}, {"mac_tx_64_oct_pkt_num", HCLGE_MAC_STATS_FIELD_OFF(mac_tx_64_oct_pkt_num)}, {"mac_tx_65_127_oct_pkt_num", HCLGE_MAC_STATS_FIELD_OFF(mac_tx_65_127_oct_pkt_num)}, {"mac_tx_128_255_oct_pkt_num", HCLGE_MAC_STATS_FIELD_OFF(mac_tx_128_255_oct_pkt_num)}, {"mac_tx_256_511_oct_pkt_num", HCLGE_MAC_STATS_FIELD_OFF(mac_tx_256_511_oct_pkt_num)}, {"mac_tx_512_1023_oct_pkt_num", HCLGE_MAC_STATS_FIELD_OFF(mac_tx_512_1023_oct_pkt_num)}, {"mac_tx_1024_1518_oct_pkt_num", HCLGE_MAC_STATS_FIELD_OFF(mac_tx_1024_1518_oct_pkt_num)}, {"mac_tx_1519_2047_oct_pkt_num", HCLGE_MAC_STATS_FIELD_OFF(mac_tx_1519_2047_oct_pkt_num)}, {"mac_tx_2048_4095_oct_pkt_num", HCLGE_MAC_STATS_FIELD_OFF(mac_tx_2048_4095_oct_pkt_num)}, {"mac_tx_4096_8191_oct_pkt_num", HCLGE_MAC_STATS_FIELD_OFF(mac_tx_4096_8191_oct_pkt_num)}, {"mac_tx_8192_9216_oct_pkt_num", HCLGE_MAC_STATS_FIELD_OFF(mac_tx_8192_9216_oct_pkt_num)}, {"mac_tx_9217_12287_oct_pkt_num", HCLGE_MAC_STATS_FIELD_OFF(mac_tx_9217_12287_oct_pkt_num)}, {"mac_tx_12288_16383_oct_pkt_num", HCLGE_MAC_STATS_FIELD_OFF(mac_tx_12288_16383_oct_pkt_num)}, {"mac_tx_1519_max_good_pkt_num", HCLGE_MAC_STATS_FIELD_OFF(mac_tx_1519_max_good_oct_pkt_num)}, {"mac_tx_1519_max_bad_pkt_num", HCLGE_MAC_STATS_FIELD_OFF(mac_tx_1519_max_bad_oct_pkt_num)}, {"mac_rx_total_pkt_num", HCLGE_MAC_STATS_FIELD_OFF(mac_rx_total_pkt_num)}, {"mac_rx_total_oct_num", HCLGE_MAC_STATS_FIELD_OFF(mac_rx_total_oct_num)}, {"mac_rx_good_pkt_num", HCLGE_MAC_STATS_FIELD_OFF(mac_rx_good_pkt_num)}, {"mac_rx_bad_pkt_num", HCLGE_MAC_STATS_FIELD_OFF(mac_rx_bad_pkt_num)}, {"mac_rx_good_oct_num", HCLGE_MAC_STATS_FIELD_OFF(mac_rx_good_oct_num)}, {"mac_rx_bad_oct_num", HCLGE_MAC_STATS_FIELD_OFF(mac_rx_bad_oct_num)}, {"mac_rx_uni_pkt_num", HCLGE_MAC_STATS_FIELD_OFF(mac_rx_uni_pkt_num)}, {"mac_rx_multi_pkt_num", HCLGE_MAC_STATS_FIELD_OFF(mac_rx_multi_pkt_num)}, {"mac_rx_broad_pkt_num", HCLGE_MAC_STATS_FIELD_OFF(mac_rx_broad_pkt_num)}, {"mac_rx_undersize_pkt_num", HCLGE_MAC_STATS_FIELD_OFF(mac_rx_undersize_pkt_num)}, {"mac_rx_oversize_pkt_num", HCLGE_MAC_STATS_FIELD_OFF(mac_rx_oversize_pkt_num)}, {"mac_rx_64_oct_pkt_num", HCLGE_MAC_STATS_FIELD_OFF(mac_rx_64_oct_pkt_num)}, {"mac_rx_65_127_oct_pkt_num", HCLGE_MAC_STATS_FIELD_OFF(mac_rx_65_127_oct_pkt_num)}, {"mac_rx_128_255_oct_pkt_num", HCLGE_MAC_STATS_FIELD_OFF(mac_rx_128_255_oct_pkt_num)}, {"mac_rx_256_511_oct_pkt_num", HCLGE_MAC_STATS_FIELD_OFF(mac_rx_256_511_oct_pkt_num)}, {"mac_rx_512_1023_oct_pkt_num", HCLGE_MAC_STATS_FIELD_OFF(mac_rx_512_1023_oct_pkt_num)}, {"mac_rx_1024_1518_oct_pkt_num", HCLGE_MAC_STATS_FIELD_OFF(mac_rx_1024_1518_oct_pkt_num)}, {"mac_rx_1519_2047_oct_pkt_num", HCLGE_MAC_STATS_FIELD_OFF(mac_rx_1519_2047_oct_pkt_num)}, {"mac_rx_2048_4095_oct_pkt_num", HCLGE_MAC_STATS_FIELD_OFF(mac_rx_2048_4095_oct_pkt_num)}, {"mac_rx_4096_8191_oct_pkt_num", HCLGE_MAC_STATS_FIELD_OFF(mac_rx_4096_8191_oct_pkt_num)}, {"mac_rx_8192_9216_oct_pkt_num", HCLGE_MAC_STATS_FIELD_OFF(mac_rx_8192_9216_oct_pkt_num)}, {"mac_rx_9217_12287_oct_pkt_num", HCLGE_MAC_STATS_FIELD_OFF(mac_rx_9217_12287_oct_pkt_num)}, {"mac_rx_12288_16383_oct_pkt_num", HCLGE_MAC_STATS_FIELD_OFF(mac_rx_12288_16383_oct_pkt_num)}, {"mac_rx_1519_max_good_pkt_num", HCLGE_MAC_STATS_FIELD_OFF(mac_rx_1519_max_good_oct_pkt_num)}, {"mac_rx_1519_max_bad_pkt_num", HCLGE_MAC_STATS_FIELD_OFF(mac_rx_1519_max_bad_oct_pkt_num)}, {"mac_tx_fragment_pkt_num", HCLGE_MAC_STATS_FIELD_OFF(mac_tx_fragment_pkt_num)}, {"mac_tx_undermin_pkt_num", HCLGE_MAC_STATS_FIELD_OFF(mac_tx_undermin_pkt_num)}, {"mac_tx_jabber_pkt_num", HCLGE_MAC_STATS_FIELD_OFF(mac_tx_jabber_pkt_num)}, {"mac_tx_err_all_pkt_num", HCLGE_MAC_STATS_FIELD_OFF(mac_tx_err_all_pkt_num)}, {"mac_tx_from_app_good_pkt_num", HCLGE_MAC_STATS_FIELD_OFF(mac_tx_from_app_good_pkt_num)}, {"mac_tx_from_app_bad_pkt_num", HCLGE_MAC_STATS_FIELD_OFF(mac_tx_from_app_bad_pkt_num)}, {"mac_rx_fragment_pkt_num", HCLGE_MAC_STATS_FIELD_OFF(mac_rx_fragment_pkt_num)}, {"mac_rx_undermin_pkt_num", HCLGE_MAC_STATS_FIELD_OFF(mac_rx_undermin_pkt_num)}, {"mac_rx_jabber_pkt_num", HCLGE_MAC_STATS_FIELD_OFF(mac_rx_jabber_pkt_num)}, {"mac_rx_fcs_err_pkt_num", HCLGE_MAC_STATS_FIELD_OFF(mac_rx_fcs_err_pkt_num)}, {"mac_rx_send_app_good_pkt_num", HCLGE_MAC_STATS_FIELD_OFF(mac_rx_send_app_good_pkt_num)}, {"mac_rx_send_app_bad_pkt_num", HCLGE_MAC_STATS_FIELD_OFF(mac_rx_send_app_bad_pkt_num)} }; static const struct hclge_mac_mgr_tbl_entry_cmd hclge_mgr_table[] = { { .flags = HCLGE_MAC_MGR_MASK_VLAN_B, .ethter_type = cpu_to_le16(HCLGE_MAC_ETHERTYPE_LLDP), .mac_addr_hi32 = cpu_to_le32(htonl(0x0180C200)), .mac_addr_lo16 = cpu_to_le16(htons(0x000E)), .i_port_bitmap = 0x1, }, }; static int hclge_mac_update_stats(struct hclge_dev *hdev) { #define HCLGE_MAC_CMD_NUM 21 #define HCLGE_RTN_DATA_NUM 4 u64 *data = (u64 *)(&hdev->hw_stats.mac_stats); struct hclge_desc desc[HCLGE_MAC_CMD_NUM]; __le64 *desc_data; int i, k, n; int ret; hclge_cmd_setup_basic_desc(&desc[0], HCLGE_OPC_STATS_MAC, true); ret = hclge_cmd_send(&hdev->hw, desc, HCLGE_MAC_CMD_NUM); if (ret) { dev_err(&hdev->pdev->dev, "Get MAC pkt stats fail, status = %d.\n", ret); return ret; } for (i = 0; i < HCLGE_MAC_CMD_NUM; i++) { if (unlikely(i == 0)) { desc_data = (__le64 *)(&desc[i].data[0]); n = HCLGE_RTN_DATA_NUM - 2; } else { desc_data = (__le64 *)(&desc[i]); n = HCLGE_RTN_DATA_NUM; } for (k = 0; k < n; k++) { *data++ += le64_to_cpu(*desc_data); desc_data++; } } return 0; } static int hclge_tqps_update_stats(struct hnae3_handle *handle) { struct hnae3_knic_private_info *kinfo = &handle->kinfo; struct hclge_vport *vport = hclge_get_vport(handle); struct hclge_dev *hdev = vport->back; struct hnae3_queue *queue; struct hclge_desc desc[1]; struct hclge_tqp *tqp; int ret, i; for (i = 0; i < kinfo->num_tqps; i++) { queue = handle->kinfo.tqp[i]; tqp = container_of(queue, struct hclge_tqp, q); /* command : HCLGE_OPC_QUERY_IGU_STAT */ hclge_cmd_setup_basic_desc(&desc[0], HCLGE_OPC_QUERY_RX_STATUS, true); desc[0].data[0] = cpu_to_le32((tqp->index & 0x1ff)); ret = hclge_cmd_send(&hdev->hw, desc, 1); if (ret) { dev_err(&hdev->pdev->dev, "Query tqp stat fail, status = %d,queue = %d\n", ret, i); return ret; } tqp->tqp_stats.rcb_rx_ring_pktnum_rcd += le32_to_cpu(desc[0].data[1]); } for (i = 0; i < kinfo->num_tqps; i++) { queue = handle->kinfo.tqp[i]; tqp = container_of(queue, struct hclge_tqp, q); /* command : HCLGE_OPC_QUERY_IGU_STAT */ hclge_cmd_setup_basic_desc(&desc[0], HCLGE_OPC_QUERY_TX_STATUS, true); desc[0].data[0] = cpu_to_le32((tqp->index & 0x1ff)); ret = hclge_cmd_send(&hdev->hw, desc, 1); if (ret) { dev_err(&hdev->pdev->dev, "Query tqp stat fail, status = %d,queue = %d\n", ret, i); return ret; } tqp->tqp_stats.rcb_tx_ring_pktnum_rcd += le32_to_cpu(desc[0].data[1]); } return 0; } static u64 *hclge_tqps_get_stats(struct hnae3_handle *handle, u64 *data) { struct hnae3_knic_private_info *kinfo = &handle->kinfo; struct hclge_tqp *tqp; u64 *buff = data; int i; for (i = 0; i < kinfo->num_tqps; i++) { tqp = container_of(kinfo->tqp[i], struct hclge_tqp, q); *buff++ = tqp->tqp_stats.rcb_tx_ring_pktnum_rcd; } for (i = 0; i < kinfo->num_tqps; i++) { tqp = container_of(kinfo->tqp[i], struct hclge_tqp, q); *buff++ = tqp->tqp_stats.rcb_rx_ring_pktnum_rcd; } return buff; } static int hclge_tqps_get_sset_count(struct hnae3_handle *handle, int stringset) { struct hnae3_knic_private_info *kinfo = &handle->kinfo; return kinfo->num_tqps * (2); } static u8 *hclge_tqps_get_strings(struct hnae3_handle *handle, u8 *data) { struct hnae3_knic_private_info *kinfo = &handle->kinfo; u8 *buff = data; int i = 0; for (i = 0; i < kinfo->num_tqps; i++) { struct hclge_tqp *tqp = container_of(handle->kinfo.tqp[i], struct hclge_tqp, q); snprintf(buff, ETH_GSTRING_LEN, "txq%d_pktnum_rcd", tqp->index); buff = buff + ETH_GSTRING_LEN; } for (i = 0; i < kinfo->num_tqps; i++) { struct hclge_tqp *tqp = container_of(kinfo->tqp[i], struct hclge_tqp, q); snprintf(buff, ETH_GSTRING_LEN, "rxq%d_pktnum_rcd", tqp->index); buff = buff + ETH_GSTRING_LEN; } return buff; } static u64 *hclge_comm_get_stats(void *comm_stats, const struct hclge_comm_stats_str strs[], int size, u64 *data) { u64 *buf = data; u32 i; for (i = 0; i < size; i++) buf[i] = HCLGE_STATS_READ(comm_stats, strs[i].offset); return buf + size; } static u8 *hclge_comm_get_strings(u32 stringset, const struct hclge_comm_stats_str strs[], int size, u8 *data) { char *buff = (char *)data; u32 i; if (stringset != ETH_SS_STATS) return buff; for (i = 0; i < size; i++) { snprintf(buff, ETH_GSTRING_LEN, strs[i].desc); buff = buff + ETH_GSTRING_LEN; } return (u8 *)buff; } static void hclge_update_netstat(struct hclge_hw_stats *hw_stats, struct net_device_stats *net_stats) { net_stats->tx_dropped = 0; net_stats->rx_errors = hw_stats->mac_stats.mac_rx_oversize_pkt_num; net_stats->rx_errors += hw_stats->mac_stats.mac_rx_undersize_pkt_num; net_stats->rx_errors += hw_stats->mac_stats.mac_rx_fcs_err_pkt_num; net_stats->multicast = hw_stats->mac_stats.mac_tx_multi_pkt_num; net_stats->multicast += hw_stats->mac_stats.mac_rx_multi_pkt_num; net_stats->rx_crc_errors = hw_stats->mac_stats.mac_rx_fcs_err_pkt_num; net_stats->rx_length_errors = hw_stats->mac_stats.mac_rx_undersize_pkt_num; net_stats->rx_length_errors += hw_stats->mac_stats.mac_rx_oversize_pkt_num; net_stats->rx_over_errors = hw_stats->mac_stats.mac_rx_oversize_pkt_num; } static void hclge_update_stats_for_all(struct hclge_dev *hdev) { struct hnae3_handle *handle; int status; handle = &hdev->vport[0].nic; if (handle->client) { status = hclge_tqps_update_stats(handle); if (status) { dev_err(&hdev->pdev->dev, "Update TQPS stats fail, status = %d.\n", status); } } status = hclge_mac_update_stats(hdev); if (status) dev_err(&hdev->pdev->dev, "Update MAC stats fail, status = %d.\n", status); hclge_update_netstat(&hdev->hw_stats, &handle->kinfo.netdev->stats); } static void hclge_update_stats(struct hnae3_handle *handle, struct net_device_stats *net_stats) { struct hclge_vport *vport = hclge_get_vport(handle); struct hclge_dev *hdev = vport->back; struct hclge_hw_stats *hw_stats = &hdev->hw_stats; int status; if (test_and_set_bit(HCLGE_STATE_STATISTICS_UPDATING, &hdev->state)) return; status = hclge_mac_update_stats(hdev); if (status) dev_err(&hdev->pdev->dev, "Update MAC stats fail, status = %d.\n", status); status = hclge_tqps_update_stats(handle); if (status) dev_err(&hdev->pdev->dev, "Update TQPS stats fail, status = %d.\n", status); hclge_update_netstat(hw_stats, net_stats); clear_bit(HCLGE_STATE_STATISTICS_UPDATING, &hdev->state); } static int hclge_get_sset_count(struct hnae3_handle *handle, int stringset) { #define HCLGE_LOOPBACK_TEST_FLAGS (HNAE3_SUPPORT_APP_LOOPBACK |\ HNAE3_SUPPORT_PHY_LOOPBACK |\ HNAE3_SUPPORT_SERDES_SERIAL_LOOPBACK |\ HNAE3_SUPPORT_SERDES_PARALLEL_LOOPBACK) struct hclge_vport *vport = hclge_get_vport(handle); struct hclge_dev *hdev = vport->back; int count = 0; /* Loopback test support rules: * mac: only GE mode support * serdes: all mac mode will support include GE/XGE/LGE/CGE * phy: only support when phy device exist on board */ if (stringset == ETH_SS_TEST) { /* clear loopback bit flags at first */ handle->flags = (handle->flags & (~HCLGE_LOOPBACK_TEST_FLAGS)); if (hdev->pdev->revision >= 0x21 || hdev->hw.mac.speed == HCLGE_MAC_SPEED_10M || hdev->hw.mac.speed == HCLGE_MAC_SPEED_100M || hdev->hw.mac.speed == HCLGE_MAC_SPEED_1G) { count += 1; handle->flags |= HNAE3_SUPPORT_APP_LOOPBACK; } count += 2; handle->flags |= HNAE3_SUPPORT_SERDES_SERIAL_LOOPBACK; handle->flags |= HNAE3_SUPPORT_SERDES_PARALLEL_LOOPBACK; } else if (stringset == ETH_SS_STATS) { count = ARRAY_SIZE(g_mac_stats_string) + hclge_tqps_get_sset_count(handle, stringset); } return count; } static void hclge_get_strings(struct hnae3_handle *handle, u32 stringset, u8 *data) { u8 *p = (char *)data; int size; if (stringset == ETH_SS_STATS) { size = ARRAY_SIZE(g_mac_stats_string); p = hclge_comm_get_strings(stringset, g_mac_stats_string, size, p); p = hclge_tqps_get_strings(handle, p); } else if (stringset == ETH_SS_TEST) { if (handle->flags & HNAE3_SUPPORT_APP_LOOPBACK) { memcpy(p, hns3_nic_test_strs[HNAE3_LOOP_APP], ETH_GSTRING_LEN); p += ETH_GSTRING_LEN; } if (handle->flags & HNAE3_SUPPORT_SERDES_SERIAL_LOOPBACK) { memcpy(p, hns3_nic_test_strs[HNAE3_LOOP_SERIAL_SERDES], ETH_GSTRING_LEN); p += ETH_GSTRING_LEN; } if (handle->flags & HNAE3_SUPPORT_SERDES_PARALLEL_LOOPBACK) { memcpy(p, hns3_nic_test_strs[HNAE3_LOOP_PARALLEL_SERDES], ETH_GSTRING_LEN); p += ETH_GSTRING_LEN; } if (handle->flags & HNAE3_SUPPORT_PHY_LOOPBACK) { memcpy(p, hns3_nic_test_strs[HNAE3_LOOP_PHY], ETH_GSTRING_LEN); p += ETH_GSTRING_LEN; } } } static void hclge_get_stats(struct hnae3_handle *handle, u64 *data) { struct hclge_vport *vport = hclge_get_vport(handle); struct hclge_dev *hdev = vport->back; u64 *p; p = hclge_comm_get_stats(&hdev->hw_stats.mac_stats, g_mac_stats_string, ARRAY_SIZE(g_mac_stats_string), data); p = hclge_tqps_get_stats(handle, p); } static int hclge_parse_func_status(struct hclge_dev *hdev, struct hclge_func_status_cmd *status) { if (!(status->pf_state & HCLGE_PF_STATE_DONE)) return -EINVAL; /* Set the pf to main pf */ if (status->pf_state & HCLGE_PF_STATE_MAIN) hdev->flag |= HCLGE_FLAG_MAIN; else hdev->flag &= ~HCLGE_FLAG_MAIN; return 0; } static int hclge_query_function_status(struct hclge_dev *hdev) { struct hclge_func_status_cmd *req; struct hclge_desc desc; int timeout = 0; int ret; hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_QUERY_FUNC_STATUS, true); req = (struct hclge_func_status_cmd *)desc.data; do { ret = hclge_cmd_send(&hdev->hw, &desc, 1); if (ret) { dev_err(&hdev->pdev->dev, "query function status failed %d.\n", ret); return ret; } /* Check pf reset is done */ if (req->pf_state) break; usleep_range(1000, 2000); } while (timeout++ < 5); ret = hclge_parse_func_status(hdev, req); return ret; } static int hclge_query_pf_resource(struct hclge_dev *hdev) { struct hclge_pf_res_cmd *req; struct hclge_desc desc; int ret; hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_QUERY_PF_RSRC, true); ret = hclge_cmd_send(&hdev->hw, &desc, 1); if (ret) { dev_err(&hdev->pdev->dev, "query pf resource failed %d.\n", ret); return ret; } req = (struct hclge_pf_res_cmd *)desc.data; hdev->num_tqps = __le16_to_cpu(req->tqp_num); hdev->pkt_buf_size = __le16_to_cpu(req->buf_size) << HCLGE_BUF_UNIT_S; if (req->tx_buf_size) hdev->tx_buf_size = __le16_to_cpu(req->tx_buf_size) << HCLGE_BUF_UNIT_S; else hdev->tx_buf_size = HCLGE_DEFAULT_TX_BUF; hdev->tx_buf_size = roundup(hdev->tx_buf_size, HCLGE_BUF_SIZE_UNIT); if (req->dv_buf_size) hdev->dv_buf_size = __le16_to_cpu(req->dv_buf_size) << HCLGE_BUF_UNIT_S; else hdev->dv_buf_size = HCLGE_DEFAULT_DV; hdev->dv_buf_size = roundup(hdev->dv_buf_size, HCLGE_BUF_SIZE_UNIT); if (hnae3_dev_roce_supported(hdev)) { hdev->roce_base_msix_offset = hnae3_get_field(__le16_to_cpu(req->msixcap_localid_ba_rocee), HCLGE_MSIX_OFT_ROCEE_M, HCLGE_MSIX_OFT_ROCEE_S); hdev->num_roce_msi = hnae3_get_field(__le16_to_cpu(req->pf_intr_vector_number), HCLGE_PF_VEC_NUM_M, HCLGE_PF_VEC_NUM_S); /* PF should have NIC vectors and Roce vectors, * NIC vectors are queued before Roce vectors. */ hdev->num_msi = hdev->num_roce_msi + hdev->roce_base_msix_offset; } else { hdev->num_msi = hnae3_get_field(__le16_to_cpu(req->pf_intr_vector_number), HCLGE_PF_VEC_NUM_M, HCLGE_PF_VEC_NUM_S); } return 0; } static int hclge_parse_speed(int speed_cmd, int *speed) { switch (speed_cmd) { case 6: *speed = HCLGE_MAC_SPEED_10M; break; case 7: *speed = HCLGE_MAC_SPEED_100M; break; case 0: *speed = HCLGE_MAC_SPEED_1G; break; case 1: *speed = HCLGE_MAC_SPEED_10G; break; case 2: *speed = HCLGE_MAC_SPEED_25G; break; case 3: *speed = HCLGE_MAC_SPEED_40G; break; case 4: *speed = HCLGE_MAC_SPEED_50G; break; case 5: *speed = HCLGE_MAC_SPEED_100G; break; default: return -EINVAL; } return 0; } static void hclge_parse_fiber_link_mode(struct hclge_dev *hdev, u8 speed_ability) { unsigned long *supported = hdev->hw.mac.supported; if (speed_ability & HCLGE_SUPPORT_1G_BIT) set_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT, supported); if (speed_ability & HCLGE_SUPPORT_10G_BIT) set_bit(ETHTOOL_LINK_MODE_10000baseSR_Full_BIT, supported); if (speed_ability & HCLGE_SUPPORT_25G_BIT) set_bit(ETHTOOL_LINK_MODE_25000baseSR_Full_BIT, supported); if (speed_ability & HCLGE_SUPPORT_50G_BIT) set_bit(ETHTOOL_LINK_MODE_50000baseSR2_Full_BIT, supported); if (speed_ability & HCLGE_SUPPORT_100G_BIT) set_bit(ETHTOOL_LINK_MODE_100000baseSR4_Full_BIT, supported); set_bit(ETHTOOL_LINK_MODE_FIBRE_BIT, supported); set_bit(ETHTOOL_LINK_MODE_Pause_BIT, supported); } static void hclge_parse_link_mode(struct hclge_dev *hdev, u8 speed_ability) { u8 media_type = hdev->hw.mac.media_type; if (media_type != HNAE3_MEDIA_TYPE_FIBER) return; hclge_parse_fiber_link_mode(hdev, speed_ability); } static void hclge_parse_cfg(struct hclge_cfg *cfg, struct hclge_desc *desc) { struct hclge_cfg_param_cmd *req; u64 mac_addr_tmp_high; u64 mac_addr_tmp; int i; req = (struct hclge_cfg_param_cmd *)desc[0].data; /* get the configuration */ cfg->vmdq_vport_num = hnae3_get_field(__le32_to_cpu(req->param[0]), HCLGE_CFG_VMDQ_M, HCLGE_CFG_VMDQ_S); cfg->tc_num = hnae3_get_field(__le32_to_cpu(req->param[0]), HCLGE_CFG_TC_NUM_M, HCLGE_CFG_TC_NUM_S); cfg->tqp_desc_num = hnae3_get_field(__le32_to_cpu(req->param[0]), HCLGE_CFG_TQP_DESC_N_M, HCLGE_CFG_TQP_DESC_N_S); cfg->phy_addr = hnae3_get_field(__le32_to_cpu(req->param[1]), HCLGE_CFG_PHY_ADDR_M, HCLGE_CFG_PHY_ADDR_S); cfg->media_type = hnae3_get_field(__le32_to_cpu(req->param[1]), HCLGE_CFG_MEDIA_TP_M, HCLGE_CFG_MEDIA_TP_S); cfg->rx_buf_len = hnae3_get_field(__le32_to_cpu(req->param[1]), HCLGE_CFG_RX_BUF_LEN_M, HCLGE_CFG_RX_BUF_LEN_S); /* get mac_address */ mac_addr_tmp = __le32_to_cpu(req->param[2]); mac_addr_tmp_high = hnae3_get_field(__le32_to_cpu(req->param[3]), HCLGE_CFG_MAC_ADDR_H_M, HCLGE_CFG_MAC_ADDR_H_S); mac_addr_tmp |= (mac_addr_tmp_high << 31) << 1; cfg->default_speed = hnae3_get_field(__le32_to_cpu(req->param[3]), HCLGE_CFG_DEFAULT_SPEED_M, HCLGE_CFG_DEFAULT_SPEED_S); cfg->rss_size_max = hnae3_get_field(__le32_to_cpu(req->param[3]), HCLGE_CFG_RSS_SIZE_M, HCLGE_CFG_RSS_SIZE_S); for (i = 0; i < ETH_ALEN; i++) cfg->mac_addr[i] = (mac_addr_tmp >> (8 * i)) & 0xff; req = (struct hclge_cfg_param_cmd *)desc[1].data; cfg->numa_node_map = __le32_to_cpu(req->param[0]); cfg->speed_ability = hnae3_get_field(__le32_to_cpu(req->param[1]), HCLGE_CFG_SPEED_ABILITY_M, HCLGE_CFG_SPEED_ABILITY_S); cfg->umv_space = hnae3_get_field(__le32_to_cpu(req->param[1]), HCLGE_CFG_UMV_TBL_SPACE_M, HCLGE_CFG_UMV_TBL_SPACE_S); if (!cfg->umv_space) cfg->umv_space = HCLGE_DEFAULT_UMV_SPACE_PER_PF; } /* hclge_get_cfg: query the static parameter from flash * @hdev: pointer to struct hclge_dev * @hcfg: the config structure to be getted */ static int hclge_get_cfg(struct hclge_dev *hdev, struct hclge_cfg *hcfg) { struct hclge_desc desc[HCLGE_PF_CFG_DESC_NUM]; struct hclge_cfg_param_cmd *req; int i, ret; for (i = 0; i < HCLGE_PF_CFG_DESC_NUM; i++) { u32 offset = 0; req = (struct hclge_cfg_param_cmd *)desc[i].data; hclge_cmd_setup_basic_desc(&desc[i], HCLGE_OPC_GET_CFG_PARAM, true); hnae3_set_field(offset, HCLGE_CFG_OFFSET_M, HCLGE_CFG_OFFSET_S, i * HCLGE_CFG_RD_LEN_BYTES); /* Len should be united by 4 bytes when send to hardware */ hnae3_set_field(offset, HCLGE_CFG_RD_LEN_M, HCLGE_CFG_RD_LEN_S, HCLGE_CFG_RD_LEN_BYTES / HCLGE_CFG_RD_LEN_UNIT); req->offset = cpu_to_le32(offset); } ret = hclge_cmd_send(&hdev->hw, desc, HCLGE_PF_CFG_DESC_NUM); if (ret) { dev_err(&hdev->pdev->dev, "get config failed %d.\n", ret); return ret; } hclge_parse_cfg(hcfg, desc); return 0; } static int hclge_get_cap(struct hclge_dev *hdev) { int ret; ret = hclge_query_function_status(hdev); if (ret) { dev_err(&hdev->pdev->dev, "query function status error %d.\n", ret); return ret; } /* get pf resource */ ret = hclge_query_pf_resource(hdev); if (ret) dev_err(&hdev->pdev->dev, "query pf resource error %d.\n", ret); return ret; } static int hclge_configure(struct hclge_dev *hdev) { struct hclge_cfg cfg; int ret, i; ret = hclge_get_cfg(hdev, &cfg); if (ret) { dev_err(&hdev->pdev->dev, "get mac mode error %d.\n", ret); return ret; } hdev->num_vmdq_vport = cfg.vmdq_vport_num; hdev->base_tqp_pid = 0; hdev->rss_size_max = cfg.rss_size_max; hdev->rx_buf_len = cfg.rx_buf_len; ether_addr_copy(hdev->hw.mac.mac_addr, cfg.mac_addr); hdev->hw.mac.media_type = cfg.media_type; hdev->hw.mac.phy_addr = cfg.phy_addr; hdev->num_desc = cfg.tqp_desc_num; hdev->tm_info.num_pg = 1; hdev->tc_max = cfg.tc_num; hdev->tm_info.hw_pfc_map = 0; hdev->wanted_umv_size = cfg.umv_space; ret = hclge_parse_speed(cfg.default_speed, &hdev->hw.mac.speed); if (ret) { dev_err(&hdev->pdev->dev, "Get wrong speed ret=%d.\n", ret); return ret; } hclge_parse_link_mode(hdev, cfg.speed_ability); if ((hdev->tc_max > HNAE3_MAX_TC) || (hdev->tc_max < 1)) { dev_warn(&hdev->pdev->dev, "TC num = %d.\n", hdev->tc_max); hdev->tc_max = 1; } /* Dev does not support DCB */ if (!hnae3_dev_dcb_supported(hdev)) { hdev->tc_max = 1; hdev->pfc_max = 0; } else { hdev->pfc_max = hdev->tc_max; } hdev->tm_info.num_tc = 1; /* Currently not support uncontiuous tc */ for (i = 0; i < hdev->tm_info.num_tc; i++) hnae3_set_bit(hdev->hw_tc_map, i, 1); hdev->tx_sch_mode = HCLGE_FLAG_TC_BASE_SCH_MODE; return ret; } static int hclge_config_tso(struct hclge_dev *hdev, int tso_mss_min, int tso_mss_max) { struct hclge_cfg_tso_status_cmd *req; struct hclge_desc desc; u16 tso_mss; hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_TSO_GENERIC_CONFIG, false); req = (struct hclge_cfg_tso_status_cmd *)desc.data; tso_mss = 0; hnae3_set_field(tso_mss, HCLGE_TSO_MSS_MIN_M, HCLGE_TSO_MSS_MIN_S, tso_mss_min); req->tso_mss_min = cpu_to_le16(tso_mss); tso_mss = 0; hnae3_set_field(tso_mss, HCLGE_TSO_MSS_MIN_M, HCLGE_TSO_MSS_MIN_S, tso_mss_max); req->tso_mss_max = cpu_to_le16(tso_mss); return hclge_cmd_send(&hdev->hw, &desc, 1); } static int hclge_config_gro(struct hclge_dev *hdev, bool en) { struct hclge_cfg_gro_status_cmd *req; struct hclge_desc desc; int ret; if (!hnae3_dev_gro_supported(hdev)) return 0; hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_GRO_GENERIC_CONFIG, false); req = (struct hclge_cfg_gro_status_cmd *)desc.data; req->gro_en = cpu_to_le16(en ? 1 : 0); ret = hclge_cmd_send(&hdev->hw, &desc, 1); if (ret) dev_err(&hdev->pdev->dev, "GRO hardware config cmd failed, ret = %d\n", ret); return ret; } static int hclge_alloc_tqps(struct hclge_dev *hdev) { struct hclge_tqp *tqp; int i; hdev->htqp = devm_kcalloc(&hdev->pdev->dev, hdev->num_tqps, sizeof(struct hclge_tqp), GFP_KERNEL); if (!hdev->htqp) return -ENOMEM; tqp = hdev->htqp; for (i = 0; i < hdev->num_tqps; i++) { tqp->dev = &hdev->pdev->dev; tqp->index = i; tqp->q.ae_algo = &ae_algo; tqp->q.buf_size = hdev->rx_buf_len; tqp->q.desc_num = hdev->num_desc; tqp->q.io_base = hdev->hw.io_base + HCLGE_TQP_REG_OFFSET + i * HCLGE_TQP_REG_SIZE; tqp++; } return 0; } static int hclge_map_tqps_to_func(struct hclge_dev *hdev, u16 func_id, u16 tqp_pid, u16 tqp_vid, bool is_pf) { struct hclge_tqp_map_cmd *req; struct hclge_desc desc; int ret; hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_SET_TQP_MAP, false); req = (struct hclge_tqp_map_cmd *)desc.data; req->tqp_id = cpu_to_le16(tqp_pid); req->tqp_vf = func_id; req->tqp_flag = !is_pf << HCLGE_TQP_MAP_TYPE_B | 1 << HCLGE_TQP_MAP_EN_B; req->tqp_vid = cpu_to_le16(tqp_vid); ret = hclge_cmd_send(&hdev->hw, &desc, 1); if (ret) dev_err(&hdev->pdev->dev, "TQP map failed %d.\n", ret); return ret; } static int hclge_assign_tqp(struct hclge_vport *vport) { struct hnae3_knic_private_info *kinfo = &vport->nic.kinfo; struct hclge_dev *hdev = vport->back; int i, alloced; for (i = 0, alloced = 0; i < hdev->num_tqps && alloced < kinfo->num_tqps; i++) { if (!hdev->htqp[i].alloced) { hdev->htqp[i].q.handle = &vport->nic; hdev->htqp[i].q.tqp_index = alloced; hdev->htqp[i].q.desc_num = kinfo->num_desc; kinfo->tqp[alloced] = &hdev->htqp[i].q; hdev->htqp[i].alloced = true; alloced++; } } vport->alloc_tqps = kinfo->num_tqps; return 0; } static int hclge_knic_setup(struct hclge_vport *vport, u16 num_tqps, u16 num_desc) { struct hnae3_handle *nic = &vport->nic; struct hnae3_knic_private_info *kinfo = &nic->kinfo; struct hclge_dev *hdev = vport->back; int i, ret; kinfo->num_desc = num_desc; kinfo->rx_buf_len = hdev->rx_buf_len; kinfo->num_tc = min_t(u16, num_tqps, hdev->tm_info.num_tc); kinfo->rss_size = min_t(u16, hdev->rss_size_max, num_tqps / kinfo->num_tc); kinfo->num_tqps = kinfo->rss_size * kinfo->num_tc; for (i = 0; i < HNAE3_MAX_TC; i++) { if (hdev->hw_tc_map & BIT(i)) { kinfo->tc_info[i].enable = true; kinfo->tc_info[i].tqp_offset = i * kinfo->rss_size; kinfo->tc_info[i].tqp_count = kinfo->rss_size; kinfo->tc_info[i].tc = i; } else { /* Set to default queue if TC is disable */ kinfo->tc_info[i].enable = false; kinfo->tc_info[i].tqp_offset = 0; kinfo->tc_info[i].tqp_count = 1; kinfo->tc_info[i].tc = 0; } } kinfo->tqp = devm_kcalloc(&hdev->pdev->dev, kinfo->num_tqps, sizeof(struct hnae3_queue *), GFP_KERNEL); if (!kinfo->tqp) return -ENOMEM; ret = hclge_assign_tqp(vport); if (ret) dev_err(&hdev->pdev->dev, "fail to assign TQPs %d.\n", ret); return ret; } static int hclge_map_tqp_to_vport(struct hclge_dev *hdev, struct hclge_vport *vport) { struct hnae3_handle *nic = &vport->nic; struct hnae3_knic_private_info *kinfo; u16 i; kinfo = &nic->kinfo; for (i = 0; i < kinfo->num_tqps; i++) { struct hclge_tqp *q = container_of(kinfo->tqp[i], struct hclge_tqp, q); bool is_pf; int ret; is_pf = !(vport->vport_id); ret = hclge_map_tqps_to_func(hdev, vport->vport_id, q->index, i, is_pf); if (ret) return ret; } return 0; } static int hclge_map_tqp(struct hclge_dev *hdev) { struct hclge_vport *vport = hdev->vport; u16 i, num_vport; num_vport = hdev->num_vmdq_vport + hdev->num_req_vfs + 1; for (i = 0; i < num_vport; i++) { int ret; ret = hclge_map_tqp_to_vport(hdev, vport); if (ret) return ret; vport++; } return 0; } static void hclge_unic_setup(struct hclge_vport *vport, u16 num_tqps) { /* this would be initialized later */ } static int hclge_vport_setup(struct hclge_vport *vport, u16 num_tqps) { struct hnae3_handle *nic = &vport->nic; struct hclge_dev *hdev = vport->back; int ret; nic->pdev = hdev->pdev; nic->ae_algo = &ae_algo; nic->numa_node_mask = hdev->numa_node_mask; if (hdev->ae_dev->dev_type == HNAE3_DEV_KNIC) { ret = hclge_knic_setup(vport, num_tqps, hdev->num_desc); if (ret) { dev_err(&hdev->pdev->dev, "knic setup failed %d\n", ret); return ret; } } else { hclge_unic_setup(vport, num_tqps); } return 0; } static int hclge_alloc_vport(struct hclge_dev *hdev) { struct pci_dev *pdev = hdev->pdev; struct hclge_vport *vport; u32 tqp_main_vport; u32 tqp_per_vport; int num_vport, i; int ret; /* We need to alloc a vport for main NIC of PF */ num_vport = hdev->num_vmdq_vport + hdev->num_req_vfs + 1; if (hdev->num_tqps < num_vport) { dev_err(&hdev->pdev->dev, "tqps(%d) is less than vports(%d)", hdev->num_tqps, num_vport); return -EINVAL; } /* Alloc the same number of TQPs for every vport */ tqp_per_vport = hdev->num_tqps / num_vport; tqp_main_vport = tqp_per_vport + hdev->num_tqps % num_vport; vport = devm_kcalloc(&pdev->dev, num_vport, sizeof(struct hclge_vport), GFP_KERNEL); if (!vport) return -ENOMEM; hdev->vport = vport; hdev->num_alloc_vport = num_vport; if (IS_ENABLED(CONFIG_PCI_IOV)) hdev->num_alloc_vfs = hdev->num_req_vfs; for (i = 0; i < num_vport; i++) { vport->back = hdev; vport->vport_id = i; vport->mps = HCLGE_MAC_DEFAULT_FRAME; if (i == 0) ret = hclge_vport_setup(vport, tqp_main_vport); else ret = hclge_vport_setup(vport, tqp_per_vport); if (ret) { dev_err(&pdev->dev, "vport setup failed for vport %d, %d\n", i, ret); return ret; } vport++; } return 0; } static int hclge_cmd_alloc_tx_buff(struct hclge_dev *hdev, struct hclge_pkt_buf_alloc *buf_alloc) { /* TX buffer size is unit by 128 byte */ #define HCLGE_BUF_SIZE_UNIT_SHIFT 7 #define HCLGE_BUF_SIZE_UPDATE_EN_MSK BIT(15) struct hclge_tx_buff_alloc_cmd *req; struct hclge_desc desc; int ret; u8 i; req = (struct hclge_tx_buff_alloc_cmd *)desc.data; hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_TX_BUFF_ALLOC, 0); for (i = 0; i < HCLGE_TC_NUM; i++) { u32 buf_size = buf_alloc->priv_buf[i].tx_buf_size; req->tx_pkt_buff[i] = cpu_to_le16((buf_size >> HCLGE_BUF_SIZE_UNIT_SHIFT) | HCLGE_BUF_SIZE_UPDATE_EN_MSK); } ret = hclge_cmd_send(&hdev->hw, &desc, 1); if (ret) dev_err(&hdev->pdev->dev, "tx buffer alloc cmd failed %d.\n", ret); return ret; } static int hclge_tx_buffer_alloc(struct hclge_dev *hdev, struct hclge_pkt_buf_alloc *buf_alloc) { int ret = hclge_cmd_alloc_tx_buff(hdev, buf_alloc); if (ret) dev_err(&hdev->pdev->dev, "tx buffer alloc failed %d\n", ret); return ret; } static int hclge_get_tc_num(struct hclge_dev *hdev) { int i, cnt = 0; for (i = 0; i < HCLGE_MAX_TC_NUM; i++) if (hdev->hw_tc_map & BIT(i)) cnt++; return cnt; } static int hclge_get_pfc_enalbe_num(struct hclge_dev *hdev) { int i, cnt = 0; for (i = 0; i < HCLGE_MAX_TC_NUM; i++) if (hdev->hw_tc_map & BIT(i) && hdev->tm_info.hw_pfc_map & BIT(i)) cnt++; return cnt; } /* Get the number of pfc enabled TCs, which have private buffer */ static int hclge_get_pfc_priv_num(struct hclge_dev *hdev, struct hclge_pkt_buf_alloc *buf_alloc) { struct hclge_priv_buf *priv; int i, cnt = 0; for (i = 0; i < HCLGE_MAX_TC_NUM; i++) { priv = &buf_alloc->priv_buf[i]; if ((hdev->tm_info.hw_pfc_map & BIT(i)) && priv->enable) cnt++; } return cnt; } /* Get the number of pfc disabled TCs, which have private buffer */ static int hclge_get_no_pfc_priv_num(struct hclge_dev *hdev, struct hclge_pkt_buf_alloc *buf_alloc) { struct hclge_priv_buf *priv; int i, cnt = 0; for (i = 0; i < HCLGE_MAX_TC_NUM; i++) { priv = &buf_alloc->priv_buf[i]; if (hdev->hw_tc_map & BIT(i) && !(hdev->tm_info.hw_pfc_map & BIT(i)) && priv->enable) cnt++; } return cnt; } static u32 hclge_get_rx_priv_buff_alloced(struct hclge_pkt_buf_alloc *buf_alloc) { struct hclge_priv_buf *priv; u32 rx_priv = 0; int i; for (i = 0; i < HCLGE_MAX_TC_NUM; i++) { priv = &buf_alloc->priv_buf[i]; if (priv->enable) rx_priv += priv->buf_size; } return rx_priv; } static u32 hclge_get_tx_buff_alloced(struct hclge_pkt_buf_alloc *buf_alloc) { u32 i, total_tx_size = 0; for (i = 0; i < HCLGE_MAX_TC_NUM; i++) total_tx_size += buf_alloc->priv_buf[i].tx_buf_size; return total_tx_size; } static bool hclge_is_rx_buf_ok(struct hclge_dev *hdev, struct hclge_pkt_buf_alloc *buf_alloc, u32 rx_all) { u32 shared_buf_min, shared_buf_tc, shared_std; int tc_num, pfc_enable_num; u32 shared_buf, aligned_mps; u32 rx_priv; int i; tc_num = hclge_get_tc_num(hdev); pfc_enable_num = hclge_get_pfc_enalbe_num(hdev); aligned_mps = roundup(hdev->mps, HCLGE_BUF_SIZE_UNIT); if (hnae3_dev_dcb_supported(hdev)) shared_buf_min = 2 * aligned_mps + hdev->dv_buf_size; else shared_buf_min = aligned_mps + HCLGE_NON_DCB_ADDITIONAL_BUF + hdev->dv_buf_size; shared_buf_tc = pfc_enable_num * aligned_mps + (tc_num - pfc_enable_num) * aligned_mps / 2 + aligned_mps; shared_std = roundup(max_t(u32, shared_buf_min, shared_buf_tc), HCLGE_BUF_SIZE_UNIT); rx_priv = hclge_get_rx_priv_buff_alloced(buf_alloc); if (rx_all < rx_priv + shared_std) return false; shared_buf = rounddown(rx_all - rx_priv, HCLGE_BUF_SIZE_UNIT); buf_alloc->s_buf.buf_size = shared_buf; if (hnae3_dev_dcb_supported(hdev)) { buf_alloc->s_buf.self.high = shared_buf - hdev->dv_buf_size; buf_alloc->s_buf.self.low = buf_alloc->s_buf.self.high - roundup(aligned_mps / 2, HCLGE_BUF_SIZE_UNIT); } else { buf_alloc->s_buf.self.high = aligned_mps + HCLGE_NON_DCB_ADDITIONAL_BUF; buf_alloc->s_buf.self.low = roundup(aligned_mps / 2, HCLGE_BUF_SIZE_UNIT); } for (i = 0; i < HCLGE_MAX_TC_NUM; i++) { if ((hdev->hw_tc_map & BIT(i)) && (hdev->tm_info.hw_pfc_map & BIT(i))) { buf_alloc->s_buf.tc_thrd[i].low = aligned_mps; buf_alloc->s_buf.tc_thrd[i].high = 2 * aligned_mps; } else { buf_alloc->s_buf.tc_thrd[i].low = 0; buf_alloc->s_buf.tc_thrd[i].high = aligned_mps; } } return true; } static int hclge_tx_buffer_calc(struct hclge_dev *hdev, struct hclge_pkt_buf_alloc *buf_alloc) { u32 i, total_size; total_size = hdev->pkt_buf_size; /* alloc tx buffer for all enabled tc */ for (i = 0; i < HCLGE_MAX_TC_NUM; i++) { struct hclge_priv_buf *priv = &buf_alloc->priv_buf[i]; if (total_size < hdev->tx_buf_size) return -ENOMEM; if (hdev->hw_tc_map & BIT(i)) priv->tx_buf_size = hdev->tx_buf_size; else priv->tx_buf_size = 0; total_size -= priv->tx_buf_size; } return 0; } /* hclge_rx_buffer_calc: calculate the rx private buffer size for all TCs * @hdev: pointer to struct hclge_dev * @buf_alloc: pointer to buffer calculation data * @return: 0: calculate sucessful, negative: fail */ static int hclge_rx_buffer_calc(struct hclge_dev *hdev, struct hclge_pkt_buf_alloc *buf_alloc) { u32 rx_all = hdev->pkt_buf_size, aligned_mps; int no_pfc_priv_num, pfc_priv_num; struct hclge_priv_buf *priv; int i; aligned_mps = round_up(hdev->mps, HCLGE_BUF_SIZE_UNIT); rx_all -= hclge_get_tx_buff_alloced(buf_alloc); /* When DCB is not supported, rx private * buffer is not allocated. */ if (!hnae3_dev_dcb_supported(hdev)) { if (!hclge_is_rx_buf_ok(hdev, buf_alloc, rx_all)) return -ENOMEM; return 0; } /* step 1, try to alloc private buffer for all enabled tc */ for (i = 0; i < HCLGE_MAX_TC_NUM; i++) { priv = &buf_alloc->priv_buf[i]; if (hdev->hw_tc_map & BIT(i)) { priv->enable = 1; if (hdev->tm_info.hw_pfc_map & BIT(i)) { priv->wl.low = aligned_mps; priv->wl.high = roundup(priv->wl.low + aligned_mps, HCLGE_BUF_SIZE_UNIT); priv->buf_size = priv->wl.high + hdev->dv_buf_size; } else { priv->wl.low = 0; priv->wl.high = 2 * aligned_mps; priv->buf_size = priv->wl.high + hdev->dv_buf_size; } } else { priv->enable = 0; priv->wl.low = 0; priv->wl.high = 0; priv->buf_size = 0; } } if (hclge_is_rx_buf_ok(hdev, buf_alloc, rx_all)) return 0; /* step 2, try to decrease the buffer size of * no pfc TC's private buffer */ for (i = 0; i < HCLGE_MAX_TC_NUM; i++) { priv = &buf_alloc->priv_buf[i]; priv->enable = 0; priv->wl.low = 0; priv->wl.high = 0; priv->buf_size = 0; if (!(hdev->hw_tc_map & BIT(i))) continue; priv->enable = 1; if (hdev->tm_info.hw_pfc_map & BIT(i)) { priv->wl.low = 256; priv->wl.high = priv->wl.low + aligned_mps; priv->buf_size = priv->wl.high + hdev->dv_buf_size; } else { priv->wl.low = 0; priv->wl.high = aligned_mps; priv->buf_size = priv->wl.high + hdev->dv_buf_size; } } if (hclge_is_rx_buf_ok(hdev, buf_alloc, rx_all)) return 0; /* step 3, try to reduce the number of pfc disabled TCs, * which have private buffer */ /* get the total no pfc enable TC number, which have private buffer */ no_pfc_priv_num = hclge_get_no_pfc_priv_num(hdev, buf_alloc); /* let the last to be cleared first */ for (i = HCLGE_MAX_TC_NUM - 1; i >= 0; i--) { priv = &buf_alloc->priv_buf[i]; if (hdev->hw_tc_map & BIT(i) && !(hdev->tm_info.hw_pfc_map & BIT(i))) { /* Clear the no pfc TC private buffer */ priv->wl.low = 0; priv->wl.high = 0; priv->buf_size = 0; priv->enable = 0; no_pfc_priv_num--; } if (hclge_is_rx_buf_ok(hdev, buf_alloc, rx_all) || no_pfc_priv_num == 0) break; } if (hclge_is_rx_buf_ok(hdev, buf_alloc, rx_all)) return 0; /* step 4, try to reduce the number of pfc enabled TCs * which have private buffer. */ pfc_priv_num = hclge_get_pfc_priv_num(hdev, buf_alloc); /* let the last to be cleared first */ for (i = HCLGE_MAX_TC_NUM - 1; i >= 0; i--) { priv = &buf_alloc->priv_buf[i]; if (hdev->hw_tc_map & BIT(i) && hdev->tm_info.hw_pfc_map & BIT(i)) { /* Reduce the number of pfc TC with private buffer */ priv->wl.low = 0; priv->enable = 0; priv->wl.high = 0; priv->buf_size = 0; pfc_priv_num--; } if (hclge_is_rx_buf_ok(hdev, buf_alloc, rx_all) || pfc_priv_num == 0) break; } if (hclge_is_rx_buf_ok(hdev, buf_alloc, rx_all)) return 0; return -ENOMEM; } static int hclge_rx_priv_buf_alloc(struct hclge_dev *hdev, struct hclge_pkt_buf_alloc *buf_alloc) { struct hclge_rx_priv_buff_cmd *req; struct hclge_desc desc; int ret; int i; hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_RX_PRIV_BUFF_ALLOC, false); req = (struct hclge_rx_priv_buff_cmd *)desc.data; /* Alloc private buffer TCs */ for (i = 0; i < HCLGE_MAX_TC_NUM; i++) { struct hclge_priv_buf *priv = &buf_alloc->priv_buf[i]; req->buf_num[i] = cpu_to_le16(priv->buf_size >> HCLGE_BUF_UNIT_S); req->buf_num[i] |= cpu_to_le16(1 << HCLGE_TC0_PRI_BUF_EN_B); } req->shared_buf = cpu_to_le16((buf_alloc->s_buf.buf_size >> HCLGE_BUF_UNIT_S) | (1 << HCLGE_TC0_PRI_BUF_EN_B)); ret = hclge_cmd_send(&hdev->hw, &desc, 1); if (ret) dev_err(&hdev->pdev->dev, "rx private buffer alloc cmd failed %d\n", ret); return ret; } static int hclge_rx_priv_wl_config(struct hclge_dev *hdev, struct hclge_pkt_buf_alloc *buf_alloc) { struct hclge_rx_priv_wl_buf *req; struct hclge_priv_buf *priv; struct hclge_desc desc[2]; int i, j; int ret; for (i = 0; i < 2; i++) { hclge_cmd_setup_basic_desc(&desc[i], HCLGE_OPC_RX_PRIV_WL_ALLOC, false); req = (struct hclge_rx_priv_wl_buf *)desc[i].data; /* The first descriptor set the NEXT bit to 1 */ if (i == 0) desc[i].flag |= cpu_to_le16(HCLGE_CMD_FLAG_NEXT); else desc[i].flag &= ~cpu_to_le16(HCLGE_CMD_FLAG_NEXT); for (j = 0; j < HCLGE_TC_NUM_ONE_DESC; j++) { u32 idx = i * HCLGE_TC_NUM_ONE_DESC + j; priv = &buf_alloc->priv_buf[idx]; req->tc_wl[j].high = cpu_to_le16(priv->wl.high >> HCLGE_BUF_UNIT_S); req->tc_wl[j].high |= cpu_to_le16(BIT(HCLGE_RX_PRIV_EN_B)); req->tc_wl[j].low = cpu_to_le16(priv->wl.low >> HCLGE_BUF_UNIT_S); req->tc_wl[j].low |= cpu_to_le16(BIT(HCLGE_RX_PRIV_EN_B)); } } /* Send 2 descriptor at one time */ ret = hclge_cmd_send(&hdev->hw, desc, 2); if (ret) dev_err(&hdev->pdev->dev, "rx private waterline config cmd failed %d\n", ret); return ret; } static int hclge_common_thrd_config(struct hclge_dev *hdev, struct hclge_pkt_buf_alloc *buf_alloc) { struct hclge_shared_buf *s_buf = &buf_alloc->s_buf; struct hclge_rx_com_thrd *req; struct hclge_desc desc[2]; struct hclge_tc_thrd *tc; int i, j; int ret; for (i = 0; i < 2; i++) { hclge_cmd_setup_basic_desc(&desc[i], HCLGE_OPC_RX_COM_THRD_ALLOC, false); req = (struct hclge_rx_com_thrd *)&desc[i].data; /* The first descriptor set the NEXT bit to 1 */ if (i == 0) desc[i].flag |= cpu_to_le16(HCLGE_CMD_FLAG_NEXT); else desc[i].flag &= ~cpu_to_le16(HCLGE_CMD_FLAG_NEXT); for (j = 0; j < HCLGE_TC_NUM_ONE_DESC; j++) { tc = &s_buf->tc_thrd[i * HCLGE_TC_NUM_ONE_DESC + j]; req->com_thrd[j].high = cpu_to_le16(tc->high >> HCLGE_BUF_UNIT_S); req->com_thrd[j].high |= cpu_to_le16(BIT(HCLGE_RX_PRIV_EN_B)); req->com_thrd[j].low = cpu_to_le16(tc->low >> HCLGE_BUF_UNIT_S); req->com_thrd[j].low |= cpu_to_le16(BIT(HCLGE_RX_PRIV_EN_B)); } } /* Send 2 descriptors at one time */ ret = hclge_cmd_send(&hdev->hw, desc, 2); if (ret) dev_err(&hdev->pdev->dev, "common threshold config cmd failed %d\n", ret); return ret; } static int hclge_common_wl_config(struct hclge_dev *hdev, struct hclge_pkt_buf_alloc *buf_alloc) { struct hclge_shared_buf *buf = &buf_alloc->s_buf; struct hclge_rx_com_wl *req; struct hclge_desc desc; int ret; hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_RX_COM_WL_ALLOC, false); req = (struct hclge_rx_com_wl *)desc.data; req->com_wl.high = cpu_to_le16(buf->self.high >> HCLGE_BUF_UNIT_S); req->com_wl.high |= cpu_to_le16(BIT(HCLGE_RX_PRIV_EN_B)); req->com_wl.low = cpu_to_le16(buf->self.low >> HCLGE_BUF_UNIT_S); req->com_wl.low |= cpu_to_le16(BIT(HCLGE_RX_PRIV_EN_B)); ret = hclge_cmd_send(&hdev->hw, &desc, 1); if (ret) dev_err(&hdev->pdev->dev, "common waterline config cmd failed %d\n", ret); return ret; } int hclge_buffer_alloc(struct hclge_dev *hdev) { struct hclge_pkt_buf_alloc *pkt_buf; int ret; pkt_buf = kzalloc(sizeof(*pkt_buf), GFP_KERNEL); if (!pkt_buf) return -ENOMEM; ret = hclge_tx_buffer_calc(hdev, pkt_buf); if (ret) { dev_err(&hdev->pdev->dev, "could not calc tx buffer size for all TCs %d\n", ret); goto out; } ret = hclge_tx_buffer_alloc(hdev, pkt_buf); if (ret) { dev_err(&hdev->pdev->dev, "could not alloc tx buffers %d\n", ret); goto out; } ret = hclge_rx_buffer_calc(hdev, pkt_buf); if (ret) { dev_err(&hdev->pdev->dev, "could not calc rx priv buffer size for all TCs %d\n", ret); goto out; } ret = hclge_rx_priv_buf_alloc(hdev, pkt_buf); if (ret) { dev_err(&hdev->pdev->dev, "could not alloc rx priv buffer %d\n", ret); goto out; } if (hnae3_dev_dcb_supported(hdev)) { ret = hclge_rx_priv_wl_config(hdev, pkt_buf); if (ret) { dev_err(&hdev->pdev->dev, "could not configure rx private waterline %d\n", ret); goto out; } ret = hclge_common_thrd_config(hdev, pkt_buf); if (ret) { dev_err(&hdev->pdev->dev, "could not configure common threshold %d\n", ret); goto out; } } ret = hclge_common_wl_config(hdev, pkt_buf); if (ret) dev_err(&hdev->pdev->dev, "could not configure common waterline %d\n", ret); out: kfree(pkt_buf); return ret; } static int hclge_init_roce_base_info(struct hclge_vport *vport) { struct hnae3_handle *roce = &vport->roce; struct hnae3_handle *nic = &vport->nic; roce->rinfo.num_vectors = vport->back->num_roce_msi; if (vport->back->num_msi_left < vport->roce.rinfo.num_vectors || vport->back->num_msi_left == 0) return -EINVAL; roce->rinfo.base_vector = vport->back->roce_base_vector; roce->rinfo.netdev = nic->kinfo.netdev; roce->rinfo.roce_io_base = vport->back->hw.io_base; roce->pdev = nic->pdev; roce->ae_algo = nic->ae_algo; roce->numa_node_mask = nic->numa_node_mask; return 0; } static int hclge_init_msi(struct hclge_dev *hdev) { struct pci_dev *pdev = hdev->pdev; int vectors; int i; vectors = pci_alloc_irq_vectors(pdev, 1, hdev->num_msi, PCI_IRQ_MSI | PCI_IRQ_MSIX); if (vectors < 0) { dev_err(&pdev->dev, "failed(%d) to allocate MSI/MSI-X vectors\n", vectors); return vectors; } if (vectors < hdev->num_msi) dev_warn(&hdev->pdev->dev, "requested %d MSI/MSI-X, but allocated %d MSI/MSI-X\n", hdev->num_msi, vectors); hdev->num_msi = vectors; hdev->num_msi_left = vectors; hdev->base_msi_vector = pdev->irq; hdev->roce_base_vector = hdev->base_msi_vector + hdev->roce_base_msix_offset; hdev->vector_status = devm_kcalloc(&pdev->dev, hdev->num_msi, sizeof(u16), GFP_KERNEL); if (!hdev->vector_status) { pci_free_irq_vectors(pdev); return -ENOMEM; } for (i = 0; i < hdev->num_msi; i++) hdev->vector_status[i] = HCLGE_INVALID_VPORT; hdev->vector_irq = devm_kcalloc(&pdev->dev, hdev->num_msi, sizeof(int), GFP_KERNEL); if (!hdev->vector_irq) { pci_free_irq_vectors(pdev); return -ENOMEM; } return 0; } static u8 hclge_check_speed_dup(u8 duplex, int speed) { if (!(speed == HCLGE_MAC_SPEED_10M || speed == HCLGE_MAC_SPEED_100M)) duplex = HCLGE_MAC_FULL; return duplex; } static int hclge_cfg_mac_speed_dup_hw(struct hclge_dev *hdev, int speed, u8 duplex) { struct hclge_config_mac_speed_dup_cmd *req; struct hclge_desc desc; int ret; req = (struct hclge_config_mac_speed_dup_cmd *)desc.data; hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_CONFIG_SPEED_DUP, false); hnae3_set_bit(req->speed_dup, HCLGE_CFG_DUPLEX_B, !!duplex); switch (speed) { case HCLGE_MAC_SPEED_10M: hnae3_set_field(req->speed_dup, HCLGE_CFG_SPEED_M, HCLGE_CFG_SPEED_S, 6); break; case HCLGE_MAC_SPEED_100M: hnae3_set_field(req->speed_dup, HCLGE_CFG_SPEED_M, HCLGE_CFG_SPEED_S, 7); break; case HCLGE_MAC_SPEED_1G: hnae3_set_field(req->speed_dup, HCLGE_CFG_SPEED_M, HCLGE_CFG_SPEED_S, 0); break; case HCLGE_MAC_SPEED_10G: hnae3_set_field(req->speed_dup, HCLGE_CFG_SPEED_M, HCLGE_CFG_SPEED_S, 1); break; case HCLGE_MAC_SPEED_25G: hnae3_set_field(req->speed_dup, HCLGE_CFG_SPEED_M, HCLGE_CFG_SPEED_S, 2); break; case HCLGE_MAC_SPEED_40G: hnae3_set_field(req->speed_dup, HCLGE_CFG_SPEED_M, HCLGE_CFG_SPEED_S, 3); break; case HCLGE_MAC_SPEED_50G: hnae3_set_field(req->speed_dup, HCLGE_CFG_SPEED_M, HCLGE_CFG_SPEED_S, 4); break; case HCLGE_MAC_SPEED_100G: hnae3_set_field(req->speed_dup, HCLGE_CFG_SPEED_M, HCLGE_CFG_SPEED_S, 5); break; default: dev_err(&hdev->pdev->dev, "invalid speed (%d)\n", speed); return -EINVAL; } hnae3_set_bit(req->mac_change_fec_en, HCLGE_CFG_MAC_SPEED_CHANGE_EN_B, 1); ret = hclge_cmd_send(&hdev->hw, &desc, 1); if (ret) { dev_err(&hdev->pdev->dev, "mac speed/duplex config cmd failed %d.\n", ret); return ret; } return 0; } int hclge_cfg_mac_speed_dup(struct hclge_dev *hdev, int speed, u8 duplex) { int ret; duplex = hclge_check_speed_dup(duplex, speed); if (hdev->hw.mac.speed == speed && hdev->hw.mac.duplex == duplex) return 0; ret = hclge_cfg_mac_speed_dup_hw(hdev, speed, duplex); if (ret) return ret; hdev->hw.mac.speed = speed; hdev->hw.mac.duplex = duplex; return 0; } static int hclge_cfg_mac_speed_dup_h(struct hnae3_handle *handle, int speed, u8 duplex) { struct hclge_vport *vport = hclge_get_vport(handle); struct hclge_dev *hdev = vport->back; return hclge_cfg_mac_speed_dup(hdev, speed, duplex); } static int hclge_set_autoneg_en(struct hclge_dev *hdev, bool enable) { struct hclge_config_auto_neg_cmd *req; struct hclge_desc desc; u32 flag = 0; int ret; hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_CONFIG_AN_MODE, false); req = (struct hclge_config_auto_neg_cmd *)desc.data; hnae3_set_bit(flag, HCLGE_MAC_CFG_AN_EN_B, !!enable); req->cfg_an_cmd_flag = cpu_to_le32(flag); ret = hclge_cmd_send(&hdev->hw, &desc, 1); if (ret) dev_err(&hdev->pdev->dev, "auto neg set cmd failed %d.\n", ret); return ret; } static int hclge_set_autoneg(struct hnae3_handle *handle, bool enable) { struct hclge_vport *vport = hclge_get_vport(handle); struct hclge_dev *hdev = vport->back; return hclge_set_autoneg_en(hdev, enable); } static int hclge_get_autoneg(struct hnae3_handle *handle) { struct hclge_vport *vport = hclge_get_vport(handle); struct hclge_dev *hdev = vport->back; struct phy_device *phydev = hdev->hw.mac.phydev; if (phydev) return phydev->autoneg; return hdev->hw.mac.autoneg; } static int hclge_mac_init(struct hclge_dev *hdev) { struct hclge_mac *mac = &hdev->hw.mac; int ret; hdev->support_sfp_query = true; hdev->hw.mac.duplex = HCLGE_MAC_FULL; ret = hclge_cfg_mac_speed_dup_hw(hdev, hdev->hw.mac.speed, hdev->hw.mac.duplex); if (ret) { dev_err(&hdev->pdev->dev, "Config mac speed dup fail ret=%d\n", ret); return ret; } mac->link = 0; ret = hclge_set_mac_mtu(hdev, hdev->mps); if (ret) { dev_err(&hdev->pdev->dev, "set mtu failed ret=%d\n", ret); return ret; } ret = hclge_buffer_alloc(hdev); if (ret) dev_err(&hdev->pdev->dev, "allocate buffer fail, ret=%d\n", ret); return ret; } static void hclge_mbx_task_schedule(struct hclge_dev *hdev) { if (!test_and_set_bit(HCLGE_STATE_MBX_SERVICE_SCHED, &hdev->state)) schedule_work(&hdev->mbx_service_task); } static void hclge_reset_task_schedule(struct hclge_dev *hdev) { if (!test_and_set_bit(HCLGE_STATE_RST_SERVICE_SCHED, &hdev->state)) schedule_work(&hdev->rst_service_task); } static void hclge_task_schedule(struct hclge_dev *hdev) { if (!test_bit(HCLGE_STATE_DOWN, &hdev->state) && !test_bit(HCLGE_STATE_REMOVING, &hdev->state) && !test_and_set_bit(HCLGE_STATE_SERVICE_SCHED, &hdev->state)) (void)schedule_work(&hdev->service_task); } static int hclge_get_mac_link_status(struct hclge_dev *hdev) { struct hclge_link_status_cmd *req; struct hclge_desc desc; int link_status; int ret; hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_QUERY_LINK_STATUS, true); ret = hclge_cmd_send(&hdev->hw, &desc, 1); if (ret) { dev_err(&hdev->pdev->dev, "get link status cmd failed %d\n", ret); return ret; } req = (struct hclge_link_status_cmd *)desc.data; link_status = req->status & HCLGE_LINK_STATUS_UP_M; return !!link_status; } static int hclge_get_mac_phy_link(struct hclge_dev *hdev) { int mac_state; int link_stat; if (test_bit(HCLGE_STATE_DOWN, &hdev->state)) return 0; mac_state = hclge_get_mac_link_status(hdev); if (hdev->hw.mac.phydev) { if (hdev->hw.mac.phydev->state == PHY_RUNNING) link_stat = mac_state & hdev->hw.mac.phydev->link; else link_stat = 0; } else { link_stat = mac_state; } return !!link_stat; } static void hclge_update_link_status(struct hclge_dev *hdev) { struct hnae3_client *client = hdev->nic_client; struct hnae3_handle *handle; int state; int i; if (!client) return; state = hclge_get_mac_phy_link(hdev); if (state != hdev->hw.mac.link) { for (i = 0; i < hdev->num_vmdq_vport + 1; i++) { handle = &hdev->vport[i].nic; client->ops->link_status_change(handle, state); } hdev->hw.mac.link = state; } } static int hclge_get_sfp_speed(struct hclge_dev *hdev, u32 *speed) { struct hclge_sfp_speed_cmd *resp = NULL; struct hclge_desc desc; int ret; hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_SFP_GET_SPEED, true); resp = (struct hclge_sfp_speed_cmd *)desc.data; ret = hclge_cmd_send(&hdev->hw, &desc, 1); if (ret == -EOPNOTSUPP) { dev_warn(&hdev->pdev->dev, "IMP do not support get SFP speed %d\n", ret); return ret; } else if (ret) { dev_err(&hdev->pdev->dev, "get sfp speed failed %d\n", ret); return ret; } *speed = resp->sfp_speed; return 0; } static int hclge_update_speed_duplex(struct hclge_dev *hdev) { struct hclge_mac mac = hdev->hw.mac; int speed; int ret; /* get the speed from SFP cmd when phy * doesn't exit. */ if (mac.phydev) return 0; /* if IMP does not support get SFP/qSFP speed, return directly */ if (!hdev->support_sfp_query) return 0; ret = hclge_get_sfp_speed(hdev, &speed); if (ret == -EOPNOTSUPP) { hdev->support_sfp_query = false; return ret; } else if (ret) { return ret; } if (speed == HCLGE_MAC_SPEED_UNKNOWN) return 0; /* do nothing if no SFP */ /* must config full duplex for SFP */ return hclge_cfg_mac_speed_dup(hdev, speed, HCLGE_MAC_FULL); } static int hclge_update_speed_duplex_h(struct hnae3_handle *handle) { struct hclge_vport *vport = hclge_get_vport(handle); struct hclge_dev *hdev = vport->back; return hclge_update_speed_duplex(hdev); } static int hclge_get_status(struct hnae3_handle *handle) { struct hclge_vport *vport = hclge_get_vport(handle); struct hclge_dev *hdev = vport->back; hclge_update_link_status(hdev); return hdev->hw.mac.link; } static void hclge_service_timer(struct timer_list *t) { struct hclge_dev *hdev = from_timer(hdev, t, service_timer); mod_timer(&hdev->service_timer, jiffies + HZ); hdev->hw_stats.stats_timer++; hclge_task_schedule(hdev); } static void hclge_service_complete(struct hclge_dev *hdev) { WARN_ON(!test_bit(HCLGE_STATE_SERVICE_SCHED, &hdev->state)); /* Flush memory before next watchdog */ smp_mb__before_atomic(); clear_bit(HCLGE_STATE_SERVICE_SCHED, &hdev->state); } static u32 hclge_check_event_cause(struct hclge_dev *hdev, u32 *clearval) { u32 rst_src_reg, cmdq_src_reg, msix_src_reg; /* fetch the events from their corresponding regs */ rst_src_reg = hclge_read_dev(&hdev->hw, HCLGE_MISC_VECTOR_INT_STS); cmdq_src_reg = hclge_read_dev(&hdev->hw, HCLGE_VECTOR0_CMDQ_SRC_REG); msix_src_reg = hclge_read_dev(&hdev->hw, HCLGE_VECTOR0_PF_OTHER_INT_STS_REG); /* Assumption: If by any chance reset and mailbox events are reported * together then we will only process reset event in this go and will * defer the processing of the mailbox events. Since, we would have not * cleared RX CMDQ event this time we would receive again another * interrupt from H/W just for the mailbox. */ /* check for vector0 reset event sources */ if (BIT(HCLGE_VECTOR0_IMPRESET_INT_B) & rst_src_reg) { dev_info(&hdev->pdev->dev, "IMP reset interrupt\n"); set_bit(HNAE3_IMP_RESET, &hdev->reset_pending); set_bit(HCLGE_STATE_CMD_DISABLE, &hdev->state); *clearval = BIT(HCLGE_VECTOR0_IMPRESET_INT_B); return HCLGE_VECTOR0_EVENT_RST; } if (BIT(HCLGE_VECTOR0_GLOBALRESET_INT_B) & rst_src_reg) { dev_info(&hdev->pdev->dev, "global reset interrupt\n"); set_bit(HCLGE_STATE_CMD_DISABLE, &hdev->state); set_bit(HNAE3_GLOBAL_RESET, &hdev->reset_pending); *clearval = BIT(HCLGE_VECTOR0_GLOBALRESET_INT_B); return HCLGE_VECTOR0_EVENT_RST; } if (BIT(HCLGE_VECTOR0_CORERESET_INT_B) & rst_src_reg) { dev_info(&hdev->pdev->dev, "core reset interrupt\n"); set_bit(HCLGE_STATE_CMD_DISABLE, &hdev->state); set_bit(HNAE3_CORE_RESET, &hdev->reset_pending); *clearval = BIT(HCLGE_VECTOR0_CORERESET_INT_B); return HCLGE_VECTOR0_EVENT_RST; } /* check for vector0 msix event source */ if (msix_src_reg & HCLGE_VECTOR0_REG_MSIX_MASK) return HCLGE_VECTOR0_EVENT_ERR; /* check for vector0 mailbox(=CMDQ RX) event source */ if (BIT(HCLGE_VECTOR0_RX_CMDQ_INT_B) & cmdq_src_reg) { cmdq_src_reg &= ~BIT(HCLGE_VECTOR0_RX_CMDQ_INT_B); *clearval = cmdq_src_reg; return HCLGE_VECTOR0_EVENT_MBX; } return HCLGE_VECTOR0_EVENT_OTHER; } static void hclge_clear_event_cause(struct hclge_dev *hdev, u32 event_type, u32 regclr) { switch (event_type) { case HCLGE_VECTOR0_EVENT_RST: hclge_write_dev(&hdev->hw, HCLGE_MISC_RESET_STS_REG, regclr); break; case HCLGE_VECTOR0_EVENT_MBX: hclge_write_dev(&hdev->hw, HCLGE_VECTOR0_CMDQ_SRC_REG, regclr); break; default: break; } } static void hclge_clear_all_event_cause(struct hclge_dev *hdev) { hclge_clear_event_cause(hdev, HCLGE_VECTOR0_EVENT_RST, BIT(HCLGE_VECTOR0_GLOBALRESET_INT_B) | BIT(HCLGE_VECTOR0_CORERESET_INT_B) | BIT(HCLGE_VECTOR0_IMPRESET_INT_B)); hclge_clear_event_cause(hdev, HCLGE_VECTOR0_EVENT_MBX, 0); } static void hclge_enable_vector(struct hclge_misc_vector *vector, bool enable) { writel(enable ? 1 : 0, vector->addr); } static irqreturn_t hclge_misc_irq_handle(int irq, void *data) { struct hclge_dev *hdev = data; u32 event_cause; u32 clearval; hclge_enable_vector(&hdev->misc_vector, false); event_cause = hclge_check_event_cause(hdev, &clearval); /* vector 0 interrupt is shared with reset and mailbox source events.*/ switch (event_cause) { case HCLGE_VECTOR0_EVENT_ERR: /* we do not know what type of reset is required now. This could * only be decided after we fetch the type of errors which * caused this event. Therefore, we will do below for now: * 1. Assert HNAE3_UNKNOWN_RESET type of reset. This means we * have defered type of reset to be used. * 2. Schedule the reset serivce task. * 3. When service task receives HNAE3_UNKNOWN_RESET type it * will fetch the correct type of reset. This would be done * by first decoding the types of errors. */ set_bit(HNAE3_UNKNOWN_RESET, &hdev->reset_request); /* fall through */ case HCLGE_VECTOR0_EVENT_RST: hclge_reset_task_schedule(hdev); break; case HCLGE_VECTOR0_EVENT_MBX: /* If we are here then, * 1. Either we are not handling any mbx task and we are not * scheduled as well * OR * 2. We could be handling a mbx task but nothing more is * scheduled. * In both cases, we should schedule mbx task as there are more * mbx messages reported by this interrupt. */ hclge_mbx_task_schedule(hdev); break; default: dev_warn(&hdev->pdev->dev, "received unknown or unhandled event of vector0\n"); break; } /* clear the source of interrupt if it is not cause by reset */ if (event_cause == HCLGE_VECTOR0_EVENT_MBX) { hclge_clear_event_cause(hdev, event_cause, clearval); hclge_enable_vector(&hdev->misc_vector, true); } return IRQ_HANDLED; } static void hclge_free_vector(struct hclge_dev *hdev, int vector_id) { if (hdev->vector_status[vector_id] == HCLGE_INVALID_VPORT) { dev_warn(&hdev->pdev->dev, "vector(vector_id %d) has been freed.\n", vector_id); return; } hdev->vector_status[vector_id] = HCLGE_INVALID_VPORT; hdev->num_msi_left += 1; hdev->num_msi_used -= 1; } static void hclge_get_misc_vector(struct hclge_dev *hdev) { struct hclge_misc_vector *vector = &hdev->misc_vector; vector->vector_irq = pci_irq_vector(hdev->pdev, 0); vector->addr = hdev->hw.io_base + HCLGE_MISC_VECTOR_REG_BASE; hdev->vector_status[0] = 0; hdev->num_msi_left -= 1; hdev->num_msi_used += 1; } static int hclge_misc_irq_init(struct hclge_dev *hdev) { int ret; hclge_get_misc_vector(hdev); /* this would be explicitly freed in the end */ ret = request_irq(hdev->misc_vector.vector_irq, hclge_misc_irq_handle, 0, "hclge_misc", hdev); if (ret) { hclge_free_vector(hdev, 0); dev_err(&hdev->pdev->dev, "request misc irq(%d) fail\n", hdev->misc_vector.vector_irq); } return ret; } static void hclge_misc_irq_uninit(struct hclge_dev *hdev) { free_irq(hdev->misc_vector.vector_irq, hdev); hclge_free_vector(hdev, 0); } static int hclge_notify_client(struct hclge_dev *hdev, enum hnae3_reset_notify_type type) { struct hnae3_client *client = hdev->nic_client; u16 i; if (!client->ops->reset_notify) return -EOPNOTSUPP; for (i = 0; i < hdev->num_vmdq_vport + 1; i++) { struct hnae3_handle *handle = &hdev->vport[i].nic; int ret; ret = client->ops->reset_notify(handle, type); if (ret) { dev_err(&hdev->pdev->dev, "notify nic client failed %d(%d)\n", type, ret); return ret; } } return 0; } static int hclge_notify_roce_client(struct hclge_dev *hdev, enum hnae3_reset_notify_type type) { struct hnae3_client *client = hdev->roce_client; int ret = 0; u16 i; if (!client) return 0; if (!client->ops->reset_notify) return -EOPNOTSUPP; for (i = 0; i < hdev->num_vmdq_vport + 1; i++) { struct hnae3_handle *handle = &hdev->vport[i].roce; ret = client->ops->reset_notify(handle, type); if (ret) { dev_err(&hdev->pdev->dev, "notify roce client failed %d(%d)", type, ret); return ret; } } return ret; } static int hclge_reset_wait(struct hclge_dev *hdev) { #define HCLGE_RESET_WATI_MS 100 #define HCLGE_RESET_WAIT_CNT 200 u32 val, reg, reg_bit; u32 cnt = 0; switch (hdev->reset_type) { case HNAE3_IMP_RESET: reg = HCLGE_GLOBAL_RESET_REG; reg_bit = HCLGE_IMP_RESET_BIT; break; case HNAE3_GLOBAL_RESET: reg = HCLGE_GLOBAL_RESET_REG; reg_bit = HCLGE_GLOBAL_RESET_BIT; break; case HNAE3_CORE_RESET: reg = HCLGE_GLOBAL_RESET_REG; reg_bit = HCLGE_CORE_RESET_BIT; break; case HNAE3_FUNC_RESET: reg = HCLGE_FUN_RST_ING; reg_bit = HCLGE_FUN_RST_ING_B; break; case HNAE3_FLR_RESET: break; default: dev_err(&hdev->pdev->dev, "Wait for unsupported reset type: %d\n", hdev->reset_type); return -EINVAL; } if (hdev->reset_type == HNAE3_FLR_RESET) { while (!test_bit(HNAE3_FLR_DONE, &hdev->flr_state) && cnt++ < HCLGE_RESET_WAIT_CNT) msleep(HCLGE_RESET_WATI_MS); if (!test_bit(HNAE3_FLR_DONE, &hdev->flr_state)) { dev_err(&hdev->pdev->dev, "flr wait timeout: %d\n", cnt); return -EBUSY; } return 0; } val = hclge_read_dev(&hdev->hw, reg); while (hnae3_get_bit(val, reg_bit) && cnt < HCLGE_RESET_WAIT_CNT) { msleep(HCLGE_RESET_WATI_MS); val = hclge_read_dev(&hdev->hw, reg); cnt++; } if (cnt >= HCLGE_RESET_WAIT_CNT) { dev_warn(&hdev->pdev->dev, "Wait for reset timeout: %d\n", hdev->reset_type); return -EBUSY; } return 0; } static int hclge_set_vf_rst(struct hclge_dev *hdev, int func_id, bool reset) { struct hclge_vf_rst_cmd *req; struct hclge_desc desc; req = (struct hclge_vf_rst_cmd *)desc.data; hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_GBL_RST_STATUS, false); req->dest_vfid = func_id; if (reset) req->vf_rst = 0x1; return hclge_cmd_send(&hdev->hw, &desc, 1); } int hclge_set_all_vf_rst(struct hclge_dev *hdev, bool reset) { int i; for (i = hdev->num_vmdq_vport + 1; i < hdev->num_alloc_vport; i++) { struct hclge_vport *vport = &hdev->vport[i]; int ret; /* Send cmd to set/clear VF's FUNC_RST_ING */ ret = hclge_set_vf_rst(hdev, vport->vport_id, reset); if (ret) { dev_err(&hdev->pdev->dev, "set vf(%d) rst failed %d!\n", vport->vport_id, ret); return ret; } if (!reset) continue; /* Inform VF to process the reset. * hclge_inform_reset_assert_to_vf may fail if VF * driver is not loaded. */ ret = hclge_inform_reset_assert_to_vf(vport); if (ret) dev_warn(&hdev->pdev->dev, "inform reset to vf(%d) failed %d!\n", vport->vport_id, ret); } return 0; } int hclge_func_reset_cmd(struct hclge_dev *hdev, int func_id) { struct hclge_desc desc; struct hclge_reset_cmd *req = (struct hclge_reset_cmd *)desc.data; int ret; hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_CFG_RST_TRIGGER, false); hnae3_set_bit(req->mac_func_reset, HCLGE_CFG_RESET_FUNC_B, 1); req->fun_reset_vfid = func_id; ret = hclge_cmd_send(&hdev->hw, &desc, 1); if (ret) dev_err(&hdev->pdev->dev, "send function reset cmd fail, status =%d\n", ret); return ret; } static void hclge_do_reset(struct hclge_dev *hdev) { struct pci_dev *pdev = hdev->pdev; u32 val; switch (hdev->reset_type) { case HNAE3_GLOBAL_RESET: val = hclge_read_dev(&hdev->hw, HCLGE_GLOBAL_RESET_REG); hnae3_set_bit(val, HCLGE_GLOBAL_RESET_BIT, 1); hclge_write_dev(&hdev->hw, HCLGE_GLOBAL_RESET_REG, val); dev_info(&pdev->dev, "Global Reset requested\n"); break; case HNAE3_CORE_RESET: val = hclge_read_dev(&hdev->hw, HCLGE_GLOBAL_RESET_REG); hnae3_set_bit(val, HCLGE_CORE_RESET_BIT, 1); hclge_write_dev(&hdev->hw, HCLGE_GLOBAL_RESET_REG, val); dev_info(&pdev->dev, "Core Reset requested\n"); break; case HNAE3_FUNC_RESET: dev_info(&pdev->dev, "PF Reset requested\n"); /* schedule again to check later */ set_bit(HNAE3_FUNC_RESET, &hdev->reset_pending); hclge_reset_task_schedule(hdev); break; case HNAE3_FLR_RESET: dev_info(&pdev->dev, "FLR requested\n"); /* schedule again to check later */ set_bit(HNAE3_FLR_RESET, &hdev->reset_pending); hclge_reset_task_schedule(hdev); break; default: dev_warn(&pdev->dev, "Unsupported reset type: %d\n", hdev->reset_type); break; } } static enum hnae3_reset_type hclge_get_reset_level(struct hclge_dev *hdev, unsigned long *addr) { enum hnae3_reset_type rst_level = HNAE3_NONE_RESET; /* first, resolve any unknown reset type to the known type(s) */ if (test_bit(HNAE3_UNKNOWN_RESET, addr)) { /* we will intentionally ignore any errors from this function * as we will end up in *some* reset request in any case */ hclge_handle_hw_msix_error(hdev, addr); clear_bit(HNAE3_UNKNOWN_RESET, addr); /* We defered the clearing of the error event which caused * interrupt since it was not posssible to do that in * interrupt context (and this is the reason we introduced * new UNKNOWN reset type). Now, the errors have been * handled and cleared in hardware we can safely enable * interrupts. This is an exception to the norm. */ hclge_enable_vector(&hdev->misc_vector, true); } /* return the highest priority reset level amongst all */ if (test_bit(HNAE3_IMP_RESET, addr)) { rst_level = HNAE3_IMP_RESET; clear_bit(HNAE3_IMP_RESET, addr); clear_bit(HNAE3_GLOBAL_RESET, addr); clear_bit(HNAE3_CORE_RESET, addr); clear_bit(HNAE3_FUNC_RESET, addr); } else if (test_bit(HNAE3_GLOBAL_RESET, addr)) { rst_level = HNAE3_GLOBAL_RESET; clear_bit(HNAE3_GLOBAL_RESET, addr); clear_bit(HNAE3_CORE_RESET, addr); clear_bit(HNAE3_FUNC_RESET, addr); } else if (test_bit(HNAE3_CORE_RESET, addr)) { rst_level = HNAE3_CORE_RESET; clear_bit(HNAE3_CORE_RESET, addr); clear_bit(HNAE3_FUNC_RESET, addr); } else if (test_bit(HNAE3_FUNC_RESET, addr)) { rst_level = HNAE3_FUNC_RESET; clear_bit(HNAE3_FUNC_RESET, addr); } else if (test_bit(HNAE3_FLR_RESET, addr)) { rst_level = HNAE3_FLR_RESET; clear_bit(HNAE3_FLR_RESET, addr); } return rst_level; } static void hclge_clear_reset_cause(struct hclge_dev *hdev) { u32 clearval = 0; switch (hdev->reset_type) { case HNAE3_IMP_RESET: clearval = BIT(HCLGE_VECTOR0_IMPRESET_INT_B); break; case HNAE3_GLOBAL_RESET: clearval = BIT(HCLGE_VECTOR0_GLOBALRESET_INT_B); break; case HNAE3_CORE_RESET: clearval = BIT(HCLGE_VECTOR0_CORERESET_INT_B); break; default: break; } if (!clearval) return; hclge_write_dev(&hdev->hw, HCLGE_MISC_RESET_STS_REG, clearval); hclge_enable_vector(&hdev->misc_vector, true); } static int hclge_reset_prepare_down(struct hclge_dev *hdev) { int ret = 0; switch (hdev->reset_type) { case HNAE3_FUNC_RESET: /* fall through */ case HNAE3_FLR_RESET: ret = hclge_set_all_vf_rst(hdev, true); break; default: break; } return ret; } static int hclge_reset_prepare_wait(struct hclge_dev *hdev) { u32 reg_val; int ret = 0; switch (hdev->reset_type) { case HNAE3_FUNC_RESET: /* There is no mechanism for PF to know if VF has stopped IO * for now, just wait 100 ms for VF to stop IO */ msleep(100); ret = hclge_func_reset_cmd(hdev, 0); if (ret) { dev_err(&hdev->pdev->dev, "asserting function reset fail %d!\n", ret); return ret; } /* After performaning pf reset, it is not necessary to do the * mailbox handling or send any command to firmware, because * any mailbox handling or command to firmware is only valid * after hclge_cmd_init is called. */ set_bit(HCLGE_STATE_CMD_DISABLE, &hdev->state); break; case HNAE3_FLR_RESET: /* There is no mechanism for PF to know if VF has stopped IO * for now, just wait 100 ms for VF to stop IO */ msleep(100); set_bit(HCLGE_STATE_CMD_DISABLE, &hdev->state); set_bit(HNAE3_FLR_DOWN, &hdev->flr_state); break; case HNAE3_IMP_RESET: reg_val = hclge_read_dev(&hdev->hw, HCLGE_PF_OTHER_INT_REG); hclge_write_dev(&hdev->hw, HCLGE_PF_OTHER_INT_REG, BIT(HCLGE_VECTOR0_IMP_RESET_INT_B) | reg_val); break; default: break; } dev_info(&hdev->pdev->dev, "prepare wait ok\n"); return ret; } static bool hclge_reset_err_handle(struct hclge_dev *hdev, bool is_timeout) { #define MAX_RESET_FAIL_CNT 5 #define RESET_UPGRADE_DELAY_SEC 10 if (hdev->reset_pending) { dev_info(&hdev->pdev->dev, "Reset pending %lu\n", hdev->reset_pending); return true; } else if ((hdev->reset_type != HNAE3_IMP_RESET) && (hclge_read_dev(&hdev->hw, HCLGE_GLOBAL_RESET_REG) & BIT(HCLGE_IMP_RESET_BIT))) { dev_info(&hdev->pdev->dev, "reset failed because IMP Reset is pending\n"); hclge_clear_reset_cause(hdev); return false; } else if (hdev->reset_fail_cnt < MAX_RESET_FAIL_CNT) { hdev->reset_fail_cnt++; if (is_timeout) { set_bit(hdev->reset_type, &hdev->reset_pending); dev_info(&hdev->pdev->dev, "re-schedule to wait for hw reset done\n"); return true; } dev_info(&hdev->pdev->dev, "Upgrade reset level\n"); hclge_clear_reset_cause(hdev); mod_timer(&hdev->reset_timer, jiffies + RESET_UPGRADE_DELAY_SEC * HZ); return false; } hclge_clear_reset_cause(hdev); dev_err(&hdev->pdev->dev, "Reset fail!\n"); return false; } static int hclge_reset_prepare_up(struct hclge_dev *hdev) { int ret = 0; switch (hdev->reset_type) { case HNAE3_FUNC_RESET: /* fall through */ case HNAE3_FLR_RESET: ret = hclge_set_all_vf_rst(hdev, false); break; default: break; } return ret; } static void hclge_reset(struct hclge_dev *hdev) { struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev); bool is_timeout = false; int ret; /* Initialize ae_dev reset status as well, in case enet layer wants to * know if device is undergoing reset */ ae_dev->reset_type = hdev->reset_type; hdev->reset_count++; /* perform reset of the stack & ae device for a client */ ret = hclge_notify_roce_client(hdev, HNAE3_DOWN_CLIENT); if (ret) goto err_reset; ret = hclge_reset_prepare_down(hdev); if (ret) goto err_reset; rtnl_lock(); ret = hclge_notify_client(hdev, HNAE3_DOWN_CLIENT); if (ret) goto err_reset_lock; rtnl_unlock(); ret = hclge_reset_prepare_wait(hdev); if (ret) goto err_reset; if (hclge_reset_wait(hdev)) { is_timeout = true; goto err_reset; } ret = hclge_notify_roce_client(hdev, HNAE3_UNINIT_CLIENT); if (ret) goto err_reset; rtnl_lock(); ret = hclge_notify_client(hdev, HNAE3_UNINIT_CLIENT); if (ret) goto err_reset_lock; ret = hclge_reset_ae_dev(hdev->ae_dev); if (ret) goto err_reset_lock; ret = hclge_notify_client(hdev, HNAE3_INIT_CLIENT); if (ret) goto err_reset_lock; hclge_clear_reset_cause(hdev); ret = hclge_reset_prepare_up(hdev); if (ret) goto err_reset_lock; ret = hclge_notify_client(hdev, HNAE3_UP_CLIENT); if (ret) goto err_reset_lock; rtnl_unlock(); ret = hclge_notify_roce_client(hdev, HNAE3_INIT_CLIENT); if (ret) goto err_reset; ret = hclge_notify_roce_client(hdev, HNAE3_UP_CLIENT); if (ret) goto err_reset; hdev->last_reset_time = jiffies; hdev->reset_fail_cnt = 0; ae_dev->reset_type = HNAE3_NONE_RESET; return; err_reset_lock: rtnl_unlock(); err_reset: if (hclge_reset_err_handle(hdev, is_timeout)) hclge_reset_task_schedule(hdev); } static void hclge_reset_event(struct pci_dev *pdev, struct hnae3_handle *handle) { struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev); struct hclge_dev *hdev = ae_dev->priv; /* We might end up getting called broadly because of 2 below cases: * 1. Recoverable error was conveyed through APEI and only way to bring * normalcy is to reset. * 2. A new reset request from the stack due to timeout * * For the first case,error event might not have ae handle available. * check if this is a new reset request and we are not here just because * last reset attempt did not succeed and watchdog hit us again. We will * know this if last reset request did not occur very recently (watchdog * timer = 5*HZ, let us check after sufficiently large time, say 4*5*Hz) * In case of new request we reset the "reset level" to PF reset. * And if it is a repeat reset request of the most recent one then we * want to make sure we throttle the reset request. Therefore, we will * not allow it again before 3*HZ times. */ if (!handle) handle = &hdev->vport[0].nic; if (time_before(jiffies, (hdev->last_reset_time + 3 * HZ))) return; else if (hdev->default_reset_request) hdev->reset_level = hclge_get_reset_level(hdev, &hdev->default_reset_request); else if (time_after(jiffies, (hdev->last_reset_time + 4 * 5 * HZ))) hdev->reset_level = HNAE3_FUNC_RESET; dev_info(&hdev->pdev->dev, "received reset event , reset type is %d", hdev->reset_level); /* request reset & schedule reset task */ set_bit(hdev->reset_level, &hdev->reset_request); hclge_reset_task_schedule(hdev); if (hdev->reset_level < HNAE3_GLOBAL_RESET) hdev->reset_level++; } static void hclge_set_def_reset_request(struct hnae3_ae_dev *ae_dev, enum hnae3_reset_type rst_type) { struct hclge_dev *hdev = ae_dev->priv; set_bit(rst_type, &hdev->default_reset_request); } static void hclge_reset_timer(struct timer_list *t) { struct hclge_dev *hdev = from_timer(hdev, t, reset_timer); dev_info(&hdev->pdev->dev, "triggering global reset in reset timer\n"); set_bit(HNAE3_GLOBAL_RESET, &hdev->default_reset_request); hclge_reset_event(hdev->pdev, NULL); } static void hclge_reset_subtask(struct hclge_dev *hdev) { /* check if there is any ongoing reset in the hardware. This status can * be checked from reset_pending. If there is then, we need to wait for * hardware to complete reset. * a. If we are able to figure out in reasonable time that hardware * has fully resetted then, we can proceed with driver, client * reset. * b. else, we can come back later to check this status so re-sched * now. */ hdev->last_reset_time = jiffies; hdev->reset_type = hclge_get_reset_level(hdev, &hdev->reset_pending); if (hdev->reset_type != HNAE3_NONE_RESET) hclge_reset(hdev); /* check if we got any *new* reset requests to be honored */ hdev->reset_type = hclge_get_reset_level(hdev, &hdev->reset_request); if (hdev->reset_type != HNAE3_NONE_RESET) hclge_do_reset(hdev); hdev->reset_type = HNAE3_NONE_RESET; } static void hclge_reset_service_task(struct work_struct *work) { struct hclge_dev *hdev = container_of(work, struct hclge_dev, rst_service_task); if (test_and_set_bit(HCLGE_STATE_RST_HANDLING, &hdev->state)) return; clear_bit(HCLGE_STATE_RST_SERVICE_SCHED, &hdev->state); hclge_reset_subtask(hdev); clear_bit(HCLGE_STATE_RST_HANDLING, &hdev->state); } static void hclge_mailbox_service_task(struct work_struct *work) { struct hclge_dev *hdev = container_of(work, struct hclge_dev, mbx_service_task); if (test_and_set_bit(HCLGE_STATE_MBX_HANDLING, &hdev->state)) return; clear_bit(HCLGE_STATE_MBX_SERVICE_SCHED, &hdev->state); hclge_mbx_handler(hdev); clear_bit(HCLGE_STATE_MBX_HANDLING, &hdev->state); } static void hclge_update_vport_alive(struct hclge_dev *hdev) { int i; /* start from vport 1 for PF is always alive */ for (i = 1; i < hdev->num_alloc_vport; i++) { struct hclge_vport *vport = &hdev->vport[i]; if (time_after(jiffies, vport->last_active_jiffies + 8 * HZ)) clear_bit(HCLGE_VPORT_STATE_ALIVE, &vport->state); /* If vf is not alive, set to default value */ if (!test_bit(HCLGE_VPORT_STATE_ALIVE, &vport->state)) vport->mps = HCLGE_MAC_DEFAULT_FRAME; } } static void hclge_service_task(struct work_struct *work) { struct hclge_dev *hdev = container_of(work, struct hclge_dev, service_task); if (hdev->hw_stats.stats_timer >= HCLGE_STATS_TIMER_INTERVAL) { hclge_update_stats_for_all(hdev); hdev->hw_stats.stats_timer = 0; } hclge_update_speed_duplex(hdev); hclge_update_link_status(hdev); hclge_update_vport_alive(hdev); hclge_service_complete(hdev); } struct hclge_vport *hclge_get_vport(struct hnae3_handle *handle) { /* VF handle has no client */ if (!handle->client) return container_of(handle, struct hclge_vport, nic); else if (handle->client->type == HNAE3_CLIENT_ROCE) return container_of(handle, struct hclge_vport, roce); else return container_of(handle, struct hclge_vport, nic); } static int hclge_get_vector(struct hnae3_handle *handle, u16 vector_num, struct hnae3_vector_info *vector_info) { struct hclge_vport *vport = hclge_get_vport(handle); struct hnae3_vector_info *vector = vector_info; struct hclge_dev *hdev = vport->back; int alloc = 0; int i, j; vector_num = min(hdev->num_msi_left, vector_num); for (j = 0; j < vector_num; j++) { for (i = 1; i < hdev->num_msi; i++) { if (hdev->vector_status[i] == HCLGE_INVALID_VPORT) { vector->vector = pci_irq_vector(hdev->pdev, i); vector->io_addr = hdev->hw.io_base + HCLGE_VECTOR_REG_BASE + (i - 1) * HCLGE_VECTOR_REG_OFFSET + vport->vport_id * HCLGE_VECTOR_VF_OFFSET; hdev->vector_status[i] = vport->vport_id; hdev->vector_irq[i] = vector->vector; vector++; alloc++; break; } } } hdev->num_msi_left -= alloc; hdev->num_msi_used += alloc; return alloc; } static int hclge_get_vector_index(struct hclge_dev *hdev, int vector) { int i; for (i = 0; i < hdev->num_msi; i++) if (vector == hdev->vector_irq[i]) return i; return -EINVAL; } static int hclge_put_vector(struct hnae3_handle *handle, int vector) { struct hclge_vport *vport = hclge_get_vport(handle); struct hclge_dev *hdev = vport->back; int vector_id; vector_id = hclge_get_vector_index(hdev, vector); if (vector_id < 0) { dev_err(&hdev->pdev->dev, "Get vector index fail. vector_id =%d\n", vector_id); return vector_id; } hclge_free_vector(hdev, vector_id); return 0; } static u32 hclge_get_rss_key_size(struct hnae3_handle *handle) { return HCLGE_RSS_KEY_SIZE; } static u32 hclge_get_rss_indir_size(struct hnae3_handle *handle) { return HCLGE_RSS_IND_TBL_SIZE; } static int hclge_set_rss_algo_key(struct hclge_dev *hdev, const u8 hfunc, const u8 *key) { struct hclge_rss_config_cmd *req; struct hclge_desc desc; int key_offset; int key_size; int ret; req = (struct hclge_rss_config_cmd *)desc.data; for (key_offset = 0; key_offset < 3; key_offset++) { hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_RSS_GENERIC_CONFIG, false); req->hash_config |= (hfunc & HCLGE_RSS_HASH_ALGO_MASK); req->hash_config |= (key_offset << HCLGE_RSS_HASH_KEY_OFFSET_B); if (key_offset == 2) key_size = HCLGE_RSS_KEY_SIZE - HCLGE_RSS_HASH_KEY_NUM * 2; else key_size = HCLGE_RSS_HASH_KEY_NUM; memcpy(req->hash_key, key + key_offset * HCLGE_RSS_HASH_KEY_NUM, key_size); ret = hclge_cmd_send(&hdev->hw, &desc, 1); if (ret) { dev_err(&hdev->pdev->dev, "Configure RSS config fail, status = %d\n", ret); return ret; } } return 0; } static int hclge_set_rss_indir_table(struct hclge_dev *hdev, const u8 *indir) { struct hclge_rss_indirection_table_cmd *req; struct hclge_desc desc; int i, j; int ret; req = (struct hclge_rss_indirection_table_cmd *)desc.data; for (i = 0; i < HCLGE_RSS_CFG_TBL_NUM; i++) { hclge_cmd_setup_basic_desc (&desc, HCLGE_OPC_RSS_INDIR_TABLE, false); req->start_table_index = cpu_to_le16(i * HCLGE_RSS_CFG_TBL_SIZE); req->rss_set_bitmap = cpu_to_le16(HCLGE_RSS_SET_BITMAP_MSK); for (j = 0; j < HCLGE_RSS_CFG_TBL_SIZE; j++) req->rss_result[j] = indir[i * HCLGE_RSS_CFG_TBL_SIZE + j]; ret = hclge_cmd_send(&hdev->hw, &desc, 1); if (ret) { dev_err(&hdev->pdev->dev, "Configure rss indir table fail,status = %d\n", ret); return ret; } } return 0; } static int hclge_set_rss_tc_mode(struct hclge_dev *hdev, u16 *tc_valid, u16 *tc_size, u16 *tc_offset) { struct hclge_rss_tc_mode_cmd *req; struct hclge_desc desc; int ret; int i; hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_RSS_TC_MODE, false); req = (struct hclge_rss_tc_mode_cmd *)desc.data; for (i = 0; i < HCLGE_MAX_TC_NUM; i++) { u16 mode = 0; hnae3_set_bit(mode, HCLGE_RSS_TC_VALID_B, (tc_valid[i] & 0x1)); hnae3_set_field(mode, HCLGE_RSS_TC_SIZE_M, HCLGE_RSS_TC_SIZE_S, tc_size[i]); hnae3_set_field(mode, HCLGE_RSS_TC_OFFSET_M, HCLGE_RSS_TC_OFFSET_S, tc_offset[i]); req->rss_tc_mode[i] = cpu_to_le16(mode); } ret = hclge_cmd_send(&hdev->hw, &desc, 1); if (ret) dev_err(&hdev->pdev->dev, "Configure rss tc mode fail, status = %d\n", ret); return ret; } static void hclge_get_rss_type(struct hclge_vport *vport) { if (vport->rss_tuple_sets.ipv4_tcp_en || vport->rss_tuple_sets.ipv4_udp_en || vport->rss_tuple_sets.ipv4_sctp_en || vport->rss_tuple_sets.ipv6_tcp_en || vport->rss_tuple_sets.ipv6_udp_en || vport->rss_tuple_sets.ipv6_sctp_en) vport->nic.kinfo.rss_type = PKT_HASH_TYPE_L4; else if (vport->rss_tuple_sets.ipv4_fragment_en || vport->rss_tuple_sets.ipv6_fragment_en) vport->nic.kinfo.rss_type = PKT_HASH_TYPE_L3; else vport->nic.kinfo.rss_type = PKT_HASH_TYPE_NONE; } static int hclge_set_rss_input_tuple(struct hclge_dev *hdev) { struct hclge_rss_input_tuple_cmd *req; struct hclge_desc desc; int ret; hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_RSS_INPUT_TUPLE, false); req = (struct hclge_rss_input_tuple_cmd *)desc.data; /* Get the tuple cfg from pf */ req->ipv4_tcp_en = hdev->vport[0].rss_tuple_sets.ipv4_tcp_en; req->ipv4_udp_en = hdev->vport[0].rss_tuple_sets.ipv4_udp_en; req->ipv4_sctp_en = hdev->vport[0].rss_tuple_sets.ipv4_sctp_en; req->ipv4_fragment_en = hdev->vport[0].rss_tuple_sets.ipv4_fragment_en; req->ipv6_tcp_en = hdev->vport[0].rss_tuple_sets.ipv6_tcp_en; req->ipv6_udp_en = hdev->vport[0].rss_tuple_sets.ipv6_udp_en; req->ipv6_sctp_en = hdev->vport[0].rss_tuple_sets.ipv6_sctp_en; req->ipv6_fragment_en = hdev->vport[0].rss_tuple_sets.ipv6_fragment_en; hclge_get_rss_type(&hdev->vport[0]); ret = hclge_cmd_send(&hdev->hw, &desc, 1); if (ret) dev_err(&hdev->pdev->dev, "Configure rss input fail, status = %d\n", ret); return ret; } static int hclge_get_rss(struct hnae3_handle *handle, u32 *indir, u8 *key, u8 *hfunc) { struct hclge_vport *vport = hclge_get_vport(handle); int i; /* Get hash algorithm */ if (hfunc) { switch (vport->rss_algo) { case HCLGE_RSS_HASH_ALGO_TOEPLITZ: *hfunc = ETH_RSS_HASH_TOP; break; case HCLGE_RSS_HASH_ALGO_SIMPLE: *hfunc = ETH_RSS_HASH_XOR; break; default: *hfunc = ETH_RSS_HASH_UNKNOWN; break; } } /* Get the RSS Key required by the user */ if (key) memcpy(key, vport->rss_hash_key, HCLGE_RSS_KEY_SIZE); /* Get indirect table */ if (indir) for (i = 0; i < HCLGE_RSS_IND_TBL_SIZE; i++) indir[i] = vport->rss_indirection_tbl[i]; return 0; } static int hclge_set_rss(struct hnae3_handle *handle, const u32 *indir, const u8 *key, const u8 hfunc) { struct hclge_vport *vport = hclge_get_vport(handle); struct hclge_dev *hdev = vport->back; u8 hash_algo; int ret, i; /* Set the RSS Hash Key if specififed by the user */ if (key) { switch (hfunc) { case ETH_RSS_HASH_TOP: hash_algo = HCLGE_RSS_HASH_ALGO_TOEPLITZ; break; case ETH_RSS_HASH_XOR: hash_algo = HCLGE_RSS_HASH_ALGO_SIMPLE; break; case ETH_RSS_HASH_NO_CHANGE: hash_algo = vport->rss_algo; break; default: return -EINVAL; } ret = hclge_set_rss_algo_key(hdev, hash_algo, key); if (ret) return ret; /* Update the shadow RSS key with user specified qids */ memcpy(vport->rss_hash_key, key, HCLGE_RSS_KEY_SIZE); vport->rss_algo = hash_algo; } /* Update the shadow RSS table with user specified qids */ for (i = 0; i < HCLGE_RSS_IND_TBL_SIZE; i++) vport->rss_indirection_tbl[i] = indir[i]; /* Update the hardware */ return hclge_set_rss_indir_table(hdev, vport->rss_indirection_tbl); } static u8 hclge_get_rss_hash_bits(struct ethtool_rxnfc *nfc) { u8 hash_sets = nfc->data & RXH_L4_B_0_1 ? HCLGE_S_PORT_BIT : 0; if (nfc->data & RXH_L4_B_2_3) hash_sets |= HCLGE_D_PORT_BIT; else hash_sets &= ~HCLGE_D_PORT_BIT; if (nfc->data & RXH_IP_SRC) hash_sets |= HCLGE_S_IP_BIT; else hash_sets &= ~HCLGE_S_IP_BIT; if (nfc->data & RXH_IP_DST) hash_sets |= HCLGE_D_IP_BIT; else hash_sets &= ~HCLGE_D_IP_BIT; if (nfc->flow_type == SCTP_V4_FLOW || nfc->flow_type == SCTP_V6_FLOW) hash_sets |= HCLGE_V_TAG_BIT; return hash_sets; } static int hclge_set_rss_tuple(struct hnae3_handle *handle, struct ethtool_rxnfc *nfc) { struct hclge_vport *vport = hclge_get_vport(handle); struct hclge_dev *hdev = vport->back; struct hclge_rss_input_tuple_cmd *req; struct hclge_desc desc; u8 tuple_sets; int ret; if (nfc->data & ~(RXH_IP_SRC | RXH_IP_DST | RXH_L4_B_0_1 | RXH_L4_B_2_3)) return -EINVAL; req = (struct hclge_rss_input_tuple_cmd *)desc.data; hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_RSS_INPUT_TUPLE, false); req->ipv4_tcp_en = vport->rss_tuple_sets.ipv4_tcp_en; req->ipv4_udp_en = vport->rss_tuple_sets.ipv4_udp_en; req->ipv4_sctp_en = vport->rss_tuple_sets.ipv4_sctp_en; req->ipv4_fragment_en = vport->rss_tuple_sets.ipv4_fragment_en; req->ipv6_tcp_en = vport->rss_tuple_sets.ipv6_tcp_en; req->ipv6_udp_en = vport->rss_tuple_sets.ipv6_udp_en; req->ipv6_sctp_en = vport->rss_tuple_sets.ipv6_sctp_en; req->ipv6_fragment_en = vport->rss_tuple_sets.ipv6_fragment_en; tuple_sets = hclge_get_rss_hash_bits(nfc); switch (nfc->flow_type) { case TCP_V4_FLOW: req->ipv4_tcp_en = tuple_sets; break; case TCP_V6_FLOW: req->ipv6_tcp_en = tuple_sets; break; case UDP_V4_FLOW: req->ipv4_udp_en = tuple_sets; break; case UDP_V6_FLOW: req->ipv6_udp_en = tuple_sets; break; case SCTP_V4_FLOW: req->ipv4_sctp_en = tuple_sets; break; case SCTP_V6_FLOW: if ((nfc->data & RXH_L4_B_0_1) || (nfc->data & RXH_L4_B_2_3)) return -EINVAL; req->ipv6_sctp_en = tuple_sets; break; case IPV4_FLOW: req->ipv4_fragment_en = HCLGE_RSS_INPUT_TUPLE_OTHER; break; case IPV6_FLOW: req->ipv6_fragment_en = HCLGE_RSS_INPUT_TUPLE_OTHER; break; default: return -EINVAL; } ret = hclge_cmd_send(&hdev->hw, &desc, 1); if (ret) { dev_err(&hdev->pdev->dev, "Set rss tuple fail, status = %d\n", ret); return ret; } vport->rss_tuple_sets.ipv4_tcp_en = req->ipv4_tcp_en; vport->rss_tuple_sets.ipv4_udp_en = req->ipv4_udp_en; vport->rss_tuple_sets.ipv4_sctp_en = req->ipv4_sctp_en; vport->rss_tuple_sets.ipv4_fragment_en = req->ipv4_fragment_en; vport->rss_tuple_sets.ipv6_tcp_en = req->ipv6_tcp_en; vport->rss_tuple_sets.ipv6_udp_en = req->ipv6_udp_en; vport->rss_tuple_sets.ipv6_sctp_en = req->ipv6_sctp_en; vport->rss_tuple_sets.ipv6_fragment_en = req->ipv6_fragment_en; hclge_get_rss_type(vport); return 0; } static int hclge_get_rss_tuple(struct hnae3_handle *handle, struct ethtool_rxnfc *nfc) { struct hclge_vport *vport = hclge_get_vport(handle); u8 tuple_sets; nfc->data = 0; switch (nfc->flow_type) { case TCP_V4_FLOW: tuple_sets = vport->rss_tuple_sets.ipv4_tcp_en; break; case UDP_V4_FLOW: tuple_sets = vport->rss_tuple_sets.ipv4_udp_en; break; case TCP_V6_FLOW: tuple_sets = vport->rss_tuple_sets.ipv6_tcp_en; break; case UDP_V6_FLOW: tuple_sets = vport->rss_tuple_sets.ipv6_udp_en; break; case SCTP_V4_FLOW: tuple_sets = vport->rss_tuple_sets.ipv4_sctp_en; break; case SCTP_V6_FLOW: tuple_sets = vport->rss_tuple_sets.ipv6_sctp_en; break; case IPV4_FLOW: case IPV6_FLOW: tuple_sets = HCLGE_S_IP_BIT | HCLGE_D_IP_BIT; break; default: return -EINVAL; } if (!tuple_sets) return 0; if (tuple_sets & HCLGE_D_PORT_BIT) nfc->data |= RXH_L4_B_2_3; if (tuple_sets & HCLGE_S_PORT_BIT) nfc->data |= RXH_L4_B_0_1; if (tuple_sets & HCLGE_D_IP_BIT) nfc->data |= RXH_IP_DST; if (tuple_sets & HCLGE_S_IP_BIT) nfc->data |= RXH_IP_SRC; return 0; } static int hclge_get_tc_size(struct hnae3_handle *handle) { struct hclge_vport *vport = hclge_get_vport(handle); struct hclge_dev *hdev = vport->back; return hdev->rss_size_max; } int hclge_rss_init_hw(struct hclge_dev *hdev) { struct hclge_vport *vport = hdev->vport; u8 *rss_indir = vport[0].rss_indirection_tbl; u16 rss_size = vport[0].alloc_rss_size; u8 *key = vport[0].rss_hash_key; u8 hfunc = vport[0].rss_algo; u16 tc_offset[HCLGE_MAX_TC_NUM]; u16 tc_valid[HCLGE_MAX_TC_NUM]; u16 tc_size[HCLGE_MAX_TC_NUM]; u16 roundup_size; int i, ret; ret = hclge_set_rss_indir_table(hdev, rss_indir); if (ret) return ret; ret = hclge_set_rss_algo_key(hdev, hfunc, key); if (ret) return ret; ret = hclge_set_rss_input_tuple(hdev); if (ret) return ret; /* Each TC have the same queue size, and tc_size set to hardware is * the log2 of roundup power of two of rss_size, the acutal queue * size is limited by indirection table. */ if (rss_size > HCLGE_RSS_TC_SIZE_7 || rss_size == 0) { dev_err(&hdev->pdev->dev, "Configure rss tc size failed, invalid TC_SIZE = %d\n", rss_size); return -EINVAL; } roundup_size = roundup_pow_of_two(rss_size); roundup_size = ilog2(roundup_size); for (i = 0; i < HCLGE_MAX_TC_NUM; i++) { tc_valid[i] = 0; if (!(hdev->hw_tc_map & BIT(i))) continue; tc_valid[i] = 1; tc_size[i] = roundup_size; tc_offset[i] = rss_size * i; } return hclge_set_rss_tc_mode(hdev, tc_valid, tc_size, tc_offset); } void hclge_rss_indir_init_cfg(struct hclge_dev *hdev) { struct hclge_vport *vport = hdev->vport; int i, j; for (j = 0; j < hdev->num_vmdq_vport + 1; j++) { for (i = 0; i < HCLGE_RSS_IND_TBL_SIZE; i++) vport[j].rss_indirection_tbl[i] = i % vport[j].alloc_rss_size; } } static void hclge_rss_init_cfg(struct hclge_dev *hdev) { struct hclge_vport *vport = hdev->vport; int i; for (i = 0; i < hdev->num_vmdq_vport + 1; i++) { vport[i].rss_tuple_sets.ipv4_tcp_en = HCLGE_RSS_INPUT_TUPLE_OTHER; vport[i].rss_tuple_sets.ipv4_udp_en = HCLGE_RSS_INPUT_TUPLE_OTHER; vport[i].rss_tuple_sets.ipv4_sctp_en = HCLGE_RSS_INPUT_TUPLE_SCTP; vport[i].rss_tuple_sets.ipv4_fragment_en = HCLGE_RSS_INPUT_TUPLE_OTHER; vport[i].rss_tuple_sets.ipv6_tcp_en = HCLGE_RSS_INPUT_TUPLE_OTHER; vport[i].rss_tuple_sets.ipv6_udp_en = HCLGE_RSS_INPUT_TUPLE_OTHER; vport[i].rss_tuple_sets.ipv6_sctp_en = HCLGE_RSS_INPUT_TUPLE_SCTP; vport[i].rss_tuple_sets.ipv6_fragment_en = HCLGE_RSS_INPUT_TUPLE_OTHER; vport[i].rss_algo = HCLGE_RSS_HASH_ALGO_TOEPLITZ; netdev_rss_key_fill(vport[i].rss_hash_key, HCLGE_RSS_KEY_SIZE); } hclge_rss_indir_init_cfg(hdev); } int hclge_bind_ring_with_vector(struct hclge_vport *vport, int vector_id, bool en, struct hnae3_ring_chain_node *ring_chain) { struct hclge_dev *hdev = vport->back; struct hnae3_ring_chain_node *node; struct hclge_desc desc; struct hclge_ctrl_vector_chain_cmd *req = (struct hclge_ctrl_vector_chain_cmd *)desc.data; enum hclge_cmd_status status; enum hclge_opcode_type op; u16 tqp_type_and_id; int i; op = en ? HCLGE_OPC_ADD_RING_TO_VECTOR : HCLGE_OPC_DEL_RING_TO_VECTOR; hclge_cmd_setup_basic_desc(&desc, op, false); req->int_vector_id = vector_id; i = 0; for (node = ring_chain; node; node = node->next) { tqp_type_and_id = le16_to_cpu(req->tqp_type_and_id[i]); hnae3_set_field(tqp_type_and_id, HCLGE_INT_TYPE_M, HCLGE_INT_TYPE_S, hnae3_get_bit(node->flag, HNAE3_RING_TYPE_B)); hnae3_set_field(tqp_type_and_id, HCLGE_TQP_ID_M, HCLGE_TQP_ID_S, node->tqp_index); hnae3_set_field(tqp_type_and_id, HCLGE_INT_GL_IDX_M, HCLGE_INT_GL_IDX_S, hnae3_get_field(node->int_gl_idx, HNAE3_RING_GL_IDX_M, HNAE3_RING_GL_IDX_S)); req->tqp_type_and_id[i] = cpu_to_le16(tqp_type_and_id); if (++i >= HCLGE_VECTOR_ELEMENTS_PER_CMD) { req->int_cause_num = HCLGE_VECTOR_ELEMENTS_PER_CMD; req->vfid = vport->vport_id; status = hclge_cmd_send(&hdev->hw, &desc, 1); if (status) { dev_err(&hdev->pdev->dev, "Map TQP fail, status is %d.\n", status); return -EIO; } i = 0; hclge_cmd_setup_basic_desc(&desc, op, false); req->int_vector_id = vector_id; } } if (i > 0) { req->int_cause_num = i; req->vfid = vport->vport_id; status = hclge_cmd_send(&hdev->hw, &desc, 1); if (status) { dev_err(&hdev->pdev->dev, "Map TQP fail, status is %d.\n", status); return -EIO; } } return 0; } static int hclge_map_ring_to_vector(struct hnae3_handle *handle, int vector, struct hnae3_ring_chain_node *ring_chain) { struct hclge_vport *vport = hclge_get_vport(handle); struct hclge_dev *hdev = vport->back; int vector_id; vector_id = hclge_get_vector_index(hdev, vector); if (vector_id < 0) { dev_err(&hdev->pdev->dev, "Get vector index fail. vector_id =%d\n", vector_id); return vector_id; } return hclge_bind_ring_with_vector(vport, vector_id, true, ring_chain); } static int hclge_unmap_ring_frm_vector(struct hnae3_handle *handle, int vector, struct hnae3_ring_chain_node *ring_chain) { struct hclge_vport *vport = hclge_get_vport(handle); struct hclge_dev *hdev = vport->back; int vector_id, ret; if (test_bit(HCLGE_STATE_RST_HANDLING, &hdev->state)) return 0; vector_id = hclge_get_vector_index(hdev, vector); if (vector_id < 0) { dev_err(&handle->pdev->dev, "Get vector index fail. ret =%d\n", vector_id); return vector_id; } ret = hclge_bind_ring_with_vector(vport, vector_id, false, ring_chain); if (ret) dev_err(&handle->pdev->dev, "Unmap ring from vector fail. vectorid=%d, ret =%d\n", vector_id, ret); return ret; } int hclge_cmd_set_promisc_mode(struct hclge_dev *hdev, struct hclge_promisc_param *param) { struct hclge_promisc_cfg_cmd *req; struct hclge_desc desc; int ret; hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_CFG_PROMISC_MODE, false); req = (struct hclge_promisc_cfg_cmd *)desc.data; req->vf_id = param->vf_id; /* HCLGE_PROMISC_TX_EN_B and HCLGE_PROMISC_RX_EN_B are not supported on * pdev revision(0x20), new revision support them. The * value of this two fields will not return error when driver * send command to fireware in revision(0x20). */ req->flag = (param->enable << HCLGE_PROMISC_EN_B) | HCLGE_PROMISC_TX_EN_B | HCLGE_PROMISC_RX_EN_B; ret = hclge_cmd_send(&hdev->hw, &desc, 1); if (ret) dev_err(&hdev->pdev->dev, "Set promisc mode fail, status is %d.\n", ret); return ret; } void hclge_promisc_param_init(struct hclge_promisc_param *param, bool en_uc, bool en_mc, bool en_bc, int vport_id) { if (!param) return; memset(param, 0, sizeof(struct hclge_promisc_param)); if (en_uc) param->enable = HCLGE_PROMISC_EN_UC; if (en_mc) param->enable |= HCLGE_PROMISC_EN_MC; if (en_bc) param->enable |= HCLGE_PROMISC_EN_BC; param->vf_id = vport_id; } static int hclge_set_promisc_mode(struct hnae3_handle *handle, bool en_uc_pmc, bool en_mc_pmc) { struct hclge_vport *vport = hclge_get_vport(handle); struct hclge_dev *hdev = vport->back; struct hclge_promisc_param param; hclge_promisc_param_init(¶m, en_uc_pmc, en_mc_pmc, true, vport->vport_id); return hclge_cmd_set_promisc_mode(hdev, ¶m); } static int hclge_get_fd_mode(struct hclge_dev *hdev, u8 *fd_mode) { struct hclge_get_fd_mode_cmd *req; struct hclge_desc desc; int ret; hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_FD_MODE_CTRL, true); req = (struct hclge_get_fd_mode_cmd *)desc.data; ret = hclge_cmd_send(&hdev->hw, &desc, 1); if (ret) { dev_err(&hdev->pdev->dev, "get fd mode fail, ret=%d\n", ret); return ret; } *fd_mode = req->mode; return ret; } static int hclge_get_fd_allocation(struct hclge_dev *hdev, u32 *stage1_entry_num, u32 *stage2_entry_num, u16 *stage1_counter_num, u16 *stage2_counter_num) { struct hclge_get_fd_allocation_cmd *req; struct hclge_desc desc; int ret; hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_FD_GET_ALLOCATION, true); req = (struct hclge_get_fd_allocation_cmd *)desc.data; ret = hclge_cmd_send(&hdev->hw, &desc, 1); if (ret) { dev_err(&hdev->pdev->dev, "query fd allocation fail, ret=%d\n", ret); return ret; } *stage1_entry_num = le32_to_cpu(req->stage1_entry_num); *stage2_entry_num = le32_to_cpu(req->stage2_entry_num); *stage1_counter_num = le16_to_cpu(req->stage1_counter_num); *stage2_counter_num = le16_to_cpu(req->stage2_counter_num); return ret; } static int hclge_set_fd_key_config(struct hclge_dev *hdev, int stage_num) { struct hclge_set_fd_key_config_cmd *req; struct hclge_fd_key_cfg *stage; struct hclge_desc desc; int ret; hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_FD_KEY_CONFIG, false); req = (struct hclge_set_fd_key_config_cmd *)desc.data; stage = &hdev->fd_cfg.key_cfg[stage_num]; req->stage = stage_num; req->key_select = stage->key_sel; req->inner_sipv6_word_en = stage->inner_sipv6_word_en; req->inner_dipv6_word_en = stage->inner_dipv6_word_en; req->outer_sipv6_word_en = stage->outer_sipv6_word_en; req->outer_dipv6_word_en = stage->outer_dipv6_word_en; req->tuple_mask = cpu_to_le32(~stage->tuple_active); req->meta_data_mask = cpu_to_le32(~stage->meta_data_active); ret = hclge_cmd_send(&hdev->hw, &desc, 1); if (ret) dev_err(&hdev->pdev->dev, "set fd key fail, ret=%d\n", ret); return ret; } static int hclge_init_fd_config(struct hclge_dev *hdev) { #define LOW_2_WORDS 0x03 struct hclge_fd_key_cfg *key_cfg; int ret; if (!hnae3_dev_fd_supported(hdev)) return 0; ret = hclge_get_fd_mode(hdev, &hdev->fd_cfg.fd_mode); if (ret) return ret; switch (hdev->fd_cfg.fd_mode) { case HCLGE_FD_MODE_DEPTH_2K_WIDTH_400B_STAGE_1: hdev->fd_cfg.max_key_length = MAX_KEY_LENGTH; break; case HCLGE_FD_MODE_DEPTH_4K_WIDTH_200B_STAGE_1: hdev->fd_cfg.max_key_length = MAX_KEY_LENGTH / 2; break; default: dev_err(&hdev->pdev->dev, "Unsupported flow director mode %d\n", hdev->fd_cfg.fd_mode); return -EOPNOTSUPP; } hdev->fd_cfg.fd_en = true; hdev->fd_cfg.proto_support = TCP_V4_FLOW | UDP_V4_FLOW | SCTP_V4_FLOW | TCP_V6_FLOW | UDP_V6_FLOW | SCTP_V6_FLOW | IPV4_USER_FLOW | IPV6_USER_FLOW; key_cfg = &hdev->fd_cfg.key_cfg[HCLGE_FD_STAGE_1]; key_cfg->key_sel = HCLGE_FD_KEY_BASE_ON_TUPLE, key_cfg->inner_sipv6_word_en = LOW_2_WORDS; key_cfg->inner_dipv6_word_en = LOW_2_WORDS; key_cfg->outer_sipv6_word_en = 0; key_cfg->outer_dipv6_word_en = 0; key_cfg->tuple_active = BIT(INNER_VLAN_TAG_FST) | BIT(INNER_ETH_TYPE) | BIT(INNER_IP_PROTO) | BIT(INNER_IP_TOS) | BIT(INNER_SRC_IP) | BIT(INNER_DST_IP) | BIT(INNER_SRC_PORT) | BIT(INNER_DST_PORT); /* If use max 400bit key, we can support tuples for ether type */ if (hdev->fd_cfg.max_key_length == MAX_KEY_LENGTH) { hdev->fd_cfg.proto_support |= ETHER_FLOW; key_cfg->tuple_active |= BIT(INNER_DST_MAC) | BIT(INNER_SRC_MAC); } /* roce_type is used to filter roce frames * dst_vport is used to specify the rule */ key_cfg->meta_data_active = BIT(ROCE_TYPE) | BIT(DST_VPORT); ret = hclge_get_fd_allocation(hdev, &hdev->fd_cfg.rule_num[HCLGE_FD_STAGE_1], &hdev->fd_cfg.rule_num[HCLGE_FD_STAGE_2], &hdev->fd_cfg.cnt_num[HCLGE_FD_STAGE_1], &hdev->fd_cfg.cnt_num[HCLGE_FD_STAGE_2]); if (ret) return ret; return hclge_set_fd_key_config(hdev, HCLGE_FD_STAGE_1); } static int hclge_fd_tcam_config(struct hclge_dev *hdev, u8 stage, bool sel_x, int loc, u8 *key, bool is_add) { struct hclge_fd_tcam_config_1_cmd *req1; struct hclge_fd_tcam_config_2_cmd *req2; struct hclge_fd_tcam_config_3_cmd *req3; struct hclge_desc desc[3]; int ret; hclge_cmd_setup_basic_desc(&desc[0], HCLGE_OPC_FD_TCAM_OP, false); desc[0].flag |= cpu_to_le16(HCLGE_CMD_FLAG_NEXT); hclge_cmd_setup_basic_desc(&desc[1], HCLGE_OPC_FD_TCAM_OP, false); desc[1].flag |= cpu_to_le16(HCLGE_CMD_FLAG_NEXT); hclge_cmd_setup_basic_desc(&desc[2], HCLGE_OPC_FD_TCAM_OP, false); req1 = (struct hclge_fd_tcam_config_1_cmd *)desc[0].data; req2 = (struct hclge_fd_tcam_config_2_cmd *)desc[1].data; req3 = (struct hclge_fd_tcam_config_3_cmd *)desc[2].data; req1->stage = stage; req1->xy_sel = sel_x ? 1 : 0; hnae3_set_bit(req1->port_info, HCLGE_FD_EPORT_SW_EN_B, 0); req1->index = cpu_to_le32(loc); req1->entry_vld = sel_x ? is_add : 0; if (key) { memcpy(req1->tcam_data, &key[0], sizeof(req1->tcam_data)); memcpy(req2->tcam_data, &key[sizeof(req1->tcam_data)], sizeof(req2->tcam_data)); memcpy(req3->tcam_data, &key[sizeof(req1->tcam_data) + sizeof(req2->tcam_data)], sizeof(req3->tcam_data)); } ret = hclge_cmd_send(&hdev->hw, desc, 3); if (ret) dev_err(&hdev->pdev->dev, "config tcam key fail, ret=%d\n", ret); return ret; } static int hclge_fd_ad_config(struct hclge_dev *hdev, u8 stage, int loc, struct hclge_fd_ad_data *action) { struct hclge_fd_ad_config_cmd *req; struct hclge_desc desc; u64 ad_data = 0; int ret; hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_FD_AD_OP, false); req = (struct hclge_fd_ad_config_cmd *)desc.data; req->index = cpu_to_le32(loc); req->stage = stage; hnae3_set_bit(ad_data, HCLGE_FD_AD_WR_RULE_ID_B, action->write_rule_id_to_bd); hnae3_set_field(ad_data, HCLGE_FD_AD_RULE_ID_M, HCLGE_FD_AD_RULE_ID_S, action->rule_id); ad_data <<= 32; hnae3_set_bit(ad_data, HCLGE_FD_AD_DROP_B, action->drop_packet); hnae3_set_bit(ad_data, HCLGE_FD_AD_DIRECT_QID_B, action->forward_to_direct_queue); hnae3_set_field(ad_data, HCLGE_FD_AD_QID_M, HCLGE_FD_AD_QID_S, action->queue_id); hnae3_set_bit(ad_data, HCLGE_FD_AD_USE_COUNTER_B, action->use_counter); hnae3_set_field(ad_data, HCLGE_FD_AD_COUNTER_NUM_M, HCLGE_FD_AD_COUNTER_NUM_S, action->counter_id); hnae3_set_bit(ad_data, HCLGE_FD_AD_NXT_STEP_B, action->use_next_stage); hnae3_set_field(ad_data, HCLGE_FD_AD_NXT_KEY_M, HCLGE_FD_AD_NXT_KEY_S, action->counter_id); req->ad_data = cpu_to_le64(ad_data); ret = hclge_cmd_send(&hdev->hw, &desc, 1); if (ret) dev_err(&hdev->pdev->dev, "fd ad config fail, ret=%d\n", ret); return ret; } static bool hclge_fd_convert_tuple(u32 tuple_bit, u8 *key_x, u8 *key_y, struct hclge_fd_rule *rule) { u16 tmp_x_s, tmp_y_s; u32 tmp_x_l, tmp_y_l; int i; if (rule->unused_tuple & tuple_bit) return true; switch (tuple_bit) { case 0: return false; case BIT(INNER_DST_MAC): for (i = 0; i < 6; i++) { calc_x(key_x[5 - i], rule->tuples.dst_mac[i], rule->tuples_mask.dst_mac[i]); calc_y(key_y[5 - i], rule->tuples.dst_mac[i], rule->tuples_mask.dst_mac[i]); } return true; case BIT(INNER_SRC_MAC): for (i = 0; i < 6; i++) { calc_x(key_x[5 - i], rule->tuples.src_mac[i], rule->tuples.src_mac[i]); calc_y(key_y[5 - i], rule->tuples.src_mac[i], rule->tuples.src_mac[i]); } return true; case BIT(INNER_VLAN_TAG_FST): calc_x(tmp_x_s, rule->tuples.vlan_tag1, rule->tuples_mask.vlan_tag1); calc_y(tmp_y_s, rule->tuples.vlan_tag1, rule->tuples_mask.vlan_tag1); *(__le16 *)key_x = cpu_to_le16(tmp_x_s); *(__le16 *)key_y = cpu_to_le16(tmp_y_s); return true; case BIT(INNER_ETH_TYPE): calc_x(tmp_x_s, rule->tuples.ether_proto, rule->tuples_mask.ether_proto); calc_y(tmp_y_s, rule->tuples.ether_proto, rule->tuples_mask.ether_proto); *(__le16 *)key_x = cpu_to_le16(tmp_x_s); *(__le16 *)key_y = cpu_to_le16(tmp_y_s); return true; case BIT(INNER_IP_TOS): calc_x(*key_x, rule->tuples.ip_tos, rule->tuples_mask.ip_tos); calc_y(*key_y, rule->tuples.ip_tos, rule->tuples_mask.ip_tos); return true; case BIT(INNER_IP_PROTO): calc_x(*key_x, rule->tuples.ip_proto, rule->tuples_mask.ip_proto); calc_y(*key_y, rule->tuples.ip_proto, rule->tuples_mask.ip_proto); return true; case BIT(INNER_SRC_IP): calc_x(tmp_x_l, rule->tuples.src_ip[3], rule->tuples_mask.src_ip[3]); calc_y(tmp_y_l, rule->tuples.src_ip[3], rule->tuples_mask.src_ip[3]); *(__le32 *)key_x = cpu_to_le32(tmp_x_l); *(__le32 *)key_y = cpu_to_le32(tmp_y_l); return true; case BIT(INNER_DST_IP): calc_x(tmp_x_l, rule->tuples.dst_ip[3], rule->tuples_mask.dst_ip[3]); calc_y(tmp_y_l, rule->tuples.dst_ip[3], rule->tuples_mask.dst_ip[3]); *(__le32 *)key_x = cpu_to_le32(tmp_x_l); *(__le32 *)key_y = cpu_to_le32(tmp_y_l); return true; case BIT(INNER_SRC_PORT): calc_x(tmp_x_s, rule->tuples.src_port, rule->tuples_mask.src_port); calc_y(tmp_y_s, rule->tuples.src_port, rule->tuples_mask.src_port); *(__le16 *)key_x = cpu_to_le16(tmp_x_s); *(__le16 *)key_y = cpu_to_le16(tmp_y_s); return true; case BIT(INNER_DST_PORT): calc_x(tmp_x_s, rule->tuples.dst_port, rule->tuples_mask.dst_port); calc_y(tmp_y_s, rule->tuples.dst_port, rule->tuples_mask.dst_port); *(__le16 *)key_x = cpu_to_le16(tmp_x_s); *(__le16 *)key_y = cpu_to_le16(tmp_y_s); return true; default: return false; } } static u32 hclge_get_port_number(enum HLCGE_PORT_TYPE port_type, u8 pf_id, u8 vf_id, u8 network_port_id) { u32 port_number = 0; if (port_type == HOST_PORT) { hnae3_set_field(port_number, HCLGE_PF_ID_M, HCLGE_PF_ID_S, pf_id); hnae3_set_field(port_number, HCLGE_VF_ID_M, HCLGE_VF_ID_S, vf_id); hnae3_set_bit(port_number, HCLGE_PORT_TYPE_B, HOST_PORT); } else { hnae3_set_field(port_number, HCLGE_NETWORK_PORT_ID_M, HCLGE_NETWORK_PORT_ID_S, network_port_id); hnae3_set_bit(port_number, HCLGE_PORT_TYPE_B, NETWORK_PORT); } return port_number; } static void hclge_fd_convert_meta_data(struct hclge_fd_key_cfg *key_cfg, __le32 *key_x, __le32 *key_y, struct hclge_fd_rule *rule) { u32 tuple_bit, meta_data = 0, tmp_x, tmp_y, port_number; u8 cur_pos = 0, tuple_size, shift_bits; int i; for (i = 0; i < MAX_META_DATA; i++) { tuple_size = meta_data_key_info[i].key_length; tuple_bit = key_cfg->meta_data_active & BIT(i); switch (tuple_bit) { case BIT(ROCE_TYPE): hnae3_set_bit(meta_data, cur_pos, NIC_PACKET); cur_pos += tuple_size; break; case BIT(DST_VPORT): port_number = hclge_get_port_number(HOST_PORT, 0, rule->vf_id, 0); hnae3_set_field(meta_data, GENMASK(cur_pos + tuple_size, cur_pos), cur_pos, port_number); cur_pos += tuple_size; break; default: break; } } calc_x(tmp_x, meta_data, 0xFFFFFFFF); calc_y(tmp_y, meta_data, 0xFFFFFFFF); shift_bits = sizeof(meta_data) * 8 - cur_pos; *key_x = cpu_to_le32(tmp_x << shift_bits); *key_y = cpu_to_le32(tmp_y << shift_bits); } /* A complete key is combined with meta data key and tuple key. * Meta data key is stored at the MSB region, and tuple key is stored at * the LSB region, unused bits will be filled 0. */ static int hclge_config_key(struct hclge_dev *hdev, u8 stage, struct hclge_fd_rule *rule) { struct hclge_fd_key_cfg *key_cfg = &hdev->fd_cfg.key_cfg[stage]; u8 key_x[MAX_KEY_BYTES], key_y[MAX_KEY_BYTES]; u8 *cur_key_x, *cur_key_y; int i, ret, tuple_size; u8 meta_data_region; memset(key_x, 0, sizeof(key_x)); memset(key_y, 0, sizeof(key_y)); cur_key_x = key_x; cur_key_y = key_y; for (i = 0 ; i < MAX_TUPLE; i++) { bool tuple_valid; u32 check_tuple; tuple_size = tuple_key_info[i].key_length / 8; check_tuple = key_cfg->tuple_active & BIT(i); tuple_valid = hclge_fd_convert_tuple(check_tuple, cur_key_x, cur_key_y, rule); if (tuple_valid) { cur_key_x += tuple_size; cur_key_y += tuple_size; } } meta_data_region = hdev->fd_cfg.max_key_length / 8 - MAX_META_DATA_LENGTH / 8; hclge_fd_convert_meta_data(key_cfg, (__le32 *)(key_x + meta_data_region), (__le32 *)(key_y + meta_data_region), rule); ret = hclge_fd_tcam_config(hdev, stage, false, rule->location, key_y, true); if (ret) { dev_err(&hdev->pdev->dev, "fd key_y config fail, loc=%d, ret=%d\n", rule->queue_id, ret); return ret; } ret = hclge_fd_tcam_config(hdev, stage, true, rule->location, key_x, true); if (ret) dev_err(&hdev->pdev->dev, "fd key_x config fail, loc=%d, ret=%d\n", rule->queue_id, ret); return ret; } static int hclge_config_action(struct hclge_dev *hdev, u8 stage, struct hclge_fd_rule *rule) { struct hclge_fd_ad_data ad_data; ad_data.ad_id = rule->location; if (rule->action == HCLGE_FD_ACTION_DROP_PACKET) { ad_data.drop_packet = true; ad_data.forward_to_direct_queue = false; ad_data.queue_id = 0; } else { ad_data.drop_packet = false; ad_data.forward_to_direct_queue = true; ad_data.queue_id = rule->queue_id; } ad_data.use_counter = false; ad_data.counter_id = 0; ad_data.use_next_stage = false; ad_data.next_input_key = 0; ad_data.write_rule_id_to_bd = true; ad_data.rule_id = rule->location; return hclge_fd_ad_config(hdev, stage, ad_data.ad_id, &ad_data); } static int hclge_fd_check_spec(struct hclge_dev *hdev, struct ethtool_rx_flow_spec *fs, u32 *unused) { struct ethtool_tcpip4_spec *tcp_ip4_spec; struct ethtool_usrip4_spec *usr_ip4_spec; struct ethtool_tcpip6_spec *tcp_ip6_spec; struct ethtool_usrip6_spec *usr_ip6_spec; struct ethhdr *ether_spec; if (fs->location >= hdev->fd_cfg.rule_num[HCLGE_FD_STAGE_1]) return -EINVAL; if (!(fs->flow_type & hdev->fd_cfg.proto_support)) return -EOPNOTSUPP; if ((fs->flow_type & FLOW_EXT) && (fs->h_ext.data[0] != 0 || fs->h_ext.data[1] != 0)) { dev_err(&hdev->pdev->dev, "user-def bytes are not supported\n"); return -EOPNOTSUPP; } switch (fs->flow_type & ~(FLOW_EXT | FLOW_MAC_EXT)) { case SCTP_V4_FLOW: case TCP_V4_FLOW: case UDP_V4_FLOW: tcp_ip4_spec = &fs->h_u.tcp_ip4_spec; *unused |= BIT(INNER_SRC_MAC) | BIT(INNER_DST_MAC); if (!tcp_ip4_spec->ip4src) *unused |= BIT(INNER_SRC_IP); if (!tcp_ip4_spec->ip4dst) *unused |= BIT(INNER_DST_IP); if (!tcp_ip4_spec->psrc) *unused |= BIT(INNER_SRC_PORT); if (!tcp_ip4_spec->pdst) *unused |= BIT(INNER_DST_PORT); if (!tcp_ip4_spec->tos) *unused |= BIT(INNER_IP_TOS); break; case IP_USER_FLOW: usr_ip4_spec = &fs->h_u.usr_ip4_spec; *unused |= BIT(INNER_SRC_MAC) | BIT(INNER_DST_MAC) | BIT(INNER_SRC_PORT) | BIT(INNER_DST_PORT); if (!usr_ip4_spec->ip4src) *unused |= BIT(INNER_SRC_IP); if (!usr_ip4_spec->ip4dst) *unused |= BIT(INNER_DST_IP); if (!usr_ip4_spec->tos) *unused |= BIT(INNER_IP_TOS); if (!usr_ip4_spec->proto) *unused |= BIT(INNER_IP_PROTO); if (usr_ip4_spec->l4_4_bytes) return -EOPNOTSUPP; if (usr_ip4_spec->ip_ver != ETH_RX_NFC_IP4) return -EOPNOTSUPP; break; case SCTP_V6_FLOW: case TCP_V6_FLOW: case UDP_V6_FLOW: tcp_ip6_spec = &fs->h_u.tcp_ip6_spec; *unused |= BIT(INNER_SRC_MAC) | BIT(INNER_DST_MAC) | BIT(INNER_IP_TOS); if (!tcp_ip6_spec->ip6src[0] && !tcp_ip6_spec->ip6src[1] && !tcp_ip6_spec->ip6src[2] && !tcp_ip6_spec->ip6src[3]) *unused |= BIT(INNER_SRC_IP); if (!tcp_ip6_spec->ip6dst[0] && !tcp_ip6_spec->ip6dst[1] && !tcp_ip6_spec->ip6dst[2] && !tcp_ip6_spec->ip6dst[3]) *unused |= BIT(INNER_DST_IP); if (!tcp_ip6_spec->psrc) *unused |= BIT(INNER_SRC_PORT); if (!tcp_ip6_spec->pdst) *unused |= BIT(INNER_DST_PORT); if (tcp_ip6_spec->tclass) return -EOPNOTSUPP; break; case IPV6_USER_FLOW: usr_ip6_spec = &fs->h_u.usr_ip6_spec; *unused |= BIT(INNER_SRC_MAC) | BIT(INNER_DST_MAC) | BIT(INNER_IP_TOS) | BIT(INNER_SRC_PORT) | BIT(INNER_DST_PORT); if (!usr_ip6_spec->ip6src[0] && !usr_ip6_spec->ip6src[1] && !usr_ip6_spec->ip6src[2] && !usr_ip6_spec->ip6src[3]) *unused |= BIT(INNER_SRC_IP); if (!usr_ip6_spec->ip6dst[0] && !usr_ip6_spec->ip6dst[1] && !usr_ip6_spec->ip6dst[2] && !usr_ip6_spec->ip6dst[3]) *unused |= BIT(INNER_DST_IP); if (!usr_ip6_spec->l4_proto) *unused |= BIT(INNER_IP_PROTO); if (usr_ip6_spec->tclass) return -EOPNOTSUPP; if (usr_ip6_spec->l4_4_bytes) return -EOPNOTSUPP; break; case ETHER_FLOW: ether_spec = &fs->h_u.ether_spec; *unused |= BIT(INNER_SRC_IP) | BIT(INNER_DST_IP) | BIT(INNER_SRC_PORT) | BIT(INNER_DST_PORT) | BIT(INNER_IP_TOS) | BIT(INNER_IP_PROTO); if (is_zero_ether_addr(ether_spec->h_source)) *unused |= BIT(INNER_SRC_MAC); if (is_zero_ether_addr(ether_spec->h_dest)) *unused |= BIT(INNER_DST_MAC); if (!ether_spec->h_proto) *unused |= BIT(INNER_ETH_TYPE); break; default: return -EOPNOTSUPP; } if ((fs->flow_type & FLOW_EXT)) { if (fs->h_ext.vlan_etype) return -EOPNOTSUPP; if (!fs->h_ext.vlan_tci) *unused |= BIT(INNER_VLAN_TAG_FST); if (fs->m_ext.vlan_tci) { if (be16_to_cpu(fs->h_ext.vlan_tci) >= VLAN_N_VID) return -EINVAL; } } else { *unused |= BIT(INNER_VLAN_TAG_FST); } if (fs->flow_type & FLOW_MAC_EXT) { if (!(hdev->fd_cfg.proto_support & ETHER_FLOW)) return -EOPNOTSUPP; if (is_zero_ether_addr(fs->h_ext.h_dest)) *unused |= BIT(INNER_DST_MAC); else *unused &= ~(BIT(INNER_DST_MAC)); } return 0; } static bool hclge_fd_rule_exist(struct hclge_dev *hdev, u16 location) { struct hclge_fd_rule *rule = NULL; struct hlist_node *node2; hlist_for_each_entry_safe(rule, node2, &hdev->fd_rule_list, rule_node) { if (rule->location >= location) break; } return rule && rule->location == location; } static int hclge_fd_update_rule_list(struct hclge_dev *hdev, struct hclge_fd_rule *new_rule, u16 location, bool is_add) { struct hclge_fd_rule *rule = NULL, *parent = NULL; struct hlist_node *node2; if (is_add && !new_rule) return -EINVAL; hlist_for_each_entry_safe(rule, node2, &hdev->fd_rule_list, rule_node) { if (rule->location >= location) break; parent = rule; } if (rule && rule->location == location) { hlist_del(&rule->rule_node); kfree(rule); hdev->hclge_fd_rule_num--; if (!is_add) return 0; } else if (!is_add) { dev_err(&hdev->pdev->dev, "delete fail, rule %d is inexistent\n", location); return -EINVAL; } INIT_HLIST_NODE(&new_rule->rule_node); if (parent) hlist_add_behind(&new_rule->rule_node, &parent->rule_node); else hlist_add_head(&new_rule->rule_node, &hdev->fd_rule_list); hdev->hclge_fd_rule_num++; return 0; } static int hclge_fd_get_tuple(struct hclge_dev *hdev, struct ethtool_rx_flow_spec *fs, struct hclge_fd_rule *rule) { u32 flow_type = fs->flow_type & ~(FLOW_EXT | FLOW_MAC_EXT); switch (flow_type) { case SCTP_V4_FLOW: case TCP_V4_FLOW: case UDP_V4_FLOW: rule->tuples.src_ip[3] = be32_to_cpu(fs->h_u.tcp_ip4_spec.ip4src); rule->tuples_mask.src_ip[3] = be32_to_cpu(fs->m_u.tcp_ip4_spec.ip4src); rule->tuples.dst_ip[3] = be32_to_cpu(fs->h_u.tcp_ip4_spec.ip4dst); rule->tuples_mask.dst_ip[3] = be32_to_cpu(fs->m_u.tcp_ip4_spec.ip4dst); rule->tuples.src_port = be16_to_cpu(fs->h_u.tcp_ip4_spec.psrc); rule->tuples_mask.src_port = be16_to_cpu(fs->m_u.tcp_ip4_spec.psrc); rule->tuples.dst_port = be16_to_cpu(fs->h_u.tcp_ip4_spec.pdst); rule->tuples_mask.dst_port = be16_to_cpu(fs->m_u.tcp_ip4_spec.pdst); rule->tuples.ip_tos = fs->h_u.tcp_ip4_spec.tos; rule->tuples_mask.ip_tos = fs->m_u.tcp_ip4_spec.tos; rule->tuples.ether_proto = ETH_P_IP; rule->tuples_mask.ether_proto = 0xFFFF; break; case IP_USER_FLOW: rule->tuples.src_ip[3] = be32_to_cpu(fs->h_u.usr_ip4_spec.ip4src); rule->tuples_mask.src_ip[3] = be32_to_cpu(fs->m_u.usr_ip4_spec.ip4src); rule->tuples.dst_ip[3] = be32_to_cpu(fs->h_u.usr_ip4_spec.ip4dst); rule->tuples_mask.dst_ip[3] = be32_to_cpu(fs->m_u.usr_ip4_spec.ip4dst); rule->tuples.ip_tos = fs->h_u.usr_ip4_spec.tos; rule->tuples_mask.ip_tos = fs->m_u.usr_ip4_spec.tos; rule->tuples.ip_proto = fs->h_u.usr_ip4_spec.proto; rule->tuples_mask.ip_proto = fs->m_u.usr_ip4_spec.proto; rule->tuples.ether_proto = ETH_P_IP; rule->tuples_mask.ether_proto = 0xFFFF; break; case SCTP_V6_FLOW: case TCP_V6_FLOW: case UDP_V6_FLOW: be32_to_cpu_array(rule->tuples.src_ip, fs->h_u.tcp_ip6_spec.ip6src, 4); be32_to_cpu_array(rule->tuples_mask.src_ip, fs->m_u.tcp_ip6_spec.ip6src, 4); be32_to_cpu_array(rule->tuples.dst_ip, fs->h_u.tcp_ip6_spec.ip6dst, 4); be32_to_cpu_array(rule->tuples_mask.dst_ip, fs->m_u.tcp_ip6_spec.ip6dst, 4); rule->tuples.src_port = be16_to_cpu(fs->h_u.tcp_ip6_spec.psrc); rule->tuples_mask.src_port = be16_to_cpu(fs->m_u.tcp_ip6_spec.psrc); rule->tuples.dst_port = be16_to_cpu(fs->h_u.tcp_ip6_spec.pdst); rule->tuples_mask.dst_port = be16_to_cpu(fs->m_u.tcp_ip6_spec.pdst); rule->tuples.ether_proto = ETH_P_IPV6; rule->tuples_mask.ether_proto = 0xFFFF; break; case IPV6_USER_FLOW: be32_to_cpu_array(rule->tuples.src_ip, fs->h_u.usr_ip6_spec.ip6src, 4); be32_to_cpu_array(rule->tuples_mask.src_ip, fs->m_u.usr_ip6_spec.ip6src, 4); be32_to_cpu_array(rule->tuples.dst_ip, fs->h_u.usr_ip6_spec.ip6dst, 4); be32_to_cpu_array(rule->tuples_mask.dst_ip, fs->m_u.usr_ip6_spec.ip6dst, 4); rule->tuples.ip_proto = fs->h_u.usr_ip6_spec.l4_proto; rule->tuples_mask.ip_proto = fs->m_u.usr_ip6_spec.l4_proto; rule->tuples.ether_proto = ETH_P_IPV6; rule->tuples_mask.ether_proto = 0xFFFF; break; case ETHER_FLOW: ether_addr_copy(rule->tuples.src_mac, fs->h_u.ether_spec.h_source); ether_addr_copy(rule->tuples_mask.src_mac, fs->m_u.ether_spec.h_source); ether_addr_copy(rule->tuples.dst_mac, fs->h_u.ether_spec.h_dest); ether_addr_copy(rule->tuples_mask.dst_mac, fs->m_u.ether_spec.h_dest); rule->tuples.ether_proto = be16_to_cpu(fs->h_u.ether_spec.h_proto); rule->tuples_mask.ether_proto = be16_to_cpu(fs->m_u.ether_spec.h_proto); break; default: return -EOPNOTSUPP; } switch (flow_type) { case SCTP_V4_FLOW: case SCTP_V6_FLOW: rule->tuples.ip_proto = IPPROTO_SCTP; rule->tuples_mask.ip_proto = 0xFF; break; case TCP_V4_FLOW: case TCP_V6_FLOW: rule->tuples.ip_proto = IPPROTO_TCP; rule->tuples_mask.ip_proto = 0xFF; break; case UDP_V4_FLOW: case UDP_V6_FLOW: rule->tuples.ip_proto = IPPROTO_UDP; rule->tuples_mask.ip_proto = 0xFF; break; default: break; } if ((fs->flow_type & FLOW_EXT)) { rule->tuples.vlan_tag1 = be16_to_cpu(fs->h_ext.vlan_tci); rule->tuples_mask.vlan_tag1 = be16_to_cpu(fs->m_ext.vlan_tci); } if (fs->flow_type & FLOW_MAC_EXT) { ether_addr_copy(rule->tuples.dst_mac, fs->h_ext.h_dest); ether_addr_copy(rule->tuples_mask.dst_mac, fs->m_ext.h_dest); } return 0; } static int hclge_add_fd_entry(struct hnae3_handle *handle, struct ethtool_rxnfc *cmd) { struct hclge_vport *vport = hclge_get_vport(handle); struct hclge_dev *hdev = vport->back; u16 dst_vport_id = 0, q_index = 0; struct ethtool_rx_flow_spec *fs; struct hclge_fd_rule *rule; u32 unused = 0; u8 action; int ret; if (!hnae3_dev_fd_supported(hdev)) return -EOPNOTSUPP; if (!hdev->fd_cfg.fd_en) { dev_warn(&hdev->pdev->dev, "Please enable flow director first\n"); return -EOPNOTSUPP; } fs = (struct ethtool_rx_flow_spec *)&cmd->fs; ret = hclge_fd_check_spec(hdev, fs, &unused); if (ret) { dev_err(&hdev->pdev->dev, "Check fd spec failed\n"); return ret; } if (fs->ring_cookie == RX_CLS_FLOW_DISC) { action = HCLGE_FD_ACTION_DROP_PACKET; } else { u32 ring = ethtool_get_flow_spec_ring(fs->ring_cookie); u8 vf = ethtool_get_flow_spec_ring_vf(fs->ring_cookie); u16 tqps; if (vf > hdev->num_req_vfs) { dev_err(&hdev->pdev->dev, "Error: vf id (%d) > max vf num (%d)\n", vf, hdev->num_req_vfs); return -EINVAL; } dst_vport_id = vf ? hdev->vport[vf].vport_id : vport->vport_id; tqps = vf ? hdev->vport[vf].alloc_tqps : vport->alloc_tqps; if (ring >= tqps) { dev_err(&hdev->pdev->dev, "Error: queue id (%d) > max tqp num (%d)\n", ring, tqps - 1); return -EINVAL; } action = HCLGE_FD_ACTION_ACCEPT_PACKET; q_index = ring; } rule = kzalloc(sizeof(*rule), GFP_KERNEL); if (!rule) return -ENOMEM; ret = hclge_fd_get_tuple(hdev, fs, rule); if (ret) goto free_rule; rule->flow_type = fs->flow_type; rule->location = fs->location; rule->unused_tuple = unused; rule->vf_id = dst_vport_id; rule->queue_id = q_index; rule->action = action; ret = hclge_config_action(hdev, HCLGE_FD_STAGE_1, rule); if (ret) goto free_rule; ret = hclge_config_key(hdev, HCLGE_FD_STAGE_1, rule); if (ret) goto free_rule; ret = hclge_fd_update_rule_list(hdev, rule, fs->location, true); if (ret) goto free_rule; return ret; free_rule: kfree(rule); return ret; } static int hclge_del_fd_entry(struct hnae3_handle *handle, struct ethtool_rxnfc *cmd) { struct hclge_vport *vport = hclge_get_vport(handle); struct hclge_dev *hdev = vport->back; struct ethtool_rx_flow_spec *fs; int ret; if (!hnae3_dev_fd_supported(hdev)) return -EOPNOTSUPP; fs = (struct ethtool_rx_flow_spec *)&cmd->fs; if (fs->location >= hdev->fd_cfg.rule_num[HCLGE_FD_STAGE_1]) return -EINVAL; if (!hclge_fd_rule_exist(hdev, fs->location)) { dev_err(&hdev->pdev->dev, "Delete fail, rule %d is inexistent\n", fs->location); return -ENOENT; } ret = hclge_fd_tcam_config(hdev, HCLGE_FD_STAGE_1, true, fs->location, NULL, false); if (ret) return ret; return hclge_fd_update_rule_list(hdev, NULL, fs->location, false); } static void hclge_del_all_fd_entries(struct hnae3_handle *handle, bool clear_list) { struct hclge_vport *vport = hclge_get_vport(handle); struct hclge_dev *hdev = vport->back; struct hclge_fd_rule *rule; struct hlist_node *node; if (!hnae3_dev_fd_supported(hdev)) return; if (clear_list) { hlist_for_each_entry_safe(rule, node, &hdev->fd_rule_list, rule_node) { hclge_fd_tcam_config(hdev, HCLGE_FD_STAGE_1, true, rule->location, NULL, false); hlist_del(&rule->rule_node); kfree(rule); hdev->hclge_fd_rule_num--; } } else { hlist_for_each_entry_safe(rule, node, &hdev->fd_rule_list, rule_node) hclge_fd_tcam_config(hdev, HCLGE_FD_STAGE_1, true, rule->location, NULL, false); } } static int hclge_restore_fd_entries(struct hnae3_handle *handle) { struct hclge_vport *vport = hclge_get_vport(handle); struct hclge_dev *hdev = vport->back; struct hclge_fd_rule *rule; struct hlist_node *node; int ret; /* Return ok here, because reset error handling will check this * return value. If error is returned here, the reset process will * fail. */ if (!hnae3_dev_fd_supported(hdev)) return 0; /* if fd is disabled, should not restore it when reset */ if (!hdev->fd_cfg.fd_en) return 0; hlist_for_each_entry_safe(rule, node, &hdev->fd_rule_list, rule_node) { ret = hclge_config_action(hdev, HCLGE_FD_STAGE_1, rule); if (!ret) ret = hclge_config_key(hdev, HCLGE_FD_STAGE_1, rule); if (ret) { dev_warn(&hdev->pdev->dev, "Restore rule %d failed, remove it\n", rule->location); hlist_del(&rule->rule_node); kfree(rule); hdev->hclge_fd_rule_num--; } } return 0; } static int hclge_get_fd_rule_cnt(struct hnae3_handle *handle, struct ethtool_rxnfc *cmd) { struct hclge_vport *vport = hclge_get_vport(handle); struct hclge_dev *hdev = vport->back; if (!hnae3_dev_fd_supported(hdev)) return -EOPNOTSUPP; cmd->rule_cnt = hdev->hclge_fd_rule_num; cmd->data = hdev->fd_cfg.rule_num[HCLGE_FD_STAGE_1]; return 0; } static int hclge_get_fd_rule_info(struct hnae3_handle *handle, struct ethtool_rxnfc *cmd) { struct hclge_vport *vport = hclge_get_vport(handle); struct hclge_fd_rule *rule = NULL; struct hclge_dev *hdev = vport->back; struct ethtool_rx_flow_spec *fs; struct hlist_node *node2; if (!hnae3_dev_fd_supported(hdev)) return -EOPNOTSUPP; fs = (struct ethtool_rx_flow_spec *)&cmd->fs; hlist_for_each_entry_safe(rule, node2, &hdev->fd_rule_list, rule_node) { if (rule->location >= fs->location) break; } if (!rule || fs->location != rule->location) return -ENOENT; fs->flow_type = rule->flow_type; switch (fs->flow_type & ~(FLOW_EXT | FLOW_MAC_EXT)) { case SCTP_V4_FLOW: case TCP_V4_FLOW: case UDP_V4_FLOW: fs->h_u.tcp_ip4_spec.ip4src = cpu_to_be32(rule->tuples.src_ip[3]); fs->m_u.tcp_ip4_spec.ip4src = rule->unused_tuple & BIT(INNER_SRC_IP) ? 0 : cpu_to_be32(rule->tuples_mask.src_ip[3]); fs->h_u.tcp_ip4_spec.ip4dst = cpu_to_be32(rule->tuples.dst_ip[3]); fs->m_u.tcp_ip4_spec.ip4dst = rule->unused_tuple & BIT(INNER_DST_IP) ? 0 : cpu_to_be32(rule->tuples_mask.dst_ip[3]); fs->h_u.tcp_ip4_spec.psrc = cpu_to_be16(rule->tuples.src_port); fs->m_u.tcp_ip4_spec.psrc = rule->unused_tuple & BIT(INNER_SRC_PORT) ? 0 : cpu_to_be16(rule->tuples_mask.src_port); fs->h_u.tcp_ip4_spec.pdst = cpu_to_be16(rule->tuples.dst_port); fs->m_u.tcp_ip4_spec.pdst = rule->unused_tuple & BIT(INNER_DST_PORT) ? 0 : cpu_to_be16(rule->tuples_mask.dst_port); fs->h_u.tcp_ip4_spec.tos = rule->tuples.ip_tos; fs->m_u.tcp_ip4_spec.tos = rule->unused_tuple & BIT(INNER_IP_TOS) ? 0 : rule->tuples_mask.ip_tos; break; case IP_USER_FLOW: fs->h_u.usr_ip4_spec.ip4src = cpu_to_be32(rule->tuples.src_ip[3]); fs->m_u.tcp_ip4_spec.ip4src = rule->unused_tuple & BIT(INNER_SRC_IP) ? 0 : cpu_to_be32(rule->tuples_mask.src_ip[3]); fs->h_u.usr_ip4_spec.ip4dst = cpu_to_be32(rule->tuples.dst_ip[3]); fs->m_u.usr_ip4_spec.ip4dst = rule->unused_tuple & BIT(INNER_DST_IP) ? 0 : cpu_to_be32(rule->tuples_mask.dst_ip[3]); fs->h_u.usr_ip4_spec.tos = rule->tuples.ip_tos; fs->m_u.usr_ip4_spec.tos = rule->unused_tuple & BIT(INNER_IP_TOS) ? 0 : rule->tuples_mask.ip_tos; fs->h_u.usr_ip4_spec.proto = rule->tuples.ip_proto; fs->m_u.usr_ip4_spec.proto = rule->unused_tuple & BIT(INNER_IP_PROTO) ? 0 : rule->tuples_mask.ip_proto; fs->h_u.usr_ip4_spec.ip_ver = ETH_RX_NFC_IP4; break; case SCTP_V6_FLOW: case TCP_V6_FLOW: case UDP_V6_FLOW: cpu_to_be32_array(fs->h_u.tcp_ip6_spec.ip6src, rule->tuples.src_ip, 4); if (rule->unused_tuple & BIT(INNER_SRC_IP)) memset(fs->m_u.tcp_ip6_spec.ip6src, 0, sizeof(int) * 4); else cpu_to_be32_array(fs->m_u.tcp_ip6_spec.ip6src, rule->tuples_mask.src_ip, 4); cpu_to_be32_array(fs->h_u.tcp_ip6_spec.ip6dst, rule->tuples.dst_ip, 4); if (rule->unused_tuple & BIT(INNER_DST_IP)) memset(fs->m_u.tcp_ip6_spec.ip6dst, 0, sizeof(int) * 4); else cpu_to_be32_array(fs->m_u.tcp_ip6_spec.ip6dst, rule->tuples_mask.dst_ip, 4); fs->h_u.tcp_ip6_spec.psrc = cpu_to_be16(rule->tuples.src_port); fs->m_u.tcp_ip6_spec.psrc = rule->unused_tuple & BIT(INNER_SRC_PORT) ? 0 : cpu_to_be16(rule->tuples_mask.src_port); fs->h_u.tcp_ip6_spec.pdst = cpu_to_be16(rule->tuples.dst_port); fs->m_u.tcp_ip6_spec.pdst = rule->unused_tuple & BIT(INNER_DST_PORT) ? 0 : cpu_to_be16(rule->tuples_mask.dst_port); break; case IPV6_USER_FLOW: cpu_to_be32_array(fs->h_u.usr_ip6_spec.ip6src, rule->tuples.src_ip, 4); if (rule->unused_tuple & BIT(INNER_SRC_IP)) memset(fs->m_u.usr_ip6_spec.ip6src, 0, sizeof(int) * 4); else cpu_to_be32_array(fs->m_u.usr_ip6_spec.ip6src, rule->tuples_mask.src_ip, 4); cpu_to_be32_array(fs->h_u.usr_ip6_spec.ip6dst, rule->tuples.dst_ip, 4); if (rule->unused_tuple & BIT(INNER_DST_IP)) memset(fs->m_u.usr_ip6_spec.ip6dst, 0, sizeof(int) * 4); else cpu_to_be32_array(fs->m_u.usr_ip6_spec.ip6dst, rule->tuples_mask.dst_ip, 4); fs->h_u.usr_ip6_spec.l4_proto = rule->tuples.ip_proto; fs->m_u.usr_ip6_spec.l4_proto = rule->unused_tuple & BIT(INNER_IP_PROTO) ? 0 : rule->tuples_mask.ip_proto; break; case ETHER_FLOW: ether_addr_copy(fs->h_u.ether_spec.h_source, rule->tuples.src_mac); if (rule->unused_tuple & BIT(INNER_SRC_MAC)) eth_zero_addr(fs->m_u.ether_spec.h_source); else ether_addr_copy(fs->m_u.ether_spec.h_source, rule->tuples_mask.src_mac); ether_addr_copy(fs->h_u.ether_spec.h_dest, rule->tuples.dst_mac); if (rule->unused_tuple & BIT(INNER_DST_MAC)) eth_zero_addr(fs->m_u.ether_spec.h_dest); else ether_addr_copy(fs->m_u.ether_spec.h_dest, rule->tuples_mask.dst_mac); fs->h_u.ether_spec.h_proto = cpu_to_be16(rule->tuples.ether_proto); fs->m_u.ether_spec.h_proto = rule->unused_tuple & BIT(INNER_ETH_TYPE) ? 0 : cpu_to_be16(rule->tuples_mask.ether_proto); break; default: return -EOPNOTSUPP; } if (fs->flow_type & FLOW_EXT) { fs->h_ext.vlan_tci = cpu_to_be16(rule->tuples.vlan_tag1); fs->m_ext.vlan_tci = rule->unused_tuple & BIT(INNER_VLAN_TAG_FST) ? cpu_to_be16(VLAN_VID_MASK) : cpu_to_be16(rule->tuples_mask.vlan_tag1); } if (fs->flow_type & FLOW_MAC_EXT) { ether_addr_copy(fs->h_ext.h_dest, rule->tuples.dst_mac); if (rule->unused_tuple & BIT(INNER_DST_MAC)) eth_zero_addr(fs->m_u.ether_spec.h_dest); else ether_addr_copy(fs->m_u.ether_spec.h_dest, rule->tuples_mask.dst_mac); } if (rule->action == HCLGE_FD_ACTION_DROP_PACKET) { fs->ring_cookie = RX_CLS_FLOW_DISC; } else { u64 vf_id; fs->ring_cookie = rule->queue_id; vf_id = rule->vf_id; vf_id <<= ETHTOOL_RX_FLOW_SPEC_RING_VF_OFF; fs->ring_cookie |= vf_id; } return 0; } static int hclge_get_all_rules(struct hnae3_handle *handle, struct ethtool_rxnfc *cmd, u32 *rule_locs) { struct hclge_vport *vport = hclge_get_vport(handle); struct hclge_dev *hdev = vport->back; struct hclge_fd_rule *rule; struct hlist_node *node2; int cnt = 0; if (!hnae3_dev_fd_supported(hdev)) return -EOPNOTSUPP; cmd->data = hdev->fd_cfg.rule_num[HCLGE_FD_STAGE_1]; hlist_for_each_entry_safe(rule, node2, &hdev->fd_rule_list, rule_node) { if (cnt == cmd->rule_cnt) return -EMSGSIZE; rule_locs[cnt] = rule->location; cnt++; } cmd->rule_cnt = cnt; return 0; } static bool hclge_get_hw_reset_stat(struct hnae3_handle *handle) { struct hclge_vport *vport = hclge_get_vport(handle); struct hclge_dev *hdev = vport->back; return hclge_read_dev(&hdev->hw, HCLGE_GLOBAL_RESET_REG) || hclge_read_dev(&hdev->hw, HCLGE_FUN_RST_ING); } static bool hclge_ae_dev_resetting(struct hnae3_handle *handle) { struct hclge_vport *vport = hclge_get_vport(handle); struct hclge_dev *hdev = vport->back; return test_bit(HCLGE_STATE_RST_HANDLING, &hdev->state); } static unsigned long hclge_ae_dev_reset_cnt(struct hnae3_handle *handle) { struct hclge_vport *vport = hclge_get_vport(handle); struct hclge_dev *hdev = vport->back; return hdev->reset_count; } static void hclge_enable_fd(struct hnae3_handle *handle, bool enable) { struct hclge_vport *vport = hclge_get_vport(handle); struct hclge_dev *hdev = vport->back; hdev->fd_cfg.fd_en = enable; if (!enable) hclge_del_all_fd_entries(handle, false); else hclge_restore_fd_entries(handle); } static void hclge_cfg_mac_mode(struct hclge_dev *hdev, bool enable) { struct hclge_desc desc; struct hclge_config_mac_mode_cmd *req = (struct hclge_config_mac_mode_cmd *)desc.data; u32 loop_en = 0; int ret; hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_CONFIG_MAC_MODE, false); hnae3_set_bit(loop_en, HCLGE_MAC_TX_EN_B, enable); hnae3_set_bit(loop_en, HCLGE_MAC_RX_EN_B, enable); hnae3_set_bit(loop_en, HCLGE_MAC_PAD_TX_B, enable); hnae3_set_bit(loop_en, HCLGE_MAC_PAD_RX_B, enable); hnae3_set_bit(loop_en, HCLGE_MAC_1588_TX_B, 0); hnae3_set_bit(loop_en, HCLGE_MAC_1588_RX_B, 0); hnae3_set_bit(loop_en, HCLGE_MAC_APP_LP_B, 0); hnae3_set_bit(loop_en, HCLGE_MAC_LINE_LP_B, 0); hnae3_set_bit(loop_en, HCLGE_MAC_FCS_TX_B, enable); hnae3_set_bit(loop_en, HCLGE_MAC_RX_FCS_B, enable); hnae3_set_bit(loop_en, HCLGE_MAC_RX_FCS_STRIP_B, enable); hnae3_set_bit(loop_en, HCLGE_MAC_TX_OVERSIZE_TRUNCATE_B, enable); hnae3_set_bit(loop_en, HCLGE_MAC_RX_OVERSIZE_TRUNCATE_B, enable); hnae3_set_bit(loop_en, HCLGE_MAC_TX_UNDER_MIN_ERR_B, enable); req->txrx_pad_fcs_loop_en = cpu_to_le32(loop_en); ret = hclge_cmd_send(&hdev->hw, &desc, 1); if (ret) dev_err(&hdev->pdev->dev, "mac enable fail, ret =%d.\n", ret); } static int hclge_set_app_loopback(struct hclge_dev *hdev, bool en) { struct hclge_config_mac_mode_cmd *req; struct hclge_desc desc; u32 loop_en; int ret; req = (struct hclge_config_mac_mode_cmd *)&desc.data[0]; /* 1 Read out the MAC mode config at first */ hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_CONFIG_MAC_MODE, true); ret = hclge_cmd_send(&hdev->hw, &desc, 1); if (ret) { dev_err(&hdev->pdev->dev, "mac loopback get fail, ret =%d.\n", ret); return ret; } /* 2 Then setup the loopback flag */ loop_en = le32_to_cpu(req->txrx_pad_fcs_loop_en); hnae3_set_bit(loop_en, HCLGE_MAC_APP_LP_B, en ? 1 : 0); hnae3_set_bit(loop_en, HCLGE_MAC_TX_EN_B, en ? 1 : 0); hnae3_set_bit(loop_en, HCLGE_MAC_RX_EN_B, en ? 1 : 0); req->txrx_pad_fcs_loop_en = cpu_to_le32(loop_en); /* 3 Config mac work mode with loopback flag * and its original configure parameters */ hclge_cmd_reuse_desc(&desc, false); ret = hclge_cmd_send(&hdev->hw, &desc, 1); if (ret) dev_err(&hdev->pdev->dev, "mac loopback set fail, ret =%d.\n", ret); return ret; } static int hclge_set_serdes_loopback(struct hclge_dev *hdev, bool en, enum hnae3_loop loop_mode) { #define HCLGE_SERDES_RETRY_MS 10 #define HCLGE_SERDES_RETRY_NUM 100 struct hclge_serdes_lb_cmd *req; struct hclge_desc desc; int ret, i = 0; u8 loop_mode_b; req = (struct hclge_serdes_lb_cmd *)desc.data; hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_SERDES_LOOPBACK, false); switch (loop_mode) { case HNAE3_LOOP_SERIAL_SERDES: loop_mode_b = HCLGE_CMD_SERDES_SERIAL_INNER_LOOP_B; break; case HNAE3_LOOP_PARALLEL_SERDES: loop_mode_b = HCLGE_CMD_SERDES_PARALLEL_INNER_LOOP_B; break; default: dev_err(&hdev->pdev->dev, "unsupported serdes loopback mode %d\n", loop_mode); return -ENOTSUPP; } if (en) { req->enable = loop_mode_b; req->mask = loop_mode_b; } else { req->mask = loop_mode_b; } ret = hclge_cmd_send(&hdev->hw, &desc, 1); if (ret) { dev_err(&hdev->pdev->dev, "serdes loopback set fail, ret = %d\n", ret); return ret; } do { msleep(HCLGE_SERDES_RETRY_MS); hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_SERDES_LOOPBACK, true); ret = hclge_cmd_send(&hdev->hw, &desc, 1); if (ret) { dev_err(&hdev->pdev->dev, "serdes loopback get, ret = %d\n", ret); return ret; } } while (++i < HCLGE_SERDES_RETRY_NUM && !(req->result & HCLGE_CMD_SERDES_DONE_B)); if (!(req->result & HCLGE_CMD_SERDES_DONE_B)) { dev_err(&hdev->pdev->dev, "serdes loopback set timeout\n"); return -EBUSY; } else if (!(req->result & HCLGE_CMD_SERDES_SUCCESS_B)) { dev_err(&hdev->pdev->dev, "serdes loopback set failed in fw\n"); return -EIO; } hclge_cfg_mac_mode(hdev, en); return 0; } static int hclge_tqp_enable(struct hclge_dev *hdev, int tqp_id, int stream_id, bool enable) { struct hclge_desc desc; struct hclge_cfg_com_tqp_queue_cmd *req = (struct hclge_cfg_com_tqp_queue_cmd *)desc.data; int ret; hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_CFG_COM_TQP_QUEUE, false); req->tqp_id = cpu_to_le16(tqp_id & HCLGE_RING_ID_MASK); req->stream_id = cpu_to_le16(stream_id); req->enable |= enable << HCLGE_TQP_ENABLE_B; ret = hclge_cmd_send(&hdev->hw, &desc, 1); if (ret) dev_err(&hdev->pdev->dev, "Tqp enable fail, status =%d.\n", ret); return ret; } static int hclge_set_loopback(struct hnae3_handle *handle, enum hnae3_loop loop_mode, bool en) { struct hclge_vport *vport = hclge_get_vport(handle); struct hclge_dev *hdev = vport->back; int i, ret; switch (loop_mode) { case HNAE3_LOOP_APP: ret = hclge_set_app_loopback(hdev, en); break; case HNAE3_LOOP_SERIAL_SERDES: case HNAE3_LOOP_PARALLEL_SERDES: ret = hclge_set_serdes_loopback(hdev, en, loop_mode); break; default: ret = -ENOTSUPP; dev_err(&hdev->pdev->dev, "loop_mode %d is not supported\n", loop_mode); break; } for (i = 0; i < vport->alloc_tqps; i++) { ret = hclge_tqp_enable(hdev, i, 0, en); if (ret) return ret; } return 0; } static void hclge_reset_tqp_stats(struct hnae3_handle *handle) { struct hclge_vport *vport = hclge_get_vport(handle); struct hnae3_queue *queue; struct hclge_tqp *tqp; int i; for (i = 0; i < vport->alloc_tqps; i++) { queue = handle->kinfo.tqp[i]; tqp = container_of(queue, struct hclge_tqp, q); memset(&tqp->tqp_stats, 0, sizeof(tqp->tqp_stats)); } } static void hclge_set_timer_task(struct hnae3_handle *handle, bool enable) { struct hclge_vport *vport = hclge_get_vport(handle); struct hclge_dev *hdev = vport->back; if (enable) { mod_timer(&hdev->service_timer, jiffies + HZ); } else { del_timer_sync(&hdev->service_timer); cancel_work_sync(&hdev->service_task); clear_bit(HCLGE_STATE_SERVICE_SCHED, &hdev->state); } } static int hclge_ae_start(struct hnae3_handle *handle) { struct hclge_vport *vport = hclge_get_vport(handle); struct hclge_dev *hdev = vport->back; /* mac enable */ hclge_cfg_mac_mode(hdev, true); clear_bit(HCLGE_STATE_DOWN, &hdev->state); hdev->hw.mac.link = 0; /* reset tqp stats */ hclge_reset_tqp_stats(handle); hclge_mac_start_phy(hdev); return 0; } static void hclge_ae_stop(struct hnae3_handle *handle) { struct hclge_vport *vport = hclge_get_vport(handle); struct hclge_dev *hdev = vport->back; int i; set_bit(HCLGE_STATE_DOWN, &hdev->state); /* If it is not PF reset, the firmware will disable the MAC, * so it only need to stop phy here. */ if (test_bit(HCLGE_STATE_RST_HANDLING, &hdev->state) && hdev->reset_type != HNAE3_FUNC_RESET) { hclge_mac_stop_phy(hdev); return; } for (i = 0; i < handle->kinfo.num_tqps; i++) hclge_reset_tqp(handle, i); /* Mac disable */ hclge_cfg_mac_mode(hdev, false); hclge_mac_stop_phy(hdev); /* reset tqp stats */ hclge_reset_tqp_stats(handle); hclge_update_link_status(hdev); } int hclge_vport_start(struct hclge_vport *vport) { set_bit(HCLGE_VPORT_STATE_ALIVE, &vport->state); vport->last_active_jiffies = jiffies; return 0; } void hclge_vport_stop(struct hclge_vport *vport) { clear_bit(HCLGE_VPORT_STATE_ALIVE, &vport->state); } static int hclge_client_start(struct hnae3_handle *handle) { struct hclge_vport *vport = hclge_get_vport(handle); return hclge_vport_start(vport); } static void hclge_client_stop(struct hnae3_handle *handle) { struct hclge_vport *vport = hclge_get_vport(handle); hclge_vport_stop(vport); } static int hclge_get_mac_vlan_cmd_status(struct hclge_vport *vport, u16 cmdq_resp, u8 resp_code, enum hclge_mac_vlan_tbl_opcode op) { struct hclge_dev *hdev = vport->back; int return_status = -EIO; if (cmdq_resp) { dev_err(&hdev->pdev->dev, "cmdq execute failed for get_mac_vlan_cmd_status,status=%d.\n", cmdq_resp); return -EIO; } if (op == HCLGE_MAC_VLAN_ADD) { if ((!resp_code) || (resp_code == 1)) { return_status = 0; } else if (resp_code == 2) { return_status = -ENOSPC; dev_err(&hdev->pdev->dev, "add mac addr failed for uc_overflow.\n"); } else if (resp_code == 3) { return_status = -ENOSPC; dev_err(&hdev->pdev->dev, "add mac addr failed for mc_overflow.\n"); } else { dev_err(&hdev->pdev->dev, "add mac addr failed for undefined, code=%d.\n", resp_code); } } else if (op == HCLGE_MAC_VLAN_REMOVE) { if (!resp_code) { return_status = 0; } else if (resp_code == 1) { return_status = -ENOENT; dev_dbg(&hdev->pdev->dev, "remove mac addr failed for miss.\n"); } else { dev_err(&hdev->pdev->dev, "remove mac addr failed for undefined, code=%d.\n", resp_code); } } else if (op == HCLGE_MAC_VLAN_LKUP) { if (!resp_code) { return_status = 0; } else if (resp_code == 1) { return_status = -ENOENT; dev_dbg(&hdev->pdev->dev, "lookup mac addr failed for miss.\n"); } else { dev_err(&hdev->pdev->dev, "lookup mac addr failed for undefined, code=%d.\n", resp_code); } } else { return_status = -EINVAL; dev_err(&hdev->pdev->dev, "unknown opcode for get_mac_vlan_cmd_status,opcode=%d.\n", op); } return return_status; } static int hclge_update_desc_vfid(struct hclge_desc *desc, int vfid, bool clr) { int word_num; int bit_num; if (vfid > 255 || vfid < 0) return -EIO; if (vfid >= 0 && vfid <= 191) { word_num = vfid / 32; bit_num = vfid % 32; if (clr) desc[1].data[word_num] &= cpu_to_le32(~(1 << bit_num)); else desc[1].data[word_num] |= cpu_to_le32(1 << bit_num); } else { word_num = (vfid - 192) / 32; bit_num = vfid % 32; if (clr) desc[2].data[word_num] &= cpu_to_le32(~(1 << bit_num)); else desc[2].data[word_num] |= cpu_to_le32(1 << bit_num); } return 0; } static bool hclge_is_all_function_id_zero(struct hclge_desc *desc) { #define HCLGE_DESC_NUMBER 3 #define HCLGE_FUNC_NUMBER_PER_DESC 6 int i, j; for (i = 1; i < HCLGE_DESC_NUMBER; i++) for (j = 0; j < HCLGE_FUNC_NUMBER_PER_DESC; j++) if (desc[i].data[j]) return false; return true; } static void hclge_prepare_mac_addr(struct hclge_mac_vlan_tbl_entry_cmd *new_req, const u8 *addr) { const unsigned char *mac_addr = addr; u32 high_val = mac_addr[2] << 16 | (mac_addr[3] << 24) | (mac_addr[0]) | (mac_addr[1] << 8); u32 low_val = mac_addr[4] | (mac_addr[5] << 8); new_req->mac_addr_hi32 = cpu_to_le32(high_val); new_req->mac_addr_lo16 = cpu_to_le16(low_val & 0xffff); } static int hclge_remove_mac_vlan_tbl(struct hclge_vport *vport, struct hclge_mac_vlan_tbl_entry_cmd *req) { struct hclge_dev *hdev = vport->back; struct hclge_desc desc; u8 resp_code; u16 retval; int ret; hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_MAC_VLAN_REMOVE, false); memcpy(desc.data, req, sizeof(struct hclge_mac_vlan_tbl_entry_cmd)); ret = hclge_cmd_send(&hdev->hw, &desc, 1); if (ret) { dev_err(&hdev->pdev->dev, "del mac addr failed for cmd_send, ret =%d.\n", ret); return ret; } resp_code = (le32_to_cpu(desc.data[0]) >> 8) & 0xff; retval = le16_to_cpu(desc.retval); return hclge_get_mac_vlan_cmd_status(vport, retval, resp_code, HCLGE_MAC_VLAN_REMOVE); } static int hclge_lookup_mac_vlan_tbl(struct hclge_vport *vport, struct hclge_mac_vlan_tbl_entry_cmd *req, struct hclge_desc *desc, bool is_mc) { struct hclge_dev *hdev = vport->back; u8 resp_code; u16 retval; int ret; hclge_cmd_setup_basic_desc(&desc[0], HCLGE_OPC_MAC_VLAN_ADD, true); if (is_mc) { desc[0].flag |= cpu_to_le16(HCLGE_CMD_FLAG_NEXT); memcpy(desc[0].data, req, sizeof(struct hclge_mac_vlan_tbl_entry_cmd)); hclge_cmd_setup_basic_desc(&desc[1], HCLGE_OPC_MAC_VLAN_ADD, true); desc[1].flag |= cpu_to_le16(HCLGE_CMD_FLAG_NEXT); hclge_cmd_setup_basic_desc(&desc[2], HCLGE_OPC_MAC_VLAN_ADD, true); ret = hclge_cmd_send(&hdev->hw, desc, 3); } else { memcpy(desc[0].data, req, sizeof(struct hclge_mac_vlan_tbl_entry_cmd)); ret = hclge_cmd_send(&hdev->hw, desc, 1); } if (ret) { dev_err(&hdev->pdev->dev, "lookup mac addr failed for cmd_send, ret =%d.\n", ret); return ret; } resp_code = (le32_to_cpu(desc[0].data[0]) >> 8) & 0xff; retval = le16_to_cpu(desc[0].retval); return hclge_get_mac_vlan_cmd_status(vport, retval, resp_code, HCLGE_MAC_VLAN_LKUP); } static int hclge_add_mac_vlan_tbl(struct hclge_vport *vport, struct hclge_mac_vlan_tbl_entry_cmd *req, struct hclge_desc *mc_desc) { struct hclge_dev *hdev = vport->back; int cfg_status; u8 resp_code; u16 retval; int ret; if (!mc_desc) { struct hclge_desc desc; hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_MAC_VLAN_ADD, false); memcpy(desc.data, req, sizeof(struct hclge_mac_vlan_tbl_entry_cmd)); ret = hclge_cmd_send(&hdev->hw, &desc, 1); resp_code = (le32_to_cpu(desc.data[0]) >> 8) & 0xff; retval = le16_to_cpu(desc.retval); cfg_status = hclge_get_mac_vlan_cmd_status(vport, retval, resp_code, HCLGE_MAC_VLAN_ADD); } else { hclge_cmd_reuse_desc(&mc_desc[0], false); mc_desc[0].flag |= cpu_to_le16(HCLGE_CMD_FLAG_NEXT); hclge_cmd_reuse_desc(&mc_desc[1], false); mc_desc[1].flag |= cpu_to_le16(HCLGE_CMD_FLAG_NEXT); hclge_cmd_reuse_desc(&mc_desc[2], false); mc_desc[2].flag &= cpu_to_le16(~HCLGE_CMD_FLAG_NEXT); memcpy(mc_desc[0].data, req, sizeof(struct hclge_mac_vlan_tbl_entry_cmd)); ret = hclge_cmd_send(&hdev->hw, mc_desc, 3); resp_code = (le32_to_cpu(mc_desc[0].data[0]) >> 8) & 0xff; retval = le16_to_cpu(mc_desc[0].retval); cfg_status = hclge_get_mac_vlan_cmd_status(vport, retval, resp_code, HCLGE_MAC_VLAN_ADD); } if (ret) { dev_err(&hdev->pdev->dev, "add mac addr failed for cmd_send, ret =%d.\n", ret); return ret; } return cfg_status; } static int hclge_init_umv_space(struct hclge_dev *hdev) { u16 allocated_size = 0; int ret; ret = hclge_set_umv_space(hdev, hdev->wanted_umv_size, &allocated_size, true); if (ret) return ret; if (allocated_size < hdev->wanted_umv_size) dev_warn(&hdev->pdev->dev, "Alloc umv space failed, want %d, get %d\n", hdev->wanted_umv_size, allocated_size); mutex_init(&hdev->umv_mutex); hdev->max_umv_size = allocated_size; hdev->priv_umv_size = hdev->max_umv_size / (hdev->num_req_vfs + 2); hdev->share_umv_size = hdev->priv_umv_size + hdev->max_umv_size % (hdev->num_req_vfs + 2); return 0; } static int hclge_uninit_umv_space(struct hclge_dev *hdev) { int ret; if (hdev->max_umv_size > 0) { ret = hclge_set_umv_space(hdev, hdev->max_umv_size, NULL, false); if (ret) return ret; hdev->max_umv_size = 0; } mutex_destroy(&hdev->umv_mutex); return 0; } static int hclge_set_umv_space(struct hclge_dev *hdev, u16 space_size, u16 *allocated_size, bool is_alloc) { struct hclge_umv_spc_alc_cmd *req; struct hclge_desc desc; int ret; req = (struct hclge_umv_spc_alc_cmd *)desc.data; hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_MAC_VLAN_ALLOCATE, false); hnae3_set_bit(req->allocate, HCLGE_UMV_SPC_ALC_B, !is_alloc); req->space_size = cpu_to_le32(space_size); ret = hclge_cmd_send(&hdev->hw, &desc, 1); if (ret) { dev_err(&hdev->pdev->dev, "%s umv space failed for cmd_send, ret =%d\n", is_alloc ? "allocate" : "free", ret); return ret; } if (is_alloc && allocated_size) *allocated_size = le32_to_cpu(desc.data[1]); return 0; } static void hclge_reset_umv_space(struct hclge_dev *hdev) { struct hclge_vport *vport; int i; for (i = 0; i < hdev->num_alloc_vport; i++) { vport = &hdev->vport[i]; vport->used_umv_num = 0; } mutex_lock(&hdev->umv_mutex); hdev->share_umv_size = hdev->priv_umv_size + hdev->max_umv_size % (hdev->num_req_vfs + 2); mutex_unlock(&hdev->umv_mutex); } static bool hclge_is_umv_space_full(struct hclge_vport *vport) { struct hclge_dev *hdev = vport->back; bool is_full; mutex_lock(&hdev->umv_mutex); is_full = (vport->used_umv_num >= hdev->priv_umv_size && hdev->share_umv_size == 0); mutex_unlock(&hdev->umv_mutex); return is_full; } static void hclge_update_umv_space(struct hclge_vport *vport, bool is_free) { struct hclge_dev *hdev = vport->back; mutex_lock(&hdev->umv_mutex); if (is_free) { if (vport->used_umv_num > hdev->priv_umv_size) hdev->share_umv_size++; vport->used_umv_num--; } else { if (vport->used_umv_num >= hdev->priv_umv_size) hdev->share_umv_size--; vport->used_umv_num++; } mutex_unlock(&hdev->umv_mutex); } static int hclge_add_uc_addr(struct hnae3_handle *handle, const unsigned char *addr) { struct hclge_vport *vport = hclge_get_vport(handle); return hclge_add_uc_addr_common(vport, addr); } int hclge_add_uc_addr_common(struct hclge_vport *vport, const unsigned char *addr) { struct hclge_dev *hdev = vport->back; struct hclge_mac_vlan_tbl_entry_cmd req; struct hclge_desc desc; u16 egress_port = 0; int ret; /* mac addr check */ if (is_zero_ether_addr(addr) || is_broadcast_ether_addr(addr) || is_multicast_ether_addr(addr)) { dev_err(&hdev->pdev->dev, "Set_uc mac err! invalid mac:%pM. is_zero:%d,is_br=%d,is_mul=%d\n", addr, is_zero_ether_addr(addr), is_broadcast_ether_addr(addr), is_multicast_ether_addr(addr)); return -EINVAL; } memset(&req, 0, sizeof(req)); hnae3_set_bit(req.flags, HCLGE_MAC_VLAN_BIT0_EN_B, 1); hnae3_set_field(egress_port, HCLGE_MAC_EPORT_VFID_M, HCLGE_MAC_EPORT_VFID_S, vport->vport_id); req.egress_port = cpu_to_le16(egress_port); hclge_prepare_mac_addr(&req, addr); /* Lookup the mac address in the mac_vlan table, and add * it if the entry is inexistent. Repeated unicast entry * is not allowed in the mac vlan table. */ ret = hclge_lookup_mac_vlan_tbl(vport, &req, &desc, false); if (ret == -ENOENT) { if (!hclge_is_umv_space_full(vport)) { ret = hclge_add_mac_vlan_tbl(vport, &req, NULL); if (!ret) hclge_update_umv_space(vport, false); return ret; } dev_err(&hdev->pdev->dev, "UC MAC table full(%u)\n", hdev->priv_umv_size); return -ENOSPC; } /* check if we just hit the duplicate */ if (!ret) ret = -EINVAL; dev_err(&hdev->pdev->dev, "PF failed to add unicast entry(%pM) in the MAC table\n", addr); return ret; } static int hclge_rm_uc_addr(struct hnae3_handle *handle, const unsigned char *addr) { struct hclge_vport *vport = hclge_get_vport(handle); return hclge_rm_uc_addr_common(vport, addr); } int hclge_rm_uc_addr_common(struct hclge_vport *vport, const unsigned char *addr) { struct hclge_dev *hdev = vport->back; struct hclge_mac_vlan_tbl_entry_cmd req; int ret; /* mac addr check */ if (is_zero_ether_addr(addr) || is_broadcast_ether_addr(addr) || is_multicast_ether_addr(addr)) { dev_dbg(&hdev->pdev->dev, "Remove mac err! invalid mac:%pM.\n", addr); return -EINVAL; } memset(&req, 0, sizeof(req)); hnae3_set_bit(req.flags, HCLGE_MAC_VLAN_BIT0_EN_B, 1); hnae3_set_bit(req.entry_type, HCLGE_MAC_VLAN_BIT0_EN_B, 0); hclge_prepare_mac_addr(&req, addr); ret = hclge_remove_mac_vlan_tbl(vport, &req); if (!ret) hclge_update_umv_space(vport, true); return ret; } static int hclge_add_mc_addr(struct hnae3_handle *handle, const unsigned char *addr) { struct hclge_vport *vport = hclge_get_vport(handle); return hclge_add_mc_addr_common(vport, addr); } int hclge_add_mc_addr_common(struct hclge_vport *vport, const unsigned char *addr) { struct hclge_dev *hdev = vport->back; struct hclge_mac_vlan_tbl_entry_cmd req; struct hclge_desc desc[3]; int status; /* mac addr check */ if (!is_multicast_ether_addr(addr)) { dev_err(&hdev->pdev->dev, "Add mc mac err! invalid mac:%pM.\n", addr); return -EINVAL; } memset(&req, 0, sizeof(req)); hnae3_set_bit(req.flags, HCLGE_MAC_VLAN_BIT0_EN_B, 1); hnae3_set_bit(req.entry_type, HCLGE_MAC_VLAN_BIT0_EN_B, 0); hnae3_set_bit(req.entry_type, HCLGE_MAC_VLAN_BIT1_EN_B, 1); hnae3_set_bit(req.mc_mac_en, HCLGE_MAC_VLAN_BIT0_EN_B, 1); hclge_prepare_mac_addr(&req, addr); status = hclge_lookup_mac_vlan_tbl(vport, &req, desc, true); if (!status) { /* This mac addr exist, update VFID for it */ hclge_update_desc_vfid(desc, vport->vport_id, false); status = hclge_add_mac_vlan_tbl(vport, &req, desc); } else { /* This mac addr do not exist, add new entry for it */ memset(desc[0].data, 0, sizeof(desc[0].data)); memset(desc[1].data, 0, sizeof(desc[0].data)); memset(desc[2].data, 0, sizeof(desc[0].data)); hclge_update_desc_vfid(desc, vport->vport_id, false); status = hclge_add_mac_vlan_tbl(vport, &req, desc); } if (status == -ENOSPC) dev_err(&hdev->pdev->dev, "mc mac vlan table is full\n"); return status; } static int hclge_rm_mc_addr(struct hnae3_handle *handle, const unsigned char *addr) { struct hclge_vport *vport = hclge_get_vport(handle); return hclge_rm_mc_addr_common(vport, addr); } int hclge_rm_mc_addr_common(struct hclge_vport *vport, const unsigned char *addr) { struct hclge_dev *hdev = vport->back; struct hclge_mac_vlan_tbl_entry_cmd req; enum hclge_cmd_status status; struct hclge_desc desc[3]; /* mac addr check */ if (!is_multicast_ether_addr(addr)) { dev_dbg(&hdev->pdev->dev, "Remove mc mac err! invalid mac:%pM.\n", addr); return -EINVAL; } memset(&req, 0, sizeof(req)); hnae3_set_bit(req.flags, HCLGE_MAC_VLAN_BIT0_EN_B, 1); hnae3_set_bit(req.entry_type, HCLGE_MAC_VLAN_BIT0_EN_B, 0); hnae3_set_bit(req.entry_type, HCLGE_MAC_VLAN_BIT1_EN_B, 1); hnae3_set_bit(req.mc_mac_en, HCLGE_MAC_VLAN_BIT0_EN_B, 1); hclge_prepare_mac_addr(&req, addr); status = hclge_lookup_mac_vlan_tbl(vport, &req, desc, true); if (!status) { /* This mac addr exist, remove this handle's VFID for it */ hclge_update_desc_vfid(desc, vport->vport_id, true); if (hclge_is_all_function_id_zero(desc)) /* All the vfid is zero, so need to delete this entry */ status = hclge_remove_mac_vlan_tbl(vport, &req); else /* Not all the vfid is zero, update the vfid */ status = hclge_add_mac_vlan_tbl(vport, &req, desc); } else { /* Maybe this mac address is in mta table, but it cannot be * deleted here because an entry of mta represents an address * range rather than a specific address. the delete action to * all entries will take effect in update_mta_status called by * hns3_nic_set_rx_mode. */ status = 0; } return status; } static int hclge_get_mac_ethertype_cmd_status(struct hclge_dev *hdev, u16 cmdq_resp, u8 resp_code) { #define HCLGE_ETHERTYPE_SUCCESS_ADD 0 #define HCLGE_ETHERTYPE_ALREADY_ADD 1 #define HCLGE_ETHERTYPE_MGR_TBL_OVERFLOW 2 #define HCLGE_ETHERTYPE_KEY_CONFLICT 3 int return_status; if (cmdq_resp) { dev_err(&hdev->pdev->dev, "cmdq execute failed for get_mac_ethertype_cmd_status, status=%d.\n", cmdq_resp); return -EIO; } switch (resp_code) { case HCLGE_ETHERTYPE_SUCCESS_ADD: case HCLGE_ETHERTYPE_ALREADY_ADD: return_status = 0; break; case HCLGE_ETHERTYPE_MGR_TBL_OVERFLOW: dev_err(&hdev->pdev->dev, "add mac ethertype failed for manager table overflow.\n"); return_status = -EIO; break; case HCLGE_ETHERTYPE_KEY_CONFLICT: dev_err(&hdev->pdev->dev, "add mac ethertype failed for key conflict.\n"); return_status = -EIO; break; default: dev_err(&hdev->pdev->dev, "add mac ethertype failed for undefined, code=%d.\n", resp_code); return_status = -EIO; } return return_status; } static int hclge_add_mgr_tbl(struct hclge_dev *hdev, const struct hclge_mac_mgr_tbl_entry_cmd *req) { struct hclge_desc desc; u8 resp_code; u16 retval; int ret; hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_MAC_ETHTYPE_ADD, false); memcpy(desc.data, req, sizeof(struct hclge_mac_mgr_tbl_entry_cmd)); ret = hclge_cmd_send(&hdev->hw, &desc, 1); if (ret) { dev_err(&hdev->pdev->dev, "add mac ethertype failed for cmd_send, ret =%d.\n", ret); return ret; } resp_code = (le32_to_cpu(desc.data[0]) >> 8) & 0xff; retval = le16_to_cpu(desc.retval); return hclge_get_mac_ethertype_cmd_status(hdev, retval, resp_code); } static int init_mgr_tbl(struct hclge_dev *hdev) { int ret; int i; for (i = 0; i < ARRAY_SIZE(hclge_mgr_table); i++) { ret = hclge_add_mgr_tbl(hdev, &hclge_mgr_table[i]); if (ret) { dev_err(&hdev->pdev->dev, "add mac ethertype failed, ret =%d.\n", ret); return ret; } } return 0; } static void hclge_get_mac_addr(struct hnae3_handle *handle, u8 *p) { struct hclge_vport *vport = hclge_get_vport(handle); struct hclge_dev *hdev = vport->back; ether_addr_copy(p, hdev->hw.mac.mac_addr); } static int hclge_set_mac_addr(struct hnae3_handle *handle, void *p, bool is_first) { const unsigned char *new_addr = (const unsigned char *)p; struct hclge_vport *vport = hclge_get_vport(handle); struct hclge_dev *hdev = vport->back; int ret; /* mac addr check */ if (is_zero_ether_addr(new_addr) || is_broadcast_ether_addr(new_addr) || is_multicast_ether_addr(new_addr)) { dev_err(&hdev->pdev->dev, "Change uc mac err! invalid mac:%p.\n", new_addr); return -EINVAL; } if (!is_first && hclge_rm_uc_addr(handle, hdev->hw.mac.mac_addr)) dev_warn(&hdev->pdev->dev, "remove old uc mac address fail.\n"); ret = hclge_add_uc_addr(handle, new_addr); if (ret) { dev_err(&hdev->pdev->dev, "add uc mac address fail, ret =%d.\n", ret); if (!is_first && hclge_add_uc_addr(handle, hdev->hw.mac.mac_addr)) dev_err(&hdev->pdev->dev, "restore uc mac address fail.\n"); return -EIO; } ret = hclge_pause_addr_cfg(hdev, new_addr); if (ret) { dev_err(&hdev->pdev->dev, "configure mac pause address fail, ret =%d.\n", ret); return -EIO; } ether_addr_copy(hdev->hw.mac.mac_addr, new_addr); return 0; } static int hclge_do_ioctl(struct hnae3_handle *handle, struct ifreq *ifr, int cmd) { struct hclge_vport *vport = hclge_get_vport(handle); struct hclge_dev *hdev = vport->back; if (!hdev->hw.mac.phydev) return -EOPNOTSUPP; return phy_mii_ioctl(hdev->hw.mac.phydev, ifr, cmd); } static int hclge_set_vlan_filter_ctrl(struct hclge_dev *hdev, u8 vlan_type, u8 fe_type, bool filter_en) { struct hclge_vlan_filter_ctrl_cmd *req; struct hclge_desc desc; int ret; hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_VLAN_FILTER_CTRL, false); req = (struct hclge_vlan_filter_ctrl_cmd *)desc.data; req->vlan_type = vlan_type; req->vlan_fe = filter_en ? fe_type : 0; ret = hclge_cmd_send(&hdev->hw, &desc, 1); if (ret) dev_err(&hdev->pdev->dev, "set vlan filter fail, ret =%d.\n", ret); return ret; } #define HCLGE_FILTER_TYPE_VF 0 #define HCLGE_FILTER_TYPE_PORT 1 #define HCLGE_FILTER_FE_EGRESS_V1_B BIT(0) #define HCLGE_FILTER_FE_NIC_INGRESS_B BIT(0) #define HCLGE_FILTER_FE_NIC_EGRESS_B BIT(1) #define HCLGE_FILTER_FE_ROCE_INGRESS_B BIT(2) #define HCLGE_FILTER_FE_ROCE_EGRESS_B BIT(3) #define HCLGE_FILTER_FE_EGRESS (HCLGE_FILTER_FE_NIC_EGRESS_B \ | HCLGE_FILTER_FE_ROCE_EGRESS_B) #define HCLGE_FILTER_FE_INGRESS (HCLGE_FILTER_FE_NIC_INGRESS_B \ | HCLGE_FILTER_FE_ROCE_INGRESS_B) static void hclge_enable_vlan_filter(struct hnae3_handle *handle, bool enable) { struct hclge_vport *vport = hclge_get_vport(handle); struct hclge_dev *hdev = vport->back; if (hdev->pdev->revision >= 0x21) { hclge_set_vlan_filter_ctrl(hdev, HCLGE_FILTER_TYPE_VF, HCLGE_FILTER_FE_EGRESS, enable); hclge_set_vlan_filter_ctrl(hdev, HCLGE_FILTER_TYPE_PORT, HCLGE_FILTER_FE_INGRESS, enable); } else { hclge_set_vlan_filter_ctrl(hdev, HCLGE_FILTER_TYPE_VF, HCLGE_FILTER_FE_EGRESS_V1_B, enable); } if (enable) handle->netdev_flags |= HNAE3_VLAN_FLTR; else handle->netdev_flags &= ~HNAE3_VLAN_FLTR; } static int hclge_set_vf_vlan_common(struct hclge_dev *hdev, int vfid, bool is_kill, u16 vlan, u8 qos, __be16 proto) { #define HCLGE_MAX_VF_BYTES 16 struct hclge_vlan_filter_vf_cfg_cmd *req0; struct hclge_vlan_filter_vf_cfg_cmd *req1; struct hclge_desc desc[2]; u8 vf_byte_val; u8 vf_byte_off; int ret; hclge_cmd_setup_basic_desc(&desc[0], HCLGE_OPC_VLAN_FILTER_VF_CFG, false); hclge_cmd_setup_basic_desc(&desc[1], HCLGE_OPC_VLAN_FILTER_VF_CFG, false); desc[0].flag |= cpu_to_le16(HCLGE_CMD_FLAG_NEXT); vf_byte_off = vfid / 8; vf_byte_val = 1 << (vfid % 8); req0 = (struct hclge_vlan_filter_vf_cfg_cmd *)desc[0].data; req1 = (struct hclge_vlan_filter_vf_cfg_cmd *)desc[1].data; req0->vlan_id = cpu_to_le16(vlan); req0->vlan_cfg = is_kill; if (vf_byte_off < HCLGE_MAX_VF_BYTES) req0->vf_bitmap[vf_byte_off] = vf_byte_val; else req1->vf_bitmap[vf_byte_off - HCLGE_MAX_VF_BYTES] = vf_byte_val; ret = hclge_cmd_send(&hdev->hw, desc, 2); if (ret) { dev_err(&hdev->pdev->dev, "Send vf vlan command fail, ret =%d.\n", ret); return ret; } if (!is_kill) { #define HCLGE_VF_VLAN_NO_ENTRY 2 if (!req0->resp_code || req0->resp_code == 1) return 0; if (req0->resp_code == HCLGE_VF_VLAN_NO_ENTRY) { dev_warn(&hdev->pdev->dev, "vf vlan table is full, vf vlan filter is disabled\n"); return 0; } dev_err(&hdev->pdev->dev, "Add vf vlan filter fail, ret =%d.\n", req0->resp_code); } else { #define HCLGE_VF_VLAN_DEL_NO_FOUND 1 if (!req0->resp_code) return 0; if (req0->resp_code == HCLGE_VF_VLAN_DEL_NO_FOUND) { dev_warn(&hdev->pdev->dev, "vlan %d filter is not in vf vlan table\n", vlan); return 0; } dev_err(&hdev->pdev->dev, "Kill vf vlan filter fail, ret =%d.\n", req0->resp_code); } return -EIO; } static int hclge_set_port_vlan_filter(struct hclge_dev *hdev, __be16 proto, u16 vlan_id, bool is_kill) { struct hclge_vlan_filter_pf_cfg_cmd *req; struct hclge_desc desc; u8 vlan_offset_byte_val; u8 vlan_offset_byte; u8 vlan_offset_160; int ret; hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_VLAN_FILTER_PF_CFG, false); vlan_offset_160 = vlan_id / 160; vlan_offset_byte = (vlan_id % 160) / 8; vlan_offset_byte_val = 1 << (vlan_id % 8); req = (struct hclge_vlan_filter_pf_cfg_cmd *)desc.data; req->vlan_offset = vlan_offset_160; req->vlan_cfg = is_kill; req->vlan_offset_bitmap[vlan_offset_byte] = vlan_offset_byte_val; ret = hclge_cmd_send(&hdev->hw, &desc, 1); if (ret) dev_err(&hdev->pdev->dev, "port vlan command, send fail, ret =%d.\n", ret); return ret; } static int hclge_set_vlan_filter_hw(struct hclge_dev *hdev, __be16 proto, u16 vport_id, u16 vlan_id, u8 qos, bool is_kill) { u16 vport_idx, vport_num = 0; int ret; if (is_kill && !vlan_id) return 0; ret = hclge_set_vf_vlan_common(hdev, vport_id, is_kill, vlan_id, 0, proto); if (ret) { dev_err(&hdev->pdev->dev, "Set %d vport vlan filter config fail, ret =%d.\n", vport_id, ret); return ret; } /* vlan 0 may be added twice when 8021q module is enabled */ if (!is_kill && !vlan_id && test_bit(vport_id, hdev->vlan_table[vlan_id])) return 0; if (!is_kill && test_and_set_bit(vport_id, hdev->vlan_table[vlan_id])) { dev_err(&hdev->pdev->dev, "Add port vlan failed, vport %d is already in vlan %d\n", vport_id, vlan_id); return -EINVAL; } if (is_kill && !test_and_clear_bit(vport_id, hdev->vlan_table[vlan_id])) { dev_err(&hdev->pdev->dev, "Delete port vlan failed, vport %d is not in vlan %d\n", vport_id, vlan_id); return -EINVAL; } for_each_set_bit(vport_idx, hdev->vlan_table[vlan_id], HCLGE_VPORT_NUM) vport_num++; if ((is_kill && vport_num == 0) || (!is_kill && vport_num == 1)) ret = hclge_set_port_vlan_filter(hdev, proto, vlan_id, is_kill); return ret; } int hclge_set_vlan_filter(struct hnae3_handle *handle, __be16 proto, u16 vlan_id, bool is_kill) { struct hclge_vport *vport = hclge_get_vport(handle); struct hclge_dev *hdev = vport->back; return hclge_set_vlan_filter_hw(hdev, proto, vport->vport_id, vlan_id, 0, is_kill); } static int hclge_set_vf_vlan_filter(struct hnae3_handle *handle, int vfid, u16 vlan, u8 qos, __be16 proto) { struct hclge_vport *vport = hclge_get_vport(handle); struct hclge_dev *hdev = vport->back; if ((vfid >= hdev->num_alloc_vfs) || (vlan > 4095) || (qos > 7)) return -EINVAL; if (proto != htons(ETH_P_8021Q)) return -EPROTONOSUPPORT; return hclge_set_vlan_filter_hw(hdev, proto, vfid, vlan, qos, false); } static int hclge_set_vlan_tx_offload_cfg(struct hclge_vport *vport) { struct hclge_tx_vtag_cfg *vcfg = &vport->txvlan_cfg; struct hclge_vport_vtag_tx_cfg_cmd *req; struct hclge_dev *hdev = vport->back; struct hclge_desc desc; int status; hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_VLAN_PORT_TX_CFG, false); req = (struct hclge_vport_vtag_tx_cfg_cmd *)desc.data; req->def_vlan_tag1 = cpu_to_le16(vcfg->default_tag1); req->def_vlan_tag2 = cpu_to_le16(vcfg->default_tag2); hnae3_set_bit(req->vport_vlan_cfg, HCLGE_ACCEPT_TAG1_B, vcfg->accept_tag1 ? 1 : 0); hnae3_set_bit(req->vport_vlan_cfg, HCLGE_ACCEPT_UNTAG1_B, vcfg->accept_untag1 ? 1 : 0); hnae3_set_bit(req->vport_vlan_cfg, HCLGE_ACCEPT_TAG2_B, vcfg->accept_tag2 ? 1 : 0); hnae3_set_bit(req->vport_vlan_cfg, HCLGE_ACCEPT_UNTAG2_B, vcfg->accept_untag2 ? 1 : 0); hnae3_set_bit(req->vport_vlan_cfg, HCLGE_PORT_INS_TAG1_EN_B, vcfg->insert_tag1_en ? 1 : 0); hnae3_set_bit(req->vport_vlan_cfg, HCLGE_PORT_INS_TAG2_EN_B, vcfg->insert_tag2_en ? 1 : 0); hnae3_set_bit(req->vport_vlan_cfg, HCLGE_CFG_NIC_ROCE_SEL_B, 0); req->vf_offset = vport->vport_id / HCLGE_VF_NUM_PER_CMD; req->vf_bitmap[req->vf_offset] = 1 << (vport->vport_id % HCLGE_VF_NUM_PER_BYTE); status = hclge_cmd_send(&hdev->hw, &desc, 1); if (status) dev_err(&hdev->pdev->dev, "Send port txvlan cfg command fail, ret =%d\n", status); return status; } static int hclge_set_vlan_rx_offload_cfg(struct hclge_vport *vport) { struct hclge_rx_vtag_cfg *vcfg = &vport->rxvlan_cfg; struct hclge_vport_vtag_rx_cfg_cmd *req; struct hclge_dev *hdev = vport->back; struct hclge_desc desc; int status; hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_VLAN_PORT_RX_CFG, false); req = (struct hclge_vport_vtag_rx_cfg_cmd *)desc.data; hnae3_set_bit(req->vport_vlan_cfg, HCLGE_REM_TAG1_EN_B, vcfg->strip_tag1_en ? 1 : 0); hnae3_set_bit(req->vport_vlan_cfg, HCLGE_REM_TAG2_EN_B, vcfg->strip_tag2_en ? 1 : 0); hnae3_set_bit(req->vport_vlan_cfg, HCLGE_SHOW_TAG1_EN_B, vcfg->vlan1_vlan_prionly ? 1 : 0); hnae3_set_bit(req->vport_vlan_cfg, HCLGE_SHOW_TAG2_EN_B, vcfg->vlan2_vlan_prionly ? 1 : 0); req->vf_offset = vport->vport_id / HCLGE_VF_NUM_PER_CMD; req->vf_bitmap[req->vf_offset] = 1 << (vport->vport_id % HCLGE_VF_NUM_PER_BYTE); status = hclge_cmd_send(&hdev->hw, &desc, 1); if (status) dev_err(&hdev->pdev->dev, "Send port rxvlan cfg command fail, ret =%d\n", status); return status; } static int hclge_set_vlan_protocol_type(struct hclge_dev *hdev) { struct hclge_rx_vlan_type_cfg_cmd *rx_req; struct hclge_tx_vlan_type_cfg_cmd *tx_req; struct hclge_desc desc; int status; hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_MAC_VLAN_TYPE_ID, false); rx_req = (struct hclge_rx_vlan_type_cfg_cmd *)desc.data; rx_req->ot_fst_vlan_type = cpu_to_le16(hdev->vlan_type_cfg.rx_ot_fst_vlan_type); rx_req->ot_sec_vlan_type = cpu_to_le16(hdev->vlan_type_cfg.rx_ot_sec_vlan_type); rx_req->in_fst_vlan_type = cpu_to_le16(hdev->vlan_type_cfg.rx_in_fst_vlan_type); rx_req->in_sec_vlan_type = cpu_to_le16(hdev->vlan_type_cfg.rx_in_sec_vlan_type); status = hclge_cmd_send(&hdev->hw, &desc, 1); if (status) { dev_err(&hdev->pdev->dev, "Send rxvlan protocol type command fail, ret =%d\n", status); return status; } hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_MAC_VLAN_INSERT, false); tx_req = (struct hclge_tx_vlan_type_cfg_cmd *)desc.data; tx_req->ot_vlan_type = cpu_to_le16(hdev->vlan_type_cfg.tx_ot_vlan_type); tx_req->in_vlan_type = cpu_to_le16(hdev->vlan_type_cfg.tx_in_vlan_type); status = hclge_cmd_send(&hdev->hw, &desc, 1); if (status) dev_err(&hdev->pdev->dev, "Send txvlan protocol type command fail, ret =%d\n", status); return status; } static int hclge_init_vlan_config(struct hclge_dev *hdev) { #define HCLGE_DEF_VLAN_TYPE 0x8100 struct hnae3_handle *handle = &hdev->vport[0].nic; struct hclge_vport *vport; int ret; int i; if (hdev->pdev->revision >= 0x21) { ret = hclge_set_vlan_filter_ctrl(hdev, HCLGE_FILTER_TYPE_VF, HCLGE_FILTER_FE_EGRESS, true); if (ret) return ret; ret = hclge_set_vlan_filter_ctrl(hdev, HCLGE_FILTER_TYPE_PORT, HCLGE_FILTER_FE_INGRESS, true); if (ret) return ret; } else { ret = hclge_set_vlan_filter_ctrl(hdev, HCLGE_FILTER_TYPE_VF, HCLGE_FILTER_FE_EGRESS_V1_B, true); if (ret) return ret; } handle->netdev_flags |= HNAE3_VLAN_FLTR; hdev->vlan_type_cfg.rx_in_fst_vlan_type = HCLGE_DEF_VLAN_TYPE; hdev->vlan_type_cfg.rx_in_sec_vlan_type = HCLGE_DEF_VLAN_TYPE; hdev->vlan_type_cfg.rx_ot_fst_vlan_type = HCLGE_DEF_VLAN_TYPE; hdev->vlan_type_cfg.rx_ot_sec_vlan_type = HCLGE_DEF_VLAN_TYPE; hdev->vlan_type_cfg.tx_ot_vlan_type = HCLGE_DEF_VLAN_TYPE; hdev->vlan_type_cfg.tx_in_vlan_type = HCLGE_DEF_VLAN_TYPE; ret = hclge_set_vlan_protocol_type(hdev); if (ret) return ret; for (i = 0; i < hdev->num_alloc_vport; i++) { vport = &hdev->vport[i]; vport->txvlan_cfg.accept_tag1 = true; vport->txvlan_cfg.accept_untag1 = true; /* accept_tag2 and accept_untag2 are not supported on * pdev revision(0x20), new revision support them. The * value of this two fields will not return error when driver * send command to fireware in revision(0x20). * This two fields can not configured by user. */ vport->txvlan_cfg.accept_tag2 = true; vport->txvlan_cfg.accept_untag2 = true; vport->txvlan_cfg.insert_tag1_en = false; vport->txvlan_cfg.insert_tag2_en = false; vport->txvlan_cfg.default_tag1 = 0; vport->txvlan_cfg.default_tag2 = 0; ret = hclge_set_vlan_tx_offload_cfg(vport); if (ret) return ret; vport->rxvlan_cfg.strip_tag1_en = false; vport->rxvlan_cfg.strip_tag2_en = true; vport->rxvlan_cfg.vlan1_vlan_prionly = false; vport->rxvlan_cfg.vlan2_vlan_prionly = false; ret = hclge_set_vlan_rx_offload_cfg(vport); if (ret) return ret; } return hclge_set_vlan_filter(handle, htons(ETH_P_8021Q), 0, false); } int hclge_en_hw_strip_rxvtag(struct hnae3_handle *handle, bool enable) { struct hclge_vport *vport = hclge_get_vport(handle); vport->rxvlan_cfg.strip_tag1_en = false; vport->rxvlan_cfg.strip_tag2_en = enable; vport->rxvlan_cfg.vlan1_vlan_prionly = false; vport->rxvlan_cfg.vlan2_vlan_prionly = false; return hclge_set_vlan_rx_offload_cfg(vport); } static int hclge_set_mac_mtu(struct hclge_dev *hdev, int new_mps) { struct hclge_config_max_frm_size_cmd *req; struct hclge_desc desc; hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_CONFIG_MAX_FRM_SIZE, false); req = (struct hclge_config_max_frm_size_cmd *)desc.data; req->max_frm_size = cpu_to_le16(new_mps); req->min_frm_size = HCLGE_MAC_MIN_FRAME; return hclge_cmd_send(&hdev->hw, &desc, 1); } static int hclge_set_mtu(struct hnae3_handle *handle, int new_mtu) { struct hclge_vport *vport = hclge_get_vport(handle); return hclge_set_vport_mtu(vport, new_mtu); } int hclge_set_vport_mtu(struct hclge_vport *vport, int new_mtu) { struct hclge_dev *hdev = vport->back; int i, max_frm_size, ret = 0; max_frm_size = new_mtu + ETH_HLEN + ETH_FCS_LEN + 2 * VLAN_HLEN; if (max_frm_size < HCLGE_MAC_MIN_FRAME || max_frm_size > HCLGE_MAC_MAX_FRAME) return -EINVAL; max_frm_size = max(max_frm_size, HCLGE_MAC_DEFAULT_FRAME); mutex_lock(&hdev->vport_lock); /* VF's mps must fit within hdev->mps */ if (vport->vport_id && max_frm_size > hdev->mps) { mutex_unlock(&hdev->vport_lock); return -EINVAL; } else if (vport->vport_id) { vport->mps = max_frm_size; mutex_unlock(&hdev->vport_lock); return 0; } /* PF's mps must be greater then VF's mps */ for (i = 1; i < hdev->num_alloc_vport; i++) if (max_frm_size < hdev->vport[i].mps) { mutex_unlock(&hdev->vport_lock); return -EINVAL; } hclge_notify_client(hdev, HNAE3_DOWN_CLIENT); ret = hclge_set_mac_mtu(hdev, max_frm_size); if (ret) { dev_err(&hdev->pdev->dev, "Change mtu fail, ret =%d\n", ret); goto out; } hdev->mps = max_frm_size; vport->mps = max_frm_size; ret = hclge_buffer_alloc(hdev); if (ret) dev_err(&hdev->pdev->dev, "Allocate buffer fail, ret =%d\n", ret); out: hclge_notify_client(hdev, HNAE3_UP_CLIENT); mutex_unlock(&hdev->vport_lock); return ret; } static int hclge_send_reset_tqp_cmd(struct hclge_dev *hdev, u16 queue_id, bool enable) { struct hclge_reset_tqp_queue_cmd *req; struct hclge_desc desc; int ret; hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_RESET_TQP_QUEUE, false); req = (struct hclge_reset_tqp_queue_cmd *)desc.data; req->tqp_id = cpu_to_le16(queue_id & HCLGE_RING_ID_MASK); hnae3_set_bit(req->reset_req, HCLGE_TQP_RESET_B, enable); ret = hclge_cmd_send(&hdev->hw, &desc, 1); if (ret) { dev_err(&hdev->pdev->dev, "Send tqp reset cmd error, status =%d\n", ret); return ret; } return 0; } static int hclge_get_reset_status(struct hclge_dev *hdev, u16 queue_id) { struct hclge_reset_tqp_queue_cmd *req; struct hclge_desc desc; int ret; hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_RESET_TQP_QUEUE, true); req = (struct hclge_reset_tqp_queue_cmd *)desc.data; req->tqp_id = cpu_to_le16(queue_id & HCLGE_RING_ID_MASK); ret = hclge_cmd_send(&hdev->hw, &desc, 1); if (ret) { dev_err(&hdev->pdev->dev, "Get reset status error, status =%d\n", ret); return ret; } return hnae3_get_bit(req->ready_to_reset, HCLGE_TQP_RESET_B); } u16 hclge_covert_handle_qid_global(struct hnae3_handle *handle, u16 queue_id) { struct hnae3_queue *queue; struct hclge_tqp *tqp; queue = handle->kinfo.tqp[queue_id]; tqp = container_of(queue, struct hclge_tqp, q); return tqp->index; } int hclge_reset_tqp(struct hnae3_handle *handle, u16 queue_id) { struct hclge_vport *vport = hclge_get_vport(handle); struct hclge_dev *hdev = vport->back; int reset_try_times = 0; int reset_status; u16 queue_gid; int ret = 0; queue_gid = hclge_covert_handle_qid_global(handle, queue_id); ret = hclge_tqp_enable(hdev, queue_id, 0, false); if (ret) { dev_err(&hdev->pdev->dev, "Disable tqp fail, ret = %d\n", ret); return ret; } ret = hclge_send_reset_tqp_cmd(hdev, queue_gid, true); if (ret) { dev_err(&hdev->pdev->dev, "Send reset tqp cmd fail, ret = %d\n", ret); return ret; } reset_try_times = 0; while (reset_try_times++ < HCLGE_TQP_RESET_TRY_TIMES) { /* Wait for tqp hw reset */ msleep(20); reset_status = hclge_get_reset_status(hdev, queue_gid); if (reset_status) break; } if (reset_try_times >= HCLGE_TQP_RESET_TRY_TIMES) { dev_err(&hdev->pdev->dev, "Reset TQP fail\n"); return ret; } ret = hclge_send_reset_tqp_cmd(hdev, queue_gid, false); if (ret) dev_err(&hdev->pdev->dev, "Deassert the soft reset fail, ret = %d\n", ret); return ret; } void hclge_reset_vf_queue(struct hclge_vport *vport, u16 queue_id) { struct hclge_dev *hdev = vport->back; int reset_try_times = 0; int reset_status; u16 queue_gid; int ret; queue_gid = hclge_covert_handle_qid_global(&vport->nic, queue_id); ret = hclge_send_reset_tqp_cmd(hdev, queue_gid, true); if (ret) { dev_warn(&hdev->pdev->dev, "Send reset tqp cmd fail, ret = %d\n", ret); return; } reset_try_times = 0; while (reset_try_times++ < HCLGE_TQP_RESET_TRY_TIMES) { /* Wait for tqp hw reset */ msleep(20); reset_status = hclge_get_reset_status(hdev, queue_gid); if (reset_status) break; } if (reset_try_times >= HCLGE_TQP_RESET_TRY_TIMES) { dev_warn(&hdev->pdev->dev, "Reset TQP fail\n"); return; } ret = hclge_send_reset_tqp_cmd(hdev, queue_gid, false); if (ret) dev_warn(&hdev->pdev->dev, "Deassert the soft reset fail, ret = %d\n", ret); } static u32 hclge_get_fw_version(struct hnae3_handle *handle) { struct hclge_vport *vport = hclge_get_vport(handle); struct hclge_dev *hdev = vport->back; return hdev->fw_version; } static void hclge_set_flowctrl_adv(struct hclge_dev *hdev, u32 rx_en, u32 tx_en) { struct phy_device *phydev = hdev->hw.mac.phydev; if (!phydev) return; phy_set_asym_pause(phydev, rx_en, tx_en); } static int hclge_cfg_pauseparam(struct hclge_dev *hdev, u32 rx_en, u32 tx_en) { int ret; if (rx_en && tx_en) hdev->fc_mode_last_time = HCLGE_FC_FULL; else if (rx_en && !tx_en) hdev->fc_mode_last_time = HCLGE_FC_RX_PAUSE; else if (!rx_en && tx_en) hdev->fc_mode_last_time = HCLGE_FC_TX_PAUSE; else hdev->fc_mode_last_time = HCLGE_FC_NONE; if (hdev->tm_info.fc_mode == HCLGE_FC_PFC) return 0; ret = hclge_mac_pause_en_cfg(hdev, tx_en, rx_en); if (ret) { dev_err(&hdev->pdev->dev, "configure pauseparam error, ret = %d.\n", ret); return ret; } hdev->tm_info.fc_mode = hdev->fc_mode_last_time; return 0; } int hclge_cfg_flowctrl(struct hclge_dev *hdev) { struct phy_device *phydev = hdev->hw.mac.phydev; u16 remote_advertising = 0; u16 local_advertising = 0; u32 rx_pause, tx_pause; u8 flowctl; if (!phydev->link || !phydev->autoneg) return 0; local_advertising = linkmode_adv_to_lcl_adv_t(phydev->advertising); if (phydev->pause) remote_advertising = LPA_PAUSE_CAP; if (phydev->asym_pause) remote_advertising |= LPA_PAUSE_ASYM; flowctl = mii_resolve_flowctrl_fdx(local_advertising, remote_advertising); tx_pause = flowctl & FLOW_CTRL_TX; rx_pause = flowctl & FLOW_CTRL_RX; if (phydev->duplex == HCLGE_MAC_HALF) { tx_pause = 0; rx_pause = 0; } return hclge_cfg_pauseparam(hdev, rx_pause, tx_pause); } static void hclge_get_pauseparam(struct hnae3_handle *handle, u32 *auto_neg, u32 *rx_en, u32 *tx_en) { struct hclge_vport *vport = hclge_get_vport(handle); struct hclge_dev *hdev = vport->back; *auto_neg = hclge_get_autoneg(handle); if (hdev->tm_info.fc_mode == HCLGE_FC_PFC) { *rx_en = 0; *tx_en = 0; return; } if (hdev->tm_info.fc_mode == HCLGE_FC_RX_PAUSE) { *rx_en = 1; *tx_en = 0; } else if (hdev->tm_info.fc_mode == HCLGE_FC_TX_PAUSE) { *tx_en = 1; *rx_en = 0; } else if (hdev->tm_info.fc_mode == HCLGE_FC_FULL) { *rx_en = 1; *tx_en = 1; } else { *rx_en = 0; *tx_en = 0; } } static int hclge_set_pauseparam(struct hnae3_handle *handle, u32 auto_neg, u32 rx_en, u32 tx_en) { struct hclge_vport *vport = hclge_get_vport(handle); struct hclge_dev *hdev = vport->back; struct phy_device *phydev = hdev->hw.mac.phydev; u32 fc_autoneg; fc_autoneg = hclge_get_autoneg(handle); if (auto_neg != fc_autoneg) { dev_info(&hdev->pdev->dev, "To change autoneg please use: ethtool -s <dev> autoneg <on|off>\n"); return -EOPNOTSUPP; } if (hdev->tm_info.fc_mode == HCLGE_FC_PFC) { dev_info(&hdev->pdev->dev, "Priority flow control enabled. Cannot set link flow control.\n"); return -EOPNOTSUPP; } hclge_set_flowctrl_adv(hdev, rx_en, tx_en); if (!fc_autoneg) return hclge_cfg_pauseparam(hdev, rx_en, tx_en); /* Only support flow control negotiation for netdev with * phy attached for now. */ if (!phydev) return -EOPNOTSUPP; return phy_start_aneg(phydev); } static void hclge_get_ksettings_an_result(struct hnae3_handle *handle, u8 *auto_neg, u32 *speed, u8 *duplex) { struct hclge_vport *vport = hclge_get_vport(handle); struct hclge_dev *hdev = vport->back; if (speed) *speed = hdev->hw.mac.speed; if (duplex) *duplex = hdev->hw.mac.duplex; if (auto_neg) *auto_neg = hdev->hw.mac.autoneg; } static void hclge_get_media_type(struct hnae3_handle *handle, u8 *media_type) { struct hclge_vport *vport = hclge_get_vport(handle); struct hclge_dev *hdev = vport->back; if (media_type) *media_type = hdev->hw.mac.media_type; } static void hclge_get_mdix_mode(struct hnae3_handle *handle, u8 *tp_mdix_ctrl, u8 *tp_mdix) { struct hclge_vport *vport = hclge_get_vport(handle); struct hclge_dev *hdev = vport->back; struct phy_device *phydev = hdev->hw.mac.phydev; int mdix_ctrl, mdix, retval, is_resolved; if (!phydev) { *tp_mdix_ctrl = ETH_TP_MDI_INVALID; *tp_mdix = ETH_TP_MDI_INVALID; return; } phy_write(phydev, HCLGE_PHY_PAGE_REG, HCLGE_PHY_PAGE_MDIX); retval = phy_read(phydev, HCLGE_PHY_CSC_REG); mdix_ctrl = hnae3_get_field(retval, HCLGE_PHY_MDIX_CTRL_M, HCLGE_PHY_MDIX_CTRL_S); retval = phy_read(phydev, HCLGE_PHY_CSS_REG); mdix = hnae3_get_bit(retval, HCLGE_PHY_MDIX_STATUS_B); is_resolved = hnae3_get_bit(retval, HCLGE_PHY_SPEED_DUP_RESOLVE_B); phy_write(phydev, HCLGE_PHY_PAGE_REG, HCLGE_PHY_PAGE_COPPER); switch (mdix_ctrl) { case 0x0: *tp_mdix_ctrl = ETH_TP_MDI; break; case 0x1: *tp_mdix_ctrl = ETH_TP_MDI_X; break; case 0x3: *tp_mdix_ctrl = ETH_TP_MDI_AUTO; break; default: *tp_mdix_ctrl = ETH_TP_MDI_INVALID; break; } if (!is_resolved) *tp_mdix = ETH_TP_MDI_INVALID; else if (mdix) *tp_mdix = ETH_TP_MDI_X; else *tp_mdix = ETH_TP_MDI; } static int hclge_init_instance_hw(struct hclge_dev *hdev) { return hclge_mac_connect_phy(hdev); } static void hclge_uninit_instance_hw(struct hclge_dev *hdev) { hclge_mac_disconnect_phy(hdev); } static int hclge_init_client_instance(struct hnae3_client *client, struct hnae3_ae_dev *ae_dev) { struct hclge_dev *hdev = ae_dev->priv; struct hclge_vport *vport; int i, ret; for (i = 0; i < hdev->num_vmdq_vport + 1; i++) { vport = &hdev->vport[i]; switch (client->type) { case HNAE3_CLIENT_KNIC: hdev->nic_client = client; vport->nic.client = client; ret = client->ops->init_instance(&vport->nic); if (ret) goto clear_nic; ret = hclge_init_instance_hw(hdev); if (ret) { client->ops->uninit_instance(&vport->nic, 0); goto clear_nic; } hnae3_set_client_init_flag(client, ae_dev, 1); if (hdev->roce_client && hnae3_dev_roce_supported(hdev)) { struct hnae3_client *rc = hdev->roce_client; ret = hclge_init_roce_base_info(vport); if (ret) goto clear_roce; ret = rc->ops->init_instance(&vport->roce); if (ret) goto clear_roce; hnae3_set_client_init_flag(hdev->roce_client, ae_dev, 1); } break; case HNAE3_CLIENT_UNIC: hdev->nic_client = client; vport->nic.client = client; ret = client->ops->init_instance(&vport->nic); if (ret) goto clear_nic; hnae3_set_client_init_flag(client, ae_dev, 1); break; case HNAE3_CLIENT_ROCE: if (hnae3_dev_roce_supported(hdev)) { hdev->roce_client = client; vport->roce.client = client; } if (hdev->roce_client && hdev->nic_client) { ret = hclge_init_roce_base_info(vport); if (ret) goto clear_roce; ret = client->ops->init_instance(&vport->roce); if (ret) goto clear_roce; hnae3_set_client_init_flag(client, ae_dev, 1); } break; default: return -EINVAL; } } return 0; clear_nic: hdev->nic_client = NULL; vport->nic.client = NULL; return ret; clear_roce: hdev->roce_client = NULL; vport->roce.client = NULL; return ret; } static void hclge_uninit_client_instance(struct hnae3_client *client, struct hnae3_ae_dev *ae_dev) { struct hclge_dev *hdev = ae_dev->priv; struct hclge_vport *vport; int i; for (i = 0; i < hdev->num_vmdq_vport + 1; i++) { vport = &hdev->vport[i]; if (hdev->roce_client) { hdev->roce_client->ops->uninit_instance(&vport->roce, 0); hdev->roce_client = NULL; vport->roce.client = NULL; } if (client->type == HNAE3_CLIENT_ROCE) return; if (hdev->nic_client && client->ops->uninit_instance) { hclge_uninit_instance_hw(hdev); client->ops->uninit_instance(&vport->nic, 0); hdev->nic_client = NULL; vport->nic.client = NULL; } } } static int hclge_pci_init(struct hclge_dev *hdev) { struct pci_dev *pdev = hdev->pdev; struct hclge_hw *hw; int ret; ret = pci_enable_device(pdev); if (ret) { dev_err(&pdev->dev, "failed to enable PCI device\n"); return ret; } ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); if (ret) { ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); if (ret) { dev_err(&pdev->dev, "can't set consistent PCI DMA"); goto err_disable_device; } dev_warn(&pdev->dev, "set DMA mask to 32 bits\n"); } ret = pci_request_regions(pdev, HCLGE_DRIVER_NAME); if (ret) { dev_err(&pdev->dev, "PCI request regions failed %d\n", ret); goto err_disable_device; } pci_set_master(pdev); hw = &hdev->hw; hw->io_base = pcim_iomap(pdev, 2, 0); if (!hw->io_base) { dev_err(&pdev->dev, "Can't map configuration register space\n"); ret = -ENOMEM; goto err_clr_master; } hdev->num_req_vfs = pci_sriov_get_totalvfs(pdev); return 0; err_clr_master: pci_clear_master(pdev); pci_release_regions(pdev); err_disable_device: pci_disable_device(pdev); return ret; } static void hclge_pci_uninit(struct hclge_dev *hdev) { struct pci_dev *pdev = hdev->pdev; pcim_iounmap(pdev, hdev->hw.io_base); pci_free_irq_vectors(pdev); pci_clear_master(pdev); pci_release_mem_regions(pdev); pci_disable_device(pdev); } static void hclge_state_init(struct hclge_dev *hdev) { set_bit(HCLGE_STATE_SERVICE_INITED, &hdev->state); set_bit(HCLGE_STATE_DOWN, &hdev->state); clear_bit(HCLGE_STATE_RST_SERVICE_SCHED, &hdev->state); clear_bit(HCLGE_STATE_RST_HANDLING, &hdev->state); clear_bit(HCLGE_STATE_MBX_SERVICE_SCHED, &hdev->state); clear_bit(HCLGE_STATE_MBX_HANDLING, &hdev->state); } static void hclge_state_uninit(struct hclge_dev *hdev) { set_bit(HCLGE_STATE_DOWN, &hdev->state); if (hdev->service_timer.function) del_timer_sync(&hdev->service_timer); if (hdev->reset_timer.function) del_timer_sync(&hdev->reset_timer); if (hdev->service_task.func) cancel_work_sync(&hdev->service_task); if (hdev->rst_service_task.func) cancel_work_sync(&hdev->rst_service_task); if (hdev->mbx_service_task.func) cancel_work_sync(&hdev->mbx_service_task); } static void hclge_flr_prepare(struct hnae3_ae_dev *ae_dev) { #define HCLGE_FLR_WAIT_MS 100 #define HCLGE_FLR_WAIT_CNT 50 struct hclge_dev *hdev = ae_dev->priv; int cnt = 0; clear_bit(HNAE3_FLR_DOWN, &hdev->flr_state); clear_bit(HNAE3_FLR_DONE, &hdev->flr_state); set_bit(HNAE3_FLR_RESET, &hdev->default_reset_request); hclge_reset_event(hdev->pdev, NULL); while (!test_bit(HNAE3_FLR_DOWN, &hdev->flr_state) && cnt++ < HCLGE_FLR_WAIT_CNT) msleep(HCLGE_FLR_WAIT_MS); if (!test_bit(HNAE3_FLR_DOWN, &hdev->flr_state)) dev_err(&hdev->pdev->dev, "flr wait down timeout: %d\n", cnt); } static void hclge_flr_done(struct hnae3_ae_dev *ae_dev) { struct hclge_dev *hdev = ae_dev->priv; set_bit(HNAE3_FLR_DONE, &hdev->flr_state); } static int hclge_init_ae_dev(struct hnae3_ae_dev *ae_dev) { struct pci_dev *pdev = ae_dev->pdev; struct hclge_dev *hdev; int ret; hdev = devm_kzalloc(&pdev->dev, sizeof(*hdev), GFP_KERNEL); if (!hdev) { ret = -ENOMEM; goto out; } hdev->pdev = pdev; hdev->ae_dev = ae_dev; hdev->reset_type = HNAE3_NONE_RESET; hdev->reset_level = HNAE3_FUNC_RESET; ae_dev->priv = hdev; hdev->mps = ETH_FRAME_LEN + ETH_FCS_LEN + 2 * VLAN_HLEN; mutex_init(&hdev->vport_lock); ret = hclge_pci_init(hdev); if (ret) { dev_err(&pdev->dev, "PCI init failed\n"); goto out; } /* Firmware command queue initialize */ ret = hclge_cmd_queue_init(hdev); if (ret) { dev_err(&pdev->dev, "Cmd queue init failed, ret = %d.\n", ret); goto err_pci_uninit; } /* Firmware command initialize */ ret = hclge_cmd_init(hdev); if (ret) goto err_cmd_uninit; ret = hclge_get_cap(hdev); if (ret) { dev_err(&pdev->dev, "get hw capability error, ret = %d.\n", ret); goto err_cmd_uninit; } ret = hclge_configure(hdev); if (ret) { dev_err(&pdev->dev, "Configure dev error, ret = %d.\n", ret); goto err_cmd_uninit; } ret = hclge_init_msi(hdev); if (ret) { dev_err(&pdev->dev, "Init MSI/MSI-X error, ret = %d.\n", ret); goto err_cmd_uninit; } ret = hclge_misc_irq_init(hdev); if (ret) { dev_err(&pdev->dev, "Misc IRQ(vector0) init error, ret = %d.\n", ret); goto err_msi_uninit; } ret = hclge_alloc_tqps(hdev); if (ret) { dev_err(&pdev->dev, "Allocate TQPs error, ret = %d.\n", ret); goto err_msi_irq_uninit; } ret = hclge_alloc_vport(hdev); if (ret) { dev_err(&pdev->dev, "Allocate vport error, ret = %d.\n", ret); goto err_msi_irq_uninit; } ret = hclge_map_tqp(hdev); if (ret) { dev_err(&pdev->dev, "Map tqp error, ret = %d.\n", ret); goto err_msi_irq_uninit; } if (hdev->hw.mac.media_type == HNAE3_MEDIA_TYPE_COPPER) { ret = hclge_mac_mdio_config(hdev); if (ret) { dev_err(&hdev->pdev->dev, "mdio config fail ret=%d\n", ret); goto err_msi_irq_uninit; } } ret = hclge_init_umv_space(hdev); if (ret) { dev_err(&pdev->dev, "umv space init error, ret=%d.\n", ret); goto err_msi_irq_uninit; } ret = hclge_mac_init(hdev); if (ret) { dev_err(&pdev->dev, "Mac init error, ret = %d\n", ret); goto err_mdiobus_unreg; } ret = hclge_config_tso(hdev, HCLGE_TSO_MSS_MIN, HCLGE_TSO_MSS_MAX); if (ret) { dev_err(&pdev->dev, "Enable tso fail, ret =%d\n", ret); goto err_mdiobus_unreg; } ret = hclge_config_gro(hdev, true); if (ret) goto err_mdiobus_unreg; ret = hclge_init_vlan_config(hdev); if (ret) { dev_err(&pdev->dev, "VLAN init fail, ret =%d\n", ret); goto err_mdiobus_unreg; } ret = hclge_tm_schd_init(hdev); if (ret) { dev_err(&pdev->dev, "tm schd init fail, ret =%d\n", ret); goto err_mdiobus_unreg; } hclge_rss_init_cfg(hdev); ret = hclge_rss_init_hw(hdev); if (ret) { dev_err(&pdev->dev, "Rss init fail, ret =%d\n", ret); goto err_mdiobus_unreg; } ret = init_mgr_tbl(hdev); if (ret) { dev_err(&pdev->dev, "manager table init fail, ret =%d\n", ret); goto err_mdiobus_unreg; } ret = hclge_init_fd_config(hdev); if (ret) { dev_err(&pdev->dev, "fd table init fail, ret=%d\n", ret); goto err_mdiobus_unreg; } ret = hclge_hw_error_set_state(hdev, true); if (ret) { dev_err(&pdev->dev, "fail(%d) to enable hw error interrupts\n", ret); goto err_mdiobus_unreg; } hclge_dcb_ops_set(hdev); timer_setup(&hdev->service_timer, hclge_service_timer, 0); timer_setup(&hdev->reset_timer, hclge_reset_timer, 0); INIT_WORK(&hdev->service_task, hclge_service_task); INIT_WORK(&hdev->rst_service_task, hclge_reset_service_task); INIT_WORK(&hdev->mbx_service_task, hclge_mailbox_service_task); hclge_clear_all_event_cause(hdev); /* Enable MISC vector(vector0) */ hclge_enable_vector(&hdev->misc_vector, true); hclge_state_init(hdev); hdev->last_reset_time = jiffies; pr_info("%s driver initialization finished.\n", HCLGE_DRIVER_NAME); return 0; err_mdiobus_unreg: if (hdev->hw.mac.phydev) mdiobus_unregister(hdev->hw.mac.mdio_bus); err_msi_irq_uninit: hclge_misc_irq_uninit(hdev); err_msi_uninit: pci_free_irq_vectors(pdev); err_cmd_uninit: hclge_destroy_cmd_queue(&hdev->hw); err_pci_uninit: pcim_iounmap(pdev, hdev->hw.io_base); pci_clear_master(pdev); pci_release_regions(pdev); pci_disable_device(pdev); out: return ret; } static void hclge_stats_clear(struct hclge_dev *hdev) { memset(&hdev->hw_stats, 0, sizeof(hdev->hw_stats)); } static void hclge_reset_vport_state(struct hclge_dev *hdev) { struct hclge_vport *vport = hdev->vport; int i; for (i = 0; i < hdev->num_alloc_vport; i++) { hclge_vport_start(vport); vport++; } } static int hclge_reset_ae_dev(struct hnae3_ae_dev *ae_dev) { struct hclge_dev *hdev = ae_dev->priv; struct pci_dev *pdev = ae_dev->pdev; int ret; set_bit(HCLGE_STATE_DOWN, &hdev->state); hclge_stats_clear(hdev); memset(hdev->vlan_table, 0, sizeof(hdev->vlan_table)); ret = hclge_cmd_init(hdev); if (ret) { dev_err(&pdev->dev, "Cmd queue init failed\n"); return ret; } ret = hclge_map_tqp(hdev); if (ret) { dev_err(&pdev->dev, "Map tqp error, ret = %d.\n", ret); return ret; } hclge_reset_umv_space(hdev); ret = hclge_mac_init(hdev); if (ret) { dev_err(&pdev->dev, "Mac init error, ret = %d\n", ret); return ret; } ret = hclge_config_tso(hdev, HCLGE_TSO_MSS_MIN, HCLGE_TSO_MSS_MAX); if (ret) { dev_err(&pdev->dev, "Enable tso fail, ret =%d\n", ret); return ret; } ret = hclge_config_gro(hdev, true); if (ret) return ret; ret = hclge_init_vlan_config(hdev); if (ret) { dev_err(&pdev->dev, "VLAN init fail, ret =%d\n", ret); return ret; } ret = hclge_tm_init_hw(hdev); if (ret) { dev_err(&pdev->dev, "tm init hw fail, ret =%d\n", ret); return ret; } ret = hclge_rss_init_hw(hdev); if (ret) { dev_err(&pdev->dev, "Rss init fail, ret =%d\n", ret); return ret; } ret = hclge_init_fd_config(hdev); if (ret) { dev_err(&pdev->dev, "fd table init fail, ret=%d\n", ret); return ret; } /* Re-enable the hw error interrupts because * the interrupts get disabled on core/global reset. */ ret = hclge_hw_error_set_state(hdev, true); if (ret) { dev_err(&pdev->dev, "fail(%d) to re-enable HNS hw error interrupts\n", ret); return ret; } hclge_reset_vport_state(hdev); dev_info(&pdev->dev, "Reset done, %s driver initialization finished.\n", HCLGE_DRIVER_NAME); return 0; } static void hclge_uninit_ae_dev(struct hnae3_ae_dev *ae_dev) { struct hclge_dev *hdev = ae_dev->priv; struct hclge_mac *mac = &hdev->hw.mac; hclge_state_uninit(hdev); if (mac->phydev) mdiobus_unregister(mac->mdio_bus); hclge_uninit_umv_space(hdev); /* Disable MISC vector(vector0) */ hclge_enable_vector(&hdev->misc_vector, false); synchronize_irq(hdev->misc_vector.vector_irq); hclge_hw_error_set_state(hdev, false); hclge_destroy_cmd_queue(&hdev->hw); hclge_misc_irq_uninit(hdev); hclge_pci_uninit(hdev); mutex_destroy(&hdev->vport_lock); ae_dev->priv = NULL; } static u32 hclge_get_max_channels(struct hnae3_handle *handle) { struct hnae3_knic_private_info *kinfo = &handle->kinfo; struct hclge_vport *vport = hclge_get_vport(handle); struct hclge_dev *hdev = vport->back; return min_t(u32, hdev->rss_size_max * kinfo->num_tc, hdev->num_tqps); } static void hclge_get_channels(struct hnae3_handle *handle, struct ethtool_channels *ch) { struct hclge_vport *vport = hclge_get_vport(handle); ch->max_combined = hclge_get_max_channels(handle); ch->other_count = 1; ch->max_other = 1; ch->combined_count = vport->alloc_tqps; } static void hclge_get_tqps_and_rss_info(struct hnae3_handle *handle, u16 *alloc_tqps, u16 *max_rss_size) { struct hclge_vport *vport = hclge_get_vport(handle); struct hclge_dev *hdev = vport->back; *alloc_tqps = vport->alloc_tqps; *max_rss_size = hdev->rss_size_max; } static void hclge_release_tqp(struct hclge_vport *vport) { struct hnae3_knic_private_info *kinfo = &vport->nic.kinfo; struct hclge_dev *hdev = vport->back; int i; for (i = 0; i < kinfo->num_tqps; i++) { struct hclge_tqp *tqp = container_of(kinfo->tqp[i], struct hclge_tqp, q); tqp->q.handle = NULL; tqp->q.tqp_index = 0; tqp->alloced = false; } devm_kfree(&hdev->pdev->dev, kinfo->tqp); kinfo->tqp = NULL; } static int hclge_set_channels(struct hnae3_handle *handle, u32 new_tqps_num) { struct hclge_vport *vport = hclge_get_vport(handle); struct hnae3_knic_private_info *kinfo = &vport->nic.kinfo; struct hclge_dev *hdev = vport->back; int cur_rss_size = kinfo->rss_size; int cur_tqps = kinfo->num_tqps; u16 tc_offset[HCLGE_MAX_TC_NUM]; u16 tc_valid[HCLGE_MAX_TC_NUM]; u16 tc_size[HCLGE_MAX_TC_NUM]; u16 roundup_size; u32 *rss_indir; int ret, i; /* Free old tqps, and reallocate with new tqp number when nic setup */ hclge_release_tqp(vport); ret = hclge_knic_setup(vport, new_tqps_num, kinfo->num_desc); if (ret) { dev_err(&hdev->pdev->dev, "setup nic fail, ret =%d\n", ret); return ret; } ret = hclge_map_tqp_to_vport(hdev, vport); if (ret) { dev_err(&hdev->pdev->dev, "map vport tqp fail, ret =%d\n", ret); return ret; } ret = hclge_tm_schd_init(hdev); if (ret) { dev_err(&hdev->pdev->dev, "tm schd init fail, ret =%d\n", ret); return ret; } roundup_size = roundup_pow_of_two(kinfo->rss_size); roundup_size = ilog2(roundup_size); /* Set the RSS TC mode according to the new RSS size */ for (i = 0; i < HCLGE_MAX_TC_NUM; i++) { tc_valid[i] = 0; if (!(hdev->hw_tc_map & BIT(i))) continue; tc_valid[i] = 1; tc_size[i] = roundup_size; tc_offset[i] = kinfo->rss_size * i; } ret = hclge_set_rss_tc_mode(hdev, tc_valid, tc_size, tc_offset); if (ret) return ret; /* Reinitializes the rss indirect table according to the new RSS size */ rss_indir = kcalloc(HCLGE_RSS_IND_TBL_SIZE, sizeof(u32), GFP_KERNEL); if (!rss_indir) return -ENOMEM; for (i = 0; i < HCLGE_RSS_IND_TBL_SIZE; i++) rss_indir[i] = i % kinfo->rss_size; ret = hclge_set_rss(handle, rss_indir, NULL, 0); if (ret) dev_err(&hdev->pdev->dev, "set rss indir table fail, ret=%d\n", ret); kfree(rss_indir); if (!ret) dev_info(&hdev->pdev->dev, "Channels changed, rss_size from %d to %d, tqps from %d to %d", cur_rss_size, kinfo->rss_size, cur_tqps, kinfo->rss_size * kinfo->num_tc); return ret; } static int hclge_get_regs_num(struct hclge_dev *hdev, u32 *regs_num_32_bit, u32 *regs_num_64_bit) { struct hclge_desc desc; u32 total_num; int ret; hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_QUERY_REG_NUM, true); ret = hclge_cmd_send(&hdev->hw, &desc, 1); if (ret) { dev_err(&hdev->pdev->dev, "Query register number cmd failed, ret = %d.\n", ret); return ret; } *regs_num_32_bit = le32_to_cpu(desc.data[0]); *regs_num_64_bit = le32_to_cpu(desc.data[1]); total_num = *regs_num_32_bit + *regs_num_64_bit; if (!total_num) return -EINVAL; return 0; } static int hclge_get_32_bit_regs(struct hclge_dev *hdev, u32 regs_num, void *data) { #define HCLGE_32_BIT_REG_RTN_DATANUM 8 struct hclge_desc *desc; u32 *reg_val = data; __le32 *desc_data; int cmd_num; int i, k, n; int ret; if (regs_num == 0) return 0; cmd_num = DIV_ROUND_UP(regs_num + 2, HCLGE_32_BIT_REG_RTN_DATANUM); desc = kcalloc(cmd_num, sizeof(struct hclge_desc), GFP_KERNEL); if (!desc) return -ENOMEM; hclge_cmd_setup_basic_desc(&desc[0], HCLGE_OPC_QUERY_32_BIT_REG, true); ret = hclge_cmd_send(&hdev->hw, desc, cmd_num); if (ret) { dev_err(&hdev->pdev->dev, "Query 32 bit register cmd failed, ret = %d.\n", ret); kfree(desc); return ret; } for (i = 0; i < cmd_num; i++) { if (i == 0) { desc_data = (__le32 *)(&desc[i].data[0]); n = HCLGE_32_BIT_REG_RTN_DATANUM - 2; } else { desc_data = (__le32 *)(&desc[i]); n = HCLGE_32_BIT_REG_RTN_DATANUM; } for (k = 0; k < n; k++) { *reg_val++ = le32_to_cpu(*desc_data++); regs_num--; if (!regs_num) break; } } kfree(desc); return 0; } static int hclge_get_64_bit_regs(struct hclge_dev *hdev, u32 regs_num, void *data) { #define HCLGE_64_BIT_REG_RTN_DATANUM 4 struct hclge_desc *desc; u64 *reg_val = data; __le64 *desc_data; int cmd_num; int i, k, n; int ret; if (regs_num == 0) return 0; cmd_num = DIV_ROUND_UP(regs_num + 1, HCLGE_64_BIT_REG_RTN_DATANUM); desc = kcalloc(cmd_num, sizeof(struct hclge_desc), GFP_KERNEL); if (!desc) return -ENOMEM; hclge_cmd_setup_basic_desc(&desc[0], HCLGE_OPC_QUERY_64_BIT_REG, true); ret = hclge_cmd_send(&hdev->hw, desc, cmd_num); if (ret) { dev_err(&hdev->pdev->dev, "Query 64 bit register cmd failed, ret = %d.\n", ret); kfree(desc); return ret; } for (i = 0; i < cmd_num; i++) { if (i == 0) { desc_data = (__le64 *)(&desc[i].data[0]); n = HCLGE_64_BIT_REG_RTN_DATANUM - 1; } else { desc_data = (__le64 *)(&desc[i]); n = HCLGE_64_BIT_REG_RTN_DATANUM; } for (k = 0; k < n; k++) { *reg_val++ = le64_to_cpu(*desc_data++); regs_num--; if (!regs_num) break; } } kfree(desc); return 0; } #define MAX_SEPARATE_NUM 4 #define SEPARATOR_VALUE 0xFFFFFFFF #define REG_NUM_PER_LINE 4 #define REG_LEN_PER_LINE (REG_NUM_PER_LINE * sizeof(u32)) static int hclge_get_regs_len(struct hnae3_handle *handle) { int cmdq_lines, common_lines, ring_lines, tqp_intr_lines; struct hnae3_knic_private_info *kinfo = &handle->kinfo; struct hclge_vport *vport = hclge_get_vport(handle); struct hclge_dev *hdev = vport->back; u32 regs_num_32_bit, regs_num_64_bit; int ret; ret = hclge_get_regs_num(hdev, ®s_num_32_bit, ®s_num_64_bit); if (ret) { dev_err(&hdev->pdev->dev, "Get register number failed, ret = %d.\n", ret); return -EOPNOTSUPP; } cmdq_lines = sizeof(cmdq_reg_addr_list) / REG_LEN_PER_LINE + 1; common_lines = sizeof(common_reg_addr_list) / REG_LEN_PER_LINE + 1; ring_lines = sizeof(ring_reg_addr_list) / REG_LEN_PER_LINE + 1; tqp_intr_lines = sizeof(tqp_intr_reg_addr_list) / REG_LEN_PER_LINE + 1; return (cmdq_lines + common_lines + ring_lines * kinfo->num_tqps + tqp_intr_lines * (hdev->num_msi_used - 1)) * REG_LEN_PER_LINE + regs_num_32_bit * sizeof(u32) + regs_num_64_bit * sizeof(u64); } static void hclge_get_regs(struct hnae3_handle *handle, u32 *version, void *data) { struct hnae3_knic_private_info *kinfo = &handle->kinfo; struct hclge_vport *vport = hclge_get_vport(handle); struct hclge_dev *hdev = vport->back; u32 regs_num_32_bit, regs_num_64_bit; int i, j, reg_um, separator_num; u32 *reg = data; int ret; *version = hdev->fw_version; ret = hclge_get_regs_num(hdev, ®s_num_32_bit, ®s_num_64_bit); if (ret) { dev_err(&hdev->pdev->dev, "Get register number failed, ret = %d.\n", ret); return; } /* fetching per-PF registers valus from PF PCIe register space */ reg_um = sizeof(cmdq_reg_addr_list) / sizeof(u32); separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE; for (i = 0; i < reg_um; i++) *reg++ = hclge_read_dev(&hdev->hw, cmdq_reg_addr_list[i]); for (i = 0; i < separator_num; i++) *reg++ = SEPARATOR_VALUE; reg_um = sizeof(common_reg_addr_list) / sizeof(u32); separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE; for (i = 0; i < reg_um; i++) *reg++ = hclge_read_dev(&hdev->hw, common_reg_addr_list[i]); for (i = 0; i < separator_num; i++) *reg++ = SEPARATOR_VALUE; reg_um = sizeof(ring_reg_addr_list) / sizeof(u32); separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE; for (j = 0; j < kinfo->num_tqps; j++) { for (i = 0; i < reg_um; i++) *reg++ = hclge_read_dev(&hdev->hw, ring_reg_addr_list[i] + 0x200 * j); for (i = 0; i < separator_num; i++) *reg++ = SEPARATOR_VALUE; } reg_um = sizeof(tqp_intr_reg_addr_list) / sizeof(u32); separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE; for (j = 0; j < hdev->num_msi_used - 1; j++) { for (i = 0; i < reg_um; i++) *reg++ = hclge_read_dev(&hdev->hw, tqp_intr_reg_addr_list[i] + 4 * j); for (i = 0; i < separator_num; i++) *reg++ = SEPARATOR_VALUE; } /* fetching PF common registers values from firmware */ ret = hclge_get_32_bit_regs(hdev, regs_num_32_bit, reg); if (ret) { dev_err(&hdev->pdev->dev, "Get 32 bit register failed, ret = %d.\n", ret); return; } reg += regs_num_32_bit; ret = hclge_get_64_bit_regs(hdev, regs_num_64_bit, reg); if (ret) dev_err(&hdev->pdev->dev, "Get 64 bit register failed, ret = %d.\n", ret); } static int hclge_set_led_status(struct hclge_dev *hdev, u8 locate_led_status) { struct hclge_set_led_state_cmd *req; struct hclge_desc desc; int ret; hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_LED_STATUS_CFG, false); req = (struct hclge_set_led_state_cmd *)desc.data; hnae3_set_field(req->locate_led_config, HCLGE_LED_LOCATE_STATE_M, HCLGE_LED_LOCATE_STATE_S, locate_led_status); ret = hclge_cmd_send(&hdev->hw, &desc, 1); if (ret) dev_err(&hdev->pdev->dev, "Send set led state cmd error, ret =%d\n", ret); return ret; } enum hclge_led_status { HCLGE_LED_OFF, HCLGE_LED_ON, HCLGE_LED_NO_CHANGE = 0xFF, }; static int hclge_set_led_id(struct hnae3_handle *handle, enum ethtool_phys_id_state status) { struct hclge_vport *vport = hclge_get_vport(handle); struct hclge_dev *hdev = vport->back; switch (status) { case ETHTOOL_ID_ACTIVE: return hclge_set_led_status(hdev, HCLGE_LED_ON); case ETHTOOL_ID_INACTIVE: return hclge_set_led_status(hdev, HCLGE_LED_OFF); default: return -EINVAL; } } static void hclge_get_link_mode(struct hnae3_handle *handle, unsigned long *supported, unsigned long *advertising) { unsigned int size = BITS_TO_LONGS(__ETHTOOL_LINK_MODE_MASK_NBITS); struct hclge_vport *vport = hclge_get_vport(handle); struct hclge_dev *hdev = vport->back; unsigned int idx = 0; for (; idx < size; idx++) { supported[idx] = hdev->hw.mac.supported[idx]; advertising[idx] = hdev->hw.mac.advertising[idx]; } } static int hclge_gro_en(struct hnae3_handle *handle, int enable) { struct hclge_vport *vport = hclge_get_vport(handle); struct hclge_dev *hdev = vport->back; return hclge_config_gro(hdev, enable); } static const struct hnae3_ae_ops hclge_ops = { .init_ae_dev = hclge_init_ae_dev, .uninit_ae_dev = hclge_uninit_ae_dev, .flr_prepare = hclge_flr_prepare, .flr_done = hclge_flr_done, .init_client_instance = hclge_init_client_instance, .uninit_client_instance = hclge_uninit_client_instance, .map_ring_to_vector = hclge_map_ring_to_vector, .unmap_ring_from_vector = hclge_unmap_ring_frm_vector, .get_vector = hclge_get_vector, .put_vector = hclge_put_vector, .set_promisc_mode = hclge_set_promisc_mode, .set_loopback = hclge_set_loopback, .start = hclge_ae_start, .stop = hclge_ae_stop, .client_start = hclge_client_start, .client_stop = hclge_client_stop, .get_status = hclge_get_status, .get_ksettings_an_result = hclge_get_ksettings_an_result, .update_speed_duplex_h = hclge_update_speed_duplex_h, .cfg_mac_speed_dup_h = hclge_cfg_mac_speed_dup_h, .get_media_type = hclge_get_media_type, .get_rss_key_size = hclge_get_rss_key_size, .get_rss_indir_size = hclge_get_rss_indir_size, .get_rss = hclge_get_rss, .set_rss = hclge_set_rss, .set_rss_tuple = hclge_set_rss_tuple, .get_rss_tuple = hclge_get_rss_tuple, .get_tc_size = hclge_get_tc_size, .get_mac_addr = hclge_get_mac_addr, .set_mac_addr = hclge_set_mac_addr, .do_ioctl = hclge_do_ioctl, .add_uc_addr = hclge_add_uc_addr, .rm_uc_addr = hclge_rm_uc_addr, .add_mc_addr = hclge_add_mc_addr, .rm_mc_addr = hclge_rm_mc_addr, .set_autoneg = hclge_set_autoneg, .get_autoneg = hclge_get_autoneg, .get_pauseparam = hclge_get_pauseparam, .set_pauseparam = hclge_set_pauseparam, .set_mtu = hclge_set_mtu, .reset_queue = hclge_reset_tqp, .get_stats = hclge_get_stats, .update_stats = hclge_update_stats, .get_strings = hclge_get_strings, .get_sset_count = hclge_get_sset_count, .get_fw_version = hclge_get_fw_version, .get_mdix_mode = hclge_get_mdix_mode, .enable_vlan_filter = hclge_enable_vlan_filter, .set_vlan_filter = hclge_set_vlan_filter, .set_vf_vlan_filter = hclge_set_vf_vlan_filter, .enable_hw_strip_rxvtag = hclge_en_hw_strip_rxvtag, .reset_event = hclge_reset_event, .set_default_reset_request = hclge_set_def_reset_request, .get_tqps_and_rss_info = hclge_get_tqps_and_rss_info, .set_channels = hclge_set_channels, .get_channels = hclge_get_channels, .get_regs_len = hclge_get_regs_len, .get_regs = hclge_get_regs, .set_led_id = hclge_set_led_id, .get_link_mode = hclge_get_link_mode, .add_fd_entry = hclge_add_fd_entry, .del_fd_entry = hclge_del_fd_entry, .del_all_fd_entries = hclge_del_all_fd_entries, .get_fd_rule_cnt = hclge_get_fd_rule_cnt, .get_fd_rule_info = hclge_get_fd_rule_info, .get_fd_all_rules = hclge_get_all_rules, .restore_fd_rules = hclge_restore_fd_entries, .enable_fd = hclge_enable_fd, .dbg_run_cmd = hclge_dbg_run_cmd, .handle_hw_ras_error = hclge_handle_hw_ras_error, .get_hw_reset_stat = hclge_get_hw_reset_stat, .ae_dev_resetting = hclge_ae_dev_resetting, .ae_dev_reset_cnt = hclge_ae_dev_reset_cnt, .set_gro_en = hclge_gro_en, .get_global_queue_id = hclge_covert_handle_qid_global, .set_timer_task = hclge_set_timer_task, }; static struct hnae3_ae_algo ae_algo = { .ops = &hclge_ops, .pdev_id_table = ae_algo_pci_tbl, }; static int hclge_init(void) { pr_info("%s is initializing\n", HCLGE_NAME); hnae3_register_ae_algo(&ae_algo); return 0; } static void hclge_exit(void) { hnae3_unregister_ae_algo(&ae_algo); } module_init(hclge_init); module_exit(hclge_exit); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Huawei Tech. Co., Ltd."); MODULE_DESCRIPTION("HCLGE Driver"); MODULE_VERSION(HCLGE_MOD_VERSION);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1