Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Salil | 7026 | 55.58% | 9 | 12.50% |
Jian Shen | 2552 | 20.19% | 13 | 18.06% |
Huazhong Tan | 1565 | 12.38% | 18 | 25.00% |
Lin Yun Sheng | 595 | 4.71% | 8 | 11.11% |
Li Peng | 565 | 4.47% | 12 | 16.67% |
Fuyun Liang | 204 | 1.61% | 8 | 11.11% |
Zhongzhu Liu | 103 | 0.81% | 1 | 1.39% |
Xi Wang | 16 | 0.13% | 1 | 1.39% |
Lijun Ou | 11 | 0.09% | 1 | 1.39% |
Shiju Jose | 5 | 0.04% | 1 | 1.39% |
Total | 12642 | 72 |
// SPDX-License-Identifier: GPL-2.0+ // Copyright (c) 2016-2017 Hisilicon Limited. #include <linux/etherdevice.h> #include <linux/iopoll.h> #include <net/rtnetlink.h> #include "hclgevf_cmd.h" #include "hclgevf_main.h" #include "hclge_mbx.h" #include "hnae3.h" #define HCLGEVF_NAME "hclgevf" static int hclgevf_reset_hdev(struct hclgevf_dev *hdev); static struct hnae3_ae_algo ae_algovf; static const struct pci_device_id ae_algovf_pci_tbl[] = { {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_VF), 0}, {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_DCB_PFC_VF), 0}, /* required last entry */ {0, } }; MODULE_DEVICE_TABLE(pci, ae_algovf_pci_tbl); static const u32 cmdq_reg_addr_list[] = {HCLGEVF_CMDQ_TX_ADDR_L_REG, HCLGEVF_CMDQ_TX_ADDR_H_REG, HCLGEVF_CMDQ_TX_DEPTH_REG, HCLGEVF_CMDQ_TX_TAIL_REG, HCLGEVF_CMDQ_TX_HEAD_REG, HCLGEVF_CMDQ_RX_ADDR_L_REG, HCLGEVF_CMDQ_RX_ADDR_H_REG, HCLGEVF_CMDQ_RX_DEPTH_REG, HCLGEVF_CMDQ_RX_TAIL_REG, HCLGEVF_CMDQ_RX_HEAD_REG, HCLGEVF_VECTOR0_CMDQ_SRC_REG, HCLGEVF_CMDQ_INTR_STS_REG, HCLGEVF_CMDQ_INTR_EN_REG, HCLGEVF_CMDQ_INTR_GEN_REG}; static const u32 common_reg_addr_list[] = {HCLGEVF_MISC_VECTOR_REG_BASE, HCLGEVF_RST_ING, HCLGEVF_GRO_EN_REG}; static const u32 ring_reg_addr_list[] = {HCLGEVF_RING_RX_ADDR_L_REG, HCLGEVF_RING_RX_ADDR_H_REG, HCLGEVF_RING_RX_BD_NUM_REG, HCLGEVF_RING_RX_BD_LENGTH_REG, HCLGEVF_RING_RX_MERGE_EN_REG, HCLGEVF_RING_RX_TAIL_REG, HCLGEVF_RING_RX_HEAD_REG, HCLGEVF_RING_RX_FBD_NUM_REG, HCLGEVF_RING_RX_OFFSET_REG, HCLGEVF_RING_RX_FBD_OFFSET_REG, HCLGEVF_RING_RX_STASH_REG, HCLGEVF_RING_RX_BD_ERR_REG, HCLGEVF_RING_TX_ADDR_L_REG, HCLGEVF_RING_TX_ADDR_H_REG, HCLGEVF_RING_TX_BD_NUM_REG, HCLGEVF_RING_TX_PRIORITY_REG, HCLGEVF_RING_TX_TC_REG, HCLGEVF_RING_TX_MERGE_EN_REG, HCLGEVF_RING_TX_TAIL_REG, HCLGEVF_RING_TX_HEAD_REG, HCLGEVF_RING_TX_FBD_NUM_REG, HCLGEVF_RING_TX_OFFSET_REG, HCLGEVF_RING_TX_EBD_NUM_REG, HCLGEVF_RING_TX_EBD_OFFSET_REG, HCLGEVF_RING_TX_BD_ERR_REG, HCLGEVF_RING_EN_REG}; static const u32 tqp_intr_reg_addr_list[] = {HCLGEVF_TQP_INTR_CTRL_REG, HCLGEVF_TQP_INTR_GL0_REG, HCLGEVF_TQP_INTR_GL1_REG, HCLGEVF_TQP_INTR_GL2_REG, HCLGEVF_TQP_INTR_RL_REG}; static inline struct hclgevf_dev *hclgevf_ae_get_hdev( struct hnae3_handle *handle) { return container_of(handle, struct hclgevf_dev, nic); } static int hclgevf_tqps_update_stats(struct hnae3_handle *handle) { struct hnae3_knic_private_info *kinfo = &handle->kinfo; struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); struct hclgevf_desc desc; struct hclgevf_tqp *tqp; int status; int i; for (i = 0; i < kinfo->num_tqps; i++) { tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q); hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_RX_STATUS, true); desc.data[0] = cpu_to_le32(tqp->index & 0x1ff); status = hclgevf_cmd_send(&hdev->hw, &desc, 1); if (status) { dev_err(&hdev->pdev->dev, "Query tqp stat fail, status = %d,queue = %d\n", status, i); return status; } tqp->tqp_stats.rcb_rx_ring_pktnum_rcd += le32_to_cpu(desc.data[1]); hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_TX_STATUS, true); desc.data[0] = cpu_to_le32(tqp->index & 0x1ff); status = hclgevf_cmd_send(&hdev->hw, &desc, 1); if (status) { dev_err(&hdev->pdev->dev, "Query tqp stat fail, status = %d,queue = %d\n", status, i); return status; } tqp->tqp_stats.rcb_tx_ring_pktnum_rcd += le32_to_cpu(desc.data[1]); } return 0; } static u64 *hclgevf_tqps_get_stats(struct hnae3_handle *handle, u64 *data) { struct hnae3_knic_private_info *kinfo = &handle->kinfo; struct hclgevf_tqp *tqp; u64 *buff = data; int i; for (i = 0; i < kinfo->num_tqps; i++) { tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q); *buff++ = tqp->tqp_stats.rcb_tx_ring_pktnum_rcd; } for (i = 0; i < kinfo->num_tqps; i++) { tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q); *buff++ = tqp->tqp_stats.rcb_rx_ring_pktnum_rcd; } return buff; } static int hclgevf_tqps_get_sset_count(struct hnae3_handle *handle, int strset) { struct hnae3_knic_private_info *kinfo = &handle->kinfo; return kinfo->num_tqps * 2; } static u8 *hclgevf_tqps_get_strings(struct hnae3_handle *handle, u8 *data) { struct hnae3_knic_private_info *kinfo = &handle->kinfo; u8 *buff = data; int i = 0; for (i = 0; i < kinfo->num_tqps; i++) { struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q); snprintf(buff, ETH_GSTRING_LEN, "txq%d_pktnum_rcd", tqp->index); buff += ETH_GSTRING_LEN; } for (i = 0; i < kinfo->num_tqps; i++) { struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q); snprintf(buff, ETH_GSTRING_LEN, "rxq%d_pktnum_rcd", tqp->index); buff += ETH_GSTRING_LEN; } return buff; } static void hclgevf_update_stats(struct hnae3_handle *handle, struct net_device_stats *net_stats) { struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); int status; status = hclgevf_tqps_update_stats(handle); if (status) dev_err(&hdev->pdev->dev, "VF update of TQPS stats fail, status = %d.\n", status); } static int hclgevf_get_sset_count(struct hnae3_handle *handle, int strset) { if (strset == ETH_SS_TEST) return -EOPNOTSUPP; else if (strset == ETH_SS_STATS) return hclgevf_tqps_get_sset_count(handle, strset); return 0; } static void hclgevf_get_strings(struct hnae3_handle *handle, u32 strset, u8 *data) { u8 *p = (char *)data; if (strset == ETH_SS_STATS) p = hclgevf_tqps_get_strings(handle, p); } static void hclgevf_get_stats(struct hnae3_handle *handle, u64 *data) { hclgevf_tqps_get_stats(handle, data); } static int hclgevf_get_tc_info(struct hclgevf_dev *hdev) { u8 resp_msg; int status; status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_TCINFO, 0, NULL, 0, true, &resp_msg, sizeof(u8)); if (status) { dev_err(&hdev->pdev->dev, "VF request to get TC info from PF failed %d", status); return status; } hdev->hw_tc_map = resp_msg; return 0; } static int hclgevf_get_queue_info(struct hclgevf_dev *hdev) { #define HCLGEVF_TQPS_RSS_INFO_LEN 8 u8 resp_msg[HCLGEVF_TQPS_RSS_INFO_LEN]; int status; status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_QINFO, 0, NULL, 0, true, resp_msg, HCLGEVF_TQPS_RSS_INFO_LEN); if (status) { dev_err(&hdev->pdev->dev, "VF request to get tqp info from PF failed %d", status); return status; } memcpy(&hdev->num_tqps, &resp_msg[0], sizeof(u16)); memcpy(&hdev->rss_size_max, &resp_msg[2], sizeof(u16)); memcpy(&hdev->num_desc, &resp_msg[4], sizeof(u16)); memcpy(&hdev->rx_buf_len, &resp_msg[6], sizeof(u16)); return 0; } static u16 hclgevf_get_qid_global(struct hnae3_handle *handle, u16 queue_id) { struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); u8 msg_data[2], resp_data[2]; u16 qid_in_pf = 0; int ret; memcpy(&msg_data[0], &queue_id, sizeof(queue_id)); ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_QID_IN_PF, 0, msg_data, 2, true, resp_data, 2); if (!ret) qid_in_pf = *(u16 *)resp_data; return qid_in_pf; } static int hclgevf_alloc_tqps(struct hclgevf_dev *hdev) { struct hclgevf_tqp *tqp; int i; hdev->htqp = devm_kcalloc(&hdev->pdev->dev, hdev->num_tqps, sizeof(struct hclgevf_tqp), GFP_KERNEL); if (!hdev->htqp) return -ENOMEM; tqp = hdev->htqp; for (i = 0; i < hdev->num_tqps; i++) { tqp->dev = &hdev->pdev->dev; tqp->index = i; tqp->q.ae_algo = &ae_algovf; tqp->q.buf_size = hdev->rx_buf_len; tqp->q.desc_num = hdev->num_desc; tqp->q.io_base = hdev->hw.io_base + HCLGEVF_TQP_REG_OFFSET + i * HCLGEVF_TQP_REG_SIZE; tqp++; } return 0; } static int hclgevf_knic_setup(struct hclgevf_dev *hdev) { struct hnae3_handle *nic = &hdev->nic; struct hnae3_knic_private_info *kinfo; u16 new_tqps = hdev->num_tqps; int i; kinfo = &nic->kinfo; kinfo->num_tc = 0; kinfo->num_desc = hdev->num_desc; kinfo->rx_buf_len = hdev->rx_buf_len; for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) if (hdev->hw_tc_map & BIT(i)) kinfo->num_tc++; kinfo->rss_size = min_t(u16, hdev->rss_size_max, new_tqps / kinfo->num_tc); new_tqps = kinfo->rss_size * kinfo->num_tc; kinfo->num_tqps = min(new_tqps, hdev->num_tqps); kinfo->tqp = devm_kcalloc(&hdev->pdev->dev, kinfo->num_tqps, sizeof(struct hnae3_queue *), GFP_KERNEL); if (!kinfo->tqp) return -ENOMEM; for (i = 0; i < kinfo->num_tqps; i++) { hdev->htqp[i].q.handle = &hdev->nic; hdev->htqp[i].q.tqp_index = i; kinfo->tqp[i] = &hdev->htqp[i].q; } return 0; } static void hclgevf_request_link_info(struct hclgevf_dev *hdev) { int status; u8 resp_msg; status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_LINK_STATUS, 0, NULL, 0, false, &resp_msg, sizeof(u8)); if (status) dev_err(&hdev->pdev->dev, "VF failed to fetch link status(%d) from PF", status); } void hclgevf_update_link_status(struct hclgevf_dev *hdev, int link_state) { struct hnae3_handle *handle = &hdev->nic; struct hnae3_client *client; client = handle->client; link_state = test_bit(HCLGEVF_STATE_DOWN, &hdev->state) ? 0 : link_state; if (link_state != hdev->hw.mac.link) { client->ops->link_status_change(handle, !!link_state); hdev->hw.mac.link = link_state; } } static int hclgevf_set_handle_info(struct hclgevf_dev *hdev) { struct hnae3_handle *nic = &hdev->nic; int ret; nic->ae_algo = &ae_algovf; nic->pdev = hdev->pdev; nic->numa_node_mask = hdev->numa_node_mask; nic->flags |= HNAE3_SUPPORT_VF; if (hdev->ae_dev->dev_type != HNAE3_DEV_KNIC) { dev_err(&hdev->pdev->dev, "unsupported device type %d\n", hdev->ae_dev->dev_type); return -EINVAL; } ret = hclgevf_knic_setup(hdev); if (ret) dev_err(&hdev->pdev->dev, "VF knic setup failed %d\n", ret); return ret; } static void hclgevf_free_vector(struct hclgevf_dev *hdev, int vector_id) { if (hdev->vector_status[vector_id] == HCLGEVF_INVALID_VPORT) { dev_warn(&hdev->pdev->dev, "vector(vector_id %d) has been freed.\n", vector_id); return; } hdev->vector_status[vector_id] = HCLGEVF_INVALID_VPORT; hdev->num_msi_left += 1; hdev->num_msi_used -= 1; } static int hclgevf_get_vector(struct hnae3_handle *handle, u16 vector_num, struct hnae3_vector_info *vector_info) { struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); struct hnae3_vector_info *vector = vector_info; int alloc = 0; int i, j; vector_num = min(hdev->num_msi_left, vector_num); for (j = 0; j < vector_num; j++) { for (i = HCLGEVF_MISC_VECTOR_NUM + 1; i < hdev->num_msi; i++) { if (hdev->vector_status[i] == HCLGEVF_INVALID_VPORT) { vector->vector = pci_irq_vector(hdev->pdev, i); vector->io_addr = hdev->hw.io_base + HCLGEVF_VECTOR_REG_BASE + (i - 1) * HCLGEVF_VECTOR_REG_OFFSET; hdev->vector_status[i] = 0; hdev->vector_irq[i] = vector->vector; vector++; alloc++; break; } } } hdev->num_msi_left -= alloc; hdev->num_msi_used += alloc; return alloc; } static int hclgevf_get_vector_index(struct hclgevf_dev *hdev, int vector) { int i; for (i = 0; i < hdev->num_msi; i++) if (vector == hdev->vector_irq[i]) return i; return -EINVAL; } static int hclgevf_set_rss_algo_key(struct hclgevf_dev *hdev, const u8 hfunc, const u8 *key) { struct hclgevf_rss_config_cmd *req; struct hclgevf_desc desc; int key_offset; int key_size; int ret; req = (struct hclgevf_rss_config_cmd *)desc.data; for (key_offset = 0; key_offset < 3; key_offset++) { hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_GENERIC_CONFIG, false); req->hash_config |= (hfunc & HCLGEVF_RSS_HASH_ALGO_MASK); req->hash_config |= (key_offset << HCLGEVF_RSS_HASH_KEY_OFFSET_B); if (key_offset == 2) key_size = HCLGEVF_RSS_KEY_SIZE - HCLGEVF_RSS_HASH_KEY_NUM * 2; else key_size = HCLGEVF_RSS_HASH_KEY_NUM; memcpy(req->hash_key, key + key_offset * HCLGEVF_RSS_HASH_KEY_NUM, key_size); ret = hclgevf_cmd_send(&hdev->hw, &desc, 1); if (ret) { dev_err(&hdev->pdev->dev, "Configure RSS config fail, status = %d\n", ret); return ret; } } return 0; } static u32 hclgevf_get_rss_key_size(struct hnae3_handle *handle) { return HCLGEVF_RSS_KEY_SIZE; } static u32 hclgevf_get_rss_indir_size(struct hnae3_handle *handle) { return HCLGEVF_RSS_IND_TBL_SIZE; } static int hclgevf_set_rss_indir_table(struct hclgevf_dev *hdev) { const u8 *indir = hdev->rss_cfg.rss_indirection_tbl; struct hclgevf_rss_indirection_table_cmd *req; struct hclgevf_desc desc; int status; int i, j; req = (struct hclgevf_rss_indirection_table_cmd *)desc.data; for (i = 0; i < HCLGEVF_RSS_CFG_TBL_NUM; i++) { hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INDIR_TABLE, false); req->start_table_index = i * HCLGEVF_RSS_CFG_TBL_SIZE; req->rss_set_bitmap = HCLGEVF_RSS_SET_BITMAP_MSK; for (j = 0; j < HCLGEVF_RSS_CFG_TBL_SIZE; j++) req->rss_result[j] = indir[i * HCLGEVF_RSS_CFG_TBL_SIZE + j]; status = hclgevf_cmd_send(&hdev->hw, &desc, 1); if (status) { dev_err(&hdev->pdev->dev, "VF failed(=%d) to set RSS indirection table\n", status); return status; } } return 0; } static int hclgevf_set_rss_tc_mode(struct hclgevf_dev *hdev, u16 rss_size) { struct hclgevf_rss_tc_mode_cmd *req; u16 tc_offset[HCLGEVF_MAX_TC_NUM]; u16 tc_valid[HCLGEVF_MAX_TC_NUM]; u16 tc_size[HCLGEVF_MAX_TC_NUM]; struct hclgevf_desc desc; u16 roundup_size; int status; int i; req = (struct hclgevf_rss_tc_mode_cmd *)desc.data; roundup_size = roundup_pow_of_two(rss_size); roundup_size = ilog2(roundup_size); for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) { tc_valid[i] = !!(hdev->hw_tc_map & BIT(i)); tc_size[i] = roundup_size; tc_offset[i] = rss_size * i; } hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_TC_MODE, false); for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) { hnae3_set_bit(req->rss_tc_mode[i], HCLGEVF_RSS_TC_VALID_B, (tc_valid[i] & 0x1)); hnae3_set_field(req->rss_tc_mode[i], HCLGEVF_RSS_TC_SIZE_M, HCLGEVF_RSS_TC_SIZE_S, tc_size[i]); hnae3_set_field(req->rss_tc_mode[i], HCLGEVF_RSS_TC_OFFSET_M, HCLGEVF_RSS_TC_OFFSET_S, tc_offset[i]); } status = hclgevf_cmd_send(&hdev->hw, &desc, 1); if (status) dev_err(&hdev->pdev->dev, "VF failed(=%d) to set rss tc mode\n", status); return status; } static int hclgevf_get_rss(struct hnae3_handle *handle, u32 *indir, u8 *key, u8 *hfunc) { struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg; int i; if (handle->pdev->revision >= 0x21) { /* Get hash algorithm */ if (hfunc) { switch (rss_cfg->hash_algo) { case HCLGEVF_RSS_HASH_ALGO_TOEPLITZ: *hfunc = ETH_RSS_HASH_TOP; break; case HCLGEVF_RSS_HASH_ALGO_SIMPLE: *hfunc = ETH_RSS_HASH_XOR; break; default: *hfunc = ETH_RSS_HASH_UNKNOWN; break; } } /* Get the RSS Key required by the user */ if (key) memcpy(key, rss_cfg->rss_hash_key, HCLGEVF_RSS_KEY_SIZE); } if (indir) for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++) indir[i] = rss_cfg->rss_indirection_tbl[i]; return 0; } static int hclgevf_set_rss(struct hnae3_handle *handle, const u32 *indir, const u8 *key, const u8 hfunc) { struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg; int ret, i; if (handle->pdev->revision >= 0x21) { /* Set the RSS Hash Key if specififed by the user */ if (key) { switch (hfunc) { case ETH_RSS_HASH_TOP: rss_cfg->hash_algo = HCLGEVF_RSS_HASH_ALGO_TOEPLITZ; break; case ETH_RSS_HASH_XOR: rss_cfg->hash_algo = HCLGEVF_RSS_HASH_ALGO_SIMPLE; break; case ETH_RSS_HASH_NO_CHANGE: break; default: return -EINVAL; } ret = hclgevf_set_rss_algo_key(hdev, rss_cfg->hash_algo, key); if (ret) return ret; /* Update the shadow RSS key with user specified qids */ memcpy(rss_cfg->rss_hash_key, key, HCLGEVF_RSS_KEY_SIZE); } } /* update the shadow RSS table with user specified qids */ for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++) rss_cfg->rss_indirection_tbl[i] = indir[i]; /* update the hardware */ return hclgevf_set_rss_indir_table(hdev); } static u8 hclgevf_get_rss_hash_bits(struct ethtool_rxnfc *nfc) { u8 hash_sets = nfc->data & RXH_L4_B_0_1 ? HCLGEVF_S_PORT_BIT : 0; if (nfc->data & RXH_L4_B_2_3) hash_sets |= HCLGEVF_D_PORT_BIT; else hash_sets &= ~HCLGEVF_D_PORT_BIT; if (nfc->data & RXH_IP_SRC) hash_sets |= HCLGEVF_S_IP_BIT; else hash_sets &= ~HCLGEVF_S_IP_BIT; if (nfc->data & RXH_IP_DST) hash_sets |= HCLGEVF_D_IP_BIT; else hash_sets &= ~HCLGEVF_D_IP_BIT; if (nfc->flow_type == SCTP_V4_FLOW || nfc->flow_type == SCTP_V6_FLOW) hash_sets |= HCLGEVF_V_TAG_BIT; return hash_sets; } static int hclgevf_set_rss_tuple(struct hnae3_handle *handle, struct ethtool_rxnfc *nfc) { struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg; struct hclgevf_rss_input_tuple_cmd *req; struct hclgevf_desc desc; u8 tuple_sets; int ret; if (handle->pdev->revision == 0x20) return -EOPNOTSUPP; if (nfc->data & ~(RXH_IP_SRC | RXH_IP_DST | RXH_L4_B_0_1 | RXH_L4_B_2_3)) return -EINVAL; req = (struct hclgevf_rss_input_tuple_cmd *)desc.data; hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false); req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en; req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en; req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en; req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en; req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en; req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en; req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en; req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en; tuple_sets = hclgevf_get_rss_hash_bits(nfc); switch (nfc->flow_type) { case TCP_V4_FLOW: req->ipv4_tcp_en = tuple_sets; break; case TCP_V6_FLOW: req->ipv6_tcp_en = tuple_sets; break; case UDP_V4_FLOW: req->ipv4_udp_en = tuple_sets; break; case UDP_V6_FLOW: req->ipv6_udp_en = tuple_sets; break; case SCTP_V4_FLOW: req->ipv4_sctp_en = tuple_sets; break; case SCTP_V6_FLOW: if ((nfc->data & RXH_L4_B_0_1) || (nfc->data & RXH_L4_B_2_3)) return -EINVAL; req->ipv6_sctp_en = tuple_sets; break; case IPV4_FLOW: req->ipv4_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER; break; case IPV6_FLOW: req->ipv6_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER; break; default: return -EINVAL; } ret = hclgevf_cmd_send(&hdev->hw, &desc, 1); if (ret) { dev_err(&hdev->pdev->dev, "Set rss tuple fail, status = %d\n", ret); return ret; } rss_cfg->rss_tuple_sets.ipv4_tcp_en = req->ipv4_tcp_en; rss_cfg->rss_tuple_sets.ipv4_udp_en = req->ipv4_udp_en; rss_cfg->rss_tuple_sets.ipv4_sctp_en = req->ipv4_sctp_en; rss_cfg->rss_tuple_sets.ipv4_fragment_en = req->ipv4_fragment_en; rss_cfg->rss_tuple_sets.ipv6_tcp_en = req->ipv6_tcp_en; rss_cfg->rss_tuple_sets.ipv6_udp_en = req->ipv6_udp_en; rss_cfg->rss_tuple_sets.ipv6_sctp_en = req->ipv6_sctp_en; rss_cfg->rss_tuple_sets.ipv6_fragment_en = req->ipv6_fragment_en; return 0; } static int hclgevf_get_rss_tuple(struct hnae3_handle *handle, struct ethtool_rxnfc *nfc) { struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg; u8 tuple_sets; if (handle->pdev->revision == 0x20) return -EOPNOTSUPP; nfc->data = 0; switch (nfc->flow_type) { case TCP_V4_FLOW: tuple_sets = rss_cfg->rss_tuple_sets.ipv4_tcp_en; break; case UDP_V4_FLOW: tuple_sets = rss_cfg->rss_tuple_sets.ipv4_udp_en; break; case TCP_V6_FLOW: tuple_sets = rss_cfg->rss_tuple_sets.ipv6_tcp_en; break; case UDP_V6_FLOW: tuple_sets = rss_cfg->rss_tuple_sets.ipv6_udp_en; break; case SCTP_V4_FLOW: tuple_sets = rss_cfg->rss_tuple_sets.ipv4_sctp_en; break; case SCTP_V6_FLOW: tuple_sets = rss_cfg->rss_tuple_sets.ipv6_sctp_en; break; case IPV4_FLOW: case IPV6_FLOW: tuple_sets = HCLGEVF_S_IP_BIT | HCLGEVF_D_IP_BIT; break; default: return -EINVAL; } if (!tuple_sets) return 0; if (tuple_sets & HCLGEVF_D_PORT_BIT) nfc->data |= RXH_L4_B_2_3; if (tuple_sets & HCLGEVF_S_PORT_BIT) nfc->data |= RXH_L4_B_0_1; if (tuple_sets & HCLGEVF_D_IP_BIT) nfc->data |= RXH_IP_DST; if (tuple_sets & HCLGEVF_S_IP_BIT) nfc->data |= RXH_IP_SRC; return 0; } static int hclgevf_set_rss_input_tuple(struct hclgevf_dev *hdev, struct hclgevf_rss_cfg *rss_cfg) { struct hclgevf_rss_input_tuple_cmd *req; struct hclgevf_desc desc; int ret; hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false); req = (struct hclgevf_rss_input_tuple_cmd *)desc.data; req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en; req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en; req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en; req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en; req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en; req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en; req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en; req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en; ret = hclgevf_cmd_send(&hdev->hw, &desc, 1); if (ret) dev_err(&hdev->pdev->dev, "Configure rss input fail, status = %d\n", ret); return ret; } static int hclgevf_get_tc_size(struct hnae3_handle *handle) { struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg; return rss_cfg->rss_size; } static int hclgevf_bind_ring_to_vector(struct hnae3_handle *handle, bool en, int vector_id, struct hnae3_ring_chain_node *ring_chain) { struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); struct hnae3_ring_chain_node *node; struct hclge_mbx_vf_to_pf_cmd *req; struct hclgevf_desc desc; int i = 0; int status; u8 type; req = (struct hclge_mbx_vf_to_pf_cmd *)desc.data; for (node = ring_chain; node; node = node->next) { int idx_offset = HCLGE_MBX_RING_MAP_BASIC_MSG_NUM + HCLGE_MBX_RING_NODE_VARIABLE_NUM * i; if (i == 0) { hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_MBX_VF_TO_PF, false); type = en ? HCLGE_MBX_MAP_RING_TO_VECTOR : HCLGE_MBX_UNMAP_RING_TO_VECTOR; req->msg[0] = type; req->msg[1] = vector_id; } req->msg[idx_offset] = hnae3_get_bit(node->flag, HNAE3_RING_TYPE_B); req->msg[idx_offset + 1] = node->tqp_index; req->msg[idx_offset + 2] = hnae3_get_field(node->int_gl_idx, HNAE3_RING_GL_IDX_M, HNAE3_RING_GL_IDX_S); i++; if ((i == (HCLGE_MBX_VF_MSG_DATA_NUM - HCLGE_MBX_RING_MAP_BASIC_MSG_NUM) / HCLGE_MBX_RING_NODE_VARIABLE_NUM) || !node->next) { req->msg[2] = i; status = hclgevf_cmd_send(&hdev->hw, &desc, 1); if (status) { dev_err(&hdev->pdev->dev, "Map TQP fail, status is %d.\n", status); return status; } i = 0; hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_MBX_VF_TO_PF, false); req->msg[0] = type; req->msg[1] = vector_id; } } return 0; } static int hclgevf_map_ring_to_vector(struct hnae3_handle *handle, int vector, struct hnae3_ring_chain_node *ring_chain) { struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); int vector_id; vector_id = hclgevf_get_vector_index(hdev, vector); if (vector_id < 0) { dev_err(&handle->pdev->dev, "Get vector index fail. ret =%d\n", vector_id); return vector_id; } return hclgevf_bind_ring_to_vector(handle, true, vector_id, ring_chain); } static int hclgevf_unmap_ring_from_vector( struct hnae3_handle *handle, int vector, struct hnae3_ring_chain_node *ring_chain) { struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); int ret, vector_id; if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state)) return 0; vector_id = hclgevf_get_vector_index(hdev, vector); if (vector_id < 0) { dev_err(&handle->pdev->dev, "Get vector index fail. ret =%d\n", vector_id); return vector_id; } ret = hclgevf_bind_ring_to_vector(handle, false, vector_id, ring_chain); if (ret) dev_err(&handle->pdev->dev, "Unmap ring from vector fail. vector=%d, ret =%d\n", vector_id, ret); return ret; } static int hclgevf_put_vector(struct hnae3_handle *handle, int vector) { struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); int vector_id; vector_id = hclgevf_get_vector_index(hdev, vector); if (vector_id < 0) { dev_err(&handle->pdev->dev, "hclgevf_put_vector get vector index fail. ret =%d\n", vector_id); return vector_id; } hclgevf_free_vector(hdev, vector_id); return 0; } static int hclgevf_cmd_set_promisc_mode(struct hclgevf_dev *hdev, bool en_uc_pmc, bool en_mc_pmc) { struct hclge_mbx_vf_to_pf_cmd *req; struct hclgevf_desc desc; int status; req = (struct hclge_mbx_vf_to_pf_cmd *)desc.data; hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_MBX_VF_TO_PF, false); req->msg[0] = HCLGE_MBX_SET_PROMISC_MODE; req->msg[1] = en_uc_pmc ? 1 : 0; req->msg[2] = en_mc_pmc ? 1 : 0; status = hclgevf_cmd_send(&hdev->hw, &desc, 1); if (status) dev_err(&hdev->pdev->dev, "Set promisc mode fail, status is %d.\n", status); return status; } static int hclgevf_set_promisc_mode(struct hnae3_handle *handle, bool en_uc_pmc, bool en_mc_pmc) { struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); return hclgevf_cmd_set_promisc_mode(hdev, en_uc_pmc, en_mc_pmc); } static int hclgevf_tqp_enable(struct hclgevf_dev *hdev, int tqp_id, int stream_id, bool enable) { struct hclgevf_cfg_com_tqp_queue_cmd *req; struct hclgevf_desc desc; int status; req = (struct hclgevf_cfg_com_tqp_queue_cmd *)desc.data; hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_CFG_COM_TQP_QUEUE, false); req->tqp_id = cpu_to_le16(tqp_id & HCLGEVF_RING_ID_MASK); req->stream_id = cpu_to_le16(stream_id); req->enable |= enable << HCLGEVF_TQP_ENABLE_B; status = hclgevf_cmd_send(&hdev->hw, &desc, 1); if (status) dev_err(&hdev->pdev->dev, "TQP enable fail, status =%d.\n", status); return status; } static void hclgevf_reset_tqp_stats(struct hnae3_handle *handle) { struct hnae3_knic_private_info *kinfo = &handle->kinfo; struct hclgevf_tqp *tqp; int i; for (i = 0; i < kinfo->num_tqps; i++) { tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q); memset(&tqp->tqp_stats, 0, sizeof(tqp->tqp_stats)); } } static void hclgevf_get_mac_addr(struct hnae3_handle *handle, u8 *p) { struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); ether_addr_copy(p, hdev->hw.mac.mac_addr); } static int hclgevf_set_mac_addr(struct hnae3_handle *handle, void *p, bool is_first) { struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); u8 *old_mac_addr = (u8 *)hdev->hw.mac.mac_addr; u8 *new_mac_addr = (u8 *)p; u8 msg_data[ETH_ALEN * 2]; u16 subcode; int status; ether_addr_copy(msg_data, new_mac_addr); ether_addr_copy(&msg_data[ETH_ALEN], old_mac_addr); subcode = is_first ? HCLGE_MBX_MAC_VLAN_UC_ADD : HCLGE_MBX_MAC_VLAN_UC_MODIFY; status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST, subcode, msg_data, ETH_ALEN * 2, true, NULL, 0); if (!status) ether_addr_copy(hdev->hw.mac.mac_addr, new_mac_addr); return status; } static int hclgevf_add_uc_addr(struct hnae3_handle *handle, const unsigned char *addr) { struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST, HCLGE_MBX_MAC_VLAN_UC_ADD, addr, ETH_ALEN, false, NULL, 0); } static int hclgevf_rm_uc_addr(struct hnae3_handle *handle, const unsigned char *addr) { struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST, HCLGE_MBX_MAC_VLAN_UC_REMOVE, addr, ETH_ALEN, false, NULL, 0); } static int hclgevf_add_mc_addr(struct hnae3_handle *handle, const unsigned char *addr) { struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MULTICAST, HCLGE_MBX_MAC_VLAN_MC_ADD, addr, ETH_ALEN, false, NULL, 0); } static int hclgevf_rm_mc_addr(struct hnae3_handle *handle, const unsigned char *addr) { struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MULTICAST, HCLGE_MBX_MAC_VLAN_MC_REMOVE, addr, ETH_ALEN, false, NULL, 0); } static int hclgevf_set_vlan_filter(struct hnae3_handle *handle, __be16 proto, u16 vlan_id, bool is_kill) { #define HCLGEVF_VLAN_MBX_MSG_LEN 5 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); u8 msg_data[HCLGEVF_VLAN_MBX_MSG_LEN]; if (vlan_id > 4095) return -EINVAL; if (proto != htons(ETH_P_8021Q)) return -EPROTONOSUPPORT; msg_data[0] = is_kill; memcpy(&msg_data[1], &vlan_id, sizeof(vlan_id)); memcpy(&msg_data[3], &proto, sizeof(proto)); return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_VLAN, HCLGE_MBX_VLAN_FILTER, msg_data, HCLGEVF_VLAN_MBX_MSG_LEN, false, NULL, 0); } static int hclgevf_en_hw_strip_rxvtag(struct hnae3_handle *handle, bool enable) { struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); u8 msg_data; msg_data = enable ? 1 : 0; return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_VLAN, HCLGE_MBX_VLAN_RX_OFF_CFG, &msg_data, 1, false, NULL, 0); } static int hclgevf_reset_tqp(struct hnae3_handle *handle, u16 queue_id) { struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); u8 msg_data[2]; int ret; memcpy(&msg_data[0], &queue_id, sizeof(queue_id)); /* disable vf queue before send queue reset msg to PF */ ret = hclgevf_tqp_enable(hdev, queue_id, 0, false); if (ret) return ret; return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_QUEUE_RESET, 0, msg_data, 2, true, NULL, 0); } static int hclgevf_set_mtu(struct hnae3_handle *handle, int new_mtu) { struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MTU, 0, (u8 *)&new_mtu, sizeof(new_mtu), true, NULL, 0); } static int hclgevf_notify_client(struct hclgevf_dev *hdev, enum hnae3_reset_notify_type type) { struct hnae3_client *client = hdev->nic_client; struct hnae3_handle *handle = &hdev->nic; int ret; if (!client->ops->reset_notify) return -EOPNOTSUPP; ret = client->ops->reset_notify(handle, type); if (ret) dev_err(&hdev->pdev->dev, "notify nic client failed %d(%d)\n", type, ret); return ret; } static void hclgevf_flr_done(struct hnae3_ae_dev *ae_dev) { struct hclgevf_dev *hdev = ae_dev->priv; set_bit(HNAE3_FLR_DONE, &hdev->flr_state); } static int hclgevf_flr_poll_timeout(struct hclgevf_dev *hdev, unsigned long delay_us, unsigned long wait_cnt) { unsigned long cnt = 0; while (!test_bit(HNAE3_FLR_DONE, &hdev->flr_state) && cnt++ < wait_cnt) usleep_range(delay_us, delay_us * 2); if (!test_bit(HNAE3_FLR_DONE, &hdev->flr_state)) { dev_err(&hdev->pdev->dev, "flr wait timeout\n"); return -ETIMEDOUT; } return 0; } static int hclgevf_reset_wait(struct hclgevf_dev *hdev) { #define HCLGEVF_RESET_WAIT_US 20000 #define HCLGEVF_RESET_WAIT_CNT 2000 #define HCLGEVF_RESET_WAIT_TIMEOUT_US \ (HCLGEVF_RESET_WAIT_US * HCLGEVF_RESET_WAIT_CNT) u32 val; int ret; /* wait to check the hardware reset completion status */ val = hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING); dev_info(&hdev->pdev->dev, "checking vf resetting status: %x\n", val); if (hdev->reset_type == HNAE3_FLR_RESET) return hclgevf_flr_poll_timeout(hdev, HCLGEVF_RESET_WAIT_US, HCLGEVF_RESET_WAIT_CNT); ret = readl_poll_timeout(hdev->hw.io_base + HCLGEVF_RST_ING, val, !(val & HCLGEVF_RST_ING_BITS), HCLGEVF_RESET_WAIT_US, HCLGEVF_RESET_WAIT_TIMEOUT_US); /* hardware completion status should be available by this time */ if (ret) { dev_err(&hdev->pdev->dev, "could'nt get reset done status from h/w, timeout!\n"); return ret; } /* we will wait a bit more to let reset of the stack to complete. This * might happen in case reset assertion was made by PF. Yes, this also * means we might end up waiting bit more even for VF reset. */ msleep(5000); return 0; } static int hclgevf_reset_stack(struct hclgevf_dev *hdev) { int ret; /* uninitialize the nic client */ ret = hclgevf_notify_client(hdev, HNAE3_UNINIT_CLIENT); if (ret) return ret; /* re-initialize the hclge device */ ret = hclgevf_reset_hdev(hdev); if (ret) { dev_err(&hdev->pdev->dev, "hclge device re-init failed, VF is disabled!\n"); return ret; } /* bring up the nic client again */ ret = hclgevf_notify_client(hdev, HNAE3_INIT_CLIENT); if (ret) return ret; return 0; } static int hclgevf_reset_prepare_wait(struct hclgevf_dev *hdev) { int ret = 0; switch (hdev->reset_type) { case HNAE3_VF_FUNC_RESET: ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_RESET, 0, NULL, 0, true, NULL, sizeof(u8)); break; case HNAE3_FLR_RESET: set_bit(HNAE3_FLR_DOWN, &hdev->flr_state); break; default: break; } set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state); dev_info(&hdev->pdev->dev, "prepare reset(%d) wait done, ret:%d\n", hdev->reset_type, ret); return ret; } static int hclgevf_reset(struct hclgevf_dev *hdev) { struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev); int ret; /* Initialize ae_dev reset status as well, in case enet layer wants to * know if device is undergoing reset */ ae_dev->reset_type = hdev->reset_type; hdev->reset_count++; rtnl_lock(); /* bring down the nic to stop any ongoing TX/RX */ ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT); if (ret) goto err_reset_lock; rtnl_unlock(); ret = hclgevf_reset_prepare_wait(hdev); if (ret) goto err_reset; /* check if VF could successfully fetch the hardware reset completion * status from the hardware */ ret = hclgevf_reset_wait(hdev); if (ret) { /* can't do much in this situation, will disable VF */ dev_err(&hdev->pdev->dev, "VF failed(=%d) to fetch H/W reset completion status\n", ret); goto err_reset; } rtnl_lock(); /* now, re-initialize the nic client and ae device*/ ret = hclgevf_reset_stack(hdev); if (ret) { dev_err(&hdev->pdev->dev, "failed to reset VF stack\n"); goto err_reset_lock; } /* bring up the nic to enable TX/RX again */ ret = hclgevf_notify_client(hdev, HNAE3_UP_CLIENT); if (ret) goto err_reset_lock; rtnl_unlock(); hdev->last_reset_time = jiffies; ae_dev->reset_type = HNAE3_NONE_RESET; return ret; err_reset_lock: rtnl_unlock(); err_reset: /* When VF reset failed, only the higher level reset asserted by PF * can restore it, so re-initialize the command queue to receive * this higher reset event. */ hclgevf_cmd_init(hdev); dev_err(&hdev->pdev->dev, "failed to reset VF\n"); return ret; } static enum hnae3_reset_type hclgevf_get_reset_level(struct hclgevf_dev *hdev, unsigned long *addr) { enum hnae3_reset_type rst_level = HNAE3_NONE_RESET; /* return the highest priority reset level amongst all */ if (test_bit(HNAE3_VF_RESET, addr)) { rst_level = HNAE3_VF_RESET; clear_bit(HNAE3_VF_RESET, addr); clear_bit(HNAE3_VF_PF_FUNC_RESET, addr); clear_bit(HNAE3_VF_FUNC_RESET, addr); } else if (test_bit(HNAE3_VF_FULL_RESET, addr)) { rst_level = HNAE3_VF_FULL_RESET; clear_bit(HNAE3_VF_FULL_RESET, addr); clear_bit(HNAE3_VF_FUNC_RESET, addr); } else if (test_bit(HNAE3_VF_PF_FUNC_RESET, addr)) { rst_level = HNAE3_VF_PF_FUNC_RESET; clear_bit(HNAE3_VF_PF_FUNC_RESET, addr); clear_bit(HNAE3_VF_FUNC_RESET, addr); } else if (test_bit(HNAE3_VF_FUNC_RESET, addr)) { rst_level = HNAE3_VF_FUNC_RESET; clear_bit(HNAE3_VF_FUNC_RESET, addr); } else if (test_bit(HNAE3_FLR_RESET, addr)) { rst_level = HNAE3_FLR_RESET; clear_bit(HNAE3_FLR_RESET, addr); } return rst_level; } static void hclgevf_reset_event(struct pci_dev *pdev, struct hnae3_handle *handle) { struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev); struct hclgevf_dev *hdev = ae_dev->priv; dev_info(&hdev->pdev->dev, "received reset request from VF enet\n"); if (hdev->default_reset_request) hdev->reset_level = hclgevf_get_reset_level(hdev, &hdev->default_reset_request); else hdev->reset_level = HNAE3_VF_FUNC_RESET; /* reset of this VF requested */ set_bit(HCLGEVF_RESET_REQUESTED, &hdev->reset_state); hclgevf_reset_task_schedule(hdev); hdev->last_reset_time = jiffies; } static void hclgevf_set_def_reset_request(struct hnae3_ae_dev *ae_dev, enum hnae3_reset_type rst_type) { struct hclgevf_dev *hdev = ae_dev->priv; set_bit(rst_type, &hdev->default_reset_request); } static void hclgevf_flr_prepare(struct hnae3_ae_dev *ae_dev) { #define HCLGEVF_FLR_WAIT_MS 100 #define HCLGEVF_FLR_WAIT_CNT 50 struct hclgevf_dev *hdev = ae_dev->priv; int cnt = 0; clear_bit(HNAE3_FLR_DOWN, &hdev->flr_state); clear_bit(HNAE3_FLR_DONE, &hdev->flr_state); set_bit(HNAE3_FLR_RESET, &hdev->default_reset_request); hclgevf_reset_event(hdev->pdev, NULL); while (!test_bit(HNAE3_FLR_DOWN, &hdev->flr_state) && cnt++ < HCLGEVF_FLR_WAIT_CNT) msleep(HCLGEVF_FLR_WAIT_MS); if (!test_bit(HNAE3_FLR_DOWN, &hdev->flr_state)) dev_err(&hdev->pdev->dev, "flr wait down timeout: %d\n", cnt); } static u32 hclgevf_get_fw_version(struct hnae3_handle *handle) { struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); return hdev->fw_version; } static void hclgevf_get_misc_vector(struct hclgevf_dev *hdev) { struct hclgevf_misc_vector *vector = &hdev->misc_vector; vector->vector_irq = pci_irq_vector(hdev->pdev, HCLGEVF_MISC_VECTOR_NUM); vector->addr = hdev->hw.io_base + HCLGEVF_MISC_VECTOR_REG_BASE; /* vector status always valid for Vector 0 */ hdev->vector_status[HCLGEVF_MISC_VECTOR_NUM] = 0; hdev->vector_irq[HCLGEVF_MISC_VECTOR_NUM] = vector->vector_irq; hdev->num_msi_left -= 1; hdev->num_msi_used += 1; } void hclgevf_reset_task_schedule(struct hclgevf_dev *hdev) { if (!test_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state) && !test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state)) { set_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state); schedule_work(&hdev->rst_service_task); } } void hclgevf_mbx_task_schedule(struct hclgevf_dev *hdev) { if (!test_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state) && !test_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state)) { set_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state); schedule_work(&hdev->mbx_service_task); } } static void hclgevf_task_schedule(struct hclgevf_dev *hdev) { if (!test_bit(HCLGEVF_STATE_DOWN, &hdev->state) && !test_and_set_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state)) schedule_work(&hdev->service_task); } static void hclgevf_deferred_task_schedule(struct hclgevf_dev *hdev) { /* if we have any pending mailbox event then schedule the mbx task */ if (hdev->mbx_event_pending) hclgevf_mbx_task_schedule(hdev); if (test_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state)) hclgevf_reset_task_schedule(hdev); } static void hclgevf_service_timer(struct timer_list *t) { struct hclgevf_dev *hdev = from_timer(hdev, t, service_timer); mod_timer(&hdev->service_timer, jiffies + 5 * HZ); hclgevf_task_schedule(hdev); } static void hclgevf_reset_service_task(struct work_struct *work) { struct hclgevf_dev *hdev = container_of(work, struct hclgevf_dev, rst_service_task); int ret; if (test_and_set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state)) return; clear_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state); if (test_and_clear_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state)) { /* PF has initmated that it is about to reset the hardware. * We now have to poll & check if harware has actually completed * the reset sequence. On hardware reset completion, VF needs to * reset the client and ae device. */ hdev->reset_attempts = 0; hdev->last_reset_time = jiffies; while ((hdev->reset_type = hclgevf_get_reset_level(hdev, &hdev->reset_pending)) != HNAE3_NONE_RESET) { ret = hclgevf_reset(hdev); if (ret) dev_err(&hdev->pdev->dev, "VF stack reset failed %d.\n", ret); } } else if (test_and_clear_bit(HCLGEVF_RESET_REQUESTED, &hdev->reset_state)) { /* we could be here when either of below happens: * 1. reset was initiated due to watchdog timeout due to * a. IMP was earlier reset and our TX got choked down and * which resulted in watchdog reacting and inducing VF * reset. This also means our cmdq would be unreliable. * b. problem in TX due to other lower layer(example link * layer not functioning properly etc.) * 2. VF reset might have been initiated due to some config * change. * * NOTE: Theres no clear way to detect above cases than to react * to the response of PF for this reset request. PF will ack the * 1b and 2. cases but we will not get any intimation about 1a * from PF as cmdq would be in unreliable state i.e. mailbox * communication between PF and VF would be broken. */ /* if we are never geting into pending state it means either: * 1. PF is not receiving our request which could be due to IMP * reset * 2. PF is screwed * We cannot do much for 2. but to check first we can try reset * our PCIe + stack and see if it alleviates the problem. */ if (hdev->reset_attempts > 3) { /* prepare for full reset of stack + pcie interface */ set_bit(HNAE3_VF_FULL_RESET, &hdev->reset_pending); /* "defer" schedule the reset task again */ set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state); } else { hdev->reset_attempts++; set_bit(hdev->reset_level, &hdev->reset_pending); set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state); } hclgevf_reset_task_schedule(hdev); } clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state); } static void hclgevf_mailbox_service_task(struct work_struct *work) { struct hclgevf_dev *hdev; hdev = container_of(work, struct hclgevf_dev, mbx_service_task); if (test_and_set_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state)) return; clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state); hclgevf_mbx_async_handler(hdev); clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state); } static void hclgevf_keep_alive_timer(struct timer_list *t) { struct hclgevf_dev *hdev = from_timer(hdev, t, keep_alive_timer); schedule_work(&hdev->keep_alive_task); mod_timer(&hdev->keep_alive_timer, jiffies + 2 * HZ); } static void hclgevf_keep_alive_task(struct work_struct *work) { struct hclgevf_dev *hdev; u8 respmsg; int ret; hdev = container_of(work, struct hclgevf_dev, keep_alive_task); ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_KEEP_ALIVE, 0, NULL, 0, false, &respmsg, sizeof(u8)); if (ret) dev_err(&hdev->pdev->dev, "VF sends keep alive cmd failed(=%d)\n", ret); } static void hclgevf_service_task(struct work_struct *work) { struct hclgevf_dev *hdev; hdev = container_of(work, struct hclgevf_dev, service_task); /* request the link status from the PF. PF would be able to tell VF * about such updates in future so we might remove this later */ hclgevf_request_link_info(hdev); hclgevf_deferred_task_schedule(hdev); clear_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state); } static void hclgevf_clear_event_cause(struct hclgevf_dev *hdev, u32 regclr) { hclgevf_write_dev(&hdev->hw, HCLGEVF_VECTOR0_CMDQ_SRC_REG, regclr); } static enum hclgevf_evt_cause hclgevf_check_evt_cause(struct hclgevf_dev *hdev, u32 *clearval) { u32 cmdq_src_reg, rst_ing_reg; /* fetch the events from their corresponding regs */ cmdq_src_reg = hclgevf_read_dev(&hdev->hw, HCLGEVF_VECTOR0_CMDQ_SRC_REG); if (BIT(HCLGEVF_VECTOR0_RST_INT_B) & cmdq_src_reg) { rst_ing_reg = hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING); dev_info(&hdev->pdev->dev, "receive reset interrupt 0x%x!\n", rst_ing_reg); set_bit(HNAE3_VF_RESET, &hdev->reset_pending); set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state); set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state); cmdq_src_reg &= ~BIT(HCLGEVF_VECTOR0_RST_INT_B); *clearval = cmdq_src_reg; return HCLGEVF_VECTOR0_EVENT_RST; } /* check for vector0 mailbox(=CMDQ RX) event source */ if (BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B) & cmdq_src_reg) { cmdq_src_reg &= ~BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B); *clearval = cmdq_src_reg; return HCLGEVF_VECTOR0_EVENT_MBX; } dev_dbg(&hdev->pdev->dev, "vector 0 interrupt from unknown source\n"); return HCLGEVF_VECTOR0_EVENT_OTHER; } static void hclgevf_enable_vector(struct hclgevf_misc_vector *vector, bool en) { writel(en ? 1 : 0, vector->addr); } static irqreturn_t hclgevf_misc_irq_handle(int irq, void *data) { enum hclgevf_evt_cause event_cause; struct hclgevf_dev *hdev = data; u32 clearval; hclgevf_enable_vector(&hdev->misc_vector, false); event_cause = hclgevf_check_evt_cause(hdev, &clearval); switch (event_cause) { case HCLGEVF_VECTOR0_EVENT_RST: hclgevf_reset_task_schedule(hdev); break; case HCLGEVF_VECTOR0_EVENT_MBX: hclgevf_mbx_handler(hdev); break; default: break; } if (event_cause != HCLGEVF_VECTOR0_EVENT_OTHER) { hclgevf_clear_event_cause(hdev, clearval); hclgevf_enable_vector(&hdev->misc_vector, true); } return IRQ_HANDLED; } static int hclgevf_configure(struct hclgevf_dev *hdev) { int ret; hdev->hw.mac.media_type = HNAE3_MEDIA_TYPE_NONE; /* get queue configuration from PF */ ret = hclgevf_get_queue_info(hdev); if (ret) return ret; /* get tc configuration from PF */ return hclgevf_get_tc_info(hdev); } static int hclgevf_alloc_hdev(struct hnae3_ae_dev *ae_dev) { struct pci_dev *pdev = ae_dev->pdev; struct hclgevf_dev *hdev; hdev = devm_kzalloc(&pdev->dev, sizeof(*hdev), GFP_KERNEL); if (!hdev) return -ENOMEM; hdev->pdev = pdev; hdev->ae_dev = ae_dev; ae_dev->priv = hdev; return 0; } static int hclgevf_init_roce_base_info(struct hclgevf_dev *hdev) { struct hnae3_handle *roce = &hdev->roce; struct hnae3_handle *nic = &hdev->nic; roce->rinfo.num_vectors = hdev->num_roce_msix; if (hdev->num_msi_left < roce->rinfo.num_vectors || hdev->num_msi_left == 0) return -EINVAL; roce->rinfo.base_vector = hdev->roce_base_vector; roce->rinfo.netdev = nic->kinfo.netdev; roce->rinfo.roce_io_base = hdev->hw.io_base; roce->pdev = nic->pdev; roce->ae_algo = nic->ae_algo; roce->numa_node_mask = nic->numa_node_mask; return 0; } static int hclgevf_config_gro(struct hclgevf_dev *hdev, bool en) { struct hclgevf_cfg_gro_status_cmd *req; struct hclgevf_desc desc; int ret; if (!hnae3_dev_gro_supported(hdev)) return 0; hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_GRO_GENERIC_CONFIG, false); req = (struct hclgevf_cfg_gro_status_cmd *)desc.data; req->gro_en = cpu_to_le16(en ? 1 : 0); ret = hclgevf_cmd_send(&hdev->hw, &desc, 1); if (ret) dev_err(&hdev->pdev->dev, "VF GRO hardware config cmd failed, ret = %d.\n", ret); return ret; } static int hclgevf_rss_init_hw(struct hclgevf_dev *hdev) { struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg; int i, ret; rss_cfg->rss_size = hdev->rss_size_max; if (hdev->pdev->revision >= 0x21) { rss_cfg->hash_algo = HCLGEVF_RSS_HASH_ALGO_TOEPLITZ; netdev_rss_key_fill(rss_cfg->rss_hash_key, HCLGEVF_RSS_KEY_SIZE); ret = hclgevf_set_rss_algo_key(hdev, rss_cfg->hash_algo, rss_cfg->rss_hash_key); if (ret) return ret; rss_cfg->rss_tuple_sets.ipv4_tcp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER; rss_cfg->rss_tuple_sets.ipv4_udp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER; rss_cfg->rss_tuple_sets.ipv4_sctp_en = HCLGEVF_RSS_INPUT_TUPLE_SCTP; rss_cfg->rss_tuple_sets.ipv4_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER; rss_cfg->rss_tuple_sets.ipv6_tcp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER; rss_cfg->rss_tuple_sets.ipv6_udp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER; rss_cfg->rss_tuple_sets.ipv6_sctp_en = HCLGEVF_RSS_INPUT_TUPLE_SCTP; rss_cfg->rss_tuple_sets.ipv6_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER; ret = hclgevf_set_rss_input_tuple(hdev, rss_cfg); if (ret) return ret; } /* Initialize RSS indirect table for each vport */ for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++) rss_cfg->rss_indirection_tbl[i] = i % hdev->rss_size_max; ret = hclgevf_set_rss_indir_table(hdev); if (ret) return ret; return hclgevf_set_rss_tc_mode(hdev, hdev->rss_size_max); } static int hclgevf_init_vlan_config(struct hclgevf_dev *hdev) { /* other vlan config(like, VLAN TX/RX offload) would also be added * here later */ return hclgevf_set_vlan_filter(&hdev->nic, htons(ETH_P_8021Q), 0, false); } static void hclgevf_set_timer_task(struct hnae3_handle *handle, bool enable) { struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); if (enable) { mod_timer(&hdev->service_timer, jiffies + HZ); } else { del_timer_sync(&hdev->service_timer); cancel_work_sync(&hdev->service_task); clear_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state); } } static int hclgevf_ae_start(struct hnae3_handle *handle) { struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); /* reset tqp stats */ hclgevf_reset_tqp_stats(handle); hclgevf_request_link_info(hdev); clear_bit(HCLGEVF_STATE_DOWN, &hdev->state); return 0; } static void hclgevf_ae_stop(struct hnae3_handle *handle) { struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); int i; set_bit(HCLGEVF_STATE_DOWN, &hdev->state); for (i = 0; i < handle->kinfo.num_tqps; i++) hclgevf_reset_tqp(handle, i); /* reset tqp stats */ hclgevf_reset_tqp_stats(handle); hclgevf_update_link_status(hdev, 0); } static int hclgevf_set_alive(struct hnae3_handle *handle, bool alive) { struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); u8 msg_data; msg_data = alive ? 1 : 0; return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_ALIVE, 0, &msg_data, 1, false, NULL, 0); } static int hclgevf_client_start(struct hnae3_handle *handle) { struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); mod_timer(&hdev->keep_alive_timer, jiffies + 2 * HZ); return hclgevf_set_alive(handle, true); } static void hclgevf_client_stop(struct hnae3_handle *handle) { struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); int ret; ret = hclgevf_set_alive(handle, false); if (ret) dev_warn(&hdev->pdev->dev, "%s failed %d\n", __func__, ret); del_timer_sync(&hdev->keep_alive_timer); cancel_work_sync(&hdev->keep_alive_task); } static void hclgevf_state_init(struct hclgevf_dev *hdev) { /* setup tasks for the MBX */ INIT_WORK(&hdev->mbx_service_task, hclgevf_mailbox_service_task); clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state); clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state); /* setup tasks for service timer */ timer_setup(&hdev->service_timer, hclgevf_service_timer, 0); INIT_WORK(&hdev->service_task, hclgevf_service_task); clear_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state); INIT_WORK(&hdev->rst_service_task, hclgevf_reset_service_task); mutex_init(&hdev->mbx_resp.mbx_mutex); /* bring the device down */ set_bit(HCLGEVF_STATE_DOWN, &hdev->state); } static void hclgevf_state_uninit(struct hclgevf_dev *hdev) { set_bit(HCLGEVF_STATE_DOWN, &hdev->state); if (hdev->service_timer.function) del_timer_sync(&hdev->service_timer); if (hdev->service_task.func) cancel_work_sync(&hdev->service_task); if (hdev->mbx_service_task.func) cancel_work_sync(&hdev->mbx_service_task); if (hdev->rst_service_task.func) cancel_work_sync(&hdev->rst_service_task); mutex_destroy(&hdev->mbx_resp.mbx_mutex); } static int hclgevf_init_msi(struct hclgevf_dev *hdev) { struct pci_dev *pdev = hdev->pdev; int vectors; int i; if (hnae3_get_bit(hdev->ae_dev->flag, HNAE3_DEV_SUPPORT_ROCE_B)) vectors = pci_alloc_irq_vectors(pdev, hdev->roce_base_msix_offset + 1, hdev->num_msi, PCI_IRQ_MSIX); else vectors = pci_alloc_irq_vectors(pdev, 1, hdev->num_msi, PCI_IRQ_MSI | PCI_IRQ_MSIX); if (vectors < 0) { dev_err(&pdev->dev, "failed(%d) to allocate MSI/MSI-X vectors\n", vectors); return vectors; } if (vectors < hdev->num_msi) dev_warn(&hdev->pdev->dev, "requested %d MSI/MSI-X, but allocated %d MSI/MSI-X\n", hdev->num_msi, vectors); hdev->num_msi = vectors; hdev->num_msi_left = vectors; hdev->base_msi_vector = pdev->irq; hdev->roce_base_vector = pdev->irq + hdev->roce_base_msix_offset; hdev->vector_status = devm_kcalloc(&pdev->dev, hdev->num_msi, sizeof(u16), GFP_KERNEL); if (!hdev->vector_status) { pci_free_irq_vectors(pdev); return -ENOMEM; } for (i = 0; i < hdev->num_msi; i++) hdev->vector_status[i] = HCLGEVF_INVALID_VPORT; hdev->vector_irq = devm_kcalloc(&pdev->dev, hdev->num_msi, sizeof(int), GFP_KERNEL); if (!hdev->vector_irq) { devm_kfree(&pdev->dev, hdev->vector_status); pci_free_irq_vectors(pdev); return -ENOMEM; } return 0; } static void hclgevf_uninit_msi(struct hclgevf_dev *hdev) { struct pci_dev *pdev = hdev->pdev; devm_kfree(&pdev->dev, hdev->vector_status); devm_kfree(&pdev->dev, hdev->vector_irq); pci_free_irq_vectors(pdev); } static int hclgevf_misc_irq_init(struct hclgevf_dev *hdev) { int ret = 0; hclgevf_get_misc_vector(hdev); ret = request_irq(hdev->misc_vector.vector_irq, hclgevf_misc_irq_handle, 0, "hclgevf_cmd", hdev); if (ret) { dev_err(&hdev->pdev->dev, "VF failed to request misc irq(%d)\n", hdev->misc_vector.vector_irq); return ret; } hclgevf_clear_event_cause(hdev, 0); /* enable misc. vector(vector 0) */ hclgevf_enable_vector(&hdev->misc_vector, true); return ret; } static void hclgevf_misc_irq_uninit(struct hclgevf_dev *hdev) { /* disable misc vector(vector 0) */ hclgevf_enable_vector(&hdev->misc_vector, false); synchronize_irq(hdev->misc_vector.vector_irq); free_irq(hdev->misc_vector.vector_irq, hdev); hclgevf_free_vector(hdev, 0); } static int hclgevf_init_client_instance(struct hnae3_client *client, struct hnae3_ae_dev *ae_dev) { struct hclgevf_dev *hdev = ae_dev->priv; int ret; switch (client->type) { case HNAE3_CLIENT_KNIC: hdev->nic_client = client; hdev->nic.client = client; ret = client->ops->init_instance(&hdev->nic); if (ret) goto clear_nic; hnae3_set_client_init_flag(client, ae_dev, 1); if (hdev->roce_client && hnae3_dev_roce_supported(hdev)) { struct hnae3_client *rc = hdev->roce_client; ret = hclgevf_init_roce_base_info(hdev); if (ret) goto clear_roce; ret = rc->ops->init_instance(&hdev->roce); if (ret) goto clear_roce; hnae3_set_client_init_flag(hdev->roce_client, ae_dev, 1); } break; case HNAE3_CLIENT_UNIC: hdev->nic_client = client; hdev->nic.client = client; ret = client->ops->init_instance(&hdev->nic); if (ret) goto clear_nic; hnae3_set_client_init_flag(client, ae_dev, 1); break; case HNAE3_CLIENT_ROCE: if (hnae3_dev_roce_supported(hdev)) { hdev->roce_client = client; hdev->roce.client = client; } if (hdev->roce_client && hdev->nic_client) { ret = hclgevf_init_roce_base_info(hdev); if (ret) goto clear_roce; ret = client->ops->init_instance(&hdev->roce); if (ret) goto clear_roce; } hnae3_set_client_init_flag(client, ae_dev, 1); break; default: return -EINVAL; } return 0; clear_nic: hdev->nic_client = NULL; hdev->nic.client = NULL; return ret; clear_roce: hdev->roce_client = NULL; hdev->roce.client = NULL; return ret; } static void hclgevf_uninit_client_instance(struct hnae3_client *client, struct hnae3_ae_dev *ae_dev) { struct hclgevf_dev *hdev = ae_dev->priv; /* un-init roce, if it exists */ if (hdev->roce_client) { hdev->roce_client->ops->uninit_instance(&hdev->roce, 0); hdev->roce_client = NULL; hdev->roce.client = NULL; } /* un-init nic/unic, if this was not called by roce client */ if (client->ops->uninit_instance && hdev->nic_client && client->type != HNAE3_CLIENT_ROCE) { client->ops->uninit_instance(&hdev->nic, 0); hdev->nic_client = NULL; hdev->nic.client = NULL; } } static int hclgevf_pci_init(struct hclgevf_dev *hdev) { struct pci_dev *pdev = hdev->pdev; struct hclgevf_hw *hw; int ret; ret = pci_enable_device(pdev); if (ret) { dev_err(&pdev->dev, "failed to enable PCI device\n"); return ret; } ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); if (ret) { dev_err(&pdev->dev, "can't set consistent PCI DMA, exiting"); goto err_disable_device; } ret = pci_request_regions(pdev, HCLGEVF_DRIVER_NAME); if (ret) { dev_err(&pdev->dev, "PCI request regions failed %d\n", ret); goto err_disable_device; } pci_set_master(pdev); hw = &hdev->hw; hw->hdev = hdev; hw->io_base = pci_iomap(pdev, 2, 0); if (!hw->io_base) { dev_err(&pdev->dev, "can't map configuration register space\n"); ret = -ENOMEM; goto err_clr_master; } return 0; err_clr_master: pci_clear_master(pdev); pci_release_regions(pdev); err_disable_device: pci_disable_device(pdev); return ret; } static void hclgevf_pci_uninit(struct hclgevf_dev *hdev) { struct pci_dev *pdev = hdev->pdev; pci_iounmap(pdev, hdev->hw.io_base); pci_clear_master(pdev); pci_release_regions(pdev); pci_disable_device(pdev); } static int hclgevf_query_vf_resource(struct hclgevf_dev *hdev) { struct hclgevf_query_res_cmd *req; struct hclgevf_desc desc; int ret; hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_VF_RSRC, true); ret = hclgevf_cmd_send(&hdev->hw, &desc, 1); if (ret) { dev_err(&hdev->pdev->dev, "query vf resource failed, ret = %d.\n", ret); return ret; } req = (struct hclgevf_query_res_cmd *)desc.data; if (hnae3_get_bit(hdev->ae_dev->flag, HNAE3_DEV_SUPPORT_ROCE_B)) { hdev->roce_base_msix_offset = hnae3_get_field(__le16_to_cpu(req->msixcap_localid_ba_rocee), HCLGEVF_MSIX_OFT_ROCEE_M, HCLGEVF_MSIX_OFT_ROCEE_S); hdev->num_roce_msix = hnae3_get_field(__le16_to_cpu(req->vf_intr_vector_number), HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S); /* VF should have NIC vectors and Roce vectors, NIC vectors * are queued before Roce vectors. The offset is fixed to 64. */ hdev->num_msi = hdev->num_roce_msix + hdev->roce_base_msix_offset; } else { hdev->num_msi = hnae3_get_field(__le16_to_cpu(req->vf_intr_vector_number), HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S); } return 0; } static int hclgevf_pci_reset(struct hclgevf_dev *hdev) { struct pci_dev *pdev = hdev->pdev; int ret = 0; if (hdev->reset_type == HNAE3_VF_FULL_RESET && test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) { hclgevf_misc_irq_uninit(hdev); hclgevf_uninit_msi(hdev); clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state); } if (!test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) { pci_set_master(pdev); ret = hclgevf_init_msi(hdev); if (ret) { dev_err(&pdev->dev, "failed(%d) to init MSI/MSI-X\n", ret); return ret; } ret = hclgevf_misc_irq_init(hdev); if (ret) { hclgevf_uninit_msi(hdev); dev_err(&pdev->dev, "failed(%d) to init Misc IRQ(vector0)\n", ret); return ret; } set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state); } return ret; } static int hclgevf_reset_hdev(struct hclgevf_dev *hdev) { struct pci_dev *pdev = hdev->pdev; int ret; ret = hclgevf_pci_reset(hdev); if (ret) { dev_err(&pdev->dev, "pci reset failed %d\n", ret); return ret; } ret = hclgevf_cmd_init(hdev); if (ret) { dev_err(&pdev->dev, "cmd failed %d\n", ret); return ret; } ret = hclgevf_rss_init_hw(hdev); if (ret) { dev_err(&hdev->pdev->dev, "failed(%d) to initialize RSS\n", ret); return ret; } ret = hclgevf_config_gro(hdev, true); if (ret) return ret; ret = hclgevf_init_vlan_config(hdev); if (ret) { dev_err(&hdev->pdev->dev, "failed(%d) to initialize VLAN config\n", ret); return ret; } dev_info(&hdev->pdev->dev, "Reset done\n"); return 0; } static int hclgevf_init_hdev(struct hclgevf_dev *hdev) { struct pci_dev *pdev = hdev->pdev; int ret; ret = hclgevf_pci_init(hdev); if (ret) { dev_err(&pdev->dev, "PCI initialization failed\n"); return ret; } ret = hclgevf_cmd_queue_init(hdev); if (ret) { dev_err(&pdev->dev, "Cmd queue init failed: %d\n", ret); goto err_cmd_queue_init; } ret = hclgevf_cmd_init(hdev); if (ret) goto err_cmd_init; /* Get vf resource */ ret = hclgevf_query_vf_resource(hdev); if (ret) { dev_err(&hdev->pdev->dev, "Query vf status error, ret = %d.\n", ret); goto err_cmd_init; } ret = hclgevf_init_msi(hdev); if (ret) { dev_err(&pdev->dev, "failed(%d) to init MSI/MSI-X\n", ret); goto err_cmd_init; } hclgevf_state_init(hdev); hdev->reset_level = HNAE3_VF_FUNC_RESET; ret = hclgevf_misc_irq_init(hdev); if (ret) { dev_err(&pdev->dev, "failed(%d) to init Misc IRQ(vector0)\n", ret); goto err_misc_irq_init; } set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state); ret = hclgevf_configure(hdev); if (ret) { dev_err(&pdev->dev, "failed(%d) to fetch configuration\n", ret); goto err_config; } ret = hclgevf_alloc_tqps(hdev); if (ret) { dev_err(&pdev->dev, "failed(%d) to allocate TQPs\n", ret); goto err_config; } ret = hclgevf_set_handle_info(hdev); if (ret) { dev_err(&pdev->dev, "failed(%d) to set handle info\n", ret); goto err_config; } ret = hclgevf_config_gro(hdev, true); if (ret) goto err_config; /* Initialize RSS for this VF */ ret = hclgevf_rss_init_hw(hdev); if (ret) { dev_err(&hdev->pdev->dev, "failed(%d) to initialize RSS\n", ret); goto err_config; } ret = hclgevf_init_vlan_config(hdev); if (ret) { dev_err(&hdev->pdev->dev, "failed(%d) to initialize VLAN config\n", ret); goto err_config; } hdev->last_reset_time = jiffies; pr_info("finished initializing %s driver\n", HCLGEVF_DRIVER_NAME); return 0; err_config: hclgevf_misc_irq_uninit(hdev); err_misc_irq_init: hclgevf_state_uninit(hdev); hclgevf_uninit_msi(hdev); err_cmd_init: hclgevf_cmd_uninit(hdev); err_cmd_queue_init: hclgevf_pci_uninit(hdev); clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state); return ret; } static void hclgevf_uninit_hdev(struct hclgevf_dev *hdev) { hclgevf_state_uninit(hdev); if (test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) { hclgevf_misc_irq_uninit(hdev); hclgevf_uninit_msi(hdev); } hclgevf_pci_uninit(hdev); hclgevf_cmd_uninit(hdev); } static int hclgevf_init_ae_dev(struct hnae3_ae_dev *ae_dev) { struct pci_dev *pdev = ae_dev->pdev; struct hclgevf_dev *hdev; int ret; ret = hclgevf_alloc_hdev(ae_dev); if (ret) { dev_err(&pdev->dev, "hclge device allocation failed\n"); return ret; } ret = hclgevf_init_hdev(ae_dev->priv); if (ret) { dev_err(&pdev->dev, "hclge device initialization failed\n"); return ret; } hdev = ae_dev->priv; timer_setup(&hdev->keep_alive_timer, hclgevf_keep_alive_timer, 0); INIT_WORK(&hdev->keep_alive_task, hclgevf_keep_alive_task); return 0; } static void hclgevf_uninit_ae_dev(struct hnae3_ae_dev *ae_dev) { struct hclgevf_dev *hdev = ae_dev->priv; hclgevf_uninit_hdev(hdev); ae_dev->priv = NULL; } static u32 hclgevf_get_max_channels(struct hclgevf_dev *hdev) { struct hnae3_handle *nic = &hdev->nic; struct hnae3_knic_private_info *kinfo = &nic->kinfo; return min_t(u32, hdev->rss_size_max * kinfo->num_tc, hdev->num_tqps); } /** * hclgevf_get_channels - Get the current channels enabled and max supported. * @handle: hardware information for network interface * @ch: ethtool channels structure * * We don't support separate tx and rx queues as channels. The other count * represents how many queues are being used for control. max_combined counts * how many queue pairs we can support. They may not be mapped 1 to 1 with * q_vectors since we support a lot more queue pairs than q_vectors. **/ static void hclgevf_get_channels(struct hnae3_handle *handle, struct ethtool_channels *ch) { struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); ch->max_combined = hclgevf_get_max_channels(hdev); ch->other_count = 0; ch->max_other = 0; ch->combined_count = hdev->num_tqps; } static void hclgevf_get_tqps_and_rss_info(struct hnae3_handle *handle, u16 *alloc_tqps, u16 *max_rss_size) { struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); *alloc_tqps = hdev->num_tqps; *max_rss_size = hdev->rss_size_max; } static int hclgevf_get_status(struct hnae3_handle *handle) { struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); return hdev->hw.mac.link; } static void hclgevf_get_ksettings_an_result(struct hnae3_handle *handle, u8 *auto_neg, u32 *speed, u8 *duplex) { struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); if (speed) *speed = hdev->hw.mac.speed; if (duplex) *duplex = hdev->hw.mac.duplex; if (auto_neg) *auto_neg = AUTONEG_DISABLE; } void hclgevf_update_speed_duplex(struct hclgevf_dev *hdev, u32 speed, u8 duplex) { hdev->hw.mac.speed = speed; hdev->hw.mac.duplex = duplex; } static int hclgevf_gro_en(struct hnae3_handle *handle, int enable) { struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); return hclgevf_config_gro(hdev, enable); } static void hclgevf_get_media_type(struct hnae3_handle *handle, u8 *media_type) { struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); if (media_type) *media_type = hdev->hw.mac.media_type; } static bool hclgevf_get_hw_reset_stat(struct hnae3_handle *handle) { struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); return !!hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING); } static bool hclgevf_ae_dev_resetting(struct hnae3_handle *handle) { struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); return test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state); } static unsigned long hclgevf_ae_dev_reset_cnt(struct hnae3_handle *handle) { struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); return hdev->reset_count; } #define MAX_SEPARATE_NUM 4 #define SEPARATOR_VALUE 0xFFFFFFFF #define REG_NUM_PER_LINE 4 #define REG_LEN_PER_LINE (REG_NUM_PER_LINE * sizeof(u32)) static int hclgevf_get_regs_len(struct hnae3_handle *handle) { int cmdq_lines, common_lines, ring_lines, tqp_intr_lines; struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); cmdq_lines = sizeof(cmdq_reg_addr_list) / REG_LEN_PER_LINE + 1; common_lines = sizeof(common_reg_addr_list) / REG_LEN_PER_LINE + 1; ring_lines = sizeof(ring_reg_addr_list) / REG_LEN_PER_LINE + 1; tqp_intr_lines = sizeof(tqp_intr_reg_addr_list) / REG_LEN_PER_LINE + 1; return (cmdq_lines + common_lines + ring_lines * hdev->num_tqps + tqp_intr_lines * (hdev->num_msi_used - 1)) * REG_LEN_PER_LINE; } static void hclgevf_get_regs(struct hnae3_handle *handle, u32 *version, void *data) { struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); int i, j, reg_um, separator_num; u32 *reg = data; *version = hdev->fw_version; /* fetching per-VF registers values from VF PCIe register space */ reg_um = sizeof(cmdq_reg_addr_list) / sizeof(u32); separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE; for (i = 0; i < reg_um; i++) *reg++ = hclgevf_read_dev(&hdev->hw, cmdq_reg_addr_list[i]); for (i = 0; i < separator_num; i++) *reg++ = SEPARATOR_VALUE; reg_um = sizeof(common_reg_addr_list) / sizeof(u32); separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE; for (i = 0; i < reg_um; i++) *reg++ = hclgevf_read_dev(&hdev->hw, common_reg_addr_list[i]); for (i = 0; i < separator_num; i++) *reg++ = SEPARATOR_VALUE; reg_um = sizeof(ring_reg_addr_list) / sizeof(u32); separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE; for (j = 0; j < hdev->num_tqps; j++) { for (i = 0; i < reg_um; i++) *reg++ = hclgevf_read_dev(&hdev->hw, ring_reg_addr_list[i] + 0x200 * j); for (i = 0; i < separator_num; i++) *reg++ = SEPARATOR_VALUE; } reg_um = sizeof(tqp_intr_reg_addr_list) / sizeof(u32); separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE; for (j = 0; j < hdev->num_msi_used - 1; j++) { for (i = 0; i < reg_um; i++) *reg++ = hclgevf_read_dev(&hdev->hw, tqp_intr_reg_addr_list[i] + 4 * j); for (i = 0; i < separator_num; i++) *reg++ = SEPARATOR_VALUE; } } static const struct hnae3_ae_ops hclgevf_ops = { .init_ae_dev = hclgevf_init_ae_dev, .uninit_ae_dev = hclgevf_uninit_ae_dev, .flr_prepare = hclgevf_flr_prepare, .flr_done = hclgevf_flr_done, .init_client_instance = hclgevf_init_client_instance, .uninit_client_instance = hclgevf_uninit_client_instance, .start = hclgevf_ae_start, .stop = hclgevf_ae_stop, .client_start = hclgevf_client_start, .client_stop = hclgevf_client_stop, .map_ring_to_vector = hclgevf_map_ring_to_vector, .unmap_ring_from_vector = hclgevf_unmap_ring_from_vector, .get_vector = hclgevf_get_vector, .put_vector = hclgevf_put_vector, .reset_queue = hclgevf_reset_tqp, .set_promisc_mode = hclgevf_set_promisc_mode, .get_mac_addr = hclgevf_get_mac_addr, .set_mac_addr = hclgevf_set_mac_addr, .add_uc_addr = hclgevf_add_uc_addr, .rm_uc_addr = hclgevf_rm_uc_addr, .add_mc_addr = hclgevf_add_mc_addr, .rm_mc_addr = hclgevf_rm_mc_addr, .get_stats = hclgevf_get_stats, .update_stats = hclgevf_update_stats, .get_strings = hclgevf_get_strings, .get_sset_count = hclgevf_get_sset_count, .get_rss_key_size = hclgevf_get_rss_key_size, .get_rss_indir_size = hclgevf_get_rss_indir_size, .get_rss = hclgevf_get_rss, .set_rss = hclgevf_set_rss, .get_rss_tuple = hclgevf_get_rss_tuple, .set_rss_tuple = hclgevf_set_rss_tuple, .get_tc_size = hclgevf_get_tc_size, .get_fw_version = hclgevf_get_fw_version, .set_vlan_filter = hclgevf_set_vlan_filter, .enable_hw_strip_rxvtag = hclgevf_en_hw_strip_rxvtag, .reset_event = hclgevf_reset_event, .set_default_reset_request = hclgevf_set_def_reset_request, .get_channels = hclgevf_get_channels, .get_tqps_and_rss_info = hclgevf_get_tqps_and_rss_info, .get_regs_len = hclgevf_get_regs_len, .get_regs = hclgevf_get_regs, .get_status = hclgevf_get_status, .get_ksettings_an_result = hclgevf_get_ksettings_an_result, .get_media_type = hclgevf_get_media_type, .get_hw_reset_stat = hclgevf_get_hw_reset_stat, .ae_dev_resetting = hclgevf_ae_dev_resetting, .ae_dev_reset_cnt = hclgevf_ae_dev_reset_cnt, .set_gro_en = hclgevf_gro_en, .set_mtu = hclgevf_set_mtu, .get_global_queue_id = hclgevf_get_qid_global, .set_timer_task = hclgevf_set_timer_task, }; static struct hnae3_ae_algo ae_algovf = { .ops = &hclgevf_ops, .pdev_id_table = ae_algovf_pci_tbl, }; static int hclgevf_init(void) { pr_info("%s is initializing\n", HCLGEVF_NAME); hnae3_register_ae_algo(&ae_algovf); return 0; } static void hclgevf_exit(void) { hnae3_unregister_ae_algo(&ae_algovf); } module_init(hclgevf_init); module_exit(hclgevf_exit); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Huawei Tech. Co., Ltd."); MODULE_DESCRIPTION("HCLGEVF Driver"); MODULE_VERSION(HCLGEVF_MOD_VERSION);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1