Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Greg Rose | 5806 | 36.96% | 2 | 0.98% |
Harshitha Ramamurthy | 3303 | 21.03% | 4 | 1.95% |
Mitch A Williams | 2510 | 15.98% | 80 | 39.02% |
Jesse Brandeburg | 1035 | 6.59% | 20 | 9.76% |
Jacob E Keller | 543 | 3.46% | 16 | 7.80% |
Anjali Singhai Jain | 516 | 3.29% | 7 | 3.41% |
Alan Brady | 436 | 2.78% | 6 | 2.93% |
Alexander Duyck | 413 | 2.63% | 17 | 8.29% |
Joe Perches | 206 | 1.31% | 1 | 0.49% |
Paweł Jabłoński | 164 | 1.04% | 4 | 1.95% |
Helin Zhang | 145 | 0.92% | 3 | 1.46% |
Sudheer Mogilappagari | 105 | 0.67% | 3 | 1.46% |
Avinash Dayanand | 92 | 0.59% | 3 | 1.46% |
Mariusz Stachura | 74 | 0.47% | 1 | 0.49% |
Preethi Banala | 54 | 0.34% | 2 | 0.98% |
Tushar Dave | 36 | 0.23% | 1 | 0.49% |
Ashish Shah | 35 | 0.22% | 2 | 0.98% |
Colin Ian King | 32 | 0.20% | 1 | 0.49% |
Patryk Małek | 29 | 0.18% | 1 | 0.49% |
Sridhar Samudrala | 18 | 0.11% | 1 | 0.49% |
Serey Kong | 16 | 0.10% | 1 | 0.49% |
Kees Cook | 14 | 0.09% | 1 | 0.49% |
Lihong Yang | 14 | 0.09% | 2 | 0.98% |
Jarod Wilson | 13 | 0.08% | 1 | 0.49% |
Joshua Hay | 10 | 0.06% | 1 | 0.49% |
Carolyn Wyborny | 10 | 0.06% | 1 | 0.49% |
Arnd Bergmann | 9 | 0.06% | 1 | 0.49% |
Shannon Nelson | 8 | 0.05% | 2 | 0.98% |
Alexander Gordeev | 8 | 0.05% | 1 | 0.49% |
Stefan Assmann | 6 | 0.04% | 1 | 0.49% |
Neerav Parikh | 6 | 0.04% | 1 | 0.49% |
Benoit Taine | 6 | 0.04% | 1 | 0.49% |
Scott Peterson | 5 | 0.03% | 1 | 0.49% |
Catherine Sullivan | 5 | 0.03% | 1 | 0.49% |
John Hurley | 4 | 0.03% | 1 | 0.49% |
Alan Cox | 4 | 0.03% | 1 | 0.49% |
Vasily Averin | 3 | 0.02% | 1 | 0.49% |
Allen Pais | 3 | 0.02% | 1 | 0.49% |
Jean Sacren | 2 | 0.01% | 1 | 0.49% |
Jeff Kirsher | 2 | 0.01% | 2 | 0.98% |
Jia-Ju Bai | 1 | 0.01% | 1 | 0.49% |
Masanari Iida | 1 | 0.01% | 1 | 0.49% |
Gustavo A. R. Silva | 1 | 0.01% | 1 | 0.49% |
Alice Michael | 1 | 0.01% | 1 | 0.49% |
Jiri Pirko | 1 | 0.01% | 1 | 0.49% |
Bimmy Pujari | 1 | 0.01% | 1 | 0.49% |
Tom Herbert | 1 | 0.01% | 1 | 0.49% |
Total | 15707 | 205 |
// SPDX-License-Identifier: GPL-2.0 /* Copyright(c) 2013 - 2018 Intel Corporation. */ #include "iavf.h" #include "iavf_prototype.h" #include "iavf_client.h" /* All iavf tracepoints are defined by the include below, which must * be included exactly once across the whole kernel with * CREATE_TRACE_POINTS defined */ #define CREATE_TRACE_POINTS #include "iavf_trace.h" static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter); static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter); static int iavf_close(struct net_device *netdev); char iavf_driver_name[] = "iavf"; static const char iavf_driver_string[] = "Intel(R) Ethernet Adaptive Virtual Function Network Driver"; #define DRV_KERN "-k" #define DRV_VERSION_MAJOR 3 #define DRV_VERSION_MINOR 2 #define DRV_VERSION_BUILD 3 #define DRV_VERSION __stringify(DRV_VERSION_MAJOR) "." \ __stringify(DRV_VERSION_MINOR) "." \ __stringify(DRV_VERSION_BUILD) \ DRV_KERN const char iavf_driver_version[] = DRV_VERSION; static const char iavf_copyright[] = "Copyright (c) 2013 - 2018 Intel Corporation."; /* iavf_pci_tbl - PCI Device ID Table * * Wildcard entries (PCI_ANY_ID) should come last * Last entry must be all 0s * * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, * Class, Class Mask, private data (not used) } */ static const struct pci_device_id iavf_pci_tbl[] = { {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF), 0}, {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF_HV), 0}, {PCI_VDEVICE(INTEL, IAVF_DEV_ID_X722_VF), 0}, {PCI_VDEVICE(INTEL, IAVF_DEV_ID_ADAPTIVE_VF), 0}, /* required last entry */ {0, } }; MODULE_DEVICE_TABLE(pci, iavf_pci_tbl); MODULE_ALIAS("i40evf"); MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); MODULE_DESCRIPTION("Intel(R) Ethernet Adaptive Virtual Function Network Driver"); MODULE_LICENSE("GPL v2"); MODULE_VERSION(DRV_VERSION); static struct workqueue_struct *iavf_wq; /** * iavf_allocate_dma_mem_d - OS specific memory alloc for shared code * @hw: pointer to the HW structure * @mem: ptr to mem struct to fill out * @size: size of memory requested * @alignment: what to align the allocation to **/ iavf_status iavf_allocate_dma_mem_d(struct iavf_hw *hw, struct iavf_dma_mem *mem, u64 size, u32 alignment) { struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back; if (!mem) return I40E_ERR_PARAM; mem->size = ALIGN(size, alignment); mem->va = dma_alloc_coherent(&adapter->pdev->dev, mem->size, (dma_addr_t *)&mem->pa, GFP_KERNEL); if (mem->va) return 0; else return I40E_ERR_NO_MEMORY; } /** * iavf_free_dma_mem_d - OS specific memory free for shared code * @hw: pointer to the HW structure * @mem: ptr to mem struct to free **/ iavf_status iavf_free_dma_mem_d(struct iavf_hw *hw, struct iavf_dma_mem *mem) { struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back; if (!mem || !mem->va) return I40E_ERR_PARAM; dma_free_coherent(&adapter->pdev->dev, mem->size, mem->va, (dma_addr_t)mem->pa); return 0; } /** * iavf_allocate_virt_mem_d - OS specific memory alloc for shared code * @hw: pointer to the HW structure * @mem: ptr to mem struct to fill out * @size: size of memory requested **/ iavf_status iavf_allocate_virt_mem_d(struct iavf_hw *hw, struct iavf_virt_mem *mem, u32 size) { if (!mem) return I40E_ERR_PARAM; mem->size = size; mem->va = kzalloc(size, GFP_KERNEL); if (mem->va) return 0; else return I40E_ERR_NO_MEMORY; } /** * iavf_free_virt_mem_d - OS specific memory free for shared code * @hw: pointer to the HW structure * @mem: ptr to mem struct to free **/ iavf_status iavf_free_virt_mem_d(struct iavf_hw *hw, struct iavf_virt_mem *mem) { if (!mem) return I40E_ERR_PARAM; /* it's ok to kfree a NULL pointer */ kfree(mem->va); return 0; } /** * iavf_debug_d - OS dependent version of debug printing * @hw: pointer to the HW structure * @mask: debug level mask * @fmt_str: printf-type format description **/ void iavf_debug_d(void *hw, u32 mask, char *fmt_str, ...) { char buf[512]; va_list argptr; if (!(mask & ((struct iavf_hw *)hw)->debug_mask)) return; va_start(argptr, fmt_str); vsnprintf(buf, sizeof(buf), fmt_str, argptr); va_end(argptr); /* the debug string is already formatted with a newline */ pr_info("%s", buf); } /** * iavf_schedule_reset - Set the flags and schedule a reset event * @adapter: board private structure **/ void iavf_schedule_reset(struct iavf_adapter *adapter) { if (!(adapter->flags & (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED))) { adapter->flags |= IAVF_FLAG_RESET_NEEDED; schedule_work(&adapter->reset_task); } } /** * iavf_tx_timeout - Respond to a Tx Hang * @netdev: network interface device structure **/ static void iavf_tx_timeout(struct net_device *netdev) { struct iavf_adapter *adapter = netdev_priv(netdev); adapter->tx_timeout_count++; iavf_schedule_reset(adapter); } /** * iavf_misc_irq_disable - Mask off interrupt generation on the NIC * @adapter: board private structure **/ static void iavf_misc_irq_disable(struct iavf_adapter *adapter) { struct iavf_hw *hw = &adapter->hw; if (!adapter->msix_entries) return; wr32(hw, IAVF_VFINT_DYN_CTL01, 0); iavf_flush(hw); synchronize_irq(adapter->msix_entries[0].vector); } /** * iavf_misc_irq_enable - Enable default interrupt generation settings * @adapter: board private structure **/ static void iavf_misc_irq_enable(struct iavf_adapter *adapter) { struct iavf_hw *hw = &adapter->hw; wr32(hw, IAVF_VFINT_DYN_CTL01, IAVF_VFINT_DYN_CTL01_INTENA_MASK | IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK); wr32(hw, IAVF_VFINT_ICR0_ENA1, IAVF_VFINT_ICR0_ENA1_ADMINQ_MASK); iavf_flush(hw); } /** * iavf_irq_disable - Mask off interrupt generation on the NIC * @adapter: board private structure **/ static void iavf_irq_disable(struct iavf_adapter *adapter) { int i; struct iavf_hw *hw = &adapter->hw; if (!adapter->msix_entries) return; for (i = 1; i < adapter->num_msix_vectors; i++) { wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 0); synchronize_irq(adapter->msix_entries[i].vector); } iavf_flush(hw); } /** * iavf_irq_enable_queues - Enable interrupt for specified queues * @adapter: board private structure * @mask: bitmap of queues to enable **/ void iavf_irq_enable_queues(struct iavf_adapter *adapter, u32 mask) { struct iavf_hw *hw = &adapter->hw; int i; for (i = 1; i < adapter->num_msix_vectors; i++) { if (mask & BIT(i - 1)) { wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), IAVF_VFINT_DYN_CTLN1_INTENA_MASK | IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK); } } } /** * iavf_irq_enable - Enable default interrupt generation settings * @adapter: board private structure * @flush: boolean value whether to run rd32() **/ void iavf_irq_enable(struct iavf_adapter *adapter, bool flush) { struct iavf_hw *hw = &adapter->hw; iavf_misc_irq_enable(adapter); iavf_irq_enable_queues(adapter, ~0); if (flush) iavf_flush(hw); } /** * iavf_msix_aq - Interrupt handler for vector 0 * @irq: interrupt number * @data: pointer to netdev **/ static irqreturn_t iavf_msix_aq(int irq, void *data) { struct net_device *netdev = data; struct iavf_adapter *adapter = netdev_priv(netdev); struct iavf_hw *hw = &adapter->hw; /* handle non-queue interrupts, these reads clear the registers */ rd32(hw, IAVF_VFINT_ICR01); rd32(hw, IAVF_VFINT_ICR0_ENA1); /* schedule work on the private workqueue */ schedule_work(&adapter->adminq_task); return IRQ_HANDLED; } /** * iavf_msix_clean_rings - MSIX mode Interrupt Handler * @irq: interrupt number * @data: pointer to a q_vector **/ static irqreturn_t iavf_msix_clean_rings(int irq, void *data) { struct iavf_q_vector *q_vector = data; if (!q_vector->tx.ring && !q_vector->rx.ring) return IRQ_HANDLED; napi_schedule_irqoff(&q_vector->napi); return IRQ_HANDLED; } /** * iavf_map_vector_to_rxq - associate irqs with rx queues * @adapter: board private structure * @v_idx: interrupt number * @r_idx: queue number **/ static void iavf_map_vector_to_rxq(struct iavf_adapter *adapter, int v_idx, int r_idx) { struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx]; struct iavf_ring *rx_ring = &adapter->rx_rings[r_idx]; struct iavf_hw *hw = &adapter->hw; rx_ring->q_vector = q_vector; rx_ring->next = q_vector->rx.ring; rx_ring->vsi = &adapter->vsi; q_vector->rx.ring = rx_ring; q_vector->rx.count++; q_vector->rx.next_update = jiffies + 1; q_vector->rx.target_itr = ITR_TO_REG(rx_ring->itr_setting); q_vector->ring_mask |= BIT(r_idx); wr32(hw, IAVF_VFINT_ITRN1(IAVF_RX_ITR, q_vector->reg_idx), q_vector->rx.current_itr); q_vector->rx.current_itr = q_vector->rx.target_itr; } /** * iavf_map_vector_to_txq - associate irqs with tx queues * @adapter: board private structure * @v_idx: interrupt number * @t_idx: queue number **/ static void iavf_map_vector_to_txq(struct iavf_adapter *adapter, int v_idx, int t_idx) { struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx]; struct iavf_ring *tx_ring = &adapter->tx_rings[t_idx]; struct iavf_hw *hw = &adapter->hw; tx_ring->q_vector = q_vector; tx_ring->next = q_vector->tx.ring; tx_ring->vsi = &adapter->vsi; q_vector->tx.ring = tx_ring; q_vector->tx.count++; q_vector->tx.next_update = jiffies + 1; q_vector->tx.target_itr = ITR_TO_REG(tx_ring->itr_setting); q_vector->num_ringpairs++; wr32(hw, IAVF_VFINT_ITRN1(IAVF_TX_ITR, q_vector->reg_idx), q_vector->tx.target_itr); q_vector->tx.current_itr = q_vector->tx.target_itr; } /** * iavf_map_rings_to_vectors - Maps descriptor rings to vectors * @adapter: board private structure to initialize * * This function maps descriptor rings to the queue-specific vectors * we were allotted through the MSI-X enabling code. Ideally, we'd have * one vector per ring/queue, but on a constrained vector budget, we * group the rings as "efficiently" as possible. You would add new * mapping configurations in here. **/ static void iavf_map_rings_to_vectors(struct iavf_adapter *adapter) { int rings_remaining = adapter->num_active_queues; int ridx = 0, vidx = 0; int q_vectors; q_vectors = adapter->num_msix_vectors - NONQ_VECS; for (; ridx < rings_remaining; ridx++) { iavf_map_vector_to_rxq(adapter, vidx, ridx); iavf_map_vector_to_txq(adapter, vidx, ridx); /* In the case where we have more queues than vectors, continue * round-robin on vectors until all queues are mapped. */ if (++vidx >= q_vectors) vidx = 0; } adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS; } /** * iavf_irq_affinity_notify - Callback for affinity changes * @notify: context as to what irq was changed * @mask: the new affinity mask * * This is a callback function used by the irq_set_affinity_notifier function * so that we may register to receive changes to the irq affinity masks. **/ static void iavf_irq_affinity_notify(struct irq_affinity_notify *notify, const cpumask_t *mask) { struct iavf_q_vector *q_vector = container_of(notify, struct iavf_q_vector, affinity_notify); cpumask_copy(&q_vector->affinity_mask, mask); } /** * iavf_irq_affinity_release - Callback for affinity notifier release * @ref: internal core kernel usage * * This is a callback function used by the irq_set_affinity_notifier function * to inform the current notification subscriber that they will no longer * receive notifications. **/ static void iavf_irq_affinity_release(struct kref *ref) {} /** * iavf_request_traffic_irqs - Initialize MSI-X interrupts * @adapter: board private structure * @basename: device basename * * Allocates MSI-X vectors for tx and rx handling, and requests * interrupts from the kernel. **/ static int iavf_request_traffic_irqs(struct iavf_adapter *adapter, char *basename) { unsigned int vector, q_vectors; unsigned int rx_int_idx = 0, tx_int_idx = 0; int irq_num, err; int cpu; iavf_irq_disable(adapter); /* Decrement for Other and TCP Timer vectors */ q_vectors = adapter->num_msix_vectors - NONQ_VECS; for (vector = 0; vector < q_vectors; vector++) { struct iavf_q_vector *q_vector = &adapter->q_vectors[vector]; irq_num = adapter->msix_entries[vector + NONQ_VECS].vector; if (q_vector->tx.ring && q_vector->rx.ring) { snprintf(q_vector->name, sizeof(q_vector->name), "iavf-%s-TxRx-%d", basename, rx_int_idx++); tx_int_idx++; } else if (q_vector->rx.ring) { snprintf(q_vector->name, sizeof(q_vector->name), "iavf-%s-rx-%d", basename, rx_int_idx++); } else if (q_vector->tx.ring) { snprintf(q_vector->name, sizeof(q_vector->name), "iavf-%s-tx-%d", basename, tx_int_idx++); } else { /* skip this unused q_vector */ continue; } err = request_irq(irq_num, iavf_msix_clean_rings, 0, q_vector->name, q_vector); if (err) { dev_info(&adapter->pdev->dev, "Request_irq failed, error: %d\n", err); goto free_queue_irqs; } /* register for affinity change notifications */ q_vector->affinity_notify.notify = iavf_irq_affinity_notify; q_vector->affinity_notify.release = iavf_irq_affinity_release; irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify); /* Spread the IRQ affinity hints across online CPUs. Note that * get_cpu_mask returns a mask with a permanent lifetime so * it's safe to use as a hint for irq_set_affinity_hint. */ cpu = cpumask_local_spread(q_vector->v_idx, -1); irq_set_affinity_hint(irq_num, get_cpu_mask(cpu)); } return 0; free_queue_irqs: while (vector) { vector--; irq_num = adapter->msix_entries[vector + NONQ_VECS].vector; irq_set_affinity_notifier(irq_num, NULL); irq_set_affinity_hint(irq_num, NULL); free_irq(irq_num, &adapter->q_vectors[vector]); } return err; } /** * iavf_request_misc_irq - Initialize MSI-X interrupts * @adapter: board private structure * * Allocates MSI-X vector 0 and requests interrupts from the kernel. This * vector is only for the admin queue, and stays active even when the netdev * is closed. **/ static int iavf_request_misc_irq(struct iavf_adapter *adapter) { struct net_device *netdev = adapter->netdev; int err; snprintf(adapter->misc_vector_name, sizeof(adapter->misc_vector_name) - 1, "iavf-%s:mbx", dev_name(&adapter->pdev->dev)); err = request_irq(adapter->msix_entries[0].vector, &iavf_msix_aq, 0, adapter->misc_vector_name, netdev); if (err) { dev_err(&adapter->pdev->dev, "request_irq for %s failed: %d\n", adapter->misc_vector_name, err); free_irq(adapter->msix_entries[0].vector, netdev); } return err; } /** * iavf_free_traffic_irqs - Free MSI-X interrupts * @adapter: board private structure * * Frees all MSI-X vectors other than 0. **/ static void iavf_free_traffic_irqs(struct iavf_adapter *adapter) { int vector, irq_num, q_vectors; if (!adapter->msix_entries) return; q_vectors = adapter->num_msix_vectors - NONQ_VECS; for (vector = 0; vector < q_vectors; vector++) { irq_num = adapter->msix_entries[vector + NONQ_VECS].vector; irq_set_affinity_notifier(irq_num, NULL); irq_set_affinity_hint(irq_num, NULL); free_irq(irq_num, &adapter->q_vectors[vector]); } } /** * iavf_free_misc_irq - Free MSI-X miscellaneous vector * @adapter: board private structure * * Frees MSI-X vector 0. **/ static void iavf_free_misc_irq(struct iavf_adapter *adapter) { struct net_device *netdev = adapter->netdev; if (!adapter->msix_entries) return; free_irq(adapter->msix_entries[0].vector, netdev); } /** * iavf_configure_tx - Configure Transmit Unit after Reset * @adapter: board private structure * * Configure the Tx unit of the MAC after a reset. **/ static void iavf_configure_tx(struct iavf_adapter *adapter) { struct iavf_hw *hw = &adapter->hw; int i; for (i = 0; i < adapter->num_active_queues; i++) adapter->tx_rings[i].tail = hw->hw_addr + IAVF_QTX_TAIL1(i); } /** * iavf_configure_rx - Configure Receive Unit after Reset * @adapter: board private structure * * Configure the Rx unit of the MAC after a reset. **/ static void iavf_configure_rx(struct iavf_adapter *adapter) { unsigned int rx_buf_len = IAVF_RXBUFFER_2048; struct iavf_hw *hw = &adapter->hw; int i; /* Legacy Rx will always default to a 2048 buffer size. */ #if (PAGE_SIZE < 8192) if (!(adapter->flags & IAVF_FLAG_LEGACY_RX)) { struct net_device *netdev = adapter->netdev; /* For jumbo frames on systems with 4K pages we have to use * an order 1 page, so we might as well increase the size * of our Rx buffer to make better use of the available space */ rx_buf_len = IAVF_RXBUFFER_3072; /* We use a 1536 buffer size for configurations with * standard Ethernet mtu. On x86 this gives us enough room * for shared info and 192 bytes of padding. */ if (!IAVF_2K_TOO_SMALL_WITH_PADDING && (netdev->mtu <= ETH_DATA_LEN)) rx_buf_len = IAVF_RXBUFFER_1536 - NET_IP_ALIGN; } #endif for (i = 0; i < adapter->num_active_queues; i++) { adapter->rx_rings[i].tail = hw->hw_addr + IAVF_QRX_TAIL1(i); adapter->rx_rings[i].rx_buf_len = rx_buf_len; if (adapter->flags & IAVF_FLAG_LEGACY_RX) clear_ring_build_skb_enabled(&adapter->rx_rings[i]); else set_ring_build_skb_enabled(&adapter->rx_rings[i]); } } /** * iavf_find_vlan - Search filter list for specific vlan filter * @adapter: board private structure * @vlan: vlan tag * * Returns ptr to the filter object or NULL. Must be called while holding the * mac_vlan_list_lock. **/ static struct iavf_vlan_filter *iavf_find_vlan(struct iavf_adapter *adapter, u16 vlan) { struct iavf_vlan_filter *f; list_for_each_entry(f, &adapter->vlan_filter_list, list) { if (vlan == f->vlan) return f; } return NULL; } /** * iavf_add_vlan - Add a vlan filter to the list * @adapter: board private structure * @vlan: VLAN tag * * Returns ptr to the filter object or NULL when no memory available. **/ static struct iavf_vlan_filter *iavf_add_vlan(struct iavf_adapter *adapter, u16 vlan) { struct iavf_vlan_filter *f = NULL; spin_lock_bh(&adapter->mac_vlan_list_lock); f = iavf_find_vlan(adapter, vlan); if (!f) { f = kzalloc(sizeof(*f), GFP_KERNEL); if (!f) goto clearout; f->vlan = vlan; INIT_LIST_HEAD(&f->list); list_add(&f->list, &adapter->vlan_filter_list); f->add = true; adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER; } clearout: spin_unlock_bh(&adapter->mac_vlan_list_lock); return f; } /** * iavf_del_vlan - Remove a vlan filter from the list * @adapter: board private structure * @vlan: VLAN tag **/ static void iavf_del_vlan(struct iavf_adapter *adapter, u16 vlan) { struct iavf_vlan_filter *f; spin_lock_bh(&adapter->mac_vlan_list_lock); f = iavf_find_vlan(adapter, vlan); if (f) { f->remove = true; adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER; } spin_unlock_bh(&adapter->mac_vlan_list_lock); } /** * iavf_vlan_rx_add_vid - Add a VLAN filter to a device * @netdev: network device struct * @proto: unused protocol data * @vid: VLAN tag **/ static int iavf_vlan_rx_add_vid(struct net_device *netdev, __always_unused __be16 proto, u16 vid) { struct iavf_adapter *adapter = netdev_priv(netdev); if (!VLAN_ALLOWED(adapter)) return -EIO; if (iavf_add_vlan(adapter, vid) == NULL) return -ENOMEM; return 0; } /** * iavf_vlan_rx_kill_vid - Remove a VLAN filter from a device * @netdev: network device struct * @proto: unused protocol data * @vid: VLAN tag **/ static int iavf_vlan_rx_kill_vid(struct net_device *netdev, __always_unused __be16 proto, u16 vid) { struct iavf_adapter *adapter = netdev_priv(netdev); if (VLAN_ALLOWED(adapter)) { iavf_del_vlan(adapter, vid); return 0; } return -EIO; } /** * iavf_find_filter - Search filter list for specific mac filter * @adapter: board private structure * @macaddr: the MAC address * * Returns ptr to the filter object or NULL. Must be called while holding the * mac_vlan_list_lock. **/ static struct iavf_mac_filter *iavf_find_filter(struct iavf_adapter *adapter, const u8 *macaddr) { struct iavf_mac_filter *f; if (!macaddr) return NULL; list_for_each_entry(f, &adapter->mac_filter_list, list) { if (ether_addr_equal(macaddr, f->macaddr)) return f; } return NULL; } /** * iavf_add_filter - Add a mac filter to the filter list * @adapter: board private structure * @macaddr: the MAC address * * Returns ptr to the filter object or NULL when no memory available. **/ static struct iavf_mac_filter *iavf_add_filter(struct iavf_adapter *adapter, const u8 *macaddr) { struct iavf_mac_filter *f; if (!macaddr) return NULL; f = iavf_find_filter(adapter, macaddr); if (!f) { f = kzalloc(sizeof(*f), GFP_ATOMIC); if (!f) return f; ether_addr_copy(f->macaddr, macaddr); list_add_tail(&f->list, &adapter->mac_filter_list); f->add = true; adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER; } else { f->remove = false; } return f; } /** * iavf_set_mac - NDO callback to set port mac address * @netdev: network interface device structure * @p: pointer to an address structure * * Returns 0 on success, negative on failure **/ static int iavf_set_mac(struct net_device *netdev, void *p) { struct iavf_adapter *adapter = netdev_priv(netdev); struct iavf_hw *hw = &adapter->hw; struct iavf_mac_filter *f; struct sockaddr *addr = p; if (!is_valid_ether_addr(addr->sa_data)) return -EADDRNOTAVAIL; if (ether_addr_equal(netdev->dev_addr, addr->sa_data)) return 0; if (adapter->flags & IAVF_FLAG_ADDR_SET_BY_PF) return -EPERM; spin_lock_bh(&adapter->mac_vlan_list_lock); f = iavf_find_filter(adapter, hw->mac.addr); if (f) { f->remove = true; adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER; } f = iavf_add_filter(adapter, addr->sa_data); spin_unlock_bh(&adapter->mac_vlan_list_lock); if (f) { ether_addr_copy(hw->mac.addr, addr->sa_data); ether_addr_copy(netdev->dev_addr, adapter->hw.mac.addr); } return (f == NULL) ? -ENOMEM : 0; } /** * iavf_addr_sync - Callback for dev_(mc|uc)_sync to add address * @netdev: the netdevice * @addr: address to add * * Called by __dev_(mc|uc)_sync when an address needs to be added. We call * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock. */ static int iavf_addr_sync(struct net_device *netdev, const u8 *addr) { struct iavf_adapter *adapter = netdev_priv(netdev); if (iavf_add_filter(adapter, addr)) return 0; else return -ENOMEM; } /** * iavf_addr_unsync - Callback for dev_(mc|uc)_sync to remove address * @netdev: the netdevice * @addr: address to add * * Called by __dev_(mc|uc)_sync when an address needs to be removed. We call * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock. */ static int iavf_addr_unsync(struct net_device *netdev, const u8 *addr) { struct iavf_adapter *adapter = netdev_priv(netdev); struct iavf_mac_filter *f; /* Under some circumstances, we might receive a request to delete * our own device address from our uc list. Because we store the * device address in the VSI's MAC/VLAN filter list, we need to ignore * such requests and not delete our device address from this list. */ if (ether_addr_equal(addr, netdev->dev_addr)) return 0; f = iavf_find_filter(adapter, addr); if (f) { f->remove = true; adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER; } return 0; } /** * iavf_set_rx_mode - NDO callback to set the netdev filters * @netdev: network interface device structure **/ static void iavf_set_rx_mode(struct net_device *netdev) { struct iavf_adapter *adapter = netdev_priv(netdev); spin_lock_bh(&adapter->mac_vlan_list_lock); __dev_uc_sync(netdev, iavf_addr_sync, iavf_addr_unsync); __dev_mc_sync(netdev, iavf_addr_sync, iavf_addr_unsync); spin_unlock_bh(&adapter->mac_vlan_list_lock); if (netdev->flags & IFF_PROMISC && !(adapter->flags & IAVF_FLAG_PROMISC_ON)) adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_PROMISC; else if (!(netdev->flags & IFF_PROMISC) && adapter->flags & IAVF_FLAG_PROMISC_ON) adapter->aq_required |= IAVF_FLAG_AQ_RELEASE_PROMISC; if (netdev->flags & IFF_ALLMULTI && !(adapter->flags & IAVF_FLAG_ALLMULTI_ON)) adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_ALLMULTI; else if (!(netdev->flags & IFF_ALLMULTI) && adapter->flags & IAVF_FLAG_ALLMULTI_ON) adapter->aq_required |= IAVF_FLAG_AQ_RELEASE_ALLMULTI; } /** * iavf_napi_enable_all - enable NAPI on all queue vectors * @adapter: board private structure **/ static void iavf_napi_enable_all(struct iavf_adapter *adapter) { int q_idx; struct iavf_q_vector *q_vector; int q_vectors = adapter->num_msix_vectors - NONQ_VECS; for (q_idx = 0; q_idx < q_vectors; q_idx++) { struct napi_struct *napi; q_vector = &adapter->q_vectors[q_idx]; napi = &q_vector->napi; napi_enable(napi); } } /** * iavf_napi_disable_all - disable NAPI on all queue vectors * @adapter: board private structure **/ static void iavf_napi_disable_all(struct iavf_adapter *adapter) { int q_idx; struct iavf_q_vector *q_vector; int q_vectors = adapter->num_msix_vectors - NONQ_VECS; for (q_idx = 0; q_idx < q_vectors; q_idx++) { q_vector = &adapter->q_vectors[q_idx]; napi_disable(&q_vector->napi); } } /** * iavf_configure - set up transmit and receive data structures * @adapter: board private structure **/ static void iavf_configure(struct iavf_adapter *adapter) { struct net_device *netdev = adapter->netdev; int i; iavf_set_rx_mode(netdev); iavf_configure_tx(adapter); iavf_configure_rx(adapter); adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES; for (i = 0; i < adapter->num_active_queues; i++) { struct iavf_ring *ring = &adapter->rx_rings[i]; iavf_alloc_rx_buffers(ring, IAVF_DESC_UNUSED(ring)); } } /** * iavf_up_complete - Finish the last steps of bringing up a connection * @adapter: board private structure * * Expects to be called while holding the __IAVF_IN_CRITICAL_TASK bit lock. **/ static void iavf_up_complete(struct iavf_adapter *adapter) { adapter->state = __IAVF_RUNNING; clear_bit(__IAVF_VSI_DOWN, adapter->vsi.state); iavf_napi_enable_all(adapter); adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_QUEUES; if (CLIENT_ENABLED(adapter)) adapter->flags |= IAVF_FLAG_CLIENT_NEEDS_OPEN; mod_timer_pending(&adapter->watchdog_timer, jiffies + 1); } /** * iavf_down - Shutdown the connection processing * @adapter: board private structure * * Expects to be called while holding the __IAVF_IN_CRITICAL_TASK bit lock. **/ void iavf_down(struct iavf_adapter *adapter) { struct net_device *netdev = adapter->netdev; struct iavf_vlan_filter *vlf; struct iavf_mac_filter *f; struct iavf_cloud_filter *cf; if (adapter->state <= __IAVF_DOWN_PENDING) return; netif_carrier_off(netdev); netif_tx_disable(netdev); adapter->link_up = false; iavf_napi_disable_all(adapter); iavf_irq_disable(adapter); spin_lock_bh(&adapter->mac_vlan_list_lock); /* clear the sync flag on all filters */ __dev_uc_unsync(adapter->netdev, NULL); __dev_mc_unsync(adapter->netdev, NULL); /* remove all MAC filters */ list_for_each_entry(f, &adapter->mac_filter_list, list) { f->remove = true; } /* remove all VLAN filters */ list_for_each_entry(vlf, &adapter->vlan_filter_list, list) { vlf->remove = true; } spin_unlock_bh(&adapter->mac_vlan_list_lock); /* remove all cloud filters */ spin_lock_bh(&adapter->cloud_filter_list_lock); list_for_each_entry(cf, &adapter->cloud_filter_list, list) { cf->del = true; } spin_unlock_bh(&adapter->cloud_filter_list_lock); if (!(adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) && adapter->state != __IAVF_RESETTING) { /* cancel any current operation */ adapter->current_op = VIRTCHNL_OP_UNKNOWN; /* Schedule operations to close down the HW. Don't wait * here for this to complete. The watchdog is still running * and it will take care of this. */ adapter->aq_required = IAVF_FLAG_AQ_DEL_MAC_FILTER; adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER; adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER; adapter->aq_required |= IAVF_FLAG_AQ_DISABLE_QUEUES; } mod_timer_pending(&adapter->watchdog_timer, jiffies + 1); } /** * iavf_acquire_msix_vectors - Setup the MSIX capability * @adapter: board private structure * @vectors: number of vectors to request * * Work with the OS to set up the MSIX vectors needed. * * Returns 0 on success, negative on failure **/ static int iavf_acquire_msix_vectors(struct iavf_adapter *adapter, int vectors) { int err, vector_threshold; /* We'll want at least 3 (vector_threshold): * 0) Other (Admin Queue and link, mostly) * 1) TxQ[0] Cleanup * 2) RxQ[0] Cleanup */ vector_threshold = MIN_MSIX_COUNT; /* The more we get, the more we will assign to Tx/Rx Cleanup * for the separate queues...where Rx Cleanup >= Tx Cleanup. * Right now, we simply care about how many we'll get; we'll * set them up later while requesting irq's. */ err = pci_enable_msix_range(adapter->pdev, adapter->msix_entries, vector_threshold, vectors); if (err < 0) { dev_err(&adapter->pdev->dev, "Unable to allocate MSI-X interrupts\n"); kfree(adapter->msix_entries); adapter->msix_entries = NULL; return err; } /* Adjust for only the vectors we'll use, which is minimum * of max_msix_q_vectors + NONQ_VECS, or the number of * vectors we were allocated. */ adapter->num_msix_vectors = err; return 0; } /** * iavf_free_queues - Free memory for all rings * @adapter: board private structure to initialize * * Free all of the memory associated with queue pairs. **/ static void iavf_free_queues(struct iavf_adapter *adapter) { if (!adapter->vsi_res) return; adapter->num_active_queues = 0; kfree(adapter->tx_rings); adapter->tx_rings = NULL; kfree(adapter->rx_rings); adapter->rx_rings = NULL; } /** * iavf_alloc_queues - Allocate memory for all rings * @adapter: board private structure to initialize * * We allocate one ring per queue at run-time since we don't know the * number of queues at compile-time. The polling_netdev array is * intended for Multiqueue, but should work fine with a single queue. **/ static int iavf_alloc_queues(struct iavf_adapter *adapter) { int i, num_active_queues; /* If we're in reset reallocating queues we don't actually know yet for * certain the PF gave us the number of queues we asked for but we'll * assume it did. Once basic reset is finished we'll confirm once we * start negotiating config with PF. */ if (adapter->num_req_queues) num_active_queues = adapter->num_req_queues; else if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) && adapter->num_tc) num_active_queues = adapter->ch_config.total_qps; else num_active_queues = min_t(int, adapter->vsi_res->num_queue_pairs, (int)(num_online_cpus())); adapter->tx_rings = kcalloc(num_active_queues, sizeof(struct iavf_ring), GFP_KERNEL); if (!adapter->tx_rings) goto err_out; adapter->rx_rings = kcalloc(num_active_queues, sizeof(struct iavf_ring), GFP_KERNEL); if (!adapter->rx_rings) goto err_out; for (i = 0; i < num_active_queues; i++) { struct iavf_ring *tx_ring; struct iavf_ring *rx_ring; tx_ring = &adapter->tx_rings[i]; tx_ring->queue_index = i; tx_ring->netdev = adapter->netdev; tx_ring->dev = &adapter->pdev->dev; tx_ring->count = adapter->tx_desc_count; tx_ring->itr_setting = IAVF_ITR_TX_DEF; if (adapter->flags & IAVF_FLAG_WB_ON_ITR_CAPABLE) tx_ring->flags |= IAVF_TXR_FLAGS_WB_ON_ITR; rx_ring = &adapter->rx_rings[i]; rx_ring->queue_index = i; rx_ring->netdev = adapter->netdev; rx_ring->dev = &adapter->pdev->dev; rx_ring->count = adapter->rx_desc_count; rx_ring->itr_setting = IAVF_ITR_RX_DEF; } adapter->num_active_queues = num_active_queues; return 0; err_out: iavf_free_queues(adapter); return -ENOMEM; } /** * iavf_set_interrupt_capability - set MSI-X or FAIL if not supported * @adapter: board private structure to initialize * * Attempt to configure the interrupts using the best available * capabilities of the hardware and the kernel. **/ static int iavf_set_interrupt_capability(struct iavf_adapter *adapter) { int vector, v_budget; int pairs = 0; int err = 0; if (!adapter->vsi_res) { err = -EIO; goto out; } pairs = adapter->num_active_queues; /* It's easy to be greedy for MSI-X vectors, but it really doesn't do * us much good if we have more vectors than CPUs. However, we already * limit the total number of queues by the number of CPUs so we do not * need any further limiting here. */ v_budget = min_t(int, pairs + NONQ_VECS, (int)adapter->vf_res->max_vectors); adapter->msix_entries = kcalloc(v_budget, sizeof(struct msix_entry), GFP_KERNEL); if (!adapter->msix_entries) { err = -ENOMEM; goto out; } for (vector = 0; vector < v_budget; vector++) adapter->msix_entries[vector].entry = vector; err = iavf_acquire_msix_vectors(adapter, v_budget); out: netif_set_real_num_rx_queues(adapter->netdev, pairs); netif_set_real_num_tx_queues(adapter->netdev, pairs); return err; } /** * iavf_config_rss_aq - Configure RSS keys and lut by using AQ commands * @adapter: board private structure * * Return 0 on success, negative on failure **/ static int iavf_config_rss_aq(struct iavf_adapter *adapter) { struct i40e_aqc_get_set_rss_key_data *rss_key = (struct i40e_aqc_get_set_rss_key_data *)adapter->rss_key; struct iavf_hw *hw = &adapter->hw; int ret = 0; if (adapter->current_op != VIRTCHNL_OP_UNKNOWN) { /* bail because we already have a command pending */ dev_err(&adapter->pdev->dev, "Cannot configure RSS, command %d pending\n", adapter->current_op); return -EBUSY; } ret = iavf_aq_set_rss_key(hw, adapter->vsi.id, rss_key); if (ret) { dev_err(&adapter->pdev->dev, "Cannot set RSS key, err %s aq_err %s\n", iavf_stat_str(hw, ret), iavf_aq_str(hw, hw->aq.asq_last_status)); return ret; } ret = iavf_aq_set_rss_lut(hw, adapter->vsi.id, false, adapter->rss_lut, adapter->rss_lut_size); if (ret) { dev_err(&adapter->pdev->dev, "Cannot set RSS lut, err %s aq_err %s\n", iavf_stat_str(hw, ret), iavf_aq_str(hw, hw->aq.asq_last_status)); } return ret; } /** * iavf_config_rss_reg - Configure RSS keys and lut by writing registers * @adapter: board private structure * * Returns 0 on success, negative on failure **/ static int iavf_config_rss_reg(struct iavf_adapter *adapter) { struct iavf_hw *hw = &adapter->hw; u32 *dw; u16 i; dw = (u32 *)adapter->rss_key; for (i = 0; i <= adapter->rss_key_size / 4; i++) wr32(hw, IAVF_VFQF_HKEY(i), dw[i]); dw = (u32 *)adapter->rss_lut; for (i = 0; i <= adapter->rss_lut_size / 4; i++) wr32(hw, IAVF_VFQF_HLUT(i), dw[i]); iavf_flush(hw); return 0; } /** * iavf_config_rss - Configure RSS keys and lut * @adapter: board private structure * * Returns 0 on success, negative on failure **/ int iavf_config_rss(struct iavf_adapter *adapter) { if (RSS_PF(adapter)) { adapter->aq_required |= IAVF_FLAG_AQ_SET_RSS_LUT | IAVF_FLAG_AQ_SET_RSS_KEY; return 0; } else if (RSS_AQ(adapter)) { return iavf_config_rss_aq(adapter); } else { return iavf_config_rss_reg(adapter); } } /** * iavf_fill_rss_lut - Fill the lut with default values * @adapter: board private structure **/ static void iavf_fill_rss_lut(struct iavf_adapter *adapter) { u16 i; for (i = 0; i < adapter->rss_lut_size; i++) adapter->rss_lut[i] = i % adapter->num_active_queues; } /** * iavf_init_rss - Prepare for RSS * @adapter: board private structure * * Return 0 on success, negative on failure **/ static int iavf_init_rss(struct iavf_adapter *adapter) { struct iavf_hw *hw = &adapter->hw; int ret; if (!RSS_PF(adapter)) { /* Enable PCTYPES for RSS, TCP/UDP with IPv4/IPv6 */ if (adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2) adapter->hena = IAVF_DEFAULT_RSS_HENA_EXPANDED; else adapter->hena = IAVF_DEFAULT_RSS_HENA; wr32(hw, IAVF_VFQF_HENA(0), (u32)adapter->hena); wr32(hw, IAVF_VFQF_HENA(1), (u32)(adapter->hena >> 32)); } iavf_fill_rss_lut(adapter); netdev_rss_key_fill((void *)adapter->rss_key, adapter->rss_key_size); ret = iavf_config_rss(adapter); return ret; } /** * iavf_alloc_q_vectors - Allocate memory for interrupt vectors * @adapter: board private structure to initialize * * We allocate one q_vector per queue interrupt. If allocation fails we * return -ENOMEM. **/ static int iavf_alloc_q_vectors(struct iavf_adapter *adapter) { int q_idx = 0, num_q_vectors; struct iavf_q_vector *q_vector; num_q_vectors = adapter->num_msix_vectors - NONQ_VECS; adapter->q_vectors = kcalloc(num_q_vectors, sizeof(*q_vector), GFP_KERNEL); if (!adapter->q_vectors) return -ENOMEM; for (q_idx = 0; q_idx < num_q_vectors; q_idx++) { q_vector = &adapter->q_vectors[q_idx]; q_vector->adapter = adapter; q_vector->vsi = &adapter->vsi; q_vector->v_idx = q_idx; q_vector->reg_idx = q_idx; cpumask_copy(&q_vector->affinity_mask, cpu_possible_mask); netif_napi_add(adapter->netdev, &q_vector->napi, iavf_napi_poll, NAPI_POLL_WEIGHT); } return 0; } /** * iavf_free_q_vectors - Free memory allocated for interrupt vectors * @adapter: board private structure to initialize * * This function frees the memory allocated to the q_vectors. In addition if * NAPI is enabled it will delete any references to the NAPI struct prior * to freeing the q_vector. **/ static void iavf_free_q_vectors(struct iavf_adapter *adapter) { int q_idx, num_q_vectors; int napi_vectors; if (!adapter->q_vectors) return; num_q_vectors = adapter->num_msix_vectors - NONQ_VECS; napi_vectors = adapter->num_active_queues; for (q_idx = 0; q_idx < num_q_vectors; q_idx++) { struct iavf_q_vector *q_vector = &adapter->q_vectors[q_idx]; if (q_idx < napi_vectors) netif_napi_del(&q_vector->napi); } kfree(adapter->q_vectors); adapter->q_vectors = NULL; } /** * iavf_reset_interrupt_capability - Reset MSIX setup * @adapter: board private structure * **/ void iavf_reset_interrupt_capability(struct iavf_adapter *adapter) { if (!adapter->msix_entries) return; pci_disable_msix(adapter->pdev); kfree(adapter->msix_entries); adapter->msix_entries = NULL; } /** * iavf_init_interrupt_scheme - Determine if MSIX is supported and init * @adapter: board private structure to initialize * **/ int iavf_init_interrupt_scheme(struct iavf_adapter *adapter) { int err; err = iavf_alloc_queues(adapter); if (err) { dev_err(&adapter->pdev->dev, "Unable to allocate memory for queues\n"); goto err_alloc_queues; } rtnl_lock(); err = iavf_set_interrupt_capability(adapter); rtnl_unlock(); if (err) { dev_err(&adapter->pdev->dev, "Unable to setup interrupt capabilities\n"); goto err_set_interrupt; } err = iavf_alloc_q_vectors(adapter); if (err) { dev_err(&adapter->pdev->dev, "Unable to allocate memory for queue vectors\n"); goto err_alloc_q_vectors; } /* If we've made it so far while ADq flag being ON, then we haven't * bailed out anywhere in middle. And ADq isn't just enabled but actual * resources have been allocated in the reset path. * Now we can truly claim that ADq is enabled. */ if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) && adapter->num_tc) dev_info(&adapter->pdev->dev, "ADq Enabled, %u TCs created", adapter->num_tc); dev_info(&adapter->pdev->dev, "Multiqueue %s: Queue pair count = %u", (adapter->num_active_queues > 1) ? "Enabled" : "Disabled", adapter->num_active_queues); return 0; err_alloc_q_vectors: iavf_reset_interrupt_capability(adapter); err_set_interrupt: iavf_free_queues(adapter); err_alloc_queues: return err; } /** * iavf_free_rss - Free memory used by RSS structs * @adapter: board private structure **/ static void iavf_free_rss(struct iavf_adapter *adapter) { kfree(adapter->rss_key); adapter->rss_key = NULL; kfree(adapter->rss_lut); adapter->rss_lut = NULL; } /** * iavf_reinit_interrupt_scheme - Reallocate queues and vectors * @adapter: board private structure * * Returns 0 on success, negative on failure **/ static int iavf_reinit_interrupt_scheme(struct iavf_adapter *adapter) { struct net_device *netdev = adapter->netdev; int err; if (netif_running(netdev)) iavf_free_traffic_irqs(adapter); iavf_free_misc_irq(adapter); iavf_reset_interrupt_capability(adapter); iavf_free_q_vectors(adapter); iavf_free_queues(adapter); err = iavf_init_interrupt_scheme(adapter); if (err) goto err; netif_tx_stop_all_queues(netdev); err = iavf_request_misc_irq(adapter); if (err) goto err; set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); iavf_map_rings_to_vectors(adapter); if (RSS_AQ(adapter)) adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS; else err = iavf_init_rss(adapter); err: return err; } /** * iavf_watchdog_timer - Periodic call-back timer * @data: pointer to adapter disguised as unsigned long **/ static void iavf_watchdog_timer(struct timer_list *t) { struct iavf_adapter *adapter = from_timer(adapter, t, watchdog_timer); schedule_work(&adapter->watchdog_task); /* timer will be rescheduled in watchdog task */ } /** * iavf_watchdog_task - Periodic call-back task * @work: pointer to work_struct **/ static void iavf_watchdog_task(struct work_struct *work) { struct iavf_adapter *adapter = container_of(work, struct iavf_adapter, watchdog_task); struct iavf_hw *hw = &adapter->hw; u32 reg_val; if (test_and_set_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section)) goto restart_watchdog; if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) { reg_val = rd32(hw, IAVF_VFGEN_RSTAT) & IAVF_VFGEN_RSTAT_VFR_STATE_MASK; if ((reg_val == VIRTCHNL_VFR_VFACTIVE) || (reg_val == VIRTCHNL_VFR_COMPLETED)) { /* A chance for redemption! */ dev_err(&adapter->pdev->dev, "Hardware came out of reset. Attempting reinit.\n"); adapter->state = __IAVF_STARTUP; adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED; schedule_delayed_work(&adapter->init_task, 10); clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section); /* Don't reschedule the watchdog, since we've restarted * the init task. When init_task contacts the PF and * gets everything set up again, it'll restart the * watchdog for us. Down, boy. Sit. Stay. Woof. */ return; } adapter->aq_required = 0; adapter->current_op = VIRTCHNL_OP_UNKNOWN; goto watchdog_done; } if ((adapter->state < __IAVF_DOWN) || (adapter->flags & IAVF_FLAG_RESET_PENDING)) goto watchdog_done; /* check for reset */ reg_val = rd32(hw, IAVF_VF_ARQLEN1) & IAVF_VF_ARQLEN1_ARQENABLE_MASK; if (!(adapter->flags & IAVF_FLAG_RESET_PENDING) && !reg_val) { adapter->state = __IAVF_RESETTING; adapter->flags |= IAVF_FLAG_RESET_PENDING; dev_err(&adapter->pdev->dev, "Hardware reset detected\n"); schedule_work(&adapter->reset_task); adapter->aq_required = 0; adapter->current_op = VIRTCHNL_OP_UNKNOWN; goto watchdog_done; } /* Process admin queue tasks. After init, everything gets done * here so we don't race on the admin queue. */ if (adapter->current_op) { if (!iavf_asq_done(hw)) { dev_dbg(&adapter->pdev->dev, "Admin queue timeout\n"); iavf_send_api_ver(adapter); } goto watchdog_done; } if (adapter->aq_required & IAVF_FLAG_AQ_GET_CONFIG) { iavf_send_vf_config_msg(adapter); goto watchdog_done; } if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_QUEUES) { iavf_disable_queues(adapter); goto watchdog_done; } if (adapter->aq_required & IAVF_FLAG_AQ_MAP_VECTORS) { iavf_map_queues(adapter); goto watchdog_done; } if (adapter->aq_required & IAVF_FLAG_AQ_ADD_MAC_FILTER) { iavf_add_ether_addrs(adapter); goto watchdog_done; } if (adapter->aq_required & IAVF_FLAG_AQ_ADD_VLAN_FILTER) { iavf_add_vlans(adapter); goto watchdog_done; } if (adapter->aq_required & IAVF_FLAG_AQ_DEL_MAC_FILTER) { iavf_del_ether_addrs(adapter); goto watchdog_done; } if (adapter->aq_required & IAVF_FLAG_AQ_DEL_VLAN_FILTER) { iavf_del_vlans(adapter); goto watchdog_done; } if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING) { iavf_enable_vlan_stripping(adapter); goto watchdog_done; } if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING) { iavf_disable_vlan_stripping(adapter); goto watchdog_done; } if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_QUEUES) { iavf_configure_queues(adapter); goto watchdog_done; } if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_QUEUES) { iavf_enable_queues(adapter); goto watchdog_done; } if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_RSS) { /* This message goes straight to the firmware, not the * PF, so we don't have to set current_op as we will * not get a response through the ARQ. */ iavf_init_rss(adapter); adapter->aq_required &= ~IAVF_FLAG_AQ_CONFIGURE_RSS; goto watchdog_done; } if (adapter->aq_required & IAVF_FLAG_AQ_GET_HENA) { iavf_get_hena(adapter); goto watchdog_done; } if (adapter->aq_required & IAVF_FLAG_AQ_SET_HENA) { iavf_set_hena(adapter); goto watchdog_done; } if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_KEY) { iavf_set_rss_key(adapter); goto watchdog_done; } if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_LUT) { iavf_set_rss_lut(adapter); goto watchdog_done; } if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_PROMISC) { iavf_set_promiscuous(adapter, FLAG_VF_UNICAST_PROMISC | FLAG_VF_MULTICAST_PROMISC); goto watchdog_done; } if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_ALLMULTI) { iavf_set_promiscuous(adapter, FLAG_VF_MULTICAST_PROMISC); goto watchdog_done; } if ((adapter->aq_required & IAVF_FLAG_AQ_RELEASE_PROMISC) && (adapter->aq_required & IAVF_FLAG_AQ_RELEASE_ALLMULTI)) { iavf_set_promiscuous(adapter, 0); goto watchdog_done; } if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CHANNELS) { iavf_enable_channels(adapter); goto watchdog_done; } if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CHANNELS) { iavf_disable_channels(adapter); goto watchdog_done; } if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) { iavf_add_cloud_filter(adapter); goto watchdog_done; } if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) { iavf_del_cloud_filter(adapter); goto watchdog_done; } schedule_delayed_work(&adapter->client_task, msecs_to_jiffies(5)); if (adapter->state == __IAVF_RUNNING) iavf_request_stats(adapter); watchdog_done: if (adapter->state == __IAVF_RUNNING) iavf_detect_recover_hung(&adapter->vsi); clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section); restart_watchdog: if (adapter->state == __IAVF_REMOVE) return; if (adapter->aq_required) mod_timer(&adapter->watchdog_timer, jiffies + msecs_to_jiffies(20)); else mod_timer(&adapter->watchdog_timer, jiffies + (HZ * 2)); schedule_work(&adapter->adminq_task); } static void iavf_disable_vf(struct iavf_adapter *adapter) { struct iavf_mac_filter *f, *ftmp; struct iavf_vlan_filter *fv, *fvtmp; struct iavf_cloud_filter *cf, *cftmp; adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED; /* We don't use netif_running() because it may be true prior to * ndo_open() returning, so we can't assume it means all our open * tasks have finished, since we're not holding the rtnl_lock here. */ if (adapter->state == __IAVF_RUNNING) { set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); netif_carrier_off(adapter->netdev); netif_tx_disable(adapter->netdev); adapter->link_up = false; iavf_napi_disable_all(adapter); iavf_irq_disable(adapter); iavf_free_traffic_irqs(adapter); iavf_free_all_tx_resources(adapter); iavf_free_all_rx_resources(adapter); } spin_lock_bh(&adapter->mac_vlan_list_lock); /* Delete all of the filters */ list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) { list_del(&f->list); kfree(f); } list_for_each_entry_safe(fv, fvtmp, &adapter->vlan_filter_list, list) { list_del(&fv->list); kfree(fv); } spin_unlock_bh(&adapter->mac_vlan_list_lock); spin_lock_bh(&adapter->cloud_filter_list_lock); list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) { list_del(&cf->list); kfree(cf); adapter->num_cloud_filters--; } spin_unlock_bh(&adapter->cloud_filter_list_lock); iavf_free_misc_irq(adapter); iavf_reset_interrupt_capability(adapter); iavf_free_queues(adapter); iavf_free_q_vectors(adapter); kfree(adapter->vf_res); iavf_shutdown_adminq(&adapter->hw); adapter->netdev->flags &= ~IFF_UP; clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section); adapter->flags &= ~IAVF_FLAG_RESET_PENDING; adapter->state = __IAVF_DOWN; wake_up(&adapter->down_waitqueue); dev_info(&adapter->pdev->dev, "Reset task did not complete, VF disabled\n"); } #define IAVF_RESET_WAIT_MS 10 #define IAVF_RESET_WAIT_COUNT 500 /** * iavf_reset_task - Call-back task to handle hardware reset * @work: pointer to work_struct * * During reset we need to shut down and reinitialize the admin queue * before we can use it to communicate with the PF again. We also clear * and reinit the rings because that context is lost as well. **/ static void iavf_reset_task(struct work_struct *work) { struct iavf_adapter *adapter = container_of(work, struct iavf_adapter, reset_task); struct virtchnl_vf_resource *vfres = adapter->vf_res; struct net_device *netdev = adapter->netdev; struct iavf_hw *hw = &adapter->hw; struct iavf_vlan_filter *vlf; struct iavf_cloud_filter *cf; struct iavf_mac_filter *f; u32 reg_val; int i = 0, err; bool running; /* When device is being removed it doesn't make sense to run the reset * task, just return in such a case. */ if (test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) return; while (test_and_set_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section)) usleep_range(500, 1000); if (CLIENT_ENABLED(adapter)) { adapter->flags &= ~(IAVF_FLAG_CLIENT_NEEDS_OPEN | IAVF_FLAG_CLIENT_NEEDS_CLOSE | IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS | IAVF_FLAG_SERVICE_CLIENT_REQUESTED); cancel_delayed_work_sync(&adapter->client_task); iavf_notify_client_close(&adapter->vsi, true); } iavf_misc_irq_disable(adapter); if (adapter->flags & IAVF_FLAG_RESET_NEEDED) { adapter->flags &= ~IAVF_FLAG_RESET_NEEDED; /* Restart the AQ here. If we have been reset but didn't * detect it, or if the PF had to reinit, our AQ will be hosed. */ iavf_shutdown_adminq(hw); iavf_init_adminq(hw); iavf_request_reset(adapter); } adapter->flags |= IAVF_FLAG_RESET_PENDING; /* poll until we see the reset actually happen */ for (i = 0; i < IAVF_RESET_WAIT_COUNT; i++) { reg_val = rd32(hw, IAVF_VF_ARQLEN1) & IAVF_VF_ARQLEN1_ARQENABLE_MASK; if (!reg_val) break; usleep_range(5000, 10000); } if (i == IAVF_RESET_WAIT_COUNT) { dev_info(&adapter->pdev->dev, "Never saw reset\n"); goto continue_reset; /* act like the reset happened */ } /* wait until the reset is complete and the PF is responding to us */ for (i = 0; i < IAVF_RESET_WAIT_COUNT; i++) { /* sleep first to make sure a minimum wait time is met */ msleep(IAVF_RESET_WAIT_MS); reg_val = rd32(hw, IAVF_VFGEN_RSTAT) & IAVF_VFGEN_RSTAT_VFR_STATE_MASK; if (reg_val == VIRTCHNL_VFR_VFACTIVE) break; } pci_set_master(adapter->pdev); if (i == IAVF_RESET_WAIT_COUNT) { dev_err(&adapter->pdev->dev, "Reset never finished (%x)\n", reg_val); iavf_disable_vf(adapter); clear_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section); return; /* Do not attempt to reinit. It's dead, Jim. */ } continue_reset: /* We don't use netif_running() because it may be true prior to * ndo_open() returning, so we can't assume it means all our open * tasks have finished, since we're not holding the rtnl_lock here. */ running = ((adapter->state == __IAVF_RUNNING) || (adapter->state == __IAVF_RESETTING)); if (running) { netif_carrier_off(netdev); netif_tx_stop_all_queues(netdev); adapter->link_up = false; iavf_napi_disable_all(adapter); } iavf_irq_disable(adapter); adapter->state = __IAVF_RESETTING; adapter->flags &= ~IAVF_FLAG_RESET_PENDING; /* free the Tx/Rx rings and descriptors, might be better to just * re-use them sometime in the future */ iavf_free_all_rx_resources(adapter); iavf_free_all_tx_resources(adapter); adapter->flags |= IAVF_FLAG_QUEUES_DISABLED; /* kill and reinit the admin queue */ iavf_shutdown_adminq(hw); adapter->current_op = VIRTCHNL_OP_UNKNOWN; err = iavf_init_adminq(hw); if (err) dev_info(&adapter->pdev->dev, "Failed to init adminq: %d\n", err); adapter->aq_required = 0; if (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED) { err = iavf_reinit_interrupt_scheme(adapter); if (err) goto reset_err; } adapter->aq_required |= IAVF_FLAG_AQ_GET_CONFIG; adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS; spin_lock_bh(&adapter->mac_vlan_list_lock); /* re-add all MAC filters */ list_for_each_entry(f, &adapter->mac_filter_list, list) { f->add = true; } /* re-add all VLAN filters */ list_for_each_entry(vlf, &adapter->vlan_filter_list, list) { vlf->add = true; } spin_unlock_bh(&adapter->mac_vlan_list_lock); /* check if TCs are running and re-add all cloud filters */ spin_lock_bh(&adapter->cloud_filter_list_lock); if ((vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) && adapter->num_tc) { list_for_each_entry(cf, &adapter->cloud_filter_list, list) { cf->add = true; } } spin_unlock_bh(&adapter->cloud_filter_list_lock); adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER; adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER; adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER; iavf_misc_irq_enable(adapter); mod_timer(&adapter->watchdog_timer, jiffies + 2); /* We were running when the reset started, so we need to restore some * state here. */ if (running) { /* allocate transmit descriptors */ err = iavf_setup_all_tx_resources(adapter); if (err) goto reset_err; /* allocate receive descriptors */ err = iavf_setup_all_rx_resources(adapter); if (err) goto reset_err; if (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED) { err = iavf_request_traffic_irqs(adapter, netdev->name); if (err) goto reset_err; adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED; } iavf_configure(adapter); iavf_up_complete(adapter); iavf_irq_enable(adapter, true); } else { adapter->state = __IAVF_DOWN; wake_up(&adapter->down_waitqueue); } clear_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section); clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section); return; reset_err: clear_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section); clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section); dev_err(&adapter->pdev->dev, "failed to allocate resources during reinit\n"); iavf_close(netdev); } /** * iavf_adminq_task - worker thread to clean the admin queue * @work: pointer to work_struct containing our data **/ static void iavf_adminq_task(struct work_struct *work) { struct iavf_adapter *adapter = container_of(work, struct iavf_adapter, adminq_task); struct iavf_hw *hw = &adapter->hw; struct i40e_arq_event_info event; enum virtchnl_ops v_op; iavf_status ret, v_ret; u32 val, oldval; u16 pending; if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) goto out; event.buf_len = IAVF_MAX_AQ_BUF_SIZE; event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); if (!event.msg_buf) goto out; do { ret = iavf_clean_arq_element(hw, &event, &pending); v_op = (enum virtchnl_ops)le32_to_cpu(event.desc.cookie_high); v_ret = (iavf_status)le32_to_cpu(event.desc.cookie_low); if (ret || !v_op) break; /* No event to process or error cleaning ARQ */ iavf_virtchnl_completion(adapter, v_op, v_ret, event.msg_buf, event.msg_len); if (pending != 0) memset(event.msg_buf, 0, IAVF_MAX_AQ_BUF_SIZE); } while (pending); if ((adapter->flags & (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED)) || adapter->state == __IAVF_RESETTING) goto freedom; /* check for error indications */ val = rd32(hw, hw->aq.arq.len); if (val == 0xdeadbeef) /* indicates device in reset */ goto freedom; oldval = val; if (val & IAVF_VF_ARQLEN1_ARQVFE_MASK) { dev_info(&adapter->pdev->dev, "ARQ VF Error detected\n"); val &= ~IAVF_VF_ARQLEN1_ARQVFE_MASK; } if (val & IAVF_VF_ARQLEN1_ARQOVFL_MASK) { dev_info(&adapter->pdev->dev, "ARQ Overflow Error detected\n"); val &= ~IAVF_VF_ARQLEN1_ARQOVFL_MASK; } if (val & IAVF_VF_ARQLEN1_ARQCRIT_MASK) { dev_info(&adapter->pdev->dev, "ARQ Critical Error detected\n"); val &= ~IAVF_VF_ARQLEN1_ARQCRIT_MASK; } if (oldval != val) wr32(hw, hw->aq.arq.len, val); val = rd32(hw, hw->aq.asq.len); oldval = val; if (val & IAVF_VF_ATQLEN1_ATQVFE_MASK) { dev_info(&adapter->pdev->dev, "ASQ VF Error detected\n"); val &= ~IAVF_VF_ATQLEN1_ATQVFE_MASK; } if (val & IAVF_VF_ATQLEN1_ATQOVFL_MASK) { dev_info(&adapter->pdev->dev, "ASQ Overflow Error detected\n"); val &= ~IAVF_VF_ATQLEN1_ATQOVFL_MASK; } if (val & IAVF_VF_ATQLEN1_ATQCRIT_MASK) { dev_info(&adapter->pdev->dev, "ASQ Critical Error detected\n"); val &= ~IAVF_VF_ATQLEN1_ATQCRIT_MASK; } if (oldval != val) wr32(hw, hw->aq.asq.len, val); freedom: kfree(event.msg_buf); out: /* re-enable Admin queue interrupt cause */ iavf_misc_irq_enable(adapter); } /** * iavf_client_task - worker thread to perform client work * @work: pointer to work_struct containing our data * * This task handles client interactions. Because client calls can be * reentrant, we can't handle them in the watchdog. **/ static void iavf_client_task(struct work_struct *work) { struct iavf_adapter *adapter = container_of(work, struct iavf_adapter, client_task.work); /* If we can't get the client bit, just give up. We'll be rescheduled * later. */ if (test_and_set_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section)) return; if (adapter->flags & IAVF_FLAG_SERVICE_CLIENT_REQUESTED) { iavf_client_subtask(adapter); adapter->flags &= ~IAVF_FLAG_SERVICE_CLIENT_REQUESTED; goto out; } if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS) { iavf_notify_client_l2_params(&adapter->vsi); adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS; goto out; } if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_CLOSE) { iavf_notify_client_close(&adapter->vsi, false); adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_CLOSE; goto out; } if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_OPEN) { iavf_notify_client_open(&adapter->vsi); adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_OPEN; } out: clear_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section); } /** * iavf_free_all_tx_resources - Free Tx Resources for All Queues * @adapter: board private structure * * Free all transmit software resources **/ void iavf_free_all_tx_resources(struct iavf_adapter *adapter) { int i; if (!adapter->tx_rings) return; for (i = 0; i < adapter->num_active_queues; i++) if (adapter->tx_rings[i].desc) iavf_free_tx_resources(&adapter->tx_rings[i]); } /** * iavf_setup_all_tx_resources - allocate all queues Tx resources * @adapter: board private structure * * If this function returns with an error, then it's possible one or * more of the rings is populated (while the rest are not). It is the * callers duty to clean those orphaned rings. * * Return 0 on success, negative on failure **/ static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter) { int i, err = 0; for (i = 0; i < adapter->num_active_queues; i++) { adapter->tx_rings[i].count = adapter->tx_desc_count; err = iavf_setup_tx_descriptors(&adapter->tx_rings[i]); if (!err) continue; dev_err(&adapter->pdev->dev, "Allocation for Tx Queue %u failed\n", i); break; } return err; } /** * iavf_setup_all_rx_resources - allocate all queues Rx resources * @adapter: board private structure * * If this function returns with an error, then it's possible one or * more of the rings is populated (while the rest are not). It is the * callers duty to clean those orphaned rings. * * Return 0 on success, negative on failure **/ static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter) { int i, err = 0; for (i = 0; i < adapter->num_active_queues; i++) { adapter->rx_rings[i].count = adapter->rx_desc_count; err = iavf_setup_rx_descriptors(&adapter->rx_rings[i]); if (!err) continue; dev_err(&adapter->pdev->dev, "Allocation for Rx Queue %u failed\n", i); break; } return err; } /** * iavf_free_all_rx_resources - Free Rx Resources for All Queues * @adapter: board private structure * * Free all receive software resources **/ void iavf_free_all_rx_resources(struct iavf_adapter *adapter) { int i; if (!adapter->rx_rings) return; for (i = 0; i < adapter->num_active_queues; i++) if (adapter->rx_rings[i].desc) iavf_free_rx_resources(&adapter->rx_rings[i]); } /** * iavf_validate_tx_bandwidth - validate the max Tx bandwidth * @adapter: board private structure * @max_tx_rate: max Tx bw for a tc **/ static int iavf_validate_tx_bandwidth(struct iavf_adapter *adapter, u64 max_tx_rate) { int speed = 0, ret = 0; switch (adapter->link_speed) { case I40E_LINK_SPEED_40GB: speed = 40000; break; case I40E_LINK_SPEED_25GB: speed = 25000; break; case I40E_LINK_SPEED_20GB: speed = 20000; break; case I40E_LINK_SPEED_10GB: speed = 10000; break; case I40E_LINK_SPEED_1GB: speed = 1000; break; case I40E_LINK_SPEED_100MB: speed = 100; break; default: break; } if (max_tx_rate > speed) { dev_err(&adapter->pdev->dev, "Invalid tx rate specified\n"); ret = -EINVAL; } return ret; } /** * iavf_validate_channel_config - validate queue mapping info * @adapter: board private structure * @mqprio_qopt: queue parameters * * This function validates if the config provided by the user to * configure queue channels is valid or not. Returns 0 on a valid * config. **/ static int iavf_validate_ch_config(struct iavf_adapter *adapter, struct tc_mqprio_qopt_offload *mqprio_qopt) { u64 total_max_rate = 0; int i, num_qps = 0; u64 tx_rate = 0; int ret = 0; if (mqprio_qopt->qopt.num_tc > IAVF_MAX_TRAFFIC_CLASS || mqprio_qopt->qopt.num_tc < 1) return -EINVAL; for (i = 0; i <= mqprio_qopt->qopt.num_tc - 1; i++) { if (!mqprio_qopt->qopt.count[i] || mqprio_qopt->qopt.offset[i] != num_qps) return -EINVAL; if (mqprio_qopt->min_rate[i]) { dev_err(&adapter->pdev->dev, "Invalid min tx rate (greater than 0) specified\n"); return -EINVAL; } /*convert to Mbps */ tx_rate = div_u64(mqprio_qopt->max_rate[i], IAVF_MBPS_DIVISOR); total_max_rate += tx_rate; num_qps += mqprio_qopt->qopt.count[i]; } if (num_qps > IAVF_MAX_REQ_QUEUES) return -EINVAL; ret = iavf_validate_tx_bandwidth(adapter, total_max_rate); return ret; } /** * iavf_del_all_cloud_filters - delete all cloud filters * on the traffic classes **/ static void iavf_del_all_cloud_filters(struct iavf_adapter *adapter) { struct iavf_cloud_filter *cf, *cftmp; spin_lock_bh(&adapter->cloud_filter_list_lock); list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) { list_del(&cf->list); kfree(cf); adapter->num_cloud_filters--; } spin_unlock_bh(&adapter->cloud_filter_list_lock); } /** * __iavf_setup_tc - configure multiple traffic classes * @netdev: network interface device structure * @type_date: tc offload data * * This function processes the config information provided by the * user to configure traffic classes/queue channels and packages the * information to request the PF to setup traffic classes. * * Returns 0 on success. **/ static int __iavf_setup_tc(struct net_device *netdev, void *type_data) { struct tc_mqprio_qopt_offload *mqprio_qopt = type_data; struct iavf_adapter *adapter = netdev_priv(netdev); struct virtchnl_vf_resource *vfres = adapter->vf_res; u8 num_tc = 0, total_qps = 0; int ret = 0, netdev_tc = 0; u64 max_tx_rate; u16 mode; int i; num_tc = mqprio_qopt->qopt.num_tc; mode = mqprio_qopt->mode; /* delete queue_channel */ if (!mqprio_qopt->qopt.hw) { if (adapter->ch_config.state == __IAVF_TC_RUNNING) { /* reset the tc configuration */ netdev_reset_tc(netdev); adapter->num_tc = 0; netif_tx_stop_all_queues(netdev); netif_tx_disable(netdev); iavf_del_all_cloud_filters(adapter); adapter->aq_required = IAVF_FLAG_AQ_DISABLE_CHANNELS; goto exit; } else { return -EINVAL; } } /* add queue channel */ if (mode == TC_MQPRIO_MODE_CHANNEL) { if (!(vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)) { dev_err(&adapter->pdev->dev, "ADq not supported\n"); return -EOPNOTSUPP; } if (adapter->ch_config.state != __IAVF_TC_INVALID) { dev_err(&adapter->pdev->dev, "TC configuration already exists\n"); return -EINVAL; } ret = iavf_validate_ch_config(adapter, mqprio_qopt); if (ret) return ret; /* Return if same TC config is requested */ if (adapter->num_tc == num_tc) return 0; adapter->num_tc = num_tc; for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) { if (i < num_tc) { adapter->ch_config.ch_info[i].count = mqprio_qopt->qopt.count[i]; adapter->ch_config.ch_info[i].offset = mqprio_qopt->qopt.offset[i]; total_qps += mqprio_qopt->qopt.count[i]; max_tx_rate = mqprio_qopt->max_rate[i]; /* convert to Mbps */ max_tx_rate = div_u64(max_tx_rate, IAVF_MBPS_DIVISOR); adapter->ch_config.ch_info[i].max_tx_rate = max_tx_rate; } else { adapter->ch_config.ch_info[i].count = 1; adapter->ch_config.ch_info[i].offset = 0; } } adapter->ch_config.total_qps = total_qps; netif_tx_stop_all_queues(netdev); netif_tx_disable(netdev); adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_CHANNELS; netdev_reset_tc(netdev); /* Report the tc mapping up the stack */ netdev_set_num_tc(adapter->netdev, num_tc); for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) { u16 qcount = mqprio_qopt->qopt.count[i]; u16 qoffset = mqprio_qopt->qopt.offset[i]; if (i < num_tc) netdev_set_tc_queue(netdev, netdev_tc++, qcount, qoffset); } } exit: return ret; } /** * iavf_parse_cls_flower - Parse tc flower filters provided by kernel * @adapter: board private structure * @cls_flower: pointer to struct tc_cls_flower_offload * @filter: pointer to cloud filter structure */ static int iavf_parse_cls_flower(struct iavf_adapter *adapter, struct tc_cls_flower_offload *f, struct iavf_cloud_filter *filter) { u16 n_proto_mask = 0; u16 n_proto_key = 0; u8 field_flags = 0; u16 addr_type = 0; u16 n_proto = 0; int i = 0; struct virtchnl_filter *vf = &filter->f; if (f->dissector->used_keys & ~(BIT(FLOW_DISSECTOR_KEY_CONTROL) | BIT(FLOW_DISSECTOR_KEY_BASIC) | BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) | BIT(FLOW_DISSECTOR_KEY_VLAN) | BIT(FLOW_DISSECTOR_KEY_IPV4_ADDRS) | BIT(FLOW_DISSECTOR_KEY_IPV6_ADDRS) | BIT(FLOW_DISSECTOR_KEY_PORTS) | BIT(FLOW_DISSECTOR_KEY_ENC_KEYID))) { dev_err(&adapter->pdev->dev, "Unsupported key used: 0x%x\n", f->dissector->used_keys); return -EOPNOTSUPP; } if (dissector_uses_key(f->dissector, FLOW_DISSECTOR_KEY_ENC_KEYID)) { struct flow_dissector_key_keyid *mask = skb_flow_dissector_target(f->dissector, FLOW_DISSECTOR_KEY_ENC_KEYID, f->mask); if (mask->keyid != 0) field_flags |= IAVF_CLOUD_FIELD_TEN_ID; } if (dissector_uses_key(f->dissector, FLOW_DISSECTOR_KEY_BASIC)) { struct flow_dissector_key_basic *key = skb_flow_dissector_target(f->dissector, FLOW_DISSECTOR_KEY_BASIC, f->key); struct flow_dissector_key_basic *mask = skb_flow_dissector_target(f->dissector, FLOW_DISSECTOR_KEY_BASIC, f->mask); n_proto_key = ntohs(key->n_proto); n_proto_mask = ntohs(mask->n_proto); if (n_proto_key == ETH_P_ALL) { n_proto_key = 0; n_proto_mask = 0; } n_proto = n_proto_key & n_proto_mask; if (n_proto != ETH_P_IP && n_proto != ETH_P_IPV6) return -EINVAL; if (n_proto == ETH_P_IPV6) { /* specify flow type as TCP IPv6 */ vf->flow_type = VIRTCHNL_TCP_V6_FLOW; } if (key->ip_proto != IPPROTO_TCP) { dev_info(&adapter->pdev->dev, "Only TCP transport is supported\n"); return -EINVAL; } } if (dissector_uses_key(f->dissector, FLOW_DISSECTOR_KEY_ETH_ADDRS)) { struct flow_dissector_key_eth_addrs *key = skb_flow_dissector_target(f->dissector, FLOW_DISSECTOR_KEY_ETH_ADDRS, f->key); struct flow_dissector_key_eth_addrs *mask = skb_flow_dissector_target(f->dissector, FLOW_DISSECTOR_KEY_ETH_ADDRS, f->mask); /* use is_broadcast and is_zero to check for all 0xf or 0 */ if (!is_zero_ether_addr(mask->dst)) { if (is_broadcast_ether_addr(mask->dst)) { field_flags |= IAVF_CLOUD_FIELD_OMAC; } else { dev_err(&adapter->pdev->dev, "Bad ether dest mask %pM\n", mask->dst); return I40E_ERR_CONFIG; } } if (!is_zero_ether_addr(mask->src)) { if (is_broadcast_ether_addr(mask->src)) { field_flags |= IAVF_CLOUD_FIELD_IMAC; } else { dev_err(&adapter->pdev->dev, "Bad ether src mask %pM\n", mask->src); return I40E_ERR_CONFIG; } } if (!is_zero_ether_addr(key->dst)) if (is_valid_ether_addr(key->dst) || is_multicast_ether_addr(key->dst)) { /* set the mask if a valid dst_mac address */ for (i = 0; i < ETH_ALEN; i++) vf->mask.tcp_spec.dst_mac[i] |= 0xff; ether_addr_copy(vf->data.tcp_spec.dst_mac, key->dst); } if (!is_zero_ether_addr(key->src)) if (is_valid_ether_addr(key->src) || is_multicast_ether_addr(key->src)) { /* set the mask if a valid dst_mac address */ for (i = 0; i < ETH_ALEN; i++) vf->mask.tcp_spec.src_mac[i] |= 0xff; ether_addr_copy(vf->data.tcp_spec.src_mac, key->src); } } if (dissector_uses_key(f->dissector, FLOW_DISSECTOR_KEY_VLAN)) { struct flow_dissector_key_vlan *key = skb_flow_dissector_target(f->dissector, FLOW_DISSECTOR_KEY_VLAN, f->key); struct flow_dissector_key_vlan *mask = skb_flow_dissector_target(f->dissector, FLOW_DISSECTOR_KEY_VLAN, f->mask); if (mask->vlan_id) { if (mask->vlan_id == VLAN_VID_MASK) { field_flags |= IAVF_CLOUD_FIELD_IVLAN; } else { dev_err(&adapter->pdev->dev, "Bad vlan mask %u\n", mask->vlan_id); return I40E_ERR_CONFIG; } } vf->mask.tcp_spec.vlan_id |= cpu_to_be16(0xffff); vf->data.tcp_spec.vlan_id = cpu_to_be16(key->vlan_id); } if (dissector_uses_key(f->dissector, FLOW_DISSECTOR_KEY_CONTROL)) { struct flow_dissector_key_control *key = skb_flow_dissector_target(f->dissector, FLOW_DISSECTOR_KEY_CONTROL, f->key); addr_type = key->addr_type; } if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) { struct flow_dissector_key_ipv4_addrs *key = skb_flow_dissector_target(f->dissector, FLOW_DISSECTOR_KEY_IPV4_ADDRS, f->key); struct flow_dissector_key_ipv4_addrs *mask = skb_flow_dissector_target(f->dissector, FLOW_DISSECTOR_KEY_IPV4_ADDRS, f->mask); if (mask->dst) { if (mask->dst == cpu_to_be32(0xffffffff)) { field_flags |= IAVF_CLOUD_FIELD_IIP; } else { dev_err(&adapter->pdev->dev, "Bad ip dst mask 0x%08x\n", be32_to_cpu(mask->dst)); return I40E_ERR_CONFIG; } } if (mask->src) { if (mask->src == cpu_to_be32(0xffffffff)) { field_flags |= IAVF_CLOUD_FIELD_IIP; } else { dev_err(&adapter->pdev->dev, "Bad ip src mask 0x%08x\n", be32_to_cpu(mask->dst)); return I40E_ERR_CONFIG; } } if (field_flags & IAVF_CLOUD_FIELD_TEN_ID) { dev_info(&adapter->pdev->dev, "Tenant id not allowed for ip filter\n"); return I40E_ERR_CONFIG; } if (key->dst) { vf->mask.tcp_spec.dst_ip[0] |= cpu_to_be32(0xffffffff); vf->data.tcp_spec.dst_ip[0] = key->dst; } if (key->src) { vf->mask.tcp_spec.src_ip[0] |= cpu_to_be32(0xffffffff); vf->data.tcp_spec.src_ip[0] = key->src; } } if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) { struct flow_dissector_key_ipv6_addrs *key = skb_flow_dissector_target(f->dissector, FLOW_DISSECTOR_KEY_IPV6_ADDRS, f->key); struct flow_dissector_key_ipv6_addrs *mask = skb_flow_dissector_target(f->dissector, FLOW_DISSECTOR_KEY_IPV6_ADDRS, f->mask); /* validate mask, make sure it is not IPV6_ADDR_ANY */ if (ipv6_addr_any(&mask->dst)) { dev_err(&adapter->pdev->dev, "Bad ipv6 dst mask 0x%02x\n", IPV6_ADDR_ANY); return I40E_ERR_CONFIG; } /* src and dest IPv6 address should not be LOOPBACK * (0:0:0:0:0:0:0:1) which can be represented as ::1 */ if (ipv6_addr_loopback(&key->dst) || ipv6_addr_loopback(&key->src)) { dev_err(&adapter->pdev->dev, "ipv6 addr should not be loopback\n"); return I40E_ERR_CONFIG; } if (!ipv6_addr_any(&mask->dst) || !ipv6_addr_any(&mask->src)) field_flags |= IAVF_CLOUD_FIELD_IIP; for (i = 0; i < 4; i++) vf->mask.tcp_spec.dst_ip[i] |= cpu_to_be32(0xffffffff); memcpy(&vf->data.tcp_spec.dst_ip, &key->dst.s6_addr32, sizeof(vf->data.tcp_spec.dst_ip)); for (i = 0; i < 4; i++) vf->mask.tcp_spec.src_ip[i] |= cpu_to_be32(0xffffffff); memcpy(&vf->data.tcp_spec.src_ip, &key->src.s6_addr32, sizeof(vf->data.tcp_spec.src_ip)); } if (dissector_uses_key(f->dissector, FLOW_DISSECTOR_KEY_PORTS)) { struct flow_dissector_key_ports *key = skb_flow_dissector_target(f->dissector, FLOW_DISSECTOR_KEY_PORTS, f->key); struct flow_dissector_key_ports *mask = skb_flow_dissector_target(f->dissector, FLOW_DISSECTOR_KEY_PORTS, f->mask); if (mask->src) { if (mask->src == cpu_to_be16(0xffff)) { field_flags |= IAVF_CLOUD_FIELD_IIP; } else { dev_err(&adapter->pdev->dev, "Bad src port mask %u\n", be16_to_cpu(mask->src)); return I40E_ERR_CONFIG; } } if (mask->dst) { if (mask->dst == cpu_to_be16(0xffff)) { field_flags |= IAVF_CLOUD_FIELD_IIP; } else { dev_err(&adapter->pdev->dev, "Bad dst port mask %u\n", be16_to_cpu(mask->dst)); return I40E_ERR_CONFIG; } } if (key->dst) { vf->mask.tcp_spec.dst_port |= cpu_to_be16(0xffff); vf->data.tcp_spec.dst_port = key->dst; } if (key->src) { vf->mask.tcp_spec.src_port |= cpu_to_be16(0xffff); vf->data.tcp_spec.src_port = key->src; } } vf->field_flags = field_flags; return 0; } /** * iavf_handle_tclass - Forward to a traffic class on the device * @adapter: board private structure * @tc: traffic class index on the device * @filter: pointer to cloud filter structure */ static int iavf_handle_tclass(struct iavf_adapter *adapter, u32 tc, struct iavf_cloud_filter *filter) { if (tc == 0) return 0; if (tc < adapter->num_tc) { if (!filter->f.data.tcp_spec.dst_port) { dev_err(&adapter->pdev->dev, "Specify destination port to redirect to traffic class other than TC0\n"); return -EINVAL; } } /* redirect to a traffic class on the same device */ filter->f.action = VIRTCHNL_ACTION_TC_REDIRECT; filter->f.action_meta = tc; return 0; } /** * iavf_configure_clsflower - Add tc flower filters * @adapter: board private structure * @cls_flower: Pointer to struct tc_cls_flower_offload */ static int iavf_configure_clsflower(struct iavf_adapter *adapter, struct tc_cls_flower_offload *cls_flower) { int tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid); struct iavf_cloud_filter *filter = NULL; int err = -EINVAL, count = 50; if (tc < 0) { dev_err(&adapter->pdev->dev, "Invalid traffic class\n"); return -EINVAL; } filter = kzalloc(sizeof(*filter), GFP_KERNEL); if (!filter) return -ENOMEM; while (test_and_set_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section)) { if (--count == 0) goto err; udelay(1); } filter->cookie = cls_flower->cookie; /* set the mask to all zeroes to begin with */ memset(&filter->f.mask.tcp_spec, 0, sizeof(struct virtchnl_l4_spec)); /* start out with flow type and eth type IPv4 to begin with */ filter->f.flow_type = VIRTCHNL_TCP_V4_FLOW; err = iavf_parse_cls_flower(adapter, cls_flower, filter); if (err < 0) goto err; err = iavf_handle_tclass(adapter, tc, filter); if (err < 0) goto err; /* add filter to the list */ spin_lock_bh(&adapter->cloud_filter_list_lock); list_add_tail(&filter->list, &adapter->cloud_filter_list); adapter->num_cloud_filters++; filter->add = true; adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER; spin_unlock_bh(&adapter->cloud_filter_list_lock); err: if (err) kfree(filter); clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section); return err; } /* iavf_find_cf - Find the cloud filter in the list * @adapter: Board private structure * @cookie: filter specific cookie * * Returns ptr to the filter object or NULL. Must be called while holding the * cloud_filter_list_lock. */ static struct iavf_cloud_filter *iavf_find_cf(struct iavf_adapter *adapter, unsigned long *cookie) { struct iavf_cloud_filter *filter = NULL; if (!cookie) return NULL; list_for_each_entry(filter, &adapter->cloud_filter_list, list) { if (!memcmp(cookie, &filter->cookie, sizeof(filter->cookie))) return filter; } return NULL; } /** * iavf_delete_clsflower - Remove tc flower filters * @adapter: board private structure * @cls_flower: Pointer to struct tc_cls_flower_offload */ static int iavf_delete_clsflower(struct iavf_adapter *adapter, struct tc_cls_flower_offload *cls_flower) { struct iavf_cloud_filter *filter = NULL; int err = 0; spin_lock_bh(&adapter->cloud_filter_list_lock); filter = iavf_find_cf(adapter, &cls_flower->cookie); if (filter) { filter->del = true; adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER; } else { err = -EINVAL; } spin_unlock_bh(&adapter->cloud_filter_list_lock); return err; } /** * iavf_setup_tc_cls_flower - flower classifier offloads * @netdev: net device to configure * @type_data: offload data */ static int iavf_setup_tc_cls_flower(struct iavf_adapter *adapter, struct tc_cls_flower_offload *cls_flower) { if (cls_flower->common.chain_index) return -EOPNOTSUPP; switch (cls_flower->command) { case TC_CLSFLOWER_REPLACE: return iavf_configure_clsflower(adapter, cls_flower); case TC_CLSFLOWER_DESTROY: return iavf_delete_clsflower(adapter, cls_flower); case TC_CLSFLOWER_STATS: return -EOPNOTSUPP; default: return -EOPNOTSUPP; } } /** * iavf_setup_tc_block_cb - block callback for tc * @type: type of offload * @type_data: offload data * @cb_priv: * * This function is the block callback for traffic classes **/ static int iavf_setup_tc_block_cb(enum tc_setup_type type, void *type_data, void *cb_priv) { switch (type) { case TC_SETUP_CLSFLOWER: return iavf_setup_tc_cls_flower(cb_priv, type_data); default: return -EOPNOTSUPP; } } /** * iavf_setup_tc_block - register callbacks for tc * @netdev: network interface device structure * @f: tc offload data * * This function registers block callbacks for tc * offloads **/ static int iavf_setup_tc_block(struct net_device *dev, struct tc_block_offload *f) { struct iavf_adapter *adapter = netdev_priv(dev); if (f->binder_type != TCF_BLOCK_BINDER_TYPE_CLSACT_INGRESS) return -EOPNOTSUPP; switch (f->command) { case TC_BLOCK_BIND: return tcf_block_cb_register(f->block, iavf_setup_tc_block_cb, adapter, adapter, f->extack); case TC_BLOCK_UNBIND: tcf_block_cb_unregister(f->block, iavf_setup_tc_block_cb, adapter); return 0; default: return -EOPNOTSUPP; } } /** * iavf_setup_tc - configure multiple traffic classes * @netdev: network interface device structure * @type: type of offload * @type_date: tc offload data * * This function is the callback to ndo_setup_tc in the * netdev_ops. * * Returns 0 on success **/ static int iavf_setup_tc(struct net_device *netdev, enum tc_setup_type type, void *type_data) { switch (type) { case TC_SETUP_QDISC_MQPRIO: return __iavf_setup_tc(netdev, type_data); case TC_SETUP_BLOCK: return iavf_setup_tc_block(netdev, type_data); default: return -EOPNOTSUPP; } } /** * iavf_open - Called when a network interface is made active * @netdev: network interface device structure * * Returns 0 on success, negative value on failure * * The open entry point is called when a network interface is made * active by the system (IFF_UP). At this point all resources needed * for transmit and receive operations are allocated, the interrupt * handler is registered with the OS, the watchdog timer is started, * and the stack is notified that the interface is ready. **/ static int iavf_open(struct net_device *netdev) { struct iavf_adapter *adapter = netdev_priv(netdev); int err; if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) { dev_err(&adapter->pdev->dev, "Unable to open device due to PF driver failure.\n"); return -EIO; } while (test_and_set_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section)) usleep_range(500, 1000); if (adapter->state != __IAVF_DOWN) { err = -EBUSY; goto err_unlock; } /* allocate transmit descriptors */ err = iavf_setup_all_tx_resources(adapter); if (err) goto err_setup_tx; /* allocate receive descriptors */ err = iavf_setup_all_rx_resources(adapter); if (err) goto err_setup_rx; /* clear any pending interrupts, may auto mask */ err = iavf_request_traffic_irqs(adapter, netdev->name); if (err) goto err_req_irq; spin_lock_bh(&adapter->mac_vlan_list_lock); iavf_add_filter(adapter, adapter->hw.mac.addr); spin_unlock_bh(&adapter->mac_vlan_list_lock); iavf_configure(adapter); iavf_up_complete(adapter); iavf_irq_enable(adapter, true); clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section); return 0; err_req_irq: iavf_down(adapter); iavf_free_traffic_irqs(adapter); err_setup_rx: iavf_free_all_rx_resources(adapter); err_setup_tx: iavf_free_all_tx_resources(adapter); err_unlock: clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section); return err; } /** * iavf_close - Disables a network interface * @netdev: network interface device structure * * Returns 0, this is not allowed to fail * * The close entry point is called when an interface is de-activated * by the OS. The hardware is still under the drivers control, but * needs to be disabled. All IRQs except vector 0 (reserved for admin queue) * are freed, along with all transmit and receive resources. **/ static int iavf_close(struct net_device *netdev) { struct iavf_adapter *adapter = netdev_priv(netdev); int status; if (adapter->state <= __IAVF_DOWN_PENDING) return 0; while (test_and_set_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section)) usleep_range(500, 1000); set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); if (CLIENT_ENABLED(adapter)) adapter->flags |= IAVF_FLAG_CLIENT_NEEDS_CLOSE; iavf_down(adapter); adapter->state = __IAVF_DOWN_PENDING; iavf_free_traffic_irqs(adapter); clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section); /* We explicitly don't free resources here because the hardware is * still active and can DMA into memory. Resources are cleared in * iavf_virtchnl_completion() after we get confirmation from the PF * driver that the rings have been stopped. * * Also, we wait for state to transition to __IAVF_DOWN before * returning. State change occurs in iavf_virtchnl_completion() after * VF resources are released (which occurs after PF driver processes and * responds to admin queue commands). */ status = wait_event_timeout(adapter->down_waitqueue, adapter->state == __IAVF_DOWN, msecs_to_jiffies(200)); if (!status) netdev_warn(netdev, "Device resources not yet released\n"); return 0; } /** * iavf_change_mtu - Change the Maximum Transfer Unit * @netdev: network interface device structure * @new_mtu: new value for maximum frame size * * Returns 0 on success, negative on failure **/ static int iavf_change_mtu(struct net_device *netdev, int new_mtu) { struct iavf_adapter *adapter = netdev_priv(netdev); netdev->mtu = new_mtu; if (CLIENT_ENABLED(adapter)) { iavf_notify_client_l2_params(&adapter->vsi); adapter->flags |= IAVF_FLAG_SERVICE_CLIENT_REQUESTED; } adapter->flags |= IAVF_FLAG_RESET_NEEDED; schedule_work(&adapter->reset_task); return 0; } /** * iavf_set_features - set the netdev feature flags * @netdev: ptr to the netdev being adjusted * @features: the feature set that the stack is suggesting * Note: expects to be called while under rtnl_lock() **/ static int iavf_set_features(struct net_device *netdev, netdev_features_t features) { struct iavf_adapter *adapter = netdev_priv(netdev); /* Don't allow changing VLAN_RX flag when adapter is not capable * of VLAN offload */ if (!VLAN_ALLOWED(adapter)) { if ((netdev->features ^ features) & NETIF_F_HW_VLAN_CTAG_RX) return -EINVAL; } else if ((netdev->features ^ features) & NETIF_F_HW_VLAN_CTAG_RX) { if (features & NETIF_F_HW_VLAN_CTAG_RX) adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING; else adapter->aq_required |= IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING; } return 0; } /** * iavf_features_check - Validate encapsulated packet conforms to limits * @skb: skb buff * @dev: This physical port's netdev * @features: Offload features that the stack believes apply **/ static netdev_features_t iavf_features_check(struct sk_buff *skb, struct net_device *dev, netdev_features_t features) { size_t len; /* No point in doing any of this if neither checksum nor GSO are * being requested for this frame. We can rule out both by just * checking for CHECKSUM_PARTIAL */ if (skb->ip_summed != CHECKSUM_PARTIAL) return features; /* We cannot support GSO if the MSS is going to be less than * 64 bytes. If it is then we need to drop support for GSO. */ if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64)) features &= ~NETIF_F_GSO_MASK; /* MACLEN can support at most 63 words */ len = skb_network_header(skb) - skb->data; if (len & ~(63 * 2)) goto out_err; /* IPLEN and EIPLEN can support at most 127 dwords */ len = skb_transport_header(skb) - skb_network_header(skb); if (len & ~(127 * 4)) goto out_err; if (skb->encapsulation) { /* L4TUNLEN can support 127 words */ len = skb_inner_network_header(skb) - skb_transport_header(skb); if (len & ~(127 * 2)) goto out_err; /* IPLEN can support at most 127 dwords */ len = skb_inner_transport_header(skb) - skb_inner_network_header(skb); if (len & ~(127 * 4)) goto out_err; } /* No need to validate L4LEN as TCP is the only protocol with a * a flexible value and we support all possible values supported * by TCP, which is at most 15 dwords */ return features; out_err: return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); } /** * iavf_fix_features - fix up the netdev feature bits * @netdev: our net device * @features: desired feature bits * * Returns fixed-up features bits **/ static netdev_features_t iavf_fix_features(struct net_device *netdev, netdev_features_t features) { struct iavf_adapter *adapter = netdev_priv(netdev); if (!(adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN)) features &= ~(NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_FILTER); return features; } static const struct net_device_ops iavf_netdev_ops = { .ndo_open = iavf_open, .ndo_stop = iavf_close, .ndo_start_xmit = iavf_xmit_frame, .ndo_set_rx_mode = iavf_set_rx_mode, .ndo_validate_addr = eth_validate_addr, .ndo_set_mac_address = iavf_set_mac, .ndo_change_mtu = iavf_change_mtu, .ndo_tx_timeout = iavf_tx_timeout, .ndo_vlan_rx_add_vid = iavf_vlan_rx_add_vid, .ndo_vlan_rx_kill_vid = iavf_vlan_rx_kill_vid, .ndo_features_check = iavf_features_check, .ndo_fix_features = iavf_fix_features, .ndo_set_features = iavf_set_features, .ndo_setup_tc = iavf_setup_tc, }; /** * iavf_check_reset_complete - check that VF reset is complete * @hw: pointer to hw struct * * Returns 0 if device is ready to use, or -EBUSY if it's in reset. **/ static int iavf_check_reset_complete(struct iavf_hw *hw) { u32 rstat; int i; for (i = 0; i < 100; i++) { rstat = rd32(hw, IAVF_VFGEN_RSTAT) & IAVF_VFGEN_RSTAT_VFR_STATE_MASK; if ((rstat == VIRTCHNL_VFR_VFACTIVE) || (rstat == VIRTCHNL_VFR_COMPLETED)) return 0; usleep_range(10, 20); } return -EBUSY; } /** * iavf_process_config - Process the config information we got from the PF * @adapter: board private structure * * Verify that we have a valid config struct, and set up our netdev features * and our VSI struct. **/ int iavf_process_config(struct iavf_adapter *adapter) { struct virtchnl_vf_resource *vfres = adapter->vf_res; int i, num_req_queues = adapter->num_req_queues; struct net_device *netdev = adapter->netdev; struct iavf_vsi *vsi = &adapter->vsi; netdev_features_t hw_enc_features; netdev_features_t hw_features; /* got VF config message back from PF, now we can parse it */ for (i = 0; i < vfres->num_vsis; i++) { if (vfres->vsi_res[i].vsi_type == VIRTCHNL_VSI_SRIOV) adapter->vsi_res = &vfres->vsi_res[i]; } if (!adapter->vsi_res) { dev_err(&adapter->pdev->dev, "No LAN VSI found\n"); return -ENODEV; } if (num_req_queues && num_req_queues != adapter->vsi_res->num_queue_pairs) { /* Problem. The PF gave us fewer queues than what we had * negotiated in our request. Need a reset to see if we can't * get back to a working state. */ dev_err(&adapter->pdev->dev, "Requested %d queues, but PF only gave us %d.\n", num_req_queues, adapter->vsi_res->num_queue_pairs); adapter->flags |= IAVF_FLAG_REINIT_ITR_NEEDED; adapter->num_req_queues = adapter->vsi_res->num_queue_pairs; iavf_schedule_reset(adapter); return -ENODEV; } adapter->num_req_queues = 0; hw_enc_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA | NETIF_F_SOFT_FEATURES | NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_SCTP_CRC | NETIF_F_RXHASH | NETIF_F_RXCSUM | 0; /* advertise to stack only if offloads for encapsulated packets is * supported */ if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ENCAP) { hw_enc_features |= NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_IPXIP4 | NETIF_F_GSO_IPXIP6 | NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_PARTIAL | 0; if (!(vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM)) netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM; netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM; netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID; netdev->hw_enc_features |= hw_enc_features; } /* record features VLANs can make use of */ netdev->vlan_features |= hw_enc_features | NETIF_F_TSO_MANGLEID; /* Write features and hw_features separately to avoid polluting * with, or dropping, features that are set when we registered. */ hw_features = hw_enc_features; /* Enable VLAN features if supported */ if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN) hw_features |= (NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX); /* Enable cloud filter if ADQ is supported */ if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) hw_features |= NETIF_F_HW_TC; netdev->hw_features |= hw_features; netdev->features |= hw_features; if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN) netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; netdev->priv_flags |= IFF_UNICAST_FLT; /* Do not turn on offloads when they are requested to be turned off. * TSO needs minimum 576 bytes to work correctly. */ if (netdev->wanted_features) { if (!(netdev->wanted_features & NETIF_F_TSO) || netdev->mtu < 576) netdev->features &= ~NETIF_F_TSO; if (!(netdev->wanted_features & NETIF_F_TSO6) || netdev->mtu < 576) netdev->features &= ~NETIF_F_TSO6; if (!(netdev->wanted_features & NETIF_F_TSO_ECN)) netdev->features &= ~NETIF_F_TSO_ECN; if (!(netdev->wanted_features & NETIF_F_GRO)) netdev->features &= ~NETIF_F_GRO; if (!(netdev->wanted_features & NETIF_F_GSO)) netdev->features &= ~NETIF_F_GSO; } adapter->vsi.id = adapter->vsi_res->vsi_id; adapter->vsi.back = adapter; adapter->vsi.base_vector = 1; adapter->vsi.work_limit = IAVF_DEFAULT_IRQ_WORK; vsi->netdev = adapter->netdev; vsi->qs_handle = adapter->vsi_res->qset_handle; if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) { adapter->rss_key_size = vfres->rss_key_size; adapter->rss_lut_size = vfres->rss_lut_size; } else { adapter->rss_key_size = IAVF_HKEY_ARRAY_SIZE; adapter->rss_lut_size = IAVF_HLUT_ARRAY_SIZE; } return 0; } /** * iavf_init_task - worker thread to perform delayed initialization * @work: pointer to work_struct containing our data * * This task completes the work that was begun in probe. Due to the nature * of VF-PF communications, we may need to wait tens of milliseconds to get * responses back from the PF. Rather than busy-wait in probe and bog down the * whole system, we'll do it in a task so we can sleep. * This task only runs during driver init. Once we've established * communications with the PF driver and set up our netdev, the watchdog * takes over. **/ static void iavf_init_task(struct work_struct *work) { struct iavf_adapter *adapter = container_of(work, struct iavf_adapter, init_task.work); struct net_device *netdev = adapter->netdev; struct iavf_hw *hw = &adapter->hw; struct pci_dev *pdev = adapter->pdev; int err, bufsz; switch (adapter->state) { case __IAVF_STARTUP: /* driver loaded, probe complete */ adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED; adapter->flags &= ~IAVF_FLAG_RESET_PENDING; err = iavf_set_mac_type(hw); if (err) { dev_err(&pdev->dev, "Failed to set MAC type (%d)\n", err); goto err; } err = iavf_check_reset_complete(hw); if (err) { dev_info(&pdev->dev, "Device is still in reset (%d), retrying\n", err); goto err; } hw->aq.num_arq_entries = IAVF_AQ_LEN; hw->aq.num_asq_entries = IAVF_AQ_LEN; hw->aq.arq_buf_size = IAVF_MAX_AQ_BUF_SIZE; hw->aq.asq_buf_size = IAVF_MAX_AQ_BUF_SIZE; err = iavf_init_adminq(hw); if (err) { dev_err(&pdev->dev, "Failed to init Admin Queue (%d)\n", err); goto err; } err = iavf_send_api_ver(adapter); if (err) { dev_err(&pdev->dev, "Unable to send to PF (%d)\n", err); iavf_shutdown_adminq(hw); goto err; } adapter->state = __IAVF_INIT_VERSION_CHECK; goto restart; case __IAVF_INIT_VERSION_CHECK: if (!iavf_asq_done(hw)) { dev_err(&pdev->dev, "Admin queue command never completed\n"); iavf_shutdown_adminq(hw); adapter->state = __IAVF_STARTUP; goto err; } /* aq msg sent, awaiting reply */ err = iavf_verify_api_ver(adapter); if (err) { if (err == I40E_ERR_ADMIN_QUEUE_NO_WORK) err = iavf_send_api_ver(adapter); else dev_err(&pdev->dev, "Unsupported PF API version %d.%d, expected %d.%d\n", adapter->pf_version.major, adapter->pf_version.minor, VIRTCHNL_VERSION_MAJOR, VIRTCHNL_VERSION_MINOR); goto err; } err = iavf_send_vf_config_msg(adapter); if (err) { dev_err(&pdev->dev, "Unable to send config request (%d)\n", err); goto err; } adapter->state = __IAVF_INIT_GET_RESOURCES; goto restart; case __IAVF_INIT_GET_RESOURCES: /* aq msg sent, awaiting reply */ if (!adapter->vf_res) { bufsz = sizeof(struct virtchnl_vf_resource) + (IAVF_MAX_VF_VSI * sizeof(struct virtchnl_vsi_resource)); adapter->vf_res = kzalloc(bufsz, GFP_KERNEL); if (!adapter->vf_res) goto err; } err = iavf_get_vf_config(adapter); if (err == I40E_ERR_ADMIN_QUEUE_NO_WORK) { err = iavf_send_vf_config_msg(adapter); goto err; } else if (err == I40E_ERR_PARAM) { /* We only get ERR_PARAM if the device is in a very bad * state or if we've been disabled for previous bad * behavior. Either way, we're done now. */ iavf_shutdown_adminq(hw); dev_err(&pdev->dev, "Unable to get VF config due to PF error condition, not retrying\n"); return; } if (err) { dev_err(&pdev->dev, "Unable to get VF config (%d)\n", err); goto err_alloc; } adapter->state = __IAVF_INIT_SW; break; default: goto err_alloc; } if (iavf_process_config(adapter)) goto err_alloc; adapter->current_op = VIRTCHNL_OP_UNKNOWN; adapter->flags |= IAVF_FLAG_RX_CSUM_ENABLED; netdev->netdev_ops = &iavf_netdev_ops; iavf_set_ethtool_ops(netdev); netdev->watchdog_timeo = 5 * HZ; /* MTU range: 68 - 9710 */ netdev->min_mtu = ETH_MIN_MTU; netdev->max_mtu = IAVF_MAX_RXBUFFER - IAVF_PACKET_HDR_PAD; if (!is_valid_ether_addr(adapter->hw.mac.addr)) { dev_info(&pdev->dev, "Invalid MAC address %pM, using random\n", adapter->hw.mac.addr); eth_hw_addr_random(netdev); ether_addr_copy(adapter->hw.mac.addr, netdev->dev_addr); } else { adapter->flags |= IAVF_FLAG_ADDR_SET_BY_PF; ether_addr_copy(netdev->dev_addr, adapter->hw.mac.addr); ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr); } timer_setup(&adapter->watchdog_timer, iavf_watchdog_timer, 0); mod_timer(&adapter->watchdog_timer, jiffies + 1); adapter->tx_desc_count = IAVF_DEFAULT_TXD; adapter->rx_desc_count = IAVF_DEFAULT_RXD; err = iavf_init_interrupt_scheme(adapter); if (err) goto err_sw_init; iavf_map_rings_to_vectors(adapter); if (adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_WB_ON_ITR) adapter->flags |= IAVF_FLAG_WB_ON_ITR_CAPABLE; err = iavf_request_misc_irq(adapter); if (err) goto err_sw_init; netif_carrier_off(netdev); adapter->link_up = false; if (!adapter->netdev_registered) { err = register_netdev(netdev); if (err) goto err_register; } adapter->netdev_registered = true; netif_tx_stop_all_queues(netdev); if (CLIENT_ALLOWED(adapter)) { err = iavf_lan_add_device(adapter); if (err) dev_info(&pdev->dev, "Failed to add VF to client API service list: %d\n", err); } dev_info(&pdev->dev, "MAC address: %pM\n", adapter->hw.mac.addr); if (netdev->features & NETIF_F_GRO) dev_info(&pdev->dev, "GRO is enabled\n"); adapter->state = __IAVF_DOWN; set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); iavf_misc_irq_enable(adapter); wake_up(&adapter->down_waitqueue); adapter->rss_key = kzalloc(adapter->rss_key_size, GFP_KERNEL); adapter->rss_lut = kzalloc(adapter->rss_lut_size, GFP_KERNEL); if (!adapter->rss_key || !adapter->rss_lut) goto err_mem; if (RSS_AQ(adapter)) { adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS; mod_timer_pending(&adapter->watchdog_timer, jiffies + 1); } else { iavf_init_rss(adapter); } return; restart: schedule_delayed_work(&adapter->init_task, msecs_to_jiffies(30)); return; err_mem: iavf_free_rss(adapter); err_register: iavf_free_misc_irq(adapter); err_sw_init: iavf_reset_interrupt_capability(adapter); err_alloc: kfree(adapter->vf_res); adapter->vf_res = NULL; err: /* Things went into the weeds, so try again later */ if (++adapter->aq_wait_count > IAVF_AQ_MAX_ERR) { dev_err(&pdev->dev, "Failed to communicate with PF; waiting before retry\n"); adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED; iavf_shutdown_adminq(hw); adapter->state = __IAVF_STARTUP; schedule_delayed_work(&adapter->init_task, HZ * 5); return; } schedule_delayed_work(&adapter->init_task, HZ); } /** * iavf_shutdown - Shutdown the device in preparation for a reboot * @pdev: pci device structure **/ static void iavf_shutdown(struct pci_dev *pdev) { struct net_device *netdev = pci_get_drvdata(pdev); struct iavf_adapter *adapter = netdev_priv(netdev); netif_device_detach(netdev); if (netif_running(netdev)) iavf_close(netdev); /* Prevent the watchdog from running. */ adapter->state = __IAVF_REMOVE; adapter->aq_required = 0; #ifdef CONFIG_PM pci_save_state(pdev); #endif pci_disable_device(pdev); } /** * iavf_probe - Device Initialization Routine * @pdev: PCI device information struct * @ent: entry in iavf_pci_tbl * * Returns 0 on success, negative on failure * * iavf_probe initializes an adapter identified by a pci_dev structure. * The OS initialization, configuring of the adapter private structure, * and a hardware reset occur. **/ static int iavf_probe(struct pci_dev *pdev, const struct pci_device_id *ent) { struct net_device *netdev; struct iavf_adapter *adapter = NULL; struct iavf_hw *hw = NULL; int err; err = pci_enable_device(pdev); if (err) return err; err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); if (err) { err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); if (err) { dev_err(&pdev->dev, "DMA configuration failed: 0x%x\n", err); goto err_dma; } } err = pci_request_regions(pdev, iavf_driver_name); if (err) { dev_err(&pdev->dev, "pci_request_regions failed 0x%x\n", err); goto err_pci_reg; } pci_enable_pcie_error_reporting(pdev); pci_set_master(pdev); netdev = alloc_etherdev_mq(sizeof(struct iavf_adapter), IAVF_MAX_REQ_QUEUES); if (!netdev) { err = -ENOMEM; goto err_alloc_etherdev; } SET_NETDEV_DEV(netdev, &pdev->dev); pci_set_drvdata(pdev, netdev); adapter = netdev_priv(netdev); adapter->netdev = netdev; adapter->pdev = pdev; hw = &adapter->hw; hw->back = adapter; adapter->msg_enable = BIT(DEFAULT_DEBUG_LEVEL_SHIFT) - 1; adapter->state = __IAVF_STARTUP; /* Call save state here because it relies on the adapter struct. */ pci_save_state(pdev); hw->hw_addr = ioremap(pci_resource_start(pdev, 0), pci_resource_len(pdev, 0)); if (!hw->hw_addr) { err = -EIO; goto err_ioremap; } hw->vendor_id = pdev->vendor; hw->device_id = pdev->device; pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); hw->subsystem_vendor_id = pdev->subsystem_vendor; hw->subsystem_device_id = pdev->subsystem_device; hw->bus.device = PCI_SLOT(pdev->devfn); hw->bus.func = PCI_FUNC(pdev->devfn); hw->bus.bus_id = pdev->bus->number; /* set up the locks for the AQ, do this only once in probe * and destroy them only once in remove */ mutex_init(&hw->aq.asq_mutex); mutex_init(&hw->aq.arq_mutex); spin_lock_init(&adapter->mac_vlan_list_lock); spin_lock_init(&adapter->cloud_filter_list_lock); INIT_LIST_HEAD(&adapter->mac_filter_list); INIT_LIST_HEAD(&adapter->vlan_filter_list); INIT_LIST_HEAD(&adapter->cloud_filter_list); INIT_WORK(&adapter->reset_task, iavf_reset_task); INIT_WORK(&adapter->adminq_task, iavf_adminq_task); INIT_WORK(&adapter->watchdog_task, iavf_watchdog_task); INIT_DELAYED_WORK(&adapter->client_task, iavf_client_task); INIT_DELAYED_WORK(&adapter->init_task, iavf_init_task); schedule_delayed_work(&adapter->init_task, msecs_to_jiffies(5 * (pdev->devfn & 0x07))); /* Setup the wait queue for indicating transition to down status */ init_waitqueue_head(&adapter->down_waitqueue); return 0; err_ioremap: free_netdev(netdev); err_alloc_etherdev: pci_release_regions(pdev); err_pci_reg: err_dma: pci_disable_device(pdev); return err; } #ifdef CONFIG_PM /** * iavf_suspend - Power management suspend routine * @pdev: PCI device information struct * @state: unused * * Called when the system (VM) is entering sleep/suspend. **/ static int iavf_suspend(struct pci_dev *pdev, pm_message_t state) { struct net_device *netdev = pci_get_drvdata(pdev); struct iavf_adapter *adapter = netdev_priv(netdev); int retval = 0; netif_device_detach(netdev); while (test_and_set_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section)) usleep_range(500, 1000); if (netif_running(netdev)) { rtnl_lock(); iavf_down(adapter); rtnl_unlock(); } iavf_free_misc_irq(adapter); iavf_reset_interrupt_capability(adapter); clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section); retval = pci_save_state(pdev); if (retval) return retval; pci_disable_device(pdev); return 0; } /** * iavf_resume - Power management resume routine * @pdev: PCI device information struct * * Called when the system (VM) is resumed from sleep/suspend. **/ static int iavf_resume(struct pci_dev *pdev) { struct iavf_adapter *adapter = pci_get_drvdata(pdev); struct net_device *netdev = adapter->netdev; u32 err; pci_set_power_state(pdev, PCI_D0); pci_restore_state(pdev); /* pci_restore_state clears dev->state_saved so call * pci_save_state to restore it. */ pci_save_state(pdev); err = pci_enable_device_mem(pdev); if (err) { dev_err(&pdev->dev, "Cannot enable PCI device from suspend.\n"); return err; } pci_set_master(pdev); rtnl_lock(); err = iavf_set_interrupt_capability(adapter); if (err) { rtnl_unlock(); dev_err(&pdev->dev, "Cannot enable MSI-X interrupts.\n"); return err; } err = iavf_request_misc_irq(adapter); rtnl_unlock(); if (err) { dev_err(&pdev->dev, "Cannot get interrupt vector.\n"); return err; } schedule_work(&adapter->reset_task); netif_device_attach(netdev); return err; } #endif /* CONFIG_PM */ /** * iavf_remove - Device Removal Routine * @pdev: PCI device information struct * * iavf_remove is called by the PCI subsystem to alert the driver * that it should release a PCI device. The could be caused by a * Hot-Plug event, or because the driver is going to be removed from * memory. **/ static void iavf_remove(struct pci_dev *pdev) { struct net_device *netdev = pci_get_drvdata(pdev); struct iavf_adapter *adapter = netdev_priv(netdev); struct iavf_vlan_filter *vlf, *vlftmp; struct iavf_mac_filter *f, *ftmp; struct iavf_cloud_filter *cf, *cftmp; struct iavf_hw *hw = &adapter->hw; int err; /* Indicate we are in remove and not to run reset_task */ set_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section); cancel_delayed_work_sync(&adapter->init_task); cancel_work_sync(&adapter->reset_task); cancel_delayed_work_sync(&adapter->client_task); if (adapter->netdev_registered) { unregister_netdev(netdev); adapter->netdev_registered = false; } if (CLIENT_ALLOWED(adapter)) { err = iavf_lan_del_device(adapter); if (err) dev_warn(&pdev->dev, "Failed to delete client device: %d\n", err); } /* Shut down all the garbage mashers on the detention level */ adapter->state = __IAVF_REMOVE; adapter->aq_required = 0; adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED; iavf_request_reset(adapter); msleep(50); /* If the FW isn't responding, kick it once, but only once. */ if (!iavf_asq_done(hw)) { iavf_request_reset(adapter); msleep(50); } iavf_free_all_tx_resources(adapter); iavf_free_all_rx_resources(adapter); iavf_misc_irq_disable(adapter); iavf_free_misc_irq(adapter); iavf_reset_interrupt_capability(adapter); iavf_free_q_vectors(adapter); if (adapter->watchdog_timer.function) del_timer_sync(&adapter->watchdog_timer); cancel_work_sync(&adapter->adminq_task); iavf_free_rss(adapter); if (hw->aq.asq.count) iavf_shutdown_adminq(hw); /* destroy the locks only once, here */ mutex_destroy(&hw->aq.arq_mutex); mutex_destroy(&hw->aq.asq_mutex); iounmap(hw->hw_addr); pci_release_regions(pdev); iavf_free_all_tx_resources(adapter); iavf_free_all_rx_resources(adapter); iavf_free_queues(adapter); kfree(adapter->vf_res); spin_lock_bh(&adapter->mac_vlan_list_lock); /* If we got removed before an up/down sequence, we've got a filter * hanging out there that we need to get rid of. */ list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) { list_del(&f->list); kfree(f); } list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list, list) { list_del(&vlf->list); kfree(vlf); } spin_unlock_bh(&adapter->mac_vlan_list_lock); spin_lock_bh(&adapter->cloud_filter_list_lock); list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) { list_del(&cf->list); kfree(cf); } spin_unlock_bh(&adapter->cloud_filter_list_lock); free_netdev(netdev); pci_disable_pcie_error_reporting(pdev); pci_disable_device(pdev); } static struct pci_driver iavf_driver = { .name = iavf_driver_name, .id_table = iavf_pci_tbl, .probe = iavf_probe, .remove = iavf_remove, #ifdef CONFIG_PM .suspend = iavf_suspend, .resume = iavf_resume, #endif .shutdown = iavf_shutdown, }; /** * iavf_init_module - Driver Registration Routine * * iavf_init_module is the first routine called when the driver is * loaded. All it does is register with the PCI subsystem. **/ static int __init iavf_init_module(void) { int ret; pr_info("iavf: %s - version %s\n", iavf_driver_string, iavf_driver_version); pr_info("%s\n", iavf_copyright); iavf_wq = alloc_workqueue("%s", WQ_UNBOUND | WQ_MEM_RECLAIM, 1, iavf_driver_name); if (!iavf_wq) { pr_err("%s: Failed to create workqueue\n", iavf_driver_name); return -ENOMEM; } ret = pci_register_driver(&iavf_driver); return ret; } module_init(iavf_init_module); /** * iavf_exit_module - Driver Exit Cleanup Routine * * iavf_exit_module is called just before the driver is removed * from memory. **/ static void __exit iavf_exit_module(void) { pci_unregister_driver(&iavf_driver); destroy_workqueue(iavf_wq); } module_exit(iavf_exit_module); /* iavf_main.c */
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1