Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Alexander Duyck | 522 | 37.72% | 16 | 32.65% |
Greg Rose | 468 | 33.82% | 1 | 2.04% |
Jesse Brandeburg | 290 | 20.95% | 10 | 20.41% |
Anjali Singhai Jain | 56 | 4.05% | 12 | 24.49% |
Mitch A Williams | 21 | 1.52% | 4 | 8.16% |
Sudheer Mogilappagari | 10 | 0.72% | 1 | 2.04% |
Kiran Patil | 7 | 0.51% | 1 | 2.04% |
Scott Peterson | 5 | 0.36% | 1 | 2.04% |
Jacob E Keller | 3 | 0.22% | 1 | 2.04% |
Jeff Kirsher | 2 | 0.14% | 2 | 4.08% |
Total | 1384 | 49 |
/* SPDX-License-Identifier: GPL-2.0 */ /* Copyright(c) 2013 - 2018 Intel Corporation. */ #ifndef _IAVF_TXRX_H_ #define _IAVF_TXRX_H_ /* Interrupt Throttling and Rate Limiting Goodies */ #define IAVF_DEFAULT_IRQ_WORK 256 /* The datasheet for the X710 and XL710 indicate that the maximum value for * the ITR is 8160usec which is then called out as 0xFF0 with a 2usec * resolution. 8160 is 0x1FE0 when written out in hex. So instead of storing * the register value which is divided by 2 lets use the actual values and * avoid an excessive amount of translation. */ #define IAVF_ITR_DYNAMIC 0x8000 /* use top bit as a flag */ #define IAVF_ITR_MASK 0x1FFE /* mask for ITR register value */ #define IAVF_MIN_ITR 2 /* reg uses 2 usec resolution */ #define IAVF_ITR_100K 10 /* all values below must be even */ #define IAVF_ITR_50K 20 #define IAVF_ITR_20K 50 #define IAVF_ITR_18K 60 #define IAVF_ITR_8K 122 #define IAVF_MAX_ITR 8160 /* maximum value as per datasheet */ #define ITR_TO_REG(setting) ((setting) & ~IAVF_ITR_DYNAMIC) #define ITR_REG_ALIGN(setting) __ALIGN_MASK(setting, ~IAVF_ITR_MASK) #define ITR_IS_DYNAMIC(setting) (!!((setting) & IAVF_ITR_DYNAMIC)) #define IAVF_ITR_RX_DEF (IAVF_ITR_20K | IAVF_ITR_DYNAMIC) #define IAVF_ITR_TX_DEF (IAVF_ITR_20K | IAVF_ITR_DYNAMIC) /* 0x40 is the enable bit for interrupt rate limiting, and must be set if * the value of the rate limit is non-zero */ #define INTRL_ENA BIT(6) #define IAVF_MAX_INTRL 0x3B /* reg uses 4 usec resolution */ #define INTRL_REG_TO_USEC(intrl) ((intrl & ~INTRL_ENA) << 2) #define INTRL_USEC_TO_REG(set) ((set) ? ((set) >> 2) | INTRL_ENA : 0) #define IAVF_INTRL_8K 125 /* 8000 ints/sec */ #define IAVF_INTRL_62K 16 /* 62500 ints/sec */ #define IAVF_INTRL_83K 12 /* 83333 ints/sec */ #define IAVF_QUEUE_END_OF_LIST 0x7FF /* this enum matches hardware bits and is meant to be used by DYN_CTLN * registers and QINT registers or more generally anywhere in the manual * mentioning ITR_INDX, ITR_NONE cannot be used as an index 'n' into any * register but instead is a special value meaning "don't update" ITR0/1/2. */ enum iavf_dyn_idx_t { IAVF_IDX_ITR0 = 0, IAVF_IDX_ITR1 = 1, IAVF_IDX_ITR2 = 2, IAVF_ITR_NONE = 3 /* ITR_NONE must not be used as an index */ }; /* these are indexes into ITRN registers */ #define IAVF_RX_ITR IAVF_IDX_ITR0 #define IAVF_TX_ITR IAVF_IDX_ITR1 #define IAVF_PE_ITR IAVF_IDX_ITR2 /* Supported RSS offloads */ #define IAVF_DEFAULT_RSS_HENA ( \ BIT_ULL(IAVF_FILTER_PCTYPE_NONF_IPV4_UDP) | \ BIT_ULL(IAVF_FILTER_PCTYPE_NONF_IPV4_SCTP) | \ BIT_ULL(IAVF_FILTER_PCTYPE_NONF_IPV4_TCP) | \ BIT_ULL(IAVF_FILTER_PCTYPE_NONF_IPV4_OTHER) | \ BIT_ULL(IAVF_FILTER_PCTYPE_FRAG_IPV4) | \ BIT_ULL(IAVF_FILTER_PCTYPE_NONF_IPV6_UDP) | \ BIT_ULL(IAVF_FILTER_PCTYPE_NONF_IPV6_TCP) | \ BIT_ULL(IAVF_FILTER_PCTYPE_NONF_IPV6_SCTP) | \ BIT_ULL(IAVF_FILTER_PCTYPE_NONF_IPV6_OTHER) | \ BIT_ULL(IAVF_FILTER_PCTYPE_FRAG_IPV6) | \ BIT_ULL(IAVF_FILTER_PCTYPE_L2_PAYLOAD)) #define IAVF_DEFAULT_RSS_HENA_EXPANDED (IAVF_DEFAULT_RSS_HENA | \ BIT_ULL(IAVF_FILTER_PCTYPE_NONF_IPV4_TCP_SYN_NO_ACK) | \ BIT_ULL(IAVF_FILTER_PCTYPE_NONF_UNICAST_IPV4_UDP) | \ BIT_ULL(IAVF_FILTER_PCTYPE_NONF_MULTICAST_IPV4_UDP) | \ BIT_ULL(IAVF_FILTER_PCTYPE_NONF_IPV6_TCP_SYN_NO_ACK) | \ BIT_ULL(IAVF_FILTER_PCTYPE_NONF_UNICAST_IPV6_UDP) | \ BIT_ULL(IAVF_FILTER_PCTYPE_NONF_MULTICAST_IPV6_UDP)) /* Supported Rx Buffer Sizes (a multiple of 128) */ #define IAVF_RXBUFFER_256 256 #define IAVF_RXBUFFER_1536 1536 /* 128B aligned standard Ethernet frame */ #define IAVF_RXBUFFER_2048 2048 #define IAVF_RXBUFFER_3072 3072 /* Used for large frames w/ padding */ #define IAVF_MAX_RXBUFFER 9728 /* largest size for single descriptor */ /* NOTE: netdev_alloc_skb reserves up to 64 bytes, NET_IP_ALIGN means we * reserve 2 more, and skb_shared_info adds an additional 384 bytes more, * this adds up to 512 bytes of extra data meaning the smallest allocation * we could have is 1K. * i.e. RXBUFFER_256 --> 960 byte skb (size-1024 slab) * i.e. RXBUFFER_512 --> 1216 byte skb (size-2048 slab) */ #define IAVF_RX_HDR_SIZE IAVF_RXBUFFER_256 #define IAVF_PACKET_HDR_PAD (ETH_HLEN + ETH_FCS_LEN + (VLAN_HLEN * 2)) #define iavf_rx_desc iavf_32byte_rx_desc #define IAVF_RX_DMA_ATTR \ (DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_WEAK_ORDERING) /* Attempt to maximize the headroom available for incoming frames. We * use a 2K buffer for receives and need 1536/1534 to store the data for * the frame. This leaves us with 512 bytes of room. From that we need * to deduct the space needed for the shared info and the padding needed * to IP align the frame. * * Note: For cache line sizes 256 or larger this value is going to end * up negative. In these cases we should fall back to the legacy * receive path. */ #if (PAGE_SIZE < 8192) #define IAVF_2K_TOO_SMALL_WITH_PADDING \ ((NET_SKB_PAD + IAVF_RXBUFFER_1536) > SKB_WITH_OVERHEAD(IAVF_RXBUFFER_2048)) static inline int iavf_compute_pad(int rx_buf_len) { int page_size, pad_size; page_size = ALIGN(rx_buf_len, PAGE_SIZE / 2); pad_size = SKB_WITH_OVERHEAD(page_size) - rx_buf_len; return pad_size; } static inline int iavf_skb_pad(void) { int rx_buf_len; /* If a 2K buffer cannot handle a standard Ethernet frame then * optimize padding for a 3K buffer instead of a 1.5K buffer. * * For a 3K buffer we need to add enough padding to allow for * tailroom due to NET_IP_ALIGN possibly shifting us out of * cache-line alignment. */ if (IAVF_2K_TOO_SMALL_WITH_PADDING) rx_buf_len = IAVF_RXBUFFER_3072 + SKB_DATA_ALIGN(NET_IP_ALIGN); else rx_buf_len = IAVF_RXBUFFER_1536; /* if needed make room for NET_IP_ALIGN */ rx_buf_len -= NET_IP_ALIGN; return iavf_compute_pad(rx_buf_len); } #define IAVF_SKB_PAD iavf_skb_pad() #else #define IAVF_2K_TOO_SMALL_WITH_PADDING false #define IAVF_SKB_PAD (NET_SKB_PAD + NET_IP_ALIGN) #endif /** * iavf_test_staterr - tests bits in Rx descriptor status and error fields * @rx_desc: pointer to receive descriptor (in le64 format) * @stat_err_bits: value to mask * * This function does some fast chicanery in order to return the * value of the mask which is really only used for boolean tests. * The status_error_len doesn't need to be shifted because it begins * at offset zero. */ static inline bool iavf_test_staterr(union iavf_rx_desc *rx_desc, const u64 stat_err_bits) { return !!(rx_desc->wb.qword1.status_error_len & cpu_to_le64(stat_err_bits)); } /* How many Rx Buffers do we bundle into one write to the hardware ? */ #define IAVF_RX_INCREMENT(r, i) \ do { \ (i)++; \ if ((i) == (r)->count) \ i = 0; \ r->next_to_clean = i; \ } while (0) #define IAVF_RX_NEXT_DESC(r, i, n) \ do { \ (i)++; \ if ((i) == (r)->count) \ i = 0; \ (n) = IAVF_RX_DESC((r), (i)); \ } while (0) #define IAVF_RX_NEXT_DESC_PREFETCH(r, i, n) \ do { \ IAVF_RX_NEXT_DESC((r), (i), (n)); \ prefetch((n)); \ } while (0) #define IAVF_MAX_BUFFER_TXD 8 #define IAVF_MIN_TX_LEN 17 /* The size limit for a transmit buffer in a descriptor is (16K - 1). * In order to align with the read requests we will align the value to * the nearest 4K which represents our maximum read request size. */ #define IAVF_MAX_READ_REQ_SIZE 4096 #define IAVF_MAX_DATA_PER_TXD (16 * 1024 - 1) #define IAVF_MAX_DATA_PER_TXD_ALIGNED \ (IAVF_MAX_DATA_PER_TXD & ~(IAVF_MAX_READ_REQ_SIZE - 1)) /** * iavf_txd_use_count - estimate the number of descriptors needed for Tx * @size: transmit request size in bytes * * Due to hardware alignment restrictions (4K alignment), we need to * assume that we can have no more than 12K of data per descriptor, even * though each descriptor can take up to 16K - 1 bytes of aligned memory. * Thus, we need to divide by 12K. But division is slow! Instead, * we decompose the operation into shifts and one relatively cheap * multiply operation. * * To divide by 12K, we first divide by 4K, then divide by 3: * To divide by 4K, shift right by 12 bits * To divide by 3, multiply by 85, then divide by 256 * (Divide by 256 is done by shifting right by 8 bits) * Finally, we add one to round up. Because 256 isn't an exact multiple of * 3, we'll underestimate near each multiple of 12K. This is actually more * accurate as we have 4K - 1 of wiggle room that we can fit into the last * segment. For our purposes this is accurate out to 1M which is orders of * magnitude greater than our largest possible GSO size. * * This would then be implemented as: * return (((size >> 12) * 85) >> 8) + 1; * * Since multiplication and division are commutative, we can reorder * operations into: * return ((size * 85) >> 20) + 1; */ static inline unsigned int iavf_txd_use_count(unsigned int size) { return ((size * 85) >> 20) + 1; } /* Tx Descriptors needed, worst case */ #define DESC_NEEDED (MAX_SKB_FRAGS + 6) #define IAVF_MIN_DESC_PENDING 4 #define IAVF_TX_FLAGS_HW_VLAN BIT(1) #define IAVF_TX_FLAGS_SW_VLAN BIT(2) #define IAVF_TX_FLAGS_TSO BIT(3) #define IAVF_TX_FLAGS_IPV4 BIT(4) #define IAVF_TX_FLAGS_IPV6 BIT(5) #define IAVF_TX_FLAGS_FCCRC BIT(6) #define IAVF_TX_FLAGS_FSO BIT(7) #define IAVF_TX_FLAGS_FD_SB BIT(9) #define IAVF_TX_FLAGS_VXLAN_TUNNEL BIT(10) #define IAVF_TX_FLAGS_VLAN_MASK 0xffff0000 #define IAVF_TX_FLAGS_VLAN_PRIO_MASK 0xe0000000 #define IAVF_TX_FLAGS_VLAN_PRIO_SHIFT 29 #define IAVF_TX_FLAGS_VLAN_SHIFT 16 struct iavf_tx_buffer { struct iavf_tx_desc *next_to_watch; union { struct sk_buff *skb; void *raw_buf; }; unsigned int bytecount; unsigned short gso_segs; DEFINE_DMA_UNMAP_ADDR(dma); DEFINE_DMA_UNMAP_LEN(len); u32 tx_flags; }; struct iavf_rx_buffer { dma_addr_t dma; struct page *page; #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536) __u32 page_offset; #else __u16 page_offset; #endif __u16 pagecnt_bias; }; struct iavf_queue_stats { u64 packets; u64 bytes; }; struct iavf_tx_queue_stats { u64 restart_queue; u64 tx_busy; u64 tx_done_old; u64 tx_linearize; u64 tx_force_wb; int prev_pkt_ctr; u64 tx_lost_interrupt; }; struct iavf_rx_queue_stats { u64 non_eop_descs; u64 alloc_page_failed; u64 alloc_buff_failed; u64 page_reuse_count; u64 realloc_count; }; enum iavf_ring_state_t { __IAVF_TX_FDIR_INIT_DONE, __IAVF_TX_XPS_INIT_DONE, __IAVF_RING_STATE_NBITS /* must be last */ }; /* some useful defines for virtchannel interface, which * is the only remaining user of header split */ #define IAVF_RX_DTYPE_NO_SPLIT 0 #define IAVF_RX_DTYPE_HEADER_SPLIT 1 #define IAVF_RX_DTYPE_SPLIT_ALWAYS 2 #define IAVF_RX_SPLIT_L2 0x1 #define IAVF_RX_SPLIT_IP 0x2 #define IAVF_RX_SPLIT_TCP_UDP 0x4 #define IAVF_RX_SPLIT_SCTP 0x8 /* struct that defines a descriptor ring, associated with a VSI */ struct iavf_ring { struct iavf_ring *next; /* pointer to next ring in q_vector */ void *desc; /* Descriptor ring memory */ struct device *dev; /* Used for DMA mapping */ struct net_device *netdev; /* netdev ring maps to */ union { struct iavf_tx_buffer *tx_bi; struct iavf_rx_buffer *rx_bi; }; DECLARE_BITMAP(state, __IAVF_RING_STATE_NBITS); u16 queue_index; /* Queue number of ring */ u8 dcb_tc; /* Traffic class of ring */ u8 __iomem *tail; /* high bit set means dynamic, use accessors routines to read/write. * hardware only supports 2us resolution for the ITR registers. * these values always store the USER setting, and must be converted * before programming to a register. */ u16 itr_setting; u16 count; /* Number of descriptors */ u16 reg_idx; /* HW register index of the ring */ u16 rx_buf_len; /* used in interrupt processing */ u16 next_to_use; u16 next_to_clean; u8 atr_sample_rate; u8 atr_count; bool ring_active; /* is ring online or not */ bool arm_wb; /* do something to arm write back */ u8 packet_stride; u16 flags; #define IAVF_TXR_FLAGS_WB_ON_ITR BIT(0) #define IAVF_RXR_FLAGS_BUILD_SKB_ENABLED BIT(1) /* stats structs */ struct iavf_queue_stats stats; struct u64_stats_sync syncp; union { struct iavf_tx_queue_stats tx_stats; struct iavf_rx_queue_stats rx_stats; }; unsigned int size; /* length of descriptor ring in bytes */ dma_addr_t dma; /* physical address of ring */ struct iavf_vsi *vsi; /* Backreference to associated VSI */ struct iavf_q_vector *q_vector; /* Backreference to associated vector */ struct rcu_head rcu; /* to avoid race on free */ u16 next_to_alloc; struct sk_buff *skb; /* When iavf_clean_rx_ring_irq() must * return before it sees the EOP for * the current packet, we save that skb * here and resume receiving this * packet the next time * iavf_clean_rx_ring_irq() is called * for this ring. */ } ____cacheline_internodealigned_in_smp; static inline bool ring_uses_build_skb(struct iavf_ring *ring) { return !!(ring->flags & IAVF_RXR_FLAGS_BUILD_SKB_ENABLED); } static inline void set_ring_build_skb_enabled(struct iavf_ring *ring) { ring->flags |= IAVF_RXR_FLAGS_BUILD_SKB_ENABLED; } static inline void clear_ring_build_skb_enabled(struct iavf_ring *ring) { ring->flags &= ~IAVF_RXR_FLAGS_BUILD_SKB_ENABLED; } #define IAVF_ITR_ADAPTIVE_MIN_INC 0x0002 #define IAVF_ITR_ADAPTIVE_MIN_USECS 0x0002 #define IAVF_ITR_ADAPTIVE_MAX_USECS 0x007e #define IAVF_ITR_ADAPTIVE_LATENCY 0x8000 #define IAVF_ITR_ADAPTIVE_BULK 0x0000 #define ITR_IS_BULK(x) (!((x) & IAVF_ITR_ADAPTIVE_LATENCY)) struct iavf_ring_container { struct iavf_ring *ring; /* pointer to linked list of ring(s) */ unsigned long next_update; /* jiffies value of next update */ unsigned int total_bytes; /* total bytes processed this int */ unsigned int total_packets; /* total packets processed this int */ u16 count; u16 target_itr; /* target ITR setting for ring(s) */ u16 current_itr; /* current ITR setting for ring(s) */ }; /* iterator for handling rings in ring container */ #define iavf_for_each_ring(pos, head) \ for (pos = (head).ring; pos != NULL; pos = pos->next) static inline unsigned int iavf_rx_pg_order(struct iavf_ring *ring) { #if (PAGE_SIZE < 8192) if (ring->rx_buf_len > (PAGE_SIZE / 2)) return 1; #endif return 0; } #define iavf_rx_pg_size(_ring) (PAGE_SIZE << iavf_rx_pg_order(_ring)) bool iavf_alloc_rx_buffers(struct iavf_ring *rxr, u16 cleaned_count); netdev_tx_t iavf_xmit_frame(struct sk_buff *skb, struct net_device *netdev); void iavf_clean_tx_ring(struct iavf_ring *tx_ring); void iavf_clean_rx_ring(struct iavf_ring *rx_ring); int iavf_setup_tx_descriptors(struct iavf_ring *tx_ring); int iavf_setup_rx_descriptors(struct iavf_ring *rx_ring); void iavf_free_tx_resources(struct iavf_ring *tx_ring); void iavf_free_rx_resources(struct iavf_ring *rx_ring); int iavf_napi_poll(struct napi_struct *napi, int budget); void iavf_force_wb(struct iavf_vsi *vsi, struct iavf_q_vector *q_vector); u32 iavf_get_tx_pending(struct iavf_ring *ring, bool in_sw); void iavf_detect_recover_hung(struct iavf_vsi *vsi); int __iavf_maybe_stop_tx(struct iavf_ring *tx_ring, int size); bool __iavf_chk_linearize(struct sk_buff *skb); /** * iavf_xmit_descriptor_count - calculate number of Tx descriptors needed * @skb: send buffer * @tx_ring: ring to send buffer on * * Returns number of data descriptors needed for this skb. Returns 0 to indicate * there is not enough descriptors available in this ring since we need at least * one descriptor. **/ static inline int iavf_xmit_descriptor_count(struct sk_buff *skb) { const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0]; unsigned int nr_frags = skb_shinfo(skb)->nr_frags; int count = 0, size = skb_headlen(skb); for (;;) { count += iavf_txd_use_count(size); if (!nr_frags--) break; size = skb_frag_size(frag++); } return count; } /** * iavf_maybe_stop_tx - 1st level check for Tx stop conditions * @tx_ring: the ring to be checked * @size: the size buffer we want to assure is available * * Returns 0 if stop is not needed **/ static inline int iavf_maybe_stop_tx(struct iavf_ring *tx_ring, int size) { if (likely(IAVF_DESC_UNUSED(tx_ring) >= size)) return 0; return __iavf_maybe_stop_tx(tx_ring, size); } /** * iavf_chk_linearize - Check if there are more than 8 fragments per packet * @skb: send buffer * @count: number of buffers used * * Note: Our HW can't scatter-gather more than 8 fragments to build * a packet on the wire and so we need to figure out the cases where we * need to linearize the skb. **/ static inline bool iavf_chk_linearize(struct sk_buff *skb, int count) { /* Both TSO and single send will work if count is less than 8 */ if (likely(count < IAVF_MAX_BUFFER_TXD)) return false; if (skb_is_gso(skb)) return __iavf_chk_linearize(skb); /* we can support up to 8 data buffers for a single send */ return count != IAVF_MAX_BUFFER_TXD; } /** * @ring: Tx ring to find the netdev equivalent of **/ static inline struct netdev_queue *txring_txq(const struct iavf_ring *ring) { return netdev_get_tx_queue(ring->netdev, ring->queue_index); } #endif /* _IAVF_TXRX_H_ */
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1