Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Auke-Jan H Kok | 3151 | 67.31% | 1 | 2.50% |
Alexander Duyck | 882 | 18.84% | 17 | 42.50% |
Carolyn Wyborny | 334 | 7.14% | 6 | 15.00% |
Akeem G. Abodunrin | 163 | 3.48% | 5 | 12.50% |
Jeff Kirsher | 59 | 1.26% | 4 | 10.00% |
Todd Fujinaka | 45 | 0.96% | 1 | 2.50% |
Jacob E Keller | 15 | 0.32% | 1 | 2.50% |
Matthew Vick | 14 | 0.30% | 1 | 2.50% |
Tobias Klauser | 6 | 0.13% | 1 | 2.50% |
Jakub Kiciński | 6 | 0.13% | 1 | 2.50% |
Joe Perches | 5 | 0.11% | 1 | 2.50% |
Lucas De Marchi | 1 | 0.02% | 1 | 2.50% |
Total | 4681 | 40 |
// SPDX-License-Identifier: GPL-2.0 /* Copyright(c) 2007 - 2018 Intel Corporation. */ #include <linux/if_ether.h> #include <linux/delay.h> #include <linux/pci.h> #include <linux/netdevice.h> #include <linux/etherdevice.h> #include "e1000_mac.h" #include "igb.h" static s32 igb_set_default_fc(struct e1000_hw *hw); static s32 igb_set_fc_watermarks(struct e1000_hw *hw); /** * igb_get_bus_info_pcie - Get PCIe bus information * @hw: pointer to the HW structure * * Determines and stores the system bus information for a particular * network interface. The following bus information is determined and stored: * bus speed, bus width, type (PCIe), and PCIe function. **/ s32 igb_get_bus_info_pcie(struct e1000_hw *hw) { struct e1000_bus_info *bus = &hw->bus; s32 ret_val; u32 reg; u16 pcie_link_status; bus->type = e1000_bus_type_pci_express; ret_val = igb_read_pcie_cap_reg(hw, PCI_EXP_LNKSTA, &pcie_link_status); if (ret_val) { bus->width = e1000_bus_width_unknown; bus->speed = e1000_bus_speed_unknown; } else { switch (pcie_link_status & PCI_EXP_LNKSTA_CLS) { case PCI_EXP_LNKSTA_CLS_2_5GB: bus->speed = e1000_bus_speed_2500; break; case PCI_EXP_LNKSTA_CLS_5_0GB: bus->speed = e1000_bus_speed_5000; break; default: bus->speed = e1000_bus_speed_unknown; break; } bus->width = (enum e1000_bus_width)((pcie_link_status & PCI_EXP_LNKSTA_NLW) >> PCI_EXP_LNKSTA_NLW_SHIFT); } reg = rd32(E1000_STATUS); bus->func = (reg & E1000_STATUS_FUNC_MASK) >> E1000_STATUS_FUNC_SHIFT; return 0; } /** * igb_clear_vfta - Clear VLAN filter table * @hw: pointer to the HW structure * * Clears the register array which contains the VLAN filter table by * setting all the values to 0. **/ void igb_clear_vfta(struct e1000_hw *hw) { u32 offset; for (offset = E1000_VLAN_FILTER_TBL_SIZE; offset--;) hw->mac.ops.write_vfta(hw, offset, 0); } /** * igb_write_vfta - Write value to VLAN filter table * @hw: pointer to the HW structure * @offset: register offset in VLAN filter table * @value: register value written to VLAN filter table * * Writes value at the given offset in the register array which stores * the VLAN filter table. **/ void igb_write_vfta(struct e1000_hw *hw, u32 offset, u32 value) { struct igb_adapter *adapter = hw->back; array_wr32(E1000_VFTA, offset, value); wrfl(); adapter->shadow_vfta[offset] = value; } /** * igb_init_rx_addrs - Initialize receive address's * @hw: pointer to the HW structure * @rar_count: receive address registers * * Setups the receive address registers by setting the base receive address * register to the devices MAC address and clearing all the other receive * address registers to 0. **/ void igb_init_rx_addrs(struct e1000_hw *hw, u16 rar_count) { u32 i; u8 mac_addr[ETH_ALEN] = {0}; /* Setup the receive address */ hw_dbg("Programming MAC Address into RAR[0]\n"); hw->mac.ops.rar_set(hw, hw->mac.addr, 0); /* Zero out the other (rar_entry_count - 1) receive addresses */ hw_dbg("Clearing RAR[1-%u]\n", rar_count-1); for (i = 1; i < rar_count; i++) hw->mac.ops.rar_set(hw, mac_addr, i); } /** * igb_find_vlvf_slot - find the VLAN id or the first empty slot * @hw: pointer to hardware structure * @vlan: VLAN id to write to VLAN filter * @vlvf_bypass: skip VLVF if no match is found * * return the VLVF index where this VLAN id should be placed * **/ static s32 igb_find_vlvf_slot(struct e1000_hw *hw, u32 vlan, bool vlvf_bypass) { s32 regindex, first_empty_slot; u32 bits; /* short cut the special case */ if (vlan == 0) return 0; /* if vlvf_bypass is set we don't want to use an empty slot, we * will simply bypass the VLVF if there are no entries present in the * VLVF that contain our VLAN */ first_empty_slot = vlvf_bypass ? -E1000_ERR_NO_SPACE : 0; /* Search for the VLAN id in the VLVF entries. Save off the first empty * slot found along the way. * * pre-decrement loop covering (IXGBE_VLVF_ENTRIES - 1) .. 1 */ for (regindex = E1000_VLVF_ARRAY_SIZE; --regindex > 0;) { bits = rd32(E1000_VLVF(regindex)) & E1000_VLVF_VLANID_MASK; if (bits == vlan) return regindex; if (!first_empty_slot && !bits) first_empty_slot = regindex; } return first_empty_slot ? : -E1000_ERR_NO_SPACE; } /** * igb_vfta_set - enable or disable vlan in VLAN filter table * @hw: pointer to the HW structure * @vlan: VLAN id to add or remove * @vind: VMDq output index that maps queue to VLAN id * @vlan_on: if true add filter, if false remove * * Sets or clears a bit in the VLAN filter table array based on VLAN id * and if we are adding or removing the filter **/ s32 igb_vfta_set(struct e1000_hw *hw, u32 vlan, u32 vind, bool vlan_on, bool vlvf_bypass) { struct igb_adapter *adapter = hw->back; u32 regidx, vfta_delta, vfta, bits; s32 vlvf_index; if ((vlan > 4095) || (vind > 7)) return -E1000_ERR_PARAM; /* this is a 2 part operation - first the VFTA, then the * VLVF and VLVFB if VT Mode is set * We don't write the VFTA until we know the VLVF part succeeded. */ /* Part 1 * The VFTA is a bitstring made up of 128 32-bit registers * that enable the particular VLAN id, much like the MTA: * bits[11-5]: which register * bits[4-0]: which bit in the register */ regidx = vlan / 32; vfta_delta = BIT(vlan % 32); vfta = adapter->shadow_vfta[regidx]; /* vfta_delta represents the difference between the current value * of vfta and the value we want in the register. Since the diff * is an XOR mask we can just update vfta using an XOR. */ vfta_delta &= vlan_on ? ~vfta : vfta; vfta ^= vfta_delta; /* Part 2 * If VT Mode is set * Either vlan_on * make sure the VLAN is in VLVF * set the vind bit in the matching VLVFB * Or !vlan_on * clear the pool bit and possibly the vind */ if (!adapter->vfs_allocated_count) goto vfta_update; vlvf_index = igb_find_vlvf_slot(hw, vlan, vlvf_bypass); if (vlvf_index < 0) { if (vlvf_bypass) goto vfta_update; return vlvf_index; } bits = rd32(E1000_VLVF(vlvf_index)); /* set the pool bit */ bits |= BIT(E1000_VLVF_POOLSEL_SHIFT + vind); if (vlan_on) goto vlvf_update; /* clear the pool bit */ bits ^= BIT(E1000_VLVF_POOLSEL_SHIFT + vind); if (!(bits & E1000_VLVF_POOLSEL_MASK)) { /* Clear VFTA first, then disable VLVF. Otherwise * we run the risk of stray packets leaking into * the PF via the default pool */ if (vfta_delta) hw->mac.ops.write_vfta(hw, regidx, vfta); /* disable VLVF and clear remaining bit from pool */ wr32(E1000_VLVF(vlvf_index), 0); return 0; } /* If there are still bits set in the VLVFB registers * for the VLAN ID indicated we need to see if the * caller is requesting that we clear the VFTA entry bit. * If the caller has requested that we clear the VFTA * entry bit but there are still pools/VFs using this VLAN * ID entry then ignore the request. We're not worried * about the case where we're turning the VFTA VLAN ID * entry bit on, only when requested to turn it off as * there may be multiple pools and/or VFs using the * VLAN ID entry. In that case we cannot clear the * VFTA bit until all pools/VFs using that VLAN ID have also * been cleared. This will be indicated by "bits" being * zero. */ vfta_delta = 0; vlvf_update: /* record pool change and enable VLAN ID if not already enabled */ wr32(E1000_VLVF(vlvf_index), bits | vlan | E1000_VLVF_VLANID_ENABLE); vfta_update: /* bit was set/cleared before we started */ if (vfta_delta) hw->mac.ops.write_vfta(hw, regidx, vfta); return 0; } /** * igb_check_alt_mac_addr - Check for alternate MAC addr * @hw: pointer to the HW structure * * Checks the nvm for an alternate MAC address. An alternate MAC address * can be setup by pre-boot software and must be treated like a permanent * address and must override the actual permanent MAC address. If an * alternate MAC address is found it is saved in the hw struct and * programmed into RAR0 and the function returns success, otherwise the * function returns an error. **/ s32 igb_check_alt_mac_addr(struct e1000_hw *hw) { u32 i; s32 ret_val = 0; u16 offset, nvm_alt_mac_addr_offset, nvm_data; u8 alt_mac_addr[ETH_ALEN]; /* Alternate MAC address is handled by the option ROM for 82580 * and newer. SW support not required. */ if (hw->mac.type >= e1000_82580) goto out; ret_val = hw->nvm.ops.read(hw, NVM_ALT_MAC_ADDR_PTR, 1, &nvm_alt_mac_addr_offset); if (ret_val) { hw_dbg("NVM Read Error\n"); goto out; } if ((nvm_alt_mac_addr_offset == 0xFFFF) || (nvm_alt_mac_addr_offset == 0x0000)) /* There is no Alternate MAC Address */ goto out; if (hw->bus.func == E1000_FUNC_1) nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN1; if (hw->bus.func == E1000_FUNC_2) nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN2; if (hw->bus.func == E1000_FUNC_3) nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN3; for (i = 0; i < ETH_ALEN; i += 2) { offset = nvm_alt_mac_addr_offset + (i >> 1); ret_val = hw->nvm.ops.read(hw, offset, 1, &nvm_data); if (ret_val) { hw_dbg("NVM Read Error\n"); goto out; } alt_mac_addr[i] = (u8)(nvm_data & 0xFF); alt_mac_addr[i + 1] = (u8)(nvm_data >> 8); } /* if multicast bit is set, the alternate address will not be used */ if (is_multicast_ether_addr(alt_mac_addr)) { hw_dbg("Ignoring Alternate Mac Address with MC bit set\n"); goto out; } /* We have a valid alternate MAC address, and we want to treat it the * same as the normal permanent MAC address stored by the HW into the * RAR. Do this by mapping this address into RAR0. */ hw->mac.ops.rar_set(hw, alt_mac_addr, 0); out: return ret_val; } /** * igb_rar_set - Set receive address register * @hw: pointer to the HW structure * @addr: pointer to the receive address * @index: receive address array register * * Sets the receive address array register at index to the address passed * in by addr. **/ void igb_rar_set(struct e1000_hw *hw, u8 *addr, u32 index) { u32 rar_low, rar_high; /* HW expects these in little endian so we reverse the byte order * from network order (big endian) to little endian */ rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) | ((u32) addr[2] << 16) | ((u32) addr[3] << 24)); rar_high = ((u32) addr[4] | ((u32) addr[5] << 8)); /* If MAC address zero, no need to set the AV bit */ if (rar_low || rar_high) rar_high |= E1000_RAH_AV; /* Some bridges will combine consecutive 32-bit writes into * a single burst write, which will malfunction on some parts. * The flushes avoid this. */ wr32(E1000_RAL(index), rar_low); wrfl(); wr32(E1000_RAH(index), rar_high); wrfl(); } /** * igb_mta_set - Set multicast filter table address * @hw: pointer to the HW structure * @hash_value: determines the MTA register and bit to set * * The multicast table address is a register array of 32-bit registers. * The hash_value is used to determine what register the bit is in, the * current value is read, the new bit is OR'd in and the new value is * written back into the register. **/ void igb_mta_set(struct e1000_hw *hw, u32 hash_value) { u32 hash_bit, hash_reg, mta; /* The MTA is a register array of 32-bit registers. It is * treated like an array of (32*mta_reg_count) bits. We want to * set bit BitArray[hash_value]. So we figure out what register * the bit is in, read it, OR in the new bit, then write * back the new value. The (hw->mac.mta_reg_count - 1) serves as a * mask to bits 31:5 of the hash value which gives us the * register we're modifying. The hash bit within that register * is determined by the lower 5 bits of the hash value. */ hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1); hash_bit = hash_value & 0x1F; mta = array_rd32(E1000_MTA, hash_reg); mta |= BIT(hash_bit); array_wr32(E1000_MTA, hash_reg, mta); wrfl(); } /** * igb_hash_mc_addr - Generate a multicast hash value * @hw: pointer to the HW structure * @mc_addr: pointer to a multicast address * * Generates a multicast address hash value which is used to determine * the multicast filter table array address and new table value. See * igb_mta_set() **/ static u32 igb_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr) { u32 hash_value, hash_mask; u8 bit_shift = 0; /* Register count multiplied by bits per register */ hash_mask = (hw->mac.mta_reg_count * 32) - 1; /* For a mc_filter_type of 0, bit_shift is the number of left-shifts * where 0xFF would still fall within the hash mask. */ while (hash_mask >> bit_shift != 0xFF) bit_shift++; /* The portion of the address that is used for the hash table * is determined by the mc_filter_type setting. * The algorithm is such that there is a total of 8 bits of shifting. * The bit_shift for a mc_filter_type of 0 represents the number of * left-shifts where the MSB of mc_addr[5] would still fall within * the hash_mask. Case 0 does this exactly. Since there are a total * of 8 bits of shifting, then mc_addr[4] will shift right the * remaining number of bits. Thus 8 - bit_shift. The rest of the * cases are a variation of this algorithm...essentially raising the * number of bits to shift mc_addr[5] left, while still keeping the * 8-bit shifting total. * * For example, given the following Destination MAC Address and an * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask), * we can see that the bit_shift for case 0 is 4. These are the hash * values resulting from each mc_filter_type... * [0] [1] [2] [3] [4] [5] * 01 AA 00 12 34 56 * LSB MSB * * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563 * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6 * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163 * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634 */ switch (hw->mac.mc_filter_type) { default: case 0: break; case 1: bit_shift += 1; break; case 2: bit_shift += 2; break; case 3: bit_shift += 4; break; } hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) | (((u16) mc_addr[5]) << bit_shift))); return hash_value; } /** * igb_update_mc_addr_list - Update Multicast addresses * @hw: pointer to the HW structure * @mc_addr_list: array of multicast addresses to program * @mc_addr_count: number of multicast addresses to program * * Updates entire Multicast Table Array. * The caller must have a packed mc_addr_list of multicast addresses. **/ void igb_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list, u32 mc_addr_count) { u32 hash_value, hash_bit, hash_reg; int i; /* clear mta_shadow */ memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow)); /* update mta_shadow from mc_addr_list */ for (i = 0; (u32) i < mc_addr_count; i++) { hash_value = igb_hash_mc_addr(hw, mc_addr_list); hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1); hash_bit = hash_value & 0x1F; hw->mac.mta_shadow[hash_reg] |= BIT(hash_bit); mc_addr_list += (ETH_ALEN); } /* replace the entire MTA table */ for (i = hw->mac.mta_reg_count - 1; i >= 0; i--) array_wr32(E1000_MTA, i, hw->mac.mta_shadow[i]); wrfl(); } /** * igb_clear_hw_cntrs_base - Clear base hardware counters * @hw: pointer to the HW structure * * Clears the base hardware counters by reading the counter registers. **/ void igb_clear_hw_cntrs_base(struct e1000_hw *hw) { rd32(E1000_CRCERRS); rd32(E1000_SYMERRS); rd32(E1000_MPC); rd32(E1000_SCC); rd32(E1000_ECOL); rd32(E1000_MCC); rd32(E1000_LATECOL); rd32(E1000_COLC); rd32(E1000_DC); rd32(E1000_SEC); rd32(E1000_RLEC); rd32(E1000_XONRXC); rd32(E1000_XONTXC); rd32(E1000_XOFFRXC); rd32(E1000_XOFFTXC); rd32(E1000_FCRUC); rd32(E1000_GPRC); rd32(E1000_BPRC); rd32(E1000_MPRC); rd32(E1000_GPTC); rd32(E1000_GORCL); rd32(E1000_GORCH); rd32(E1000_GOTCL); rd32(E1000_GOTCH); rd32(E1000_RNBC); rd32(E1000_RUC); rd32(E1000_RFC); rd32(E1000_ROC); rd32(E1000_RJC); rd32(E1000_TORL); rd32(E1000_TORH); rd32(E1000_TOTL); rd32(E1000_TOTH); rd32(E1000_TPR); rd32(E1000_TPT); rd32(E1000_MPTC); rd32(E1000_BPTC); } /** * igb_check_for_copper_link - Check for link (Copper) * @hw: pointer to the HW structure * * Checks to see of the link status of the hardware has changed. If a * change in link status has been detected, then we read the PHY registers * to get the current speed/duplex if link exists. **/ s32 igb_check_for_copper_link(struct e1000_hw *hw) { struct e1000_mac_info *mac = &hw->mac; s32 ret_val; bool link; /* We only want to go out to the PHY registers to see if Auto-Neg * has completed and/or if our link status has changed. The * get_link_status flag is set upon receiving a Link Status * Change or Rx Sequence Error interrupt. */ if (!mac->get_link_status) { ret_val = 0; goto out; } /* First we want to see if the MII Status Register reports * link. If so, then we want to get the current speed/duplex * of the PHY. */ ret_val = igb_phy_has_link(hw, 1, 0, &link); if (ret_val) goto out; if (!link) goto out; /* No link detected */ mac->get_link_status = false; /* Check if there was DownShift, must be checked * immediately after link-up */ igb_check_downshift(hw); /* If we are forcing speed/duplex, then we simply return since * we have already determined whether we have link or not. */ if (!mac->autoneg) { ret_val = -E1000_ERR_CONFIG; goto out; } /* Auto-Neg is enabled. Auto Speed Detection takes care * of MAC speed/duplex configuration. So we only need to * configure Collision Distance in the MAC. */ igb_config_collision_dist(hw); /* Configure Flow Control now that Auto-Neg has completed. * First, we need to restore the desired flow control * settings because we may have had to re-autoneg with a * different link partner. */ ret_val = igb_config_fc_after_link_up(hw); if (ret_val) hw_dbg("Error configuring flow control\n"); out: return ret_val; } /** * igb_setup_link - Setup flow control and link settings * @hw: pointer to the HW structure * * Determines which flow control settings to use, then configures flow * control. Calls the appropriate media-specific link configuration * function. Assuming the adapter has a valid link partner, a valid link * should be established. Assumes the hardware has previously been reset * and the transmitter and receiver are not enabled. **/ s32 igb_setup_link(struct e1000_hw *hw) { s32 ret_val = 0; /* In the case of the phy reset being blocked, we already have a link. * We do not need to set it up again. */ if (igb_check_reset_block(hw)) goto out; /* If requested flow control is set to default, set flow control * based on the EEPROM flow control settings. */ if (hw->fc.requested_mode == e1000_fc_default) { ret_val = igb_set_default_fc(hw); if (ret_val) goto out; } /* We want to save off the original Flow Control configuration just * in case we get disconnected and then reconnected into a different * hub or switch with different Flow Control capabilities. */ hw->fc.current_mode = hw->fc.requested_mode; hw_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode); /* Call the necessary media_type subroutine to configure the link. */ ret_val = hw->mac.ops.setup_physical_interface(hw); if (ret_val) goto out; /* Initialize the flow control address, type, and PAUSE timer * registers to their default values. This is done even if flow * control is disabled, because it does not hurt anything to * initialize these registers. */ hw_dbg("Initializing the Flow Control address, type and timer regs\n"); wr32(E1000_FCT, FLOW_CONTROL_TYPE); wr32(E1000_FCAH, FLOW_CONTROL_ADDRESS_HIGH); wr32(E1000_FCAL, FLOW_CONTROL_ADDRESS_LOW); wr32(E1000_FCTTV, hw->fc.pause_time); ret_val = igb_set_fc_watermarks(hw); out: return ret_val; } /** * igb_config_collision_dist - Configure collision distance * @hw: pointer to the HW structure * * Configures the collision distance to the default value and is used * during link setup. Currently no func pointer exists and all * implementations are handled in the generic version of this function. **/ void igb_config_collision_dist(struct e1000_hw *hw) { u32 tctl; tctl = rd32(E1000_TCTL); tctl &= ~E1000_TCTL_COLD; tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT; wr32(E1000_TCTL, tctl); wrfl(); } /** * igb_set_fc_watermarks - Set flow control high/low watermarks * @hw: pointer to the HW structure * * Sets the flow control high/low threshold (watermark) registers. If * flow control XON frame transmission is enabled, then set XON frame * tansmission as well. **/ static s32 igb_set_fc_watermarks(struct e1000_hw *hw) { s32 ret_val = 0; u32 fcrtl = 0, fcrth = 0; /* Set the flow control receive threshold registers. Normally, * these registers will be set to a default threshold that may be * adjusted later by the driver's runtime code. However, if the * ability to transmit pause frames is not enabled, then these * registers will be set to 0. */ if (hw->fc.current_mode & e1000_fc_tx_pause) { /* We need to set up the Receive Threshold high and low water * marks as well as (optionally) enabling the transmission of * XON frames. */ fcrtl = hw->fc.low_water; if (hw->fc.send_xon) fcrtl |= E1000_FCRTL_XONE; fcrth = hw->fc.high_water; } wr32(E1000_FCRTL, fcrtl); wr32(E1000_FCRTH, fcrth); return ret_val; } /** * igb_set_default_fc - Set flow control default values * @hw: pointer to the HW structure * * Read the EEPROM for the default values for flow control and store the * values. **/ static s32 igb_set_default_fc(struct e1000_hw *hw) { s32 ret_val = 0; u16 lan_offset; u16 nvm_data; /* Read and store word 0x0F of the EEPROM. This word contains bits * that determine the hardware's default PAUSE (flow control) mode, * a bit that determines whether the HW defaults to enabling or * disabling auto-negotiation, and the direction of the * SW defined pins. If there is no SW over-ride of the flow * control setting, then the variable hw->fc will * be initialized based on a value in the EEPROM. */ if (hw->mac.type == e1000_i350) lan_offset = NVM_82580_LAN_FUNC_OFFSET(hw->bus.func); else lan_offset = 0; ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL2_REG + lan_offset, 1, &nvm_data); if (ret_val) { hw_dbg("NVM Read Error\n"); goto out; } if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == 0) hw->fc.requested_mode = e1000_fc_none; else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == NVM_WORD0F_ASM_DIR) hw->fc.requested_mode = e1000_fc_tx_pause; else hw->fc.requested_mode = e1000_fc_full; out: return ret_val; } /** * igb_force_mac_fc - Force the MAC's flow control settings * @hw: pointer to the HW structure * * Force the MAC's flow control settings. Sets the TFCE and RFCE bits in the * device control register to reflect the adapter settings. TFCE and RFCE * need to be explicitly set by software when a copper PHY is used because * autonegotiation is managed by the PHY rather than the MAC. Software must * also configure these bits when link is forced on a fiber connection. **/ s32 igb_force_mac_fc(struct e1000_hw *hw) { u32 ctrl; s32 ret_val = 0; ctrl = rd32(E1000_CTRL); /* Because we didn't get link via the internal auto-negotiation * mechanism (we either forced link or we got link via PHY * auto-neg), we have to manually enable/disable transmit an * receive flow control. * * The "Case" statement below enables/disable flow control * according to the "hw->fc.current_mode" parameter. * * The possible values of the "fc" parameter are: * 0: Flow control is completely disabled * 1: Rx flow control is enabled (we can receive pause * frames but not send pause frames). * 2: Tx flow control is enabled (we can send pause frames * frames but we do not receive pause frames). * 3: Both Rx and TX flow control (symmetric) is enabled. * other: No other values should be possible at this point. */ hw_dbg("hw->fc.current_mode = %u\n", hw->fc.current_mode); switch (hw->fc.current_mode) { case e1000_fc_none: ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE)); break; case e1000_fc_rx_pause: ctrl &= (~E1000_CTRL_TFCE); ctrl |= E1000_CTRL_RFCE; break; case e1000_fc_tx_pause: ctrl &= (~E1000_CTRL_RFCE); ctrl |= E1000_CTRL_TFCE; break; case e1000_fc_full: ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE); break; default: hw_dbg("Flow control param set incorrectly\n"); ret_val = -E1000_ERR_CONFIG; goto out; } wr32(E1000_CTRL, ctrl); out: return ret_val; } /** * igb_config_fc_after_link_up - Configures flow control after link * @hw: pointer to the HW structure * * Checks the status of auto-negotiation after link up to ensure that the * speed and duplex were not forced. If the link needed to be forced, then * flow control needs to be forced also. If auto-negotiation is enabled * and did not fail, then we configure flow control based on our link * partner. **/ s32 igb_config_fc_after_link_up(struct e1000_hw *hw) { struct e1000_mac_info *mac = &hw->mac; s32 ret_val = 0; u32 pcs_status_reg, pcs_adv_reg, pcs_lp_ability_reg, pcs_ctrl_reg; u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg; u16 speed, duplex; /* Check for the case where we have fiber media and auto-neg failed * so we had to force link. In this case, we need to force the * configuration of the MAC to match the "fc" parameter. */ if (mac->autoneg_failed) { if (hw->phy.media_type == e1000_media_type_internal_serdes) ret_val = igb_force_mac_fc(hw); } else { if (hw->phy.media_type == e1000_media_type_copper) ret_val = igb_force_mac_fc(hw); } if (ret_val) { hw_dbg("Error forcing flow control settings\n"); goto out; } /* Check for the case where we have copper media and auto-neg is * enabled. In this case, we need to check and see if Auto-Neg * has completed, and if so, how the PHY and link partner has * flow control configured. */ if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) { /* Read the MII Status Register and check to see if AutoNeg * has completed. We read this twice because this reg has * some "sticky" (latched) bits. */ ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &mii_status_reg); if (ret_val) goto out; ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &mii_status_reg); if (ret_val) goto out; if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) { hw_dbg("Copper PHY and Auto Neg has not completed.\n"); goto out; } /* The AutoNeg process has completed, so we now need to * read both the Auto Negotiation Advertisement * Register (Address 4) and the Auto_Negotiation Base * Page Ability Register (Address 5) to determine how * flow control was negotiated. */ ret_val = hw->phy.ops.read_reg(hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg); if (ret_val) goto out; ret_val = hw->phy.ops.read_reg(hw, PHY_LP_ABILITY, &mii_nway_lp_ability_reg); if (ret_val) goto out; /* Two bits in the Auto Negotiation Advertisement Register * (Address 4) and two bits in the Auto Negotiation Base * Page Ability Register (Address 5) determine flow control * for both the PHY and the link partner. The following * table, taken out of the IEEE 802.3ab/D6.0 dated March 25, * 1999, describes these PAUSE resolution bits and how flow * control is determined based upon these settings. * NOTE: DC = Don't Care * * LOCAL DEVICE | LINK PARTNER * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution *-------|---------|-------|---------|-------------------- * 0 | 0 | DC | DC | e1000_fc_none * 0 | 1 | 0 | DC | e1000_fc_none * 0 | 1 | 1 | 0 | e1000_fc_none * 0 | 1 | 1 | 1 | e1000_fc_tx_pause * 1 | 0 | 0 | DC | e1000_fc_none * 1 | DC | 1 | DC | e1000_fc_full * 1 | 1 | 0 | 0 | e1000_fc_none * 1 | 1 | 0 | 1 | e1000_fc_rx_pause * * Are both PAUSE bits set to 1? If so, this implies * Symmetric Flow Control is enabled at both ends. The * ASM_DIR bits are irrelevant per the spec. * * For Symmetric Flow Control: * * LOCAL DEVICE | LINK PARTNER * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result *-------|---------|-------|---------|-------------------- * 1 | DC | 1 | DC | E1000_fc_full * */ if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) { /* Now we need to check if the user selected RX ONLY * of pause frames. In this case, we had to advertise * FULL flow control because we could not advertise RX * ONLY. Hence, we must now check to see if we need to * turn OFF the TRANSMISSION of PAUSE frames. */ if (hw->fc.requested_mode == e1000_fc_full) { hw->fc.current_mode = e1000_fc_full; hw_dbg("Flow Control = FULL.\n"); } else { hw->fc.current_mode = e1000_fc_rx_pause; hw_dbg("Flow Control = RX PAUSE frames only.\n"); } } /* For receiving PAUSE frames ONLY. * * LOCAL DEVICE | LINK PARTNER * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result *-------|---------|-------|---------|-------------------- * 0 | 1 | 1 | 1 | e1000_fc_tx_pause */ else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) && (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { hw->fc.current_mode = e1000_fc_tx_pause; hw_dbg("Flow Control = TX PAUSE frames only.\n"); } /* For transmitting PAUSE frames ONLY. * * LOCAL DEVICE | LINK PARTNER * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result *-------|---------|-------|---------|-------------------- * 1 | 1 | 0 | 1 | e1000_fc_rx_pause */ else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { hw->fc.current_mode = e1000_fc_rx_pause; hw_dbg("Flow Control = RX PAUSE frames only.\n"); } /* Per the IEEE spec, at this point flow control should be * disabled. However, we want to consider that we could * be connected to a legacy switch that doesn't advertise * desired flow control, but can be forced on the link * partner. So if we advertised no flow control, that is * what we will resolve to. If we advertised some kind of * receive capability (Rx Pause Only or Full Flow Control) * and the link partner advertised none, we will configure * ourselves to enable Rx Flow Control only. We can do * this safely for two reasons: If the link partner really * didn't want flow control enabled, and we enable Rx, no * harm done since we won't be receiving any PAUSE frames * anyway. If the intent on the link partner was to have * flow control enabled, then by us enabling RX only, we * can at least receive pause frames and process them. * This is a good idea because in most cases, since we are * predominantly a server NIC, more times than not we will * be asked to delay transmission of packets than asking * our link partner to pause transmission of frames. */ else if ((hw->fc.requested_mode == e1000_fc_none) || (hw->fc.requested_mode == e1000_fc_tx_pause) || (hw->fc.strict_ieee)) { hw->fc.current_mode = e1000_fc_none; hw_dbg("Flow Control = NONE.\n"); } else { hw->fc.current_mode = e1000_fc_rx_pause; hw_dbg("Flow Control = RX PAUSE frames only.\n"); } /* Now we need to do one last check... If we auto- * negotiated to HALF DUPLEX, flow control should not be * enabled per IEEE 802.3 spec. */ ret_val = hw->mac.ops.get_speed_and_duplex(hw, &speed, &duplex); if (ret_val) { hw_dbg("Error getting link speed and duplex\n"); goto out; } if (duplex == HALF_DUPLEX) hw->fc.current_mode = e1000_fc_none; /* Now we call a subroutine to actually force the MAC * controller to use the correct flow control settings. */ ret_val = igb_force_mac_fc(hw); if (ret_val) { hw_dbg("Error forcing flow control settings\n"); goto out; } } /* Check for the case where we have SerDes media and auto-neg is * enabled. In this case, we need to check and see if Auto-Neg * has completed, and if so, how the PHY and link partner has * flow control configured. */ if ((hw->phy.media_type == e1000_media_type_internal_serdes) && mac->autoneg) { /* Read the PCS_LSTS and check to see if AutoNeg * has completed. */ pcs_status_reg = rd32(E1000_PCS_LSTAT); if (!(pcs_status_reg & E1000_PCS_LSTS_AN_COMPLETE)) { hw_dbg("PCS Auto Neg has not completed.\n"); return ret_val; } /* The AutoNeg process has completed, so we now need to * read both the Auto Negotiation Advertisement * Register (PCS_ANADV) and the Auto_Negotiation Base * Page Ability Register (PCS_LPAB) to determine how * flow control was negotiated. */ pcs_adv_reg = rd32(E1000_PCS_ANADV); pcs_lp_ability_reg = rd32(E1000_PCS_LPAB); /* Two bits in the Auto Negotiation Advertisement Register * (PCS_ANADV) and two bits in the Auto Negotiation Base * Page Ability Register (PCS_LPAB) determine flow control * for both the PHY and the link partner. The following * table, taken out of the IEEE 802.3ab/D6.0 dated March 25, * 1999, describes these PAUSE resolution bits and how flow * control is determined based upon these settings. * NOTE: DC = Don't Care * * LOCAL DEVICE | LINK PARTNER * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution *-------|---------|-------|---------|-------------------- * 0 | 0 | DC | DC | e1000_fc_none * 0 | 1 | 0 | DC | e1000_fc_none * 0 | 1 | 1 | 0 | e1000_fc_none * 0 | 1 | 1 | 1 | e1000_fc_tx_pause * 1 | 0 | 0 | DC | e1000_fc_none * 1 | DC | 1 | DC | e1000_fc_full * 1 | 1 | 0 | 0 | e1000_fc_none * 1 | 1 | 0 | 1 | e1000_fc_rx_pause * * Are both PAUSE bits set to 1? If so, this implies * Symmetric Flow Control is enabled at both ends. The * ASM_DIR bits are irrelevant per the spec. * * For Symmetric Flow Control: * * LOCAL DEVICE | LINK PARTNER * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result *-------|---------|-------|---------|-------------------- * 1 | DC | 1 | DC | e1000_fc_full * */ if ((pcs_adv_reg & E1000_TXCW_PAUSE) && (pcs_lp_ability_reg & E1000_TXCW_PAUSE)) { /* Now we need to check if the user selected Rx ONLY * of pause frames. In this case, we had to advertise * FULL flow control because we could not advertise Rx * ONLY. Hence, we must now check to see if we need to * turn OFF the TRANSMISSION of PAUSE frames. */ if (hw->fc.requested_mode == e1000_fc_full) { hw->fc.current_mode = e1000_fc_full; hw_dbg("Flow Control = FULL.\n"); } else { hw->fc.current_mode = e1000_fc_rx_pause; hw_dbg("Flow Control = Rx PAUSE frames only.\n"); } } /* For receiving PAUSE frames ONLY. * * LOCAL DEVICE | LINK PARTNER * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result *-------|---------|-------|---------|-------------------- * 0 | 1 | 1 | 1 | e1000_fc_tx_pause */ else if (!(pcs_adv_reg & E1000_TXCW_PAUSE) && (pcs_adv_reg & E1000_TXCW_ASM_DIR) && (pcs_lp_ability_reg & E1000_TXCW_PAUSE) && (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) { hw->fc.current_mode = e1000_fc_tx_pause; hw_dbg("Flow Control = Tx PAUSE frames only.\n"); } /* For transmitting PAUSE frames ONLY. * * LOCAL DEVICE | LINK PARTNER * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result *-------|---------|-------|---------|-------------------- * 1 | 1 | 0 | 1 | e1000_fc_rx_pause */ else if ((pcs_adv_reg & E1000_TXCW_PAUSE) && (pcs_adv_reg & E1000_TXCW_ASM_DIR) && !(pcs_lp_ability_reg & E1000_TXCW_PAUSE) && (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) { hw->fc.current_mode = e1000_fc_rx_pause; hw_dbg("Flow Control = Rx PAUSE frames only.\n"); } else { /* Per the IEEE spec, at this point flow control * should be disabled. */ hw->fc.current_mode = e1000_fc_none; hw_dbg("Flow Control = NONE.\n"); } /* Now we call a subroutine to actually force the MAC * controller to use the correct flow control settings. */ pcs_ctrl_reg = rd32(E1000_PCS_LCTL); pcs_ctrl_reg |= E1000_PCS_LCTL_FORCE_FCTRL; wr32(E1000_PCS_LCTL, pcs_ctrl_reg); ret_val = igb_force_mac_fc(hw); if (ret_val) { hw_dbg("Error forcing flow control settings\n"); return ret_val; } } out: return ret_val; } /** * igb_get_speed_and_duplex_copper - Retrieve current speed/duplex * @hw: pointer to the HW structure * @speed: stores the current speed * @duplex: stores the current duplex * * Read the status register for the current speed/duplex and store the current * speed and duplex for copper connections. **/ s32 igb_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed, u16 *duplex) { u32 status; status = rd32(E1000_STATUS); if (status & E1000_STATUS_SPEED_1000) { *speed = SPEED_1000; hw_dbg("1000 Mbs, "); } else if (status & E1000_STATUS_SPEED_100) { *speed = SPEED_100; hw_dbg("100 Mbs, "); } else { *speed = SPEED_10; hw_dbg("10 Mbs, "); } if (status & E1000_STATUS_FD) { *duplex = FULL_DUPLEX; hw_dbg("Full Duplex\n"); } else { *duplex = HALF_DUPLEX; hw_dbg("Half Duplex\n"); } return 0; } /** * igb_get_hw_semaphore - Acquire hardware semaphore * @hw: pointer to the HW structure * * Acquire the HW semaphore to access the PHY or NVM **/ s32 igb_get_hw_semaphore(struct e1000_hw *hw) { u32 swsm; s32 ret_val = 0; s32 timeout = hw->nvm.word_size + 1; s32 i = 0; /* Get the SW semaphore */ while (i < timeout) { swsm = rd32(E1000_SWSM); if (!(swsm & E1000_SWSM_SMBI)) break; udelay(50); i++; } if (i == timeout) { hw_dbg("Driver can't access device - SMBI bit is set.\n"); ret_val = -E1000_ERR_NVM; goto out; } /* Get the FW semaphore. */ for (i = 0; i < timeout; i++) { swsm = rd32(E1000_SWSM); wr32(E1000_SWSM, swsm | E1000_SWSM_SWESMBI); /* Semaphore acquired if bit latched */ if (rd32(E1000_SWSM) & E1000_SWSM_SWESMBI) break; udelay(50); } if (i == timeout) { /* Release semaphores */ igb_put_hw_semaphore(hw); hw_dbg("Driver can't access the NVM\n"); ret_val = -E1000_ERR_NVM; goto out; } out: return ret_val; } /** * igb_put_hw_semaphore - Release hardware semaphore * @hw: pointer to the HW structure * * Release hardware semaphore used to access the PHY or NVM **/ void igb_put_hw_semaphore(struct e1000_hw *hw) { u32 swsm; swsm = rd32(E1000_SWSM); swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI); wr32(E1000_SWSM, swsm); } /** * igb_get_auto_rd_done - Check for auto read completion * @hw: pointer to the HW structure * * Check EEPROM for Auto Read done bit. **/ s32 igb_get_auto_rd_done(struct e1000_hw *hw) { s32 i = 0; s32 ret_val = 0; while (i < AUTO_READ_DONE_TIMEOUT) { if (rd32(E1000_EECD) & E1000_EECD_AUTO_RD) break; usleep_range(1000, 2000); i++; } if (i == AUTO_READ_DONE_TIMEOUT) { hw_dbg("Auto read by HW from NVM has not completed.\n"); ret_val = -E1000_ERR_RESET; goto out; } out: return ret_val; } /** * igb_valid_led_default - Verify a valid default LED config * @hw: pointer to the HW structure * @data: pointer to the NVM (EEPROM) * * Read the EEPROM for the current default LED configuration. If the * LED configuration is not valid, set to a valid LED configuration. **/ static s32 igb_valid_led_default(struct e1000_hw *hw, u16 *data) { s32 ret_val; ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data); if (ret_val) { hw_dbg("NVM Read Error\n"); goto out; } if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) { switch (hw->phy.media_type) { case e1000_media_type_internal_serdes: *data = ID_LED_DEFAULT_82575_SERDES; break; case e1000_media_type_copper: default: *data = ID_LED_DEFAULT; break; } } out: return ret_val; } /** * igb_id_led_init - * @hw: pointer to the HW structure * **/ s32 igb_id_led_init(struct e1000_hw *hw) { struct e1000_mac_info *mac = &hw->mac; s32 ret_val; const u32 ledctl_mask = 0x000000FF; const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON; const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF; u16 data, i, temp; const u16 led_mask = 0x0F; /* i210 and i211 devices have different LED mechanism */ if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) ret_val = igb_valid_led_default_i210(hw, &data); else ret_val = igb_valid_led_default(hw, &data); if (ret_val) goto out; mac->ledctl_default = rd32(E1000_LEDCTL); mac->ledctl_mode1 = mac->ledctl_default; mac->ledctl_mode2 = mac->ledctl_default; for (i = 0; i < 4; i++) { temp = (data >> (i << 2)) & led_mask; switch (temp) { case ID_LED_ON1_DEF2: case ID_LED_ON1_ON2: case ID_LED_ON1_OFF2: mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); mac->ledctl_mode1 |= ledctl_on << (i << 3); break; case ID_LED_OFF1_DEF2: case ID_LED_OFF1_ON2: case ID_LED_OFF1_OFF2: mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); mac->ledctl_mode1 |= ledctl_off << (i << 3); break; default: /* Do nothing */ break; } switch (temp) { case ID_LED_DEF1_ON2: case ID_LED_ON1_ON2: case ID_LED_OFF1_ON2: mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); mac->ledctl_mode2 |= ledctl_on << (i << 3); break; case ID_LED_DEF1_OFF2: case ID_LED_ON1_OFF2: case ID_LED_OFF1_OFF2: mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); mac->ledctl_mode2 |= ledctl_off << (i << 3); break; default: /* Do nothing */ break; } } out: return ret_val; } /** * igb_cleanup_led - Set LED config to default operation * @hw: pointer to the HW structure * * Remove the current LED configuration and set the LED configuration * to the default value, saved from the EEPROM. **/ s32 igb_cleanup_led(struct e1000_hw *hw) { wr32(E1000_LEDCTL, hw->mac.ledctl_default); return 0; } /** * igb_blink_led - Blink LED * @hw: pointer to the HW structure * * Blink the led's which are set to be on. **/ s32 igb_blink_led(struct e1000_hw *hw) { u32 ledctl_blink = 0; u32 i; if (hw->phy.media_type == e1000_media_type_fiber) { /* always blink LED0 for PCI-E fiber */ ledctl_blink = E1000_LEDCTL_LED0_BLINK | (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT); } else { /* Set the blink bit for each LED that's "on" (0x0E) * (or "off" if inverted) in ledctl_mode2. The blink * logic in hardware only works when mode is set to "on" * so it must be changed accordingly when the mode is * "off" and inverted. */ ledctl_blink = hw->mac.ledctl_mode2; for (i = 0; i < 32; i += 8) { u32 mode = (hw->mac.ledctl_mode2 >> i) & E1000_LEDCTL_LED0_MODE_MASK; u32 led_default = hw->mac.ledctl_default >> i; if ((!(led_default & E1000_LEDCTL_LED0_IVRT) && (mode == E1000_LEDCTL_MODE_LED_ON)) || ((led_default & E1000_LEDCTL_LED0_IVRT) && (mode == E1000_LEDCTL_MODE_LED_OFF))) { ledctl_blink &= ~(E1000_LEDCTL_LED0_MODE_MASK << i); ledctl_blink |= (E1000_LEDCTL_LED0_BLINK | E1000_LEDCTL_MODE_LED_ON) << i; } } } wr32(E1000_LEDCTL, ledctl_blink); return 0; } /** * igb_led_off - Turn LED off * @hw: pointer to the HW structure * * Turn LED off. **/ s32 igb_led_off(struct e1000_hw *hw) { switch (hw->phy.media_type) { case e1000_media_type_copper: wr32(E1000_LEDCTL, hw->mac.ledctl_mode1); break; default: break; } return 0; } /** * igb_disable_pcie_master - Disables PCI-express master access * @hw: pointer to the HW structure * * Returns 0 (0) if successful, else returns -10 * (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused * the master requests to be disabled. * * Disables PCI-Express master access and verifies there are no pending * requests. **/ s32 igb_disable_pcie_master(struct e1000_hw *hw) { u32 ctrl; s32 timeout = MASTER_DISABLE_TIMEOUT; s32 ret_val = 0; if (hw->bus.type != e1000_bus_type_pci_express) goto out; ctrl = rd32(E1000_CTRL); ctrl |= E1000_CTRL_GIO_MASTER_DISABLE; wr32(E1000_CTRL, ctrl); while (timeout) { if (!(rd32(E1000_STATUS) & E1000_STATUS_GIO_MASTER_ENABLE)) break; udelay(100); timeout--; } if (!timeout) { hw_dbg("Master requests are pending.\n"); ret_val = -E1000_ERR_MASTER_REQUESTS_PENDING; goto out; } out: return ret_val; } /** * igb_validate_mdi_setting - Verify MDI/MDIx settings * @hw: pointer to the HW structure * * Verify that when not using auto-negotitation that MDI/MDIx is correctly * set, which is forced to MDI mode only. **/ s32 igb_validate_mdi_setting(struct e1000_hw *hw) { s32 ret_val = 0; /* All MDI settings are supported on 82580 and newer. */ if (hw->mac.type >= e1000_82580) goto out; if (!hw->mac.autoneg && (hw->phy.mdix == 0 || hw->phy.mdix == 3)) { hw_dbg("Invalid MDI setting detected\n"); hw->phy.mdix = 1; ret_val = -E1000_ERR_CONFIG; goto out; } out: return ret_val; } /** * igb_write_8bit_ctrl_reg - Write a 8bit CTRL register * @hw: pointer to the HW structure * @reg: 32bit register offset such as E1000_SCTL * @offset: register offset to write to * @data: data to write at register offset * * Writes an address/data control type register. There are several of these * and they all have the format address << 8 | data and bit 31 is polled for * completion. **/ s32 igb_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg, u32 offset, u8 data) { u32 i, regvalue = 0; s32 ret_val = 0; /* Set up the address and data */ regvalue = ((u32)data) | (offset << E1000_GEN_CTL_ADDRESS_SHIFT); wr32(reg, regvalue); /* Poll the ready bit to see if the MDI read completed */ for (i = 0; i < E1000_GEN_POLL_TIMEOUT; i++) { udelay(5); regvalue = rd32(reg); if (regvalue & E1000_GEN_CTL_READY) break; } if (!(regvalue & E1000_GEN_CTL_READY)) { hw_dbg("Reg %08x did not indicate ready\n", reg); ret_val = -E1000_ERR_PHY; goto out; } out: return ret_val; } /** * igb_enable_mng_pass_thru - Enable processing of ARP's * @hw: pointer to the HW structure * * Verifies the hardware needs to leave interface enabled so that frames can * be directed to and from the management interface. **/ bool igb_enable_mng_pass_thru(struct e1000_hw *hw) { u32 manc; u32 fwsm, factps; bool ret_val = false; if (!hw->mac.asf_firmware_present) goto out; manc = rd32(E1000_MANC); if (!(manc & E1000_MANC_RCV_TCO_EN)) goto out; if (hw->mac.arc_subsystem_valid) { fwsm = rd32(E1000_FWSM); factps = rd32(E1000_FACTPS); if (!(factps & E1000_FACTPS_MNGCG) && ((fwsm & E1000_FWSM_MODE_MASK) == (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT))) { ret_val = true; goto out; } } else { if ((manc & E1000_MANC_SMBUS_EN) && !(manc & E1000_MANC_ASF_EN)) { ret_val = true; goto out; } } out: return ret_val; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1