Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Jacob E Keller | 2515 | 61.24% | 26 | 60.47% |
Mark D Rustad | 1384 | 33.70% | 2 | 4.65% |
Miroslav Lichvar | 159 | 3.87% | 2 | 4.65% |
Richard Cochran | 15 | 0.37% | 3 | 6.98% |
Jakub Kiciński | 11 | 0.27% | 3 | 6.98% |
Nico Pitre | 7 | 0.17% | 1 | 2.33% |
Tony Nguyen | 4 | 0.10% | 1 | 2.33% |
Mark Rutland | 4 | 0.10% | 1 | 2.33% |
Yusuke Suzuki | 3 | 0.07% | 1 | 2.33% |
Jeff Kirsher | 2 | 0.05% | 1 | 2.33% |
Thomas Gleixner | 2 | 0.05% | 1 | 2.33% |
Joe Perches | 1 | 0.02% | 1 | 2.33% |
Total | 4107 | 43 |
// SPDX-License-Identifier: GPL-2.0 /* Copyright(c) 1999 - 2018 Intel Corporation. */ #include "ixgbe.h" #include <linux/ptp_classify.h> #include <linux/clocksource.h> /* * The 82599 and the X540 do not have true 64bit nanosecond scale * counter registers. Instead, SYSTIME is defined by a fixed point * system which allows the user to define the scale counter increment * value at every level change of the oscillator driving the SYSTIME * value. For both devices the TIMINCA:IV field defines this * increment. On the X540 device, 31 bits are provided. However on the * 82599 only provides 24 bits. The time unit is determined by the * clock frequency of the oscillator in combination with the TIMINCA * register. When these devices link at 10Gb the oscillator has a * period of 6.4ns. In order to convert the scale counter into * nanoseconds the cyclecounter and timecounter structures are * used. The SYSTIME registers need to be converted to ns values by use * of only a right shift (division by power of 2). The following math * determines the largest incvalue that will fit into the available * bits in the TIMINCA register. * * PeriodWidth: Number of bits to store the clock period * MaxWidth: The maximum width value of the TIMINCA register * Period: The clock period for the oscillator * round(): discard the fractional portion of the calculation * * Period * [ 2 ^ ( MaxWidth - PeriodWidth ) ] * * For the X540, MaxWidth is 31 bits, and the base period is 6.4 ns * For the 82599, MaxWidth is 24 bits, and the base period is 6.4 ns * * The period also changes based on the link speed: * At 10Gb link or no link, the period remains the same. * At 1Gb link, the period is multiplied by 10. (64ns) * At 100Mb link, the period is multiplied by 100. (640ns) * * The calculated value allows us to right shift the SYSTIME register * value in order to quickly convert it into a nanosecond clock, * while allowing for the maximum possible adjustment value. * * These diagrams are only for the 10Gb link period * * SYSTIMEH SYSTIMEL * +--------------+ +--------------+ * X540 | 32 | | 1 | 3 | 28 | * *--------------+ +--------------+ * \________ 36 bits ______/ fract * * +--------------+ +--------------+ * 82599 | 32 | | 8 | 3 | 21 | * *--------------+ +--------------+ * \________ 43 bits ______/ fract * * The 36 bit X540 SYSTIME overflows every * 2^36 * 10^-9 / 60 = 1.14 minutes or 69 seconds * * The 43 bit 82599 SYSTIME overflows every * 2^43 * 10^-9 / 3600 = 2.4 hours */ #define IXGBE_INCVAL_10GB 0x66666666 #define IXGBE_INCVAL_1GB 0x40000000 #define IXGBE_INCVAL_100 0x50000000 #define IXGBE_INCVAL_SHIFT_10GB 28 #define IXGBE_INCVAL_SHIFT_1GB 24 #define IXGBE_INCVAL_SHIFT_100 21 #define IXGBE_INCVAL_SHIFT_82599 7 #define IXGBE_INCPER_SHIFT_82599 24 #define IXGBE_OVERFLOW_PERIOD (HZ * 30) #define IXGBE_PTP_TX_TIMEOUT (HZ * 15) /* half of a one second clock period, for use with PPS signal. We have to use * this instead of something pre-defined like IXGBE_PTP_PPS_HALF_SECOND, in * order to force at least 64bits of precision for shifting */ #define IXGBE_PTP_PPS_HALF_SECOND 500000000ULL /* In contrast, the X550 controller has two registers, SYSTIMEH and SYSTIMEL * which contain measurements of seconds and nanoseconds respectively. This * matches the standard linux representation of time in the kernel. In addition, * the X550 also has a SYSTIMER register which represents residue, or * subnanosecond overflow adjustments. To control clock adjustment, the TIMINCA * register is used, but it is unlike the X540 and 82599 devices. TIMINCA * represents units of 2^-32 nanoseconds, and uses 31 bits for this, with the * high bit representing whether the adjustent is positive or negative. Every * clock cycle, the X550 will add 12.5 ns + TIMINCA which can result in a range * of 12 to 13 nanoseconds adjustment. Unlike the 82599 and X540 devices, the * X550's clock for purposes of SYSTIME generation is constant and not dependent * on the link speed. * * SYSTIMEH SYSTIMEL SYSTIMER * +--------------+ +--------------+ +-------------+ * X550 | 32 | | 32 | | 32 | * *--------------+ +--------------+ +-------------+ * \____seconds___/ \_nanoseconds_/ \__2^-32 ns__/ * * This results in a full 96 bits to represent the clock, with 32 bits for * seconds, 32 bits for nanoseconds (largest value is 0d999999999 or just under * 1 second) and an additional 32 bits to measure sub nanosecond adjustments for * underflow of adjustments. * * The 32 bits of seconds for the X550 overflows every * 2^32 / ( 365.25 * 24 * 60 * 60 ) = ~136 years. * * In order to adjust the clock frequency for the X550, the TIMINCA register is * provided. This register represents a + or minus nearly 0.5 ns adjustment to * the base frequency. It is measured in 2^-32 ns units, with the high bit being * the sign bit. This register enables software to calculate frequency * adjustments and apply them directly to the clock rate. * * The math for converting ppb into TIMINCA values is fairly straightforward. * TIMINCA value = ( Base_Frequency * ppb ) / 1000000000ULL * * This assumes that ppb is never high enough to create a value bigger than * TIMINCA's 31 bits can store. This is ensured by the stack. Calculating this * value is also simple. * Max ppb = ( Max Adjustment / Base Frequency ) / 1000000000ULL * * For the X550, the Max adjustment is +/- 0.5 ns, and the base frequency is * 12.5 nanoseconds. This means that the Max ppb is 39999999 * Note: We subtract one in order to ensure no overflow, because the TIMINCA * register can only hold slightly under 0.5 nanoseconds. * * Because TIMINCA is measured in 2^-32 ns units, we have to convert 12.5 ns * into 2^-32 units, which is * * 12.5 * 2^32 = C80000000 * * Some revisions of hardware have a faster base frequency than the registers * were defined for. To fix this, we use a timecounter structure with the * proper mult and shift to convert the cycles into nanoseconds of time. */ #define IXGBE_X550_BASE_PERIOD 0xC80000000ULL #define INCVALUE_MASK 0x7FFFFFFF #define ISGN 0x80000000 #define MAX_TIMADJ 0x7FFFFFFF /** * ixgbe_ptp_setup_sdp_x540 * @adapter: private adapter structure * * this function enables or disables the clock out feature on SDP0 for * the X540 device. It will create a 1second periodic output that can * be used as the PPS (via an interrupt). * * It calculates when the systime will be on an exact second, and then * aligns the start of the PPS signal to that value. The shift is * necessary because it can change based on the link speed. */ static void ixgbe_ptp_setup_sdp_x540(struct ixgbe_adapter *adapter) { struct ixgbe_hw *hw = &adapter->hw; int shift = adapter->hw_cc.shift; u32 esdp, tsauxc, clktiml, clktimh, trgttiml, trgttimh, rem; u64 ns = 0, clock_edge = 0; /* disable the pin first */ IXGBE_WRITE_REG(hw, IXGBE_TSAUXC, 0x0); IXGBE_WRITE_FLUSH(hw); if (!(adapter->flags2 & IXGBE_FLAG2_PTP_PPS_ENABLED)) return; esdp = IXGBE_READ_REG(hw, IXGBE_ESDP); /* enable the SDP0 pin as output, and connected to the * native function for Timesync (ClockOut) */ esdp |= IXGBE_ESDP_SDP0_DIR | IXGBE_ESDP_SDP0_NATIVE; /* enable the Clock Out feature on SDP0, and allow * interrupts to occur when the pin changes */ tsauxc = IXGBE_TSAUXC_EN_CLK | IXGBE_TSAUXC_SYNCLK | IXGBE_TSAUXC_SDP0_INT; /* clock period (or pulse length) */ clktiml = (u32)(IXGBE_PTP_PPS_HALF_SECOND << shift); clktimh = (u32)((IXGBE_PTP_PPS_HALF_SECOND << shift) >> 32); /* Account for the cyclecounter wrap-around value by * using the converted ns value of the current time to * check for when the next aligned second would occur. */ clock_edge |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIML); clock_edge |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIMH) << 32; ns = timecounter_cyc2time(&adapter->hw_tc, clock_edge); div_u64_rem(ns, IXGBE_PTP_PPS_HALF_SECOND, &rem); clock_edge += ((IXGBE_PTP_PPS_HALF_SECOND - (u64)rem) << shift); /* specify the initial clock start time */ trgttiml = (u32)clock_edge; trgttimh = (u32)(clock_edge >> 32); IXGBE_WRITE_REG(hw, IXGBE_CLKTIML, clktiml); IXGBE_WRITE_REG(hw, IXGBE_CLKTIMH, clktimh); IXGBE_WRITE_REG(hw, IXGBE_TRGTTIML0, trgttiml); IXGBE_WRITE_REG(hw, IXGBE_TRGTTIMH0, trgttimh); IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp); IXGBE_WRITE_REG(hw, IXGBE_TSAUXC, tsauxc); IXGBE_WRITE_FLUSH(hw); } /** * ixgbe_ptp_read_X550 - read cycle counter value * @hw_cc: cyclecounter structure * * This function reads SYSTIME registers. It is called by the cyclecounter * structure to convert from internal representation into nanoseconds. We need * this for X550 since some skews do not have expected clock frequency and * result of SYSTIME is 32bits of "billions of cycles" and 32 bits of * "cycles", rather than seconds and nanoseconds. */ static u64 ixgbe_ptp_read_X550(const struct cyclecounter *hw_cc) { struct ixgbe_adapter *adapter = container_of(hw_cc, struct ixgbe_adapter, hw_cc); struct ixgbe_hw *hw = &adapter->hw; struct timespec64 ts; /* storage is 32 bits of 'billions of cycles' and 32 bits of 'cycles'. * Some revisions of hardware run at a higher frequency and so the * cycles are not guaranteed to be nanoseconds. The timespec64 created * here is used for its math/conversions but does not necessarily * represent nominal time. * * It should be noted that this cyclecounter will overflow at a * non-bitmask field since we have to convert our billions of cycles * into an actual cycles count. This results in some possible weird * situations at high cycle counter stamps. However given that 32 bits * of "seconds" is ~138 years this isn't a problem. Even at the * increased frequency of some revisions, this is still ~103 years. * Since the SYSTIME values start at 0 and we never write them, it is * highly unlikely for the cyclecounter to overflow in practice. */ IXGBE_READ_REG(hw, IXGBE_SYSTIMR); ts.tv_nsec = IXGBE_READ_REG(hw, IXGBE_SYSTIML); ts.tv_sec = IXGBE_READ_REG(hw, IXGBE_SYSTIMH); return (u64)timespec64_to_ns(&ts); } /** * ixgbe_ptp_read_82599 - read raw cycle counter (to be used by time counter) * @cc: the cyclecounter structure * * this function reads the cyclecounter registers and is called by the * cyclecounter structure used to construct a ns counter from the * arbitrary fixed point registers */ static u64 ixgbe_ptp_read_82599(const struct cyclecounter *cc) { struct ixgbe_adapter *adapter = container_of(cc, struct ixgbe_adapter, hw_cc); struct ixgbe_hw *hw = &adapter->hw; u64 stamp = 0; stamp |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIML); stamp |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIMH) << 32; return stamp; } /** * ixgbe_ptp_convert_to_hwtstamp - convert register value to hw timestamp * @adapter: private adapter structure * @hwtstamp: stack timestamp structure * @timestamp: unsigned 64bit system time value * * We need to convert the adapter's RX/TXSTMP registers into a hwtstamp value * which can be used by the stack's ptp functions. * * The lock is used to protect consistency of the cyclecounter and the SYSTIME * registers. However, it does not need to protect against the Rx or Tx * timestamp registers, as there can't be a new timestamp until the old one is * unlatched by reading. * * In addition to the timestamp in hardware, some controllers need a software * overflow cyclecounter, and this function takes this into account as well. **/ static void ixgbe_ptp_convert_to_hwtstamp(struct ixgbe_adapter *adapter, struct skb_shared_hwtstamps *hwtstamp, u64 timestamp) { unsigned long flags; struct timespec64 systime; u64 ns; memset(hwtstamp, 0, sizeof(*hwtstamp)); switch (adapter->hw.mac.type) { /* X550 and later hardware supposedly represent time using a seconds * and nanoseconds counter, instead of raw 64bits nanoseconds. We need * to convert the timestamp into cycles before it can be fed to the * cyclecounter. We need an actual cyclecounter because some revisions * of hardware run at a higher frequency and thus the counter does * not represent seconds/nanoseconds. Instead it can be thought of as * cycles and billions of cycles. */ case ixgbe_mac_X550: case ixgbe_mac_X550EM_x: case ixgbe_mac_x550em_a: /* Upper 32 bits represent billions of cycles, lower 32 bits * represent cycles. However, we use timespec64_to_ns for the * correct math even though the units haven't been corrected * yet. */ systime.tv_sec = timestamp >> 32; systime.tv_nsec = timestamp & 0xFFFFFFFF; timestamp = timespec64_to_ns(&systime); break; default: break; } spin_lock_irqsave(&adapter->tmreg_lock, flags); ns = timecounter_cyc2time(&adapter->hw_tc, timestamp); spin_unlock_irqrestore(&adapter->tmreg_lock, flags); hwtstamp->hwtstamp = ns_to_ktime(ns); } /** * ixgbe_ptp_adjfreq_82599 * @ptp: the ptp clock structure * @ppb: parts per billion adjustment from base * * adjust the frequency of the ptp cycle counter by the * indicated ppb from the base frequency. */ static int ixgbe_ptp_adjfreq_82599(struct ptp_clock_info *ptp, s32 ppb) { struct ixgbe_adapter *adapter = container_of(ptp, struct ixgbe_adapter, ptp_caps); struct ixgbe_hw *hw = &adapter->hw; u64 freq, incval; u32 diff; int neg_adj = 0; if (ppb < 0) { neg_adj = 1; ppb = -ppb; } smp_mb(); incval = READ_ONCE(adapter->base_incval); freq = incval; freq *= ppb; diff = div_u64(freq, 1000000000ULL); incval = neg_adj ? (incval - diff) : (incval + diff); switch (hw->mac.type) { case ixgbe_mac_X540: if (incval > 0xFFFFFFFFULL) e_dev_warn("PTP ppb adjusted SYSTIME rate overflowed!\n"); IXGBE_WRITE_REG(hw, IXGBE_TIMINCA, (u32)incval); break; case ixgbe_mac_82599EB: if (incval > 0x00FFFFFFULL) e_dev_warn("PTP ppb adjusted SYSTIME rate overflowed!\n"); IXGBE_WRITE_REG(hw, IXGBE_TIMINCA, BIT(IXGBE_INCPER_SHIFT_82599) | ((u32)incval & 0x00FFFFFFUL)); break; default: break; } return 0; } /** * ixgbe_ptp_adjfreq_X550 * @ptp: the ptp clock structure * @ppb: parts per billion adjustment from base * * adjust the frequency of the SYSTIME registers by the indicated ppb from base * frequency */ static int ixgbe_ptp_adjfreq_X550(struct ptp_clock_info *ptp, s32 ppb) { struct ixgbe_adapter *adapter = container_of(ptp, struct ixgbe_adapter, ptp_caps); struct ixgbe_hw *hw = &adapter->hw; int neg_adj = 0; u64 rate = IXGBE_X550_BASE_PERIOD; u32 inca; if (ppb < 0) { neg_adj = 1; ppb = -ppb; } rate *= ppb; rate = div_u64(rate, 1000000000ULL); /* warn if rate is too large */ if (rate >= INCVALUE_MASK) e_dev_warn("PTP ppb adjusted SYSTIME rate overflowed!\n"); inca = rate & INCVALUE_MASK; if (neg_adj) inca |= ISGN; IXGBE_WRITE_REG(hw, IXGBE_TIMINCA, inca); return 0; } /** * ixgbe_ptp_adjtime * @ptp: the ptp clock structure * @delta: offset to adjust the cycle counter by * * adjust the timer by resetting the timecounter structure. */ static int ixgbe_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta) { struct ixgbe_adapter *adapter = container_of(ptp, struct ixgbe_adapter, ptp_caps); unsigned long flags; spin_lock_irqsave(&adapter->tmreg_lock, flags); timecounter_adjtime(&adapter->hw_tc, delta); spin_unlock_irqrestore(&adapter->tmreg_lock, flags); if (adapter->ptp_setup_sdp) adapter->ptp_setup_sdp(adapter); return 0; } /** * ixgbe_ptp_gettimex * @ptp: the ptp clock structure * @ts: timespec to hold the PHC timestamp * @sts: structure to hold the system time before and after reading the PHC * * read the timecounter and return the correct value on ns, * after converting it into a struct timespec. */ static int ixgbe_ptp_gettimex(struct ptp_clock_info *ptp, struct timespec64 *ts, struct ptp_system_timestamp *sts) { struct ixgbe_adapter *adapter = container_of(ptp, struct ixgbe_adapter, ptp_caps); struct ixgbe_hw *hw = &adapter->hw; unsigned long flags; u64 ns, stamp; spin_lock_irqsave(&adapter->tmreg_lock, flags); switch (adapter->hw.mac.type) { case ixgbe_mac_X550: case ixgbe_mac_X550EM_x: case ixgbe_mac_x550em_a: /* Upper 32 bits represent billions of cycles, lower 32 bits * represent cycles. However, we use timespec64_to_ns for the * correct math even though the units haven't been corrected * yet. */ ptp_read_system_prets(sts); IXGBE_READ_REG(hw, IXGBE_SYSTIMR); ptp_read_system_postts(sts); ts->tv_nsec = IXGBE_READ_REG(hw, IXGBE_SYSTIML); ts->tv_sec = IXGBE_READ_REG(hw, IXGBE_SYSTIMH); stamp = timespec64_to_ns(ts); break; default: ptp_read_system_prets(sts); stamp = IXGBE_READ_REG(hw, IXGBE_SYSTIML); ptp_read_system_postts(sts); stamp |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIMH) << 32; break; } ns = timecounter_cyc2time(&adapter->hw_tc, stamp); spin_unlock_irqrestore(&adapter->tmreg_lock, flags); *ts = ns_to_timespec64(ns); return 0; } /** * ixgbe_ptp_settime * @ptp: the ptp clock structure * @ts: the timespec containing the new time for the cycle counter * * reset the timecounter to use a new base value instead of the kernel * wall timer value. */ static int ixgbe_ptp_settime(struct ptp_clock_info *ptp, const struct timespec64 *ts) { struct ixgbe_adapter *adapter = container_of(ptp, struct ixgbe_adapter, ptp_caps); unsigned long flags; u64 ns = timespec64_to_ns(ts); /* reset the timecounter */ spin_lock_irqsave(&adapter->tmreg_lock, flags); timecounter_init(&adapter->hw_tc, &adapter->hw_cc, ns); spin_unlock_irqrestore(&adapter->tmreg_lock, flags); if (adapter->ptp_setup_sdp) adapter->ptp_setup_sdp(adapter); return 0; } /** * ixgbe_ptp_feature_enable * @ptp: the ptp clock structure * @rq: the requested feature to change * @on: whether to enable or disable the feature * * enable (or disable) ancillary features of the phc subsystem. * our driver only supports the PPS feature on the X540 */ static int ixgbe_ptp_feature_enable(struct ptp_clock_info *ptp, struct ptp_clock_request *rq, int on) { struct ixgbe_adapter *adapter = container_of(ptp, struct ixgbe_adapter, ptp_caps); /** * When PPS is enabled, unmask the interrupt for the ClockOut * feature, so that the interrupt handler can send the PPS * event when the clock SDP triggers. Clear mask when PPS is * disabled */ if (rq->type != PTP_CLK_REQ_PPS || !adapter->ptp_setup_sdp) return -ENOTSUPP; if (on) adapter->flags2 |= IXGBE_FLAG2_PTP_PPS_ENABLED; else adapter->flags2 &= ~IXGBE_FLAG2_PTP_PPS_ENABLED; adapter->ptp_setup_sdp(adapter); return 0; } /** * ixgbe_ptp_check_pps_event * @adapter: the private adapter structure * * This function is called by the interrupt routine when checking for * interrupts. It will check and handle a pps event. */ void ixgbe_ptp_check_pps_event(struct ixgbe_adapter *adapter) { struct ixgbe_hw *hw = &adapter->hw; struct ptp_clock_event event; event.type = PTP_CLOCK_PPS; /* this check is necessary in case the interrupt was enabled via some * alternative means (ex. debug_fs). Better to check here than * everywhere that calls this function. */ if (!adapter->ptp_clock) return; switch (hw->mac.type) { case ixgbe_mac_X540: ptp_clock_event(adapter->ptp_clock, &event); break; default: break; } } /** * ixgbe_ptp_overflow_check - watchdog task to detect SYSTIME overflow * @adapter: private adapter struct * * this watchdog task periodically reads the timecounter * in order to prevent missing when the system time registers wrap * around. This needs to be run approximately twice a minute. */ void ixgbe_ptp_overflow_check(struct ixgbe_adapter *adapter) { bool timeout = time_is_before_jiffies(adapter->last_overflow_check + IXGBE_OVERFLOW_PERIOD); unsigned long flags; if (timeout) { /* Update the timecounter */ spin_lock_irqsave(&adapter->tmreg_lock, flags); timecounter_read(&adapter->hw_tc); spin_unlock_irqrestore(&adapter->tmreg_lock, flags); adapter->last_overflow_check = jiffies; } } /** * ixgbe_ptp_rx_hang - detect error case when Rx timestamp registers latched * @adapter: private network adapter structure * * this watchdog task is scheduled to detect error case where hardware has * dropped an Rx packet that was timestamped when the ring is full. The * particular error is rare but leaves the device in a state unable to timestamp * any future packets. */ void ixgbe_ptp_rx_hang(struct ixgbe_adapter *adapter) { struct ixgbe_hw *hw = &adapter->hw; u32 tsyncrxctl = IXGBE_READ_REG(hw, IXGBE_TSYNCRXCTL); struct ixgbe_ring *rx_ring; unsigned long rx_event; int n; /* if we don't have a valid timestamp in the registers, just update the * timeout counter and exit */ if (!(tsyncrxctl & IXGBE_TSYNCRXCTL_VALID)) { adapter->last_rx_ptp_check = jiffies; return; } /* determine the most recent watchdog or rx_timestamp event */ rx_event = adapter->last_rx_ptp_check; for (n = 0; n < adapter->num_rx_queues; n++) { rx_ring = adapter->rx_ring[n]; if (time_after(rx_ring->last_rx_timestamp, rx_event)) rx_event = rx_ring->last_rx_timestamp; } /* only need to read the high RXSTMP register to clear the lock */ if (time_is_before_jiffies(rx_event + 5 * HZ)) { IXGBE_READ_REG(hw, IXGBE_RXSTMPH); adapter->last_rx_ptp_check = jiffies; adapter->rx_hwtstamp_cleared++; e_warn(drv, "clearing RX Timestamp hang\n"); } } /** * ixgbe_ptp_clear_tx_timestamp - utility function to clear Tx timestamp state * @adapter: the private adapter structure * * This function should be called whenever the state related to a Tx timestamp * needs to be cleared. This helps ensure that all related bits are reset for * the next Tx timestamp event. */ static void ixgbe_ptp_clear_tx_timestamp(struct ixgbe_adapter *adapter) { struct ixgbe_hw *hw = &adapter->hw; IXGBE_READ_REG(hw, IXGBE_TXSTMPH); if (adapter->ptp_tx_skb) { dev_kfree_skb_any(adapter->ptp_tx_skb); adapter->ptp_tx_skb = NULL; } clear_bit_unlock(__IXGBE_PTP_TX_IN_PROGRESS, &adapter->state); } /** * ixgbe_ptp_tx_hang - detect error case where Tx timestamp never finishes * @adapter: private network adapter structure */ void ixgbe_ptp_tx_hang(struct ixgbe_adapter *adapter) { bool timeout = time_is_before_jiffies(adapter->ptp_tx_start + IXGBE_PTP_TX_TIMEOUT); if (!adapter->ptp_tx_skb) return; if (!test_bit(__IXGBE_PTP_TX_IN_PROGRESS, &adapter->state)) return; /* If we haven't received a timestamp within the timeout, it is * reasonable to assume that it will never occur, so we can unlock the * timestamp bit when this occurs. */ if (timeout) { cancel_work_sync(&adapter->ptp_tx_work); ixgbe_ptp_clear_tx_timestamp(adapter); adapter->tx_hwtstamp_timeouts++; e_warn(drv, "clearing Tx timestamp hang\n"); } } /** * ixgbe_ptp_tx_hwtstamp - utility function which checks for TX time stamp * @adapter: the private adapter struct * * if the timestamp is valid, we convert it into the timecounter ns * value, then store that result into the shhwtstamps structure which * is passed up the network stack */ static void ixgbe_ptp_tx_hwtstamp(struct ixgbe_adapter *adapter) { struct sk_buff *skb = adapter->ptp_tx_skb; struct ixgbe_hw *hw = &adapter->hw; struct skb_shared_hwtstamps shhwtstamps; u64 regval = 0; regval |= (u64)IXGBE_READ_REG(hw, IXGBE_TXSTMPL); regval |= (u64)IXGBE_READ_REG(hw, IXGBE_TXSTMPH) << 32; ixgbe_ptp_convert_to_hwtstamp(adapter, &shhwtstamps, regval); /* Handle cleanup of the ptp_tx_skb ourselves, and unlock the state * bit prior to notifying the stack via skb_tstamp_tx(). This prevents * well behaved applications from attempting to timestamp again prior * to the lock bit being clear. */ adapter->ptp_tx_skb = NULL; clear_bit_unlock(__IXGBE_PTP_TX_IN_PROGRESS, &adapter->state); /* Notify the stack and then free the skb after we've unlocked */ skb_tstamp_tx(skb, &shhwtstamps); dev_kfree_skb_any(skb); } /** * ixgbe_ptp_tx_hwtstamp_work * @work: pointer to the work struct * * This work item polls TSYNCTXCTL valid bit to determine when a Tx hardware * timestamp has been taken for the current skb. It is necessary, because the * descriptor's "done" bit does not correlate with the timestamp event. */ static void ixgbe_ptp_tx_hwtstamp_work(struct work_struct *work) { struct ixgbe_adapter *adapter = container_of(work, struct ixgbe_adapter, ptp_tx_work); struct ixgbe_hw *hw = &adapter->hw; bool timeout = time_is_before_jiffies(adapter->ptp_tx_start + IXGBE_PTP_TX_TIMEOUT); u32 tsynctxctl; /* we have to have a valid skb to poll for a timestamp */ if (!adapter->ptp_tx_skb) { ixgbe_ptp_clear_tx_timestamp(adapter); return; } /* stop polling once we have a valid timestamp */ tsynctxctl = IXGBE_READ_REG(hw, IXGBE_TSYNCTXCTL); if (tsynctxctl & IXGBE_TSYNCTXCTL_VALID) { ixgbe_ptp_tx_hwtstamp(adapter); return; } if (timeout) { ixgbe_ptp_clear_tx_timestamp(adapter); adapter->tx_hwtstamp_timeouts++; e_warn(drv, "clearing Tx Timestamp hang\n"); } else { /* reschedule to keep checking if it's not available yet */ schedule_work(&adapter->ptp_tx_work); } } /** * ixgbe_ptp_rx_pktstamp - utility function to get RX time stamp from buffer * @q_vector: structure containing interrupt and ring information * @skb: the packet * * This function will be called by the Rx routine of the timestamp for this * packet is stored in the buffer. The value is stored in little endian format * starting at the end of the packet data. */ void ixgbe_ptp_rx_pktstamp(struct ixgbe_q_vector *q_vector, struct sk_buff *skb) { __le64 regval; /* copy the bits out of the skb, and then trim the skb length */ skb_copy_bits(skb, skb->len - IXGBE_TS_HDR_LEN, ®val, IXGBE_TS_HDR_LEN); __pskb_trim(skb, skb->len - IXGBE_TS_HDR_LEN); /* The timestamp is recorded in little endian format, and is stored at * the end of the packet. * * DWORD: N N + 1 N + 2 * Field: End of Packet SYSTIMH SYSTIML */ ixgbe_ptp_convert_to_hwtstamp(q_vector->adapter, skb_hwtstamps(skb), le64_to_cpu(regval)); } /** * ixgbe_ptp_rx_rgtstamp - utility function which checks for RX time stamp * @q_vector: structure containing interrupt and ring information * @skb: particular skb to send timestamp with * * if the timestamp is valid, we convert it into the timecounter ns * value, then store that result into the shhwtstamps structure which * is passed up the network stack */ void ixgbe_ptp_rx_rgtstamp(struct ixgbe_q_vector *q_vector, struct sk_buff *skb) { struct ixgbe_adapter *adapter; struct ixgbe_hw *hw; u64 regval = 0; u32 tsyncrxctl; /* we cannot process timestamps on a ring without a q_vector */ if (!q_vector || !q_vector->adapter) return; adapter = q_vector->adapter; hw = &adapter->hw; /* Read the tsyncrxctl register afterwards in order to prevent taking an * I/O hit on every packet. */ tsyncrxctl = IXGBE_READ_REG(hw, IXGBE_TSYNCRXCTL); if (!(tsyncrxctl & IXGBE_TSYNCRXCTL_VALID)) return; regval |= (u64)IXGBE_READ_REG(hw, IXGBE_RXSTMPL); regval |= (u64)IXGBE_READ_REG(hw, IXGBE_RXSTMPH) << 32; ixgbe_ptp_convert_to_hwtstamp(adapter, skb_hwtstamps(skb), regval); } int ixgbe_ptp_get_ts_config(struct ixgbe_adapter *adapter, struct ifreq *ifr) { struct hwtstamp_config *config = &adapter->tstamp_config; return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ? -EFAULT : 0; } /** * ixgbe_ptp_set_timestamp_mode - setup the hardware for the requested mode * @adapter: the private ixgbe adapter structure * @config: the hwtstamp configuration requested * * Outgoing time stamping can be enabled and disabled. Play nice and * disable it when requested, although it shouldn't cause any overhead * when no packet needs it. At most one packet in the queue may be * marked for time stamping, otherwise it would be impossible to tell * for sure to which packet the hardware time stamp belongs. * * Incoming time stamping has to be configured via the hardware * filters. Not all combinations are supported, in particular event * type has to be specified. Matching the kind of event packet is * not supported, with the exception of "all V2 events regardless of * level 2 or 4". * * Since hardware always timestamps Path delay packets when timestamping V2 * packets, regardless of the type specified in the register, only use V2 * Event mode. This more accurately tells the user what the hardware is going * to do anyways. * * Note: this may modify the hwtstamp configuration towards a more general * mode, if required to support the specifically requested mode. */ static int ixgbe_ptp_set_timestamp_mode(struct ixgbe_adapter *adapter, struct hwtstamp_config *config) { struct ixgbe_hw *hw = &adapter->hw; u32 tsync_tx_ctl = IXGBE_TSYNCTXCTL_ENABLED; u32 tsync_rx_ctl = IXGBE_TSYNCRXCTL_ENABLED; u32 tsync_rx_mtrl = PTP_EV_PORT << 16; bool is_l2 = false; u32 regval; /* reserved for future extensions */ if (config->flags) return -EINVAL; switch (config->tx_type) { case HWTSTAMP_TX_OFF: tsync_tx_ctl = 0; case HWTSTAMP_TX_ON: break; default: return -ERANGE; } switch (config->rx_filter) { case HWTSTAMP_FILTER_NONE: tsync_rx_ctl = 0; tsync_rx_mtrl = 0; adapter->flags &= ~(IXGBE_FLAG_RX_HWTSTAMP_ENABLED | IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER); break; case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_L4_V1; tsync_rx_mtrl |= IXGBE_RXMTRL_V1_SYNC_MSG; adapter->flags |= (IXGBE_FLAG_RX_HWTSTAMP_ENABLED | IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER); break; case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_L4_V1; tsync_rx_mtrl |= IXGBE_RXMTRL_V1_DELAY_REQ_MSG; adapter->flags |= (IXGBE_FLAG_RX_HWTSTAMP_ENABLED | IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER); break; case HWTSTAMP_FILTER_PTP_V2_EVENT: case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: case HWTSTAMP_FILTER_PTP_V2_SYNC: case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_EVENT_V2; is_l2 = true; config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT; adapter->flags |= (IXGBE_FLAG_RX_HWTSTAMP_ENABLED | IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER); break; case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: case HWTSTAMP_FILTER_NTP_ALL: case HWTSTAMP_FILTER_ALL: /* The X550 controller is capable of timestamping all packets, * which allows it to accept any filter. */ if (hw->mac.type >= ixgbe_mac_X550) { tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_ALL; config->rx_filter = HWTSTAMP_FILTER_ALL; adapter->flags |= IXGBE_FLAG_RX_HWTSTAMP_ENABLED; break; } /* fall through */ default: /* * register RXMTRL must be set in order to do V1 packets, * therefore it is not possible to time stamp both V1 Sync and * Delay_Req messages and hardware does not support * timestamping all packets => return error */ adapter->flags &= ~(IXGBE_FLAG_RX_HWTSTAMP_ENABLED | IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER); config->rx_filter = HWTSTAMP_FILTER_NONE; return -ERANGE; } if (hw->mac.type == ixgbe_mac_82598EB) { adapter->flags &= ~(IXGBE_FLAG_RX_HWTSTAMP_ENABLED | IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER); if (tsync_rx_ctl | tsync_tx_ctl) return -ERANGE; return 0; } /* Per-packet timestamping only works if the filter is set to all * packets. Since this is desired, always timestamp all packets as long * as any Rx filter was configured. */ switch (hw->mac.type) { case ixgbe_mac_X550: case ixgbe_mac_X550EM_x: case ixgbe_mac_x550em_a: /* enable timestamping all packets only if at least some * packets were requested. Otherwise, play nice and disable * timestamping */ if (config->rx_filter == HWTSTAMP_FILTER_NONE) break; tsync_rx_ctl = IXGBE_TSYNCRXCTL_ENABLED | IXGBE_TSYNCRXCTL_TYPE_ALL | IXGBE_TSYNCRXCTL_TSIP_UT_EN; config->rx_filter = HWTSTAMP_FILTER_ALL; adapter->flags |= IXGBE_FLAG_RX_HWTSTAMP_ENABLED; adapter->flags &= ~IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER; is_l2 = true; break; default: break; } /* define ethertype filter for timestamping L2 packets */ if (is_l2) IXGBE_WRITE_REG(hw, IXGBE_ETQF(IXGBE_ETQF_FILTER_1588), (IXGBE_ETQF_FILTER_EN | /* enable filter */ IXGBE_ETQF_1588 | /* enable timestamping */ ETH_P_1588)); /* 1588 eth protocol type */ else IXGBE_WRITE_REG(hw, IXGBE_ETQF(IXGBE_ETQF_FILTER_1588), 0); /* enable/disable TX */ regval = IXGBE_READ_REG(hw, IXGBE_TSYNCTXCTL); regval &= ~IXGBE_TSYNCTXCTL_ENABLED; regval |= tsync_tx_ctl; IXGBE_WRITE_REG(hw, IXGBE_TSYNCTXCTL, regval); /* enable/disable RX */ regval = IXGBE_READ_REG(hw, IXGBE_TSYNCRXCTL); regval &= ~(IXGBE_TSYNCRXCTL_ENABLED | IXGBE_TSYNCRXCTL_TYPE_MASK); regval |= tsync_rx_ctl; IXGBE_WRITE_REG(hw, IXGBE_TSYNCRXCTL, regval); /* define which PTP packets are time stamped */ IXGBE_WRITE_REG(hw, IXGBE_RXMTRL, tsync_rx_mtrl); IXGBE_WRITE_FLUSH(hw); /* clear TX/RX time stamp registers, just to be sure */ ixgbe_ptp_clear_tx_timestamp(adapter); IXGBE_READ_REG(hw, IXGBE_RXSTMPH); return 0; } /** * ixgbe_ptp_set_ts_config - user entry point for timestamp mode * @adapter: pointer to adapter struct * @ifr: ioctl data * * Set hardware to requested mode. If unsupported, return an error with no * changes. Otherwise, store the mode for future reference. */ int ixgbe_ptp_set_ts_config(struct ixgbe_adapter *adapter, struct ifreq *ifr) { struct hwtstamp_config config; int err; if (copy_from_user(&config, ifr->ifr_data, sizeof(config))) return -EFAULT; err = ixgbe_ptp_set_timestamp_mode(adapter, &config); if (err) return err; /* save these settings for future reference */ memcpy(&adapter->tstamp_config, &config, sizeof(adapter->tstamp_config)); return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? -EFAULT : 0; } static void ixgbe_ptp_link_speed_adjust(struct ixgbe_adapter *adapter, u32 *shift, u32 *incval) { /** * Scale the NIC cycle counter by a large factor so that * relatively small corrections to the frequency can be added * or subtracted. The drawbacks of a large factor include * (a) the clock register overflows more quickly, (b) the cycle * counter structure must be able to convert the systime value * to nanoseconds using only a multiplier and a right-shift, * and (c) the value must fit within the timinca register space * => math based on internal DMA clock rate and available bits * * Note that when there is no link, internal DMA clock is same as when * link speed is 10Gb. Set the registers correctly even when link is * down to preserve the clock setting */ switch (adapter->link_speed) { case IXGBE_LINK_SPEED_100_FULL: *shift = IXGBE_INCVAL_SHIFT_100; *incval = IXGBE_INCVAL_100; break; case IXGBE_LINK_SPEED_1GB_FULL: *shift = IXGBE_INCVAL_SHIFT_1GB; *incval = IXGBE_INCVAL_1GB; break; case IXGBE_LINK_SPEED_10GB_FULL: default: *shift = IXGBE_INCVAL_SHIFT_10GB; *incval = IXGBE_INCVAL_10GB; break; } } /** * ixgbe_ptp_start_cyclecounter - create the cycle counter from hw * @adapter: pointer to the adapter structure * * This function should be called to set the proper values for the TIMINCA * register and tell the cyclecounter structure what the tick rate of SYSTIME * is. It does not directly modify SYSTIME registers or the timecounter * structure. It should be called whenever a new TIMINCA value is necessary, * such as during initialization or when the link speed changes. */ void ixgbe_ptp_start_cyclecounter(struct ixgbe_adapter *adapter) { struct ixgbe_hw *hw = &adapter->hw; struct cyclecounter cc; unsigned long flags; u32 incval = 0; u32 tsauxc = 0; u32 fuse0 = 0; /* For some of the boards below this mask is technically incorrect. * The timestamp mask overflows at approximately 61bits. However the * particular hardware does not overflow on an even bitmask value. * Instead, it overflows due to conversion of upper 32bits billions of * cycles. Timecounters are not really intended for this purpose so * they do not properly function if the overflow point isn't 2^N-1. * However, the actual SYSTIME values in question take ~138 years to * overflow. In practice this means they won't actually overflow. A * proper fix to this problem would require modification of the * timecounter delta calculations. */ cc.mask = CLOCKSOURCE_MASK(64); cc.mult = 1; cc.shift = 0; switch (hw->mac.type) { case ixgbe_mac_X550EM_x: /* SYSTIME assumes X550EM_x board frequency is 300Mhz, and is * designed to represent seconds and nanoseconds when this is * the case. However, some revisions of hardware have a 400Mhz * clock and we have to compensate for this frequency * variation using corrected mult and shift values. */ fuse0 = IXGBE_READ_REG(hw, IXGBE_FUSES0_GROUP(0)); if (!(fuse0 & IXGBE_FUSES0_300MHZ)) { cc.mult = 3; cc.shift = 2; } /* fallthrough */ case ixgbe_mac_x550em_a: case ixgbe_mac_X550: cc.read = ixgbe_ptp_read_X550; /* enable SYSTIME counter */ IXGBE_WRITE_REG(hw, IXGBE_SYSTIMR, 0); IXGBE_WRITE_REG(hw, IXGBE_SYSTIML, 0); IXGBE_WRITE_REG(hw, IXGBE_SYSTIMH, 0); tsauxc = IXGBE_READ_REG(hw, IXGBE_TSAUXC); IXGBE_WRITE_REG(hw, IXGBE_TSAUXC, tsauxc & ~IXGBE_TSAUXC_DISABLE_SYSTIME); IXGBE_WRITE_REG(hw, IXGBE_TSIM, IXGBE_TSIM_TXTS); IXGBE_WRITE_REG(hw, IXGBE_EIMS, IXGBE_EIMS_TIMESYNC); IXGBE_WRITE_FLUSH(hw); break; case ixgbe_mac_X540: cc.read = ixgbe_ptp_read_82599; ixgbe_ptp_link_speed_adjust(adapter, &cc.shift, &incval); IXGBE_WRITE_REG(hw, IXGBE_TIMINCA, incval); break; case ixgbe_mac_82599EB: cc.read = ixgbe_ptp_read_82599; ixgbe_ptp_link_speed_adjust(adapter, &cc.shift, &incval); incval >>= IXGBE_INCVAL_SHIFT_82599; cc.shift -= IXGBE_INCVAL_SHIFT_82599; IXGBE_WRITE_REG(hw, IXGBE_TIMINCA, BIT(IXGBE_INCPER_SHIFT_82599) | incval); break; default: /* other devices aren't supported */ return; } /* update the base incval used to calculate frequency adjustment */ WRITE_ONCE(adapter->base_incval, incval); smp_mb(); /* need lock to prevent incorrect read while modifying cyclecounter */ spin_lock_irqsave(&adapter->tmreg_lock, flags); memcpy(&adapter->hw_cc, &cc, sizeof(adapter->hw_cc)); spin_unlock_irqrestore(&adapter->tmreg_lock, flags); } /** * ixgbe_ptp_reset * @adapter: the ixgbe private board structure * * When the MAC resets, all the hardware bits for timesync are reset. This * function is used to re-enable the device for PTP based on current settings. * We do lose the current clock time, so just reset the cyclecounter to the * system real clock time. * * This function will maintain hwtstamp_config settings, and resets the SDP * output if it was enabled. */ void ixgbe_ptp_reset(struct ixgbe_adapter *adapter) { struct ixgbe_hw *hw = &adapter->hw; unsigned long flags; /* reset the hardware timestamping mode */ ixgbe_ptp_set_timestamp_mode(adapter, &adapter->tstamp_config); /* 82598 does not support PTP */ if (hw->mac.type == ixgbe_mac_82598EB) return; ixgbe_ptp_start_cyclecounter(adapter); spin_lock_irqsave(&adapter->tmreg_lock, flags); timecounter_init(&adapter->hw_tc, &adapter->hw_cc, ktime_to_ns(ktime_get_real())); spin_unlock_irqrestore(&adapter->tmreg_lock, flags); adapter->last_overflow_check = jiffies; /* Now that the shift has been calculated and the systime * registers reset, (re-)enable the Clock out feature */ if (adapter->ptp_setup_sdp) adapter->ptp_setup_sdp(adapter); } /** * ixgbe_ptp_create_clock * @adapter: the ixgbe private adapter structure * * This function performs setup of the user entry point function table and * initializes the PTP clock device, which is used to access the clock-like * features of the PTP core. It will be called by ixgbe_ptp_init, and may * reuse a previously initialized clock (such as during a suspend/resume * cycle). */ static long ixgbe_ptp_create_clock(struct ixgbe_adapter *adapter) { struct net_device *netdev = adapter->netdev; long err; /* do nothing if we already have a clock device */ if (!IS_ERR_OR_NULL(adapter->ptp_clock)) return 0; switch (adapter->hw.mac.type) { case ixgbe_mac_X540: snprintf(adapter->ptp_caps.name, sizeof(adapter->ptp_caps.name), "%s", netdev->name); adapter->ptp_caps.owner = THIS_MODULE; adapter->ptp_caps.max_adj = 250000000; adapter->ptp_caps.n_alarm = 0; adapter->ptp_caps.n_ext_ts = 0; adapter->ptp_caps.n_per_out = 0; adapter->ptp_caps.pps = 1; adapter->ptp_caps.adjfreq = ixgbe_ptp_adjfreq_82599; adapter->ptp_caps.adjtime = ixgbe_ptp_adjtime; adapter->ptp_caps.gettimex64 = ixgbe_ptp_gettimex; adapter->ptp_caps.settime64 = ixgbe_ptp_settime; adapter->ptp_caps.enable = ixgbe_ptp_feature_enable; adapter->ptp_setup_sdp = ixgbe_ptp_setup_sdp_x540; break; case ixgbe_mac_82599EB: snprintf(adapter->ptp_caps.name, sizeof(adapter->ptp_caps.name), "%s", netdev->name); adapter->ptp_caps.owner = THIS_MODULE; adapter->ptp_caps.max_adj = 250000000; adapter->ptp_caps.n_alarm = 0; adapter->ptp_caps.n_ext_ts = 0; adapter->ptp_caps.n_per_out = 0; adapter->ptp_caps.pps = 0; adapter->ptp_caps.adjfreq = ixgbe_ptp_adjfreq_82599; adapter->ptp_caps.adjtime = ixgbe_ptp_adjtime; adapter->ptp_caps.gettimex64 = ixgbe_ptp_gettimex; adapter->ptp_caps.settime64 = ixgbe_ptp_settime; adapter->ptp_caps.enable = ixgbe_ptp_feature_enable; break; case ixgbe_mac_X550: case ixgbe_mac_X550EM_x: case ixgbe_mac_x550em_a: snprintf(adapter->ptp_caps.name, 16, "%s", netdev->name); adapter->ptp_caps.owner = THIS_MODULE; adapter->ptp_caps.max_adj = 30000000; adapter->ptp_caps.n_alarm = 0; adapter->ptp_caps.n_ext_ts = 0; adapter->ptp_caps.n_per_out = 0; adapter->ptp_caps.pps = 0; adapter->ptp_caps.adjfreq = ixgbe_ptp_adjfreq_X550; adapter->ptp_caps.adjtime = ixgbe_ptp_adjtime; adapter->ptp_caps.gettimex64 = ixgbe_ptp_gettimex; adapter->ptp_caps.settime64 = ixgbe_ptp_settime; adapter->ptp_caps.enable = ixgbe_ptp_feature_enable; adapter->ptp_setup_sdp = NULL; break; default: adapter->ptp_clock = NULL; adapter->ptp_setup_sdp = NULL; return -EOPNOTSUPP; } adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps, &adapter->pdev->dev); if (IS_ERR(adapter->ptp_clock)) { err = PTR_ERR(adapter->ptp_clock); adapter->ptp_clock = NULL; e_dev_err("ptp_clock_register failed\n"); return err; } else if (adapter->ptp_clock) e_dev_info("registered PHC device on %s\n", netdev->name); /* set default timestamp mode to disabled here. We do this in * create_clock instead of init, because we don't want to override the * previous settings during a resume cycle. */ adapter->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE; adapter->tstamp_config.tx_type = HWTSTAMP_TX_OFF; return 0; } /** * ixgbe_ptp_init * @adapter: the ixgbe private adapter structure * * This function performs the required steps for enabling PTP * support. If PTP support has already been loaded it simply calls the * cyclecounter init routine and exits. */ void ixgbe_ptp_init(struct ixgbe_adapter *adapter) { /* initialize the spin lock first since we can't control when a user * will call the entry functions once we have initialized the clock * device */ spin_lock_init(&adapter->tmreg_lock); /* obtain a PTP device, or re-use an existing device */ if (ixgbe_ptp_create_clock(adapter)) return; /* we have a clock so we can initialize work now */ INIT_WORK(&adapter->ptp_tx_work, ixgbe_ptp_tx_hwtstamp_work); /* reset the PTP related hardware bits */ ixgbe_ptp_reset(adapter); /* enter the IXGBE_PTP_RUNNING state */ set_bit(__IXGBE_PTP_RUNNING, &adapter->state); return; } /** * ixgbe_ptp_suspend - stop PTP work items * @adapter: pointer to adapter struct * * this function suspends PTP activity, and prevents more PTP work from being * generated, but does not destroy the PTP clock device. */ void ixgbe_ptp_suspend(struct ixgbe_adapter *adapter) { /* Leave the IXGBE_PTP_RUNNING state. */ if (!test_and_clear_bit(__IXGBE_PTP_RUNNING, &adapter->state)) return; adapter->flags2 &= ~IXGBE_FLAG2_PTP_PPS_ENABLED; if (adapter->ptp_setup_sdp) adapter->ptp_setup_sdp(adapter); /* ensure that we cancel any pending PTP Tx work item in progress */ cancel_work_sync(&adapter->ptp_tx_work); ixgbe_ptp_clear_tx_timestamp(adapter); } /** * ixgbe_ptp_stop - close the PTP device * @adapter: pointer to adapter struct * * completely destroy the PTP device, should only be called when the device is * being fully closed. */ void ixgbe_ptp_stop(struct ixgbe_adapter *adapter) { /* first, suspend PTP activity */ ixgbe_ptp_suspend(adapter); /* disable the PTP clock device */ if (adapter->ptp_clock) { ptp_clock_unregister(adapter->ptp_clock); adapter->ptp_clock = NULL; e_dev_info("removed PHC on %s\n", adapter->netdev->name); } }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1