Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
François Romieu | 16139 | 44.40% | 188 | 39.25% |
Chun-Hao Lin | 6943 | 19.10% | 25 | 5.22% |
Hayes Wang | 6663 | 18.33% | 37 | 7.72% |
Heiner Kallweit | 2582 | 7.10% | 95 | 19.83% |
Jeff Garzik | 846 | 2.33% | 8 | 1.67% |
Andy Shevchenko | 680 | 1.87% | 2 | 0.42% |
Corinna Vinschen | 411 | 1.13% | 3 | 0.63% |
Stephen Hemminger | 405 | 1.11% | 8 | 1.67% |
Hans de Goede | 195 | 0.54% | 2 | 0.42% |
Kai-Heng Feng | 192 | 0.53% | 5 | 1.04% |
Stanislaw Gruszka | 129 | 0.35% | 8 | 1.67% |
Ivan Vecera | 118 | 0.32% | 2 | 0.42% |
Rafael J. Wysocki | 105 | 0.29% | 2 | 0.42% |
Ard Biesheuvel | 98 | 0.27% | 2 | 0.42% |
Junchang Wang | 82 | 0.23% | 1 | 0.21% |
Florian Westphal | 62 | 0.17% | 1 | 0.21% |
Andrew Morton | 54 | 0.15% | 3 | 0.63% |
Peter Lekensteyn | 47 | 0.13% | 2 | 0.42% |
David S. Miller | 46 | 0.13% | 4 | 0.84% |
Eric Dumazet | 43 | 0.12% | 4 | 0.84% |
Michał Mirosław | 42 | 0.12% | 2 | 0.42% |
Alexey Dobriyan | 37 | 0.10% | 2 | 0.42% |
Rick Jones | 32 | 0.09% | 2 | 0.42% |
David Chang | 31 | 0.09% | 1 | 0.21% |
Alexander Duyck | 30 | 0.08% | 4 | 0.84% |
Igor Maravić | 21 | 0.06% | 1 | 0.21% |
Nathan Walp | 20 | 0.06% | 1 | 0.21% |
Kyle McMartin | 20 | 0.06% | 1 | 0.21% |
Artem Savkov | 18 | 0.05% | 1 | 0.21% |
Timo Teräs | 17 | 0.05% | 3 | 0.63% |
Ciaran McCreesh | 15 | 0.04% | 1 | 0.21% |
Stefan Bader | 14 | 0.04% | 1 | 0.21% |
Ben Greear | 13 | 0.04% | 1 | 0.21% |
Jarod Wilson | 13 | 0.04% | 1 | 0.21% |
Patrick McHardy | 11 | 0.03% | 2 | 0.42% |
Devendra Naga | 10 | 0.03% | 2 | 0.42% |
Joe Perches | 10 | 0.03% | 2 | 0.42% |
Richard Cochran | 10 | 0.03% | 2 | 0.42% |
Anthony Wong | 9 | 0.02% | 1 | 0.21% |
Lennart Sorensen | 9 | 0.02% | 1 | 0.21% |
Maciej S. Szmigiero | 8 | 0.02% | 2 | 0.42% |
Julien Ducourthial | 7 | 0.02% | 1 | 0.21% |
Arjan van de Ven | 6 | 0.02% | 2 | 0.42% |
Jian-Hong Pan | 6 | 0.02% | 1 | 0.21% |
Sergei Shtylyov | 6 | 0.02% | 1 | 0.21% |
Azat Khuzhin | 6 | 0.02% | 1 | 0.21% |
Rolf Eike Beer | 6 | 0.02% | 1 | 0.21% |
Benoit Taine | 6 | 0.02% | 1 | 0.21% |
Yoichi Yuasa | 5 | 0.01% | 1 | 0.21% |
David Howells | 5 | 0.01% | 1 | 0.21% |
Eric W. Biedermann | 5 | 0.01% | 2 | 0.42% |
Florian Fainelli | 5 | 0.01% | 2 | 0.42% |
Philippe Reynes | 4 | 0.01% | 1 | 0.21% |
Dave Dillow | 4 | 0.01% | 1 | 0.21% |
Al Viro | 4 | 0.01% | 2 | 0.42% |
Tobias Jakobi | 4 | 0.01% | 1 | 0.21% |
Andrew Lunn | 4 | 0.01% | 1 | 0.21% |
Rafał Miłecki | 3 | 0.01% | 1 | 0.21% |
Wilfried Klaebe | 3 | 0.01% | 1 | 0.21% |
Paul Gortmaker | 3 | 0.01% | 1 | 0.21% |
Jon Mason | 2 | 0.01% | 1 | 0.21% |
Jiang Liu | 2 | 0.01% | 1 | 0.21% |
Yang Hongyang | 2 | 0.01% | 1 | 0.21% |
Jean Delvare | 2 | 0.01% | 1 | 0.21% |
Michal Schmidt | 2 | 0.01% | 1 | 0.21% |
Paul E. McKenney | 2 | 0.01% | 1 | 0.21% |
Jiri Pirko | 2 | 0.01% | 1 | 0.21% |
Ralf Baechle | 1 | 0.00% | 1 | 0.21% |
Andrzej Hajda | 1 | 0.00% | 1 | 0.21% |
Jiri Kosina | 1 | 0.00% | 1 | 0.21% |
Alex Xu (Hello71) | 1 | 0.00% | 1 | 0.21% |
Jesper Juhl | 1 | 0.00% | 1 | 0.21% |
Ville Syrjälä | 1 | 0.00% | 1 | 0.21% |
Arnaldo Carvalho de Melo | 1 | 0.00% | 1 | 0.21% |
Phil Carmody | 1 | 0.00% | 1 | 0.21% |
Björn Helgaas | 1 | 0.00% | 1 | 0.21% |
Yannick Guerrini | 1 | 0.00% | 1 | 0.21% |
John W. Linville | 1 | 0.00% | 1 | 0.21% |
Oliver Neukum | 1 | 0.00% | 1 | 0.21% |
Zhu Yanjun | 1 | 0.00% | 1 | 0.21% |
Total | 36349 | 479 |
/* * r8169.c: RealTek 8169/8168/8101 ethernet driver. * * Copyright (c) 2002 ShuChen <shuchen@realtek.com.tw> * Copyright (c) 2003 - 2007 Francois Romieu <romieu@fr.zoreil.com> * Copyright (c) a lot of people too. Please respect their work. * * See MAINTAINERS file for support contact information. */ #include <linux/module.h> #include <linux/moduleparam.h> #include <linux/pci.h> #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/clk.h> #include <linux/delay.h> #include <linux/ethtool.h> #include <linux/phy.h> #include <linux/if_vlan.h> #include <linux/crc32.h> #include <linux/in.h> #include <linux/io.h> #include <linux/ip.h> #include <linux/tcp.h> #include <linux/interrupt.h> #include <linux/dma-mapping.h> #include <linux/pm_runtime.h> #include <linux/firmware.h> #include <linux/prefetch.h> #include <linux/ipv6.h> #include <net/ip6_checksum.h> #define MODULENAME "r8169" #define FIRMWARE_8168D_1 "rtl_nic/rtl8168d-1.fw" #define FIRMWARE_8168D_2 "rtl_nic/rtl8168d-2.fw" #define FIRMWARE_8168E_1 "rtl_nic/rtl8168e-1.fw" #define FIRMWARE_8168E_2 "rtl_nic/rtl8168e-2.fw" #define FIRMWARE_8168E_3 "rtl_nic/rtl8168e-3.fw" #define FIRMWARE_8168F_1 "rtl_nic/rtl8168f-1.fw" #define FIRMWARE_8168F_2 "rtl_nic/rtl8168f-2.fw" #define FIRMWARE_8105E_1 "rtl_nic/rtl8105e-1.fw" #define FIRMWARE_8402_1 "rtl_nic/rtl8402-1.fw" #define FIRMWARE_8411_1 "rtl_nic/rtl8411-1.fw" #define FIRMWARE_8411_2 "rtl_nic/rtl8411-2.fw" #define FIRMWARE_8106E_1 "rtl_nic/rtl8106e-1.fw" #define FIRMWARE_8106E_2 "rtl_nic/rtl8106e-2.fw" #define FIRMWARE_8168G_2 "rtl_nic/rtl8168g-2.fw" #define FIRMWARE_8168G_3 "rtl_nic/rtl8168g-3.fw" #define FIRMWARE_8168H_1 "rtl_nic/rtl8168h-1.fw" #define FIRMWARE_8168H_2 "rtl_nic/rtl8168h-2.fw" #define FIRMWARE_8107E_1 "rtl_nic/rtl8107e-1.fw" #define FIRMWARE_8107E_2 "rtl_nic/rtl8107e-2.fw" #define R8169_MSG_DEFAULT \ (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_IFUP | NETIF_MSG_IFDOWN) /* Maximum number of multicast addresses to filter (vs. Rx-all-multicast). The RTL chips use a 64 element hash table based on the Ethernet CRC. */ static const int multicast_filter_limit = 32; #define TX_DMA_BURST 7 /* Maximum PCI burst, '7' is unlimited */ #define InterFrameGap 0x03 /* 3 means InterFrameGap = the shortest one */ #define R8169_REGS_SIZE 256 #define R8169_RX_BUF_SIZE (SZ_16K - 1) #define NUM_TX_DESC 64 /* Number of Tx descriptor registers */ #define NUM_RX_DESC 256U /* Number of Rx descriptor registers */ #define R8169_TX_RING_BYTES (NUM_TX_DESC * sizeof(struct TxDesc)) #define R8169_RX_RING_BYTES (NUM_RX_DESC * sizeof(struct RxDesc)) /* write/read MMIO register */ #define RTL_W8(tp, reg, val8) writeb((val8), tp->mmio_addr + (reg)) #define RTL_W16(tp, reg, val16) writew((val16), tp->mmio_addr + (reg)) #define RTL_W32(tp, reg, val32) writel((val32), tp->mmio_addr + (reg)) #define RTL_R8(tp, reg) readb(tp->mmio_addr + (reg)) #define RTL_R16(tp, reg) readw(tp->mmio_addr + (reg)) #define RTL_R32(tp, reg) readl(tp->mmio_addr + (reg)) enum mac_version { RTL_GIGA_MAC_VER_01 = 0, RTL_GIGA_MAC_VER_02, RTL_GIGA_MAC_VER_03, RTL_GIGA_MAC_VER_04, RTL_GIGA_MAC_VER_05, RTL_GIGA_MAC_VER_06, RTL_GIGA_MAC_VER_07, RTL_GIGA_MAC_VER_08, RTL_GIGA_MAC_VER_09, RTL_GIGA_MAC_VER_10, RTL_GIGA_MAC_VER_11, RTL_GIGA_MAC_VER_12, RTL_GIGA_MAC_VER_13, RTL_GIGA_MAC_VER_14, RTL_GIGA_MAC_VER_15, RTL_GIGA_MAC_VER_16, RTL_GIGA_MAC_VER_17, RTL_GIGA_MAC_VER_18, RTL_GIGA_MAC_VER_19, RTL_GIGA_MAC_VER_20, RTL_GIGA_MAC_VER_21, RTL_GIGA_MAC_VER_22, RTL_GIGA_MAC_VER_23, RTL_GIGA_MAC_VER_24, RTL_GIGA_MAC_VER_25, RTL_GIGA_MAC_VER_26, RTL_GIGA_MAC_VER_27, RTL_GIGA_MAC_VER_28, RTL_GIGA_MAC_VER_29, RTL_GIGA_MAC_VER_30, RTL_GIGA_MAC_VER_31, RTL_GIGA_MAC_VER_32, RTL_GIGA_MAC_VER_33, RTL_GIGA_MAC_VER_34, RTL_GIGA_MAC_VER_35, RTL_GIGA_MAC_VER_36, RTL_GIGA_MAC_VER_37, RTL_GIGA_MAC_VER_38, RTL_GIGA_MAC_VER_39, RTL_GIGA_MAC_VER_40, RTL_GIGA_MAC_VER_41, RTL_GIGA_MAC_VER_42, RTL_GIGA_MAC_VER_43, RTL_GIGA_MAC_VER_44, RTL_GIGA_MAC_VER_45, RTL_GIGA_MAC_VER_46, RTL_GIGA_MAC_VER_47, RTL_GIGA_MAC_VER_48, RTL_GIGA_MAC_VER_49, RTL_GIGA_MAC_VER_50, RTL_GIGA_MAC_VER_51, RTL_GIGA_MAC_NONE = 0xff, }; #define JUMBO_1K ETH_DATA_LEN #define JUMBO_4K (4*1024 - ETH_HLEN - 2) #define JUMBO_6K (6*1024 - ETH_HLEN - 2) #define JUMBO_7K (7*1024 - ETH_HLEN - 2) #define JUMBO_9K (9*1024 - ETH_HLEN - 2) static const struct { const char *name; const char *fw_name; } rtl_chip_infos[] = { /* PCI devices. */ [RTL_GIGA_MAC_VER_01] = {"RTL8169" }, [RTL_GIGA_MAC_VER_02] = {"RTL8169s" }, [RTL_GIGA_MAC_VER_03] = {"RTL8110s" }, [RTL_GIGA_MAC_VER_04] = {"RTL8169sb/8110sb" }, [RTL_GIGA_MAC_VER_05] = {"RTL8169sc/8110sc" }, [RTL_GIGA_MAC_VER_06] = {"RTL8169sc/8110sc" }, /* PCI-E devices. */ [RTL_GIGA_MAC_VER_07] = {"RTL8102e" }, [RTL_GIGA_MAC_VER_08] = {"RTL8102e" }, [RTL_GIGA_MAC_VER_09] = {"RTL8102e" }, [RTL_GIGA_MAC_VER_10] = {"RTL8101e" }, [RTL_GIGA_MAC_VER_11] = {"RTL8168b/8111b" }, [RTL_GIGA_MAC_VER_12] = {"RTL8168b/8111b" }, [RTL_GIGA_MAC_VER_13] = {"RTL8101e" }, [RTL_GIGA_MAC_VER_14] = {"RTL8100e" }, [RTL_GIGA_MAC_VER_15] = {"RTL8100e" }, [RTL_GIGA_MAC_VER_16] = {"RTL8101e" }, [RTL_GIGA_MAC_VER_17] = {"RTL8168b/8111b" }, [RTL_GIGA_MAC_VER_18] = {"RTL8168cp/8111cp" }, [RTL_GIGA_MAC_VER_19] = {"RTL8168c/8111c" }, [RTL_GIGA_MAC_VER_20] = {"RTL8168c/8111c" }, [RTL_GIGA_MAC_VER_21] = {"RTL8168c/8111c" }, [RTL_GIGA_MAC_VER_22] = {"RTL8168c/8111c" }, [RTL_GIGA_MAC_VER_23] = {"RTL8168cp/8111cp" }, [RTL_GIGA_MAC_VER_24] = {"RTL8168cp/8111cp" }, [RTL_GIGA_MAC_VER_25] = {"RTL8168d/8111d", FIRMWARE_8168D_1}, [RTL_GIGA_MAC_VER_26] = {"RTL8168d/8111d", FIRMWARE_8168D_2}, [RTL_GIGA_MAC_VER_27] = {"RTL8168dp/8111dp" }, [RTL_GIGA_MAC_VER_28] = {"RTL8168dp/8111dp" }, [RTL_GIGA_MAC_VER_29] = {"RTL8105e", FIRMWARE_8105E_1}, [RTL_GIGA_MAC_VER_30] = {"RTL8105e", FIRMWARE_8105E_1}, [RTL_GIGA_MAC_VER_31] = {"RTL8168dp/8111dp" }, [RTL_GIGA_MAC_VER_32] = {"RTL8168e/8111e", FIRMWARE_8168E_1}, [RTL_GIGA_MAC_VER_33] = {"RTL8168e/8111e", FIRMWARE_8168E_2}, [RTL_GIGA_MAC_VER_34] = {"RTL8168evl/8111evl", FIRMWARE_8168E_3}, [RTL_GIGA_MAC_VER_35] = {"RTL8168f/8111f", FIRMWARE_8168F_1}, [RTL_GIGA_MAC_VER_36] = {"RTL8168f/8111f", FIRMWARE_8168F_2}, [RTL_GIGA_MAC_VER_37] = {"RTL8402", FIRMWARE_8402_1 }, [RTL_GIGA_MAC_VER_38] = {"RTL8411", FIRMWARE_8411_1 }, [RTL_GIGA_MAC_VER_39] = {"RTL8106e", FIRMWARE_8106E_1}, [RTL_GIGA_MAC_VER_40] = {"RTL8168g/8111g", FIRMWARE_8168G_2}, [RTL_GIGA_MAC_VER_41] = {"RTL8168g/8111g" }, [RTL_GIGA_MAC_VER_42] = {"RTL8168g/8111g", FIRMWARE_8168G_3}, [RTL_GIGA_MAC_VER_43] = {"RTL8106e", FIRMWARE_8106E_2}, [RTL_GIGA_MAC_VER_44] = {"RTL8411", FIRMWARE_8411_2 }, [RTL_GIGA_MAC_VER_45] = {"RTL8168h/8111h", FIRMWARE_8168H_1}, [RTL_GIGA_MAC_VER_46] = {"RTL8168h/8111h", FIRMWARE_8168H_2}, [RTL_GIGA_MAC_VER_47] = {"RTL8107e", FIRMWARE_8107E_1}, [RTL_GIGA_MAC_VER_48] = {"RTL8107e", FIRMWARE_8107E_2}, [RTL_GIGA_MAC_VER_49] = {"RTL8168ep/8111ep" }, [RTL_GIGA_MAC_VER_50] = {"RTL8168ep/8111ep" }, [RTL_GIGA_MAC_VER_51] = {"RTL8168ep/8111ep" }, }; enum cfg_version { RTL_CFG_0 = 0x00, RTL_CFG_1, RTL_CFG_2 }; static const struct pci_device_id rtl8169_pci_tbl[] = { { PCI_VDEVICE(REALTEK, 0x2502), RTL_CFG_1 }, { PCI_VDEVICE(REALTEK, 0x2600), RTL_CFG_1 }, { PCI_VDEVICE(REALTEK, 0x8129), RTL_CFG_0 }, { PCI_VDEVICE(REALTEK, 0x8136), RTL_CFG_2 }, { PCI_VDEVICE(REALTEK, 0x8161), RTL_CFG_1 }, { PCI_VDEVICE(REALTEK, 0x8167), RTL_CFG_0 }, { PCI_VDEVICE(REALTEK, 0x8168), RTL_CFG_1 }, { PCI_VDEVICE(NCUBE, 0x8168), RTL_CFG_1 }, { PCI_VDEVICE(REALTEK, 0x8169), RTL_CFG_0 }, { PCI_VENDOR_ID_DLINK, 0x4300, PCI_VENDOR_ID_DLINK, 0x4b10, 0, 0, RTL_CFG_1 }, { PCI_VDEVICE(DLINK, 0x4300), RTL_CFG_0 }, { PCI_VDEVICE(DLINK, 0x4302), RTL_CFG_0 }, { PCI_VDEVICE(AT, 0xc107), RTL_CFG_0 }, { PCI_VDEVICE(USR, 0x0116), RTL_CFG_0 }, { PCI_VENDOR_ID_LINKSYS, 0x1032, PCI_ANY_ID, 0x0024, 0, 0, RTL_CFG_0 }, { 0x0001, 0x8168, PCI_ANY_ID, 0x2410, 0, 0, RTL_CFG_2 }, {} }; MODULE_DEVICE_TABLE(pci, rtl8169_pci_tbl); static int use_dac = -1; static struct { u32 msg_enable; } debug = { -1 }; enum rtl_registers { MAC0 = 0, /* Ethernet hardware address. */ MAC4 = 4, MAR0 = 8, /* Multicast filter. */ CounterAddrLow = 0x10, CounterAddrHigh = 0x14, TxDescStartAddrLow = 0x20, TxDescStartAddrHigh = 0x24, TxHDescStartAddrLow = 0x28, TxHDescStartAddrHigh = 0x2c, FLASH = 0x30, ERSR = 0x36, ChipCmd = 0x37, TxPoll = 0x38, IntrMask = 0x3c, IntrStatus = 0x3e, TxConfig = 0x40, #define TXCFG_AUTO_FIFO (1 << 7) /* 8111e-vl */ #define TXCFG_EMPTY (1 << 11) /* 8111e-vl */ RxConfig = 0x44, #define RX128_INT_EN (1 << 15) /* 8111c and later */ #define RX_MULTI_EN (1 << 14) /* 8111c only */ #define RXCFG_FIFO_SHIFT 13 /* No threshold before first PCI xfer */ #define RX_FIFO_THRESH (7 << RXCFG_FIFO_SHIFT) #define RX_EARLY_OFF (1 << 11) #define RXCFG_DMA_SHIFT 8 /* Unlimited maximum PCI burst. */ #define RX_DMA_BURST (7 << RXCFG_DMA_SHIFT) RxMissed = 0x4c, Cfg9346 = 0x50, Config0 = 0x51, Config1 = 0x52, Config2 = 0x53, #define PME_SIGNAL (1 << 5) /* 8168c and later */ Config3 = 0x54, Config4 = 0x55, Config5 = 0x56, MultiIntr = 0x5c, PHYAR = 0x60, PHYstatus = 0x6c, RxMaxSize = 0xda, CPlusCmd = 0xe0, IntrMitigate = 0xe2, #define RTL_COALESCE_MASK 0x0f #define RTL_COALESCE_SHIFT 4 #define RTL_COALESCE_T_MAX (RTL_COALESCE_MASK) #define RTL_COALESCE_FRAME_MAX (RTL_COALESCE_MASK << 2) RxDescAddrLow = 0xe4, RxDescAddrHigh = 0xe8, EarlyTxThres = 0xec, /* 8169. Unit of 32 bytes. */ #define NoEarlyTx 0x3f /* Max value : no early transmit. */ MaxTxPacketSize = 0xec, /* 8101/8168. Unit of 128 bytes. */ #define TxPacketMax (8064 >> 7) #define EarlySize 0x27 FuncEvent = 0xf0, FuncEventMask = 0xf4, FuncPresetState = 0xf8, IBCR0 = 0xf8, IBCR2 = 0xf9, IBIMR0 = 0xfa, IBISR0 = 0xfb, FuncForceEvent = 0xfc, }; enum rtl8168_8101_registers { CSIDR = 0x64, CSIAR = 0x68, #define CSIAR_FLAG 0x80000000 #define CSIAR_WRITE_CMD 0x80000000 #define CSIAR_BYTE_ENABLE 0x0000f000 #define CSIAR_ADDR_MASK 0x00000fff PMCH = 0x6f, EPHYAR = 0x80, #define EPHYAR_FLAG 0x80000000 #define EPHYAR_WRITE_CMD 0x80000000 #define EPHYAR_REG_MASK 0x1f #define EPHYAR_REG_SHIFT 16 #define EPHYAR_DATA_MASK 0xffff DLLPR = 0xd0, #define PFM_EN (1 << 6) #define TX_10M_PS_EN (1 << 7) DBG_REG = 0xd1, #define FIX_NAK_1 (1 << 4) #define FIX_NAK_2 (1 << 3) TWSI = 0xd2, MCU = 0xd3, #define NOW_IS_OOB (1 << 7) #define TX_EMPTY (1 << 5) #define RX_EMPTY (1 << 4) #define RXTX_EMPTY (TX_EMPTY | RX_EMPTY) #define EN_NDP (1 << 3) #define EN_OOB_RESET (1 << 2) #define LINK_LIST_RDY (1 << 1) EFUSEAR = 0xdc, #define EFUSEAR_FLAG 0x80000000 #define EFUSEAR_WRITE_CMD 0x80000000 #define EFUSEAR_READ_CMD 0x00000000 #define EFUSEAR_REG_MASK 0x03ff #define EFUSEAR_REG_SHIFT 8 #define EFUSEAR_DATA_MASK 0xff MISC_1 = 0xf2, #define PFM_D3COLD_EN (1 << 6) }; enum rtl8168_registers { LED_FREQ = 0x1a, EEE_LED = 0x1b, ERIDR = 0x70, ERIAR = 0x74, #define ERIAR_FLAG 0x80000000 #define ERIAR_WRITE_CMD 0x80000000 #define ERIAR_READ_CMD 0x00000000 #define ERIAR_ADDR_BYTE_ALIGN 4 #define ERIAR_TYPE_SHIFT 16 #define ERIAR_EXGMAC (0x00 << ERIAR_TYPE_SHIFT) #define ERIAR_MSIX (0x01 << ERIAR_TYPE_SHIFT) #define ERIAR_ASF (0x02 << ERIAR_TYPE_SHIFT) #define ERIAR_OOB (0x02 << ERIAR_TYPE_SHIFT) #define ERIAR_MASK_SHIFT 12 #define ERIAR_MASK_0001 (0x1 << ERIAR_MASK_SHIFT) #define ERIAR_MASK_0011 (0x3 << ERIAR_MASK_SHIFT) #define ERIAR_MASK_0100 (0x4 << ERIAR_MASK_SHIFT) #define ERIAR_MASK_0101 (0x5 << ERIAR_MASK_SHIFT) #define ERIAR_MASK_1111 (0xf << ERIAR_MASK_SHIFT) EPHY_RXER_NUM = 0x7c, OCPDR = 0xb0, /* OCP GPHY access */ #define OCPDR_WRITE_CMD 0x80000000 #define OCPDR_READ_CMD 0x00000000 #define OCPDR_REG_MASK 0x7f #define OCPDR_GPHY_REG_SHIFT 16 #define OCPDR_DATA_MASK 0xffff OCPAR = 0xb4, #define OCPAR_FLAG 0x80000000 #define OCPAR_GPHY_WRITE_CMD 0x8000f060 #define OCPAR_GPHY_READ_CMD 0x0000f060 GPHY_OCP = 0xb8, RDSAR1 = 0xd0, /* 8168c only. Undocumented on 8168dp */ MISC = 0xf0, /* 8168e only. */ #define TXPLA_RST (1 << 29) #define DISABLE_LAN_EN (1 << 23) /* Enable GPIO pin */ #define PWM_EN (1 << 22) #define RXDV_GATED_EN (1 << 19) #define EARLY_TALLY_EN (1 << 16) }; enum rtl_register_content { /* InterruptStatusBits */ SYSErr = 0x8000, PCSTimeout = 0x4000, SWInt = 0x0100, TxDescUnavail = 0x0080, RxFIFOOver = 0x0040, LinkChg = 0x0020, RxOverflow = 0x0010, TxErr = 0x0008, TxOK = 0x0004, RxErr = 0x0002, RxOK = 0x0001, /* RxStatusDesc */ RxBOVF = (1 << 24), RxFOVF = (1 << 23), RxRWT = (1 << 22), RxRES = (1 << 21), RxRUNT = (1 << 20), RxCRC = (1 << 19), /* ChipCmdBits */ StopReq = 0x80, CmdReset = 0x10, CmdRxEnb = 0x08, CmdTxEnb = 0x04, RxBufEmpty = 0x01, /* TXPoll register p.5 */ HPQ = 0x80, /* Poll cmd on the high prio queue */ NPQ = 0x40, /* Poll cmd on the low prio queue */ FSWInt = 0x01, /* Forced software interrupt */ /* Cfg9346Bits */ Cfg9346_Lock = 0x00, Cfg9346_Unlock = 0xc0, /* rx_mode_bits */ AcceptErr = 0x20, AcceptRunt = 0x10, AcceptBroadcast = 0x08, AcceptMulticast = 0x04, AcceptMyPhys = 0x02, AcceptAllPhys = 0x01, #define RX_CONFIG_ACCEPT_MASK 0x3f /* TxConfigBits */ TxInterFrameGapShift = 24, TxDMAShift = 8, /* DMA burst value (0-7) is shift this many bits */ /* Config1 register p.24 */ LEDS1 = (1 << 7), LEDS0 = (1 << 6), Speed_down = (1 << 4), MEMMAP = (1 << 3), IOMAP = (1 << 2), VPD = (1 << 1), PMEnable = (1 << 0), /* Power Management Enable */ /* Config2 register p. 25 */ ClkReqEn = (1 << 7), /* Clock Request Enable */ MSIEnable = (1 << 5), /* 8169 only. Reserved in the 8168. */ PCI_Clock_66MHz = 0x01, PCI_Clock_33MHz = 0x00, /* Config3 register p.25 */ MagicPacket = (1 << 5), /* Wake up when receives a Magic Packet */ LinkUp = (1 << 4), /* Wake up when the cable connection is re-established */ Jumbo_En0 = (1 << 2), /* 8168 only. Reserved in the 8168b */ Rdy_to_L23 = (1 << 1), /* L23 Enable */ Beacon_en = (1 << 0), /* 8168 only. Reserved in the 8168b */ /* Config4 register */ Jumbo_En1 = (1 << 1), /* 8168 only. Reserved in the 8168b */ /* Config5 register p.27 */ BWF = (1 << 6), /* Accept Broadcast wakeup frame */ MWF = (1 << 5), /* Accept Multicast wakeup frame */ UWF = (1 << 4), /* Accept Unicast wakeup frame */ Spi_en = (1 << 3), LanWake = (1 << 1), /* LanWake enable/disable */ PMEStatus = (1 << 0), /* PME status can be reset by PCI RST# */ ASPM_en = (1 << 0), /* ASPM enable */ /* CPlusCmd p.31 */ EnableBist = (1 << 15), // 8168 8101 Mac_dbgo_oe = (1 << 14), // 8168 8101 Normal_mode = (1 << 13), // unused Force_half_dup = (1 << 12), // 8168 8101 Force_rxflow_en = (1 << 11), // 8168 8101 Force_txflow_en = (1 << 10), // 8168 8101 Cxpl_dbg_sel = (1 << 9), // 8168 8101 ASF = (1 << 8), // 8168 8101 PktCntrDisable = (1 << 7), // 8168 8101 Mac_dbgo_sel = 0x001c, // 8168 RxVlan = (1 << 6), RxChkSum = (1 << 5), PCIDAC = (1 << 4), PCIMulRW = (1 << 3), #define INTT_MASK GENMASK(1, 0) INTT_0 = 0x0000, // 8168 INTT_1 = 0x0001, // 8168 INTT_2 = 0x0002, // 8168 INTT_3 = 0x0003, // 8168 /* rtl8169_PHYstatus */ TBI_Enable = 0x80, TxFlowCtrl = 0x40, RxFlowCtrl = 0x20, _1000bpsF = 0x10, _100bps = 0x08, _10bps = 0x04, LinkStatus = 0x02, FullDup = 0x01, /* _TBICSRBit */ TBILinkOK = 0x02000000, /* ResetCounterCommand */ CounterReset = 0x1, /* DumpCounterCommand */ CounterDump = 0x8, /* magic enable v2 */ MagicPacket_v2 = (1 << 16), /* Wake up when receives a Magic Packet */ }; enum rtl_desc_bit { /* First doubleword. */ DescOwn = (1 << 31), /* Descriptor is owned by NIC */ RingEnd = (1 << 30), /* End of descriptor ring */ FirstFrag = (1 << 29), /* First segment of a packet */ LastFrag = (1 << 28), /* Final segment of a packet */ }; /* Generic case. */ enum rtl_tx_desc_bit { /* First doubleword. */ TD_LSO = (1 << 27), /* Large Send Offload */ #define TD_MSS_MAX 0x07ffu /* MSS value */ /* Second doubleword. */ TxVlanTag = (1 << 17), /* Add VLAN tag */ }; /* 8169, 8168b and 810x except 8102e. */ enum rtl_tx_desc_bit_0 { /* First doubleword. */ #define TD0_MSS_SHIFT 16 /* MSS position (11 bits) */ TD0_TCP_CS = (1 << 16), /* Calculate TCP/IP checksum */ TD0_UDP_CS = (1 << 17), /* Calculate UDP/IP checksum */ TD0_IP_CS = (1 << 18), /* Calculate IP checksum */ }; /* 8102e, 8168c and beyond. */ enum rtl_tx_desc_bit_1 { /* First doubleword. */ TD1_GTSENV4 = (1 << 26), /* Giant Send for IPv4 */ TD1_GTSENV6 = (1 << 25), /* Giant Send for IPv6 */ #define GTTCPHO_SHIFT 18 #define GTTCPHO_MAX 0x7fU /* Second doubleword. */ #define TCPHO_SHIFT 18 #define TCPHO_MAX 0x3ffU #define TD1_MSS_SHIFT 18 /* MSS position (11 bits) */ TD1_IPv6_CS = (1 << 28), /* Calculate IPv6 checksum */ TD1_IPv4_CS = (1 << 29), /* Calculate IPv4 checksum */ TD1_TCP_CS = (1 << 30), /* Calculate TCP/IP checksum */ TD1_UDP_CS = (1 << 31), /* Calculate UDP/IP checksum */ }; enum rtl_rx_desc_bit { /* Rx private */ PID1 = (1 << 18), /* Protocol ID bit 1/2 */ PID0 = (1 << 17), /* Protocol ID bit 0/2 */ #define RxProtoUDP (PID1) #define RxProtoTCP (PID0) #define RxProtoIP (PID1 | PID0) #define RxProtoMask RxProtoIP IPFail = (1 << 16), /* IP checksum failed */ UDPFail = (1 << 15), /* UDP/IP checksum failed */ TCPFail = (1 << 14), /* TCP/IP checksum failed */ RxVlanTag = (1 << 16), /* VLAN tag available */ }; #define RsvdMask 0x3fffc000 #define CPCMD_QUIRK_MASK (Normal_mode | RxVlan | RxChkSum | INTT_MASK) struct TxDesc { __le32 opts1; __le32 opts2; __le64 addr; }; struct RxDesc { __le32 opts1; __le32 opts2; __le64 addr; }; struct ring_info { struct sk_buff *skb; u32 len; }; struct rtl8169_counters { __le64 tx_packets; __le64 rx_packets; __le64 tx_errors; __le32 rx_errors; __le16 rx_missed; __le16 align_errors; __le32 tx_one_collision; __le32 tx_multi_collision; __le64 rx_unicast; __le64 rx_broadcast; __le32 rx_multicast; __le16 tx_aborted; __le16 tx_underun; }; struct rtl8169_tc_offsets { bool inited; __le64 tx_errors; __le32 tx_multi_collision; __le16 tx_aborted; }; enum rtl_flag { RTL_FLAG_TASK_ENABLED = 0, RTL_FLAG_TASK_RESET_PENDING, RTL_FLAG_MAX }; struct rtl8169_stats { u64 packets; u64 bytes; struct u64_stats_sync syncp; }; struct rtl8169_private { void __iomem *mmio_addr; /* memory map physical address */ struct pci_dev *pci_dev; struct net_device *dev; struct napi_struct napi; u32 msg_enable; u16 mac_version; u32 cur_rx; /* Index into the Rx descriptor buffer of next Rx pkt. */ u32 cur_tx; /* Index into the Tx descriptor buffer of next Rx pkt. */ u32 dirty_tx; struct rtl8169_stats rx_stats; struct rtl8169_stats tx_stats; struct TxDesc *TxDescArray; /* 256-aligned Tx descriptor ring */ struct RxDesc *RxDescArray; /* 256-aligned Rx descriptor ring */ dma_addr_t TxPhyAddr; dma_addr_t RxPhyAddr; void *Rx_databuff[NUM_RX_DESC]; /* Rx data buffers */ struct ring_info tx_skb[NUM_TX_DESC]; /* Tx data buffers */ u16 cp_cmd; u16 irq_mask; const struct rtl_coalesce_info *coalesce_info; struct clk *clk; struct mdio_ops { void (*write)(struct rtl8169_private *, int, int); int (*read)(struct rtl8169_private *, int); } mdio_ops; struct jumbo_ops { void (*enable)(struct rtl8169_private *); void (*disable)(struct rtl8169_private *); } jumbo_ops; void (*hw_start)(struct rtl8169_private *tp); bool (*tso_csum)(struct rtl8169_private *, struct sk_buff *, u32 *); struct { DECLARE_BITMAP(flags, RTL_FLAG_MAX); struct mutex mutex; struct work_struct work; } wk; unsigned supports_gmii:1; struct mii_bus *mii_bus; dma_addr_t counters_phys_addr; struct rtl8169_counters *counters; struct rtl8169_tc_offsets tc_offset; u32 saved_wolopts; struct rtl_fw { const struct firmware *fw; #define RTL_VER_SIZE 32 char version[RTL_VER_SIZE]; struct rtl_fw_phy_action { __le32 *code; size_t size; } phy_action; } *rtl_fw; #define RTL_FIRMWARE_UNKNOWN ERR_PTR(-EAGAIN) u32 ocp_base; }; MODULE_AUTHOR("Realtek and the Linux r8169 crew <netdev@vger.kernel.org>"); MODULE_DESCRIPTION("RealTek RTL-8169 Gigabit Ethernet driver"); module_param(use_dac, int, 0); MODULE_PARM_DESC(use_dac, "Enable PCI DAC. Unsafe on 32 bit PCI slot."); module_param_named(debug, debug.msg_enable, int, 0); MODULE_PARM_DESC(debug, "Debug verbosity level (0=none, ..., 16=all)"); MODULE_SOFTDEP("pre: realtek"); MODULE_LICENSE("GPL"); MODULE_FIRMWARE(FIRMWARE_8168D_1); MODULE_FIRMWARE(FIRMWARE_8168D_2); MODULE_FIRMWARE(FIRMWARE_8168E_1); MODULE_FIRMWARE(FIRMWARE_8168E_2); MODULE_FIRMWARE(FIRMWARE_8168E_3); MODULE_FIRMWARE(FIRMWARE_8105E_1); MODULE_FIRMWARE(FIRMWARE_8168F_1); MODULE_FIRMWARE(FIRMWARE_8168F_2); MODULE_FIRMWARE(FIRMWARE_8402_1); MODULE_FIRMWARE(FIRMWARE_8411_1); MODULE_FIRMWARE(FIRMWARE_8411_2); MODULE_FIRMWARE(FIRMWARE_8106E_1); MODULE_FIRMWARE(FIRMWARE_8106E_2); MODULE_FIRMWARE(FIRMWARE_8168G_2); MODULE_FIRMWARE(FIRMWARE_8168G_3); MODULE_FIRMWARE(FIRMWARE_8168H_1); MODULE_FIRMWARE(FIRMWARE_8168H_2); MODULE_FIRMWARE(FIRMWARE_8107E_1); MODULE_FIRMWARE(FIRMWARE_8107E_2); static inline struct device *tp_to_dev(struct rtl8169_private *tp) { return &tp->pci_dev->dev; } static void rtl_lock_work(struct rtl8169_private *tp) { mutex_lock(&tp->wk.mutex); } static void rtl_unlock_work(struct rtl8169_private *tp) { mutex_unlock(&tp->wk.mutex); } static void rtl_tx_performance_tweak(struct rtl8169_private *tp, u16 force) { pcie_capability_clear_and_set_word(tp->pci_dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_READRQ, force); } struct rtl_cond { bool (*check)(struct rtl8169_private *); const char *msg; }; static void rtl_udelay(unsigned int d) { udelay(d); } static bool rtl_loop_wait(struct rtl8169_private *tp, const struct rtl_cond *c, void (*delay)(unsigned int), unsigned int d, int n, bool high) { int i; for (i = 0; i < n; i++) { delay(d); if (c->check(tp) == high) return true; } netif_err(tp, drv, tp->dev, "%s == %d (loop: %d, delay: %d).\n", c->msg, !high, n, d); return false; } static bool rtl_udelay_loop_wait_high(struct rtl8169_private *tp, const struct rtl_cond *c, unsigned int d, int n) { return rtl_loop_wait(tp, c, rtl_udelay, d, n, true); } static bool rtl_udelay_loop_wait_low(struct rtl8169_private *tp, const struct rtl_cond *c, unsigned int d, int n) { return rtl_loop_wait(tp, c, rtl_udelay, d, n, false); } static bool rtl_msleep_loop_wait_high(struct rtl8169_private *tp, const struct rtl_cond *c, unsigned int d, int n) { return rtl_loop_wait(tp, c, msleep, d, n, true); } static bool rtl_msleep_loop_wait_low(struct rtl8169_private *tp, const struct rtl_cond *c, unsigned int d, int n) { return rtl_loop_wait(tp, c, msleep, d, n, false); } #define DECLARE_RTL_COND(name) \ static bool name ## _check(struct rtl8169_private *); \ \ static const struct rtl_cond name = { \ .check = name ## _check, \ .msg = #name \ }; \ \ static bool name ## _check(struct rtl8169_private *tp) static bool rtl_ocp_reg_failure(struct rtl8169_private *tp, u32 reg) { if (reg & 0xffff0001) { netif_err(tp, drv, tp->dev, "Invalid ocp reg %x!\n", reg); return true; } return false; } DECLARE_RTL_COND(rtl_ocp_gphy_cond) { return RTL_R32(tp, GPHY_OCP) & OCPAR_FLAG; } static void r8168_phy_ocp_write(struct rtl8169_private *tp, u32 reg, u32 data) { if (rtl_ocp_reg_failure(tp, reg)) return; RTL_W32(tp, GPHY_OCP, OCPAR_FLAG | (reg << 15) | data); rtl_udelay_loop_wait_low(tp, &rtl_ocp_gphy_cond, 25, 10); } static u16 r8168_phy_ocp_read(struct rtl8169_private *tp, u32 reg) { if (rtl_ocp_reg_failure(tp, reg)) return 0; RTL_W32(tp, GPHY_OCP, reg << 15); return rtl_udelay_loop_wait_high(tp, &rtl_ocp_gphy_cond, 25, 10) ? (RTL_R32(tp, GPHY_OCP) & 0xffff) : ~0; } static void r8168_mac_ocp_write(struct rtl8169_private *tp, u32 reg, u32 data) { if (rtl_ocp_reg_failure(tp, reg)) return; RTL_W32(tp, OCPDR, OCPAR_FLAG | (reg << 15) | data); } static u16 r8168_mac_ocp_read(struct rtl8169_private *tp, u32 reg) { if (rtl_ocp_reg_failure(tp, reg)) return 0; RTL_W32(tp, OCPDR, reg << 15); return RTL_R32(tp, OCPDR); } #define OCP_STD_PHY_BASE 0xa400 static void r8168g_mdio_write(struct rtl8169_private *tp, int reg, int value) { if (reg == 0x1f) { tp->ocp_base = value ? value << 4 : OCP_STD_PHY_BASE; return; } if (tp->ocp_base != OCP_STD_PHY_BASE) reg -= 0x10; r8168_phy_ocp_write(tp, tp->ocp_base + reg * 2, value); } static int r8168g_mdio_read(struct rtl8169_private *tp, int reg) { if (tp->ocp_base != OCP_STD_PHY_BASE) reg -= 0x10; return r8168_phy_ocp_read(tp, tp->ocp_base + reg * 2); } static void mac_mcu_write(struct rtl8169_private *tp, int reg, int value) { if (reg == 0x1f) { tp->ocp_base = value << 4; return; } r8168_mac_ocp_write(tp, tp->ocp_base + reg, value); } static int mac_mcu_read(struct rtl8169_private *tp, int reg) { return r8168_mac_ocp_read(tp, tp->ocp_base + reg); } DECLARE_RTL_COND(rtl_phyar_cond) { return RTL_R32(tp, PHYAR) & 0x80000000; } static void r8169_mdio_write(struct rtl8169_private *tp, int reg, int value) { RTL_W32(tp, PHYAR, 0x80000000 | (reg & 0x1f) << 16 | (value & 0xffff)); rtl_udelay_loop_wait_low(tp, &rtl_phyar_cond, 25, 20); /* * According to hardware specs a 20us delay is required after write * complete indication, but before sending next command. */ udelay(20); } static int r8169_mdio_read(struct rtl8169_private *tp, int reg) { int value; RTL_W32(tp, PHYAR, 0x0 | (reg & 0x1f) << 16); value = rtl_udelay_loop_wait_high(tp, &rtl_phyar_cond, 25, 20) ? RTL_R32(tp, PHYAR) & 0xffff : ~0; /* * According to hardware specs a 20us delay is required after read * complete indication, but before sending next command. */ udelay(20); return value; } DECLARE_RTL_COND(rtl_ocpar_cond) { return RTL_R32(tp, OCPAR) & OCPAR_FLAG; } static void r8168dp_1_mdio_access(struct rtl8169_private *tp, int reg, u32 data) { RTL_W32(tp, OCPDR, data | ((reg & OCPDR_REG_MASK) << OCPDR_GPHY_REG_SHIFT)); RTL_W32(tp, OCPAR, OCPAR_GPHY_WRITE_CMD); RTL_W32(tp, EPHY_RXER_NUM, 0); rtl_udelay_loop_wait_low(tp, &rtl_ocpar_cond, 1000, 100); } static void r8168dp_1_mdio_write(struct rtl8169_private *tp, int reg, int value) { r8168dp_1_mdio_access(tp, reg, OCPDR_WRITE_CMD | (value & OCPDR_DATA_MASK)); } static int r8168dp_1_mdio_read(struct rtl8169_private *tp, int reg) { r8168dp_1_mdio_access(tp, reg, OCPDR_READ_CMD); mdelay(1); RTL_W32(tp, OCPAR, OCPAR_GPHY_READ_CMD); RTL_W32(tp, EPHY_RXER_NUM, 0); return rtl_udelay_loop_wait_high(tp, &rtl_ocpar_cond, 1000, 100) ? RTL_R32(tp, OCPDR) & OCPDR_DATA_MASK : ~0; } #define R8168DP_1_MDIO_ACCESS_BIT 0x00020000 static void r8168dp_2_mdio_start(struct rtl8169_private *tp) { RTL_W32(tp, 0xd0, RTL_R32(tp, 0xd0) & ~R8168DP_1_MDIO_ACCESS_BIT); } static void r8168dp_2_mdio_stop(struct rtl8169_private *tp) { RTL_W32(tp, 0xd0, RTL_R32(tp, 0xd0) | R8168DP_1_MDIO_ACCESS_BIT); } static void r8168dp_2_mdio_write(struct rtl8169_private *tp, int reg, int value) { r8168dp_2_mdio_start(tp); r8169_mdio_write(tp, reg, value); r8168dp_2_mdio_stop(tp); } static int r8168dp_2_mdio_read(struct rtl8169_private *tp, int reg) { int value; r8168dp_2_mdio_start(tp); value = r8169_mdio_read(tp, reg); r8168dp_2_mdio_stop(tp); return value; } static void rtl_writephy(struct rtl8169_private *tp, int location, u32 val) { tp->mdio_ops.write(tp, location, val); } static int rtl_readphy(struct rtl8169_private *tp, int location) { return tp->mdio_ops.read(tp, location); } static void rtl_patchphy(struct rtl8169_private *tp, int reg_addr, int value) { rtl_writephy(tp, reg_addr, rtl_readphy(tp, reg_addr) | value); } static void rtl_w0w1_phy(struct rtl8169_private *tp, int reg_addr, int p, int m) { int val; val = rtl_readphy(tp, reg_addr); rtl_writephy(tp, reg_addr, (val & ~m) | p); } DECLARE_RTL_COND(rtl_ephyar_cond) { return RTL_R32(tp, EPHYAR) & EPHYAR_FLAG; } static void rtl_ephy_write(struct rtl8169_private *tp, int reg_addr, int value) { RTL_W32(tp, EPHYAR, EPHYAR_WRITE_CMD | (value & EPHYAR_DATA_MASK) | (reg_addr & EPHYAR_REG_MASK) << EPHYAR_REG_SHIFT); rtl_udelay_loop_wait_low(tp, &rtl_ephyar_cond, 10, 100); udelay(10); } static u16 rtl_ephy_read(struct rtl8169_private *tp, int reg_addr) { RTL_W32(tp, EPHYAR, (reg_addr & EPHYAR_REG_MASK) << EPHYAR_REG_SHIFT); return rtl_udelay_loop_wait_high(tp, &rtl_ephyar_cond, 10, 100) ? RTL_R32(tp, EPHYAR) & EPHYAR_DATA_MASK : ~0; } DECLARE_RTL_COND(rtl_eriar_cond) { return RTL_R32(tp, ERIAR) & ERIAR_FLAG; } static void rtl_eri_write(struct rtl8169_private *tp, int addr, u32 mask, u32 val, int type) { BUG_ON((addr & 3) || (mask == 0)); RTL_W32(tp, ERIDR, val); RTL_W32(tp, ERIAR, ERIAR_WRITE_CMD | type | mask | addr); rtl_udelay_loop_wait_low(tp, &rtl_eriar_cond, 100, 100); } static u32 rtl_eri_read(struct rtl8169_private *tp, int addr, int type) { RTL_W32(tp, ERIAR, ERIAR_READ_CMD | type | ERIAR_MASK_1111 | addr); return rtl_udelay_loop_wait_high(tp, &rtl_eriar_cond, 100, 100) ? RTL_R32(tp, ERIDR) : ~0; } static void rtl_w0w1_eri(struct rtl8169_private *tp, int addr, u32 mask, u32 p, u32 m, int type) { u32 val; val = rtl_eri_read(tp, addr, type); rtl_eri_write(tp, addr, mask, (val & ~m) | p, type); } static u32 r8168dp_ocp_read(struct rtl8169_private *tp, u8 mask, u16 reg) { RTL_W32(tp, OCPAR, ((u32)mask & 0x0f) << 12 | (reg & 0x0fff)); return rtl_udelay_loop_wait_high(tp, &rtl_ocpar_cond, 100, 20) ? RTL_R32(tp, OCPDR) : ~0; } static u32 r8168ep_ocp_read(struct rtl8169_private *tp, u8 mask, u16 reg) { return rtl_eri_read(tp, reg, ERIAR_OOB); } static void r8168dp_ocp_write(struct rtl8169_private *tp, u8 mask, u16 reg, u32 data) { RTL_W32(tp, OCPDR, data); RTL_W32(tp, OCPAR, OCPAR_FLAG | ((u32)mask & 0x0f) << 12 | (reg & 0x0fff)); rtl_udelay_loop_wait_low(tp, &rtl_ocpar_cond, 100, 20); } static void r8168ep_ocp_write(struct rtl8169_private *tp, u8 mask, u16 reg, u32 data) { rtl_eri_write(tp, reg, ((u32)mask & 0x0f) << ERIAR_MASK_SHIFT, data, ERIAR_OOB); } static void r8168dp_oob_notify(struct rtl8169_private *tp, u8 cmd) { rtl_eri_write(tp, 0xe8, ERIAR_MASK_0001, cmd, ERIAR_EXGMAC); r8168dp_ocp_write(tp, 0x1, 0x30, 0x00000001); } #define OOB_CMD_RESET 0x00 #define OOB_CMD_DRIVER_START 0x05 #define OOB_CMD_DRIVER_STOP 0x06 static u16 rtl8168_get_ocp_reg(struct rtl8169_private *tp) { return (tp->mac_version == RTL_GIGA_MAC_VER_31) ? 0xb8 : 0x10; } DECLARE_RTL_COND(rtl_dp_ocp_read_cond) { u16 reg; reg = rtl8168_get_ocp_reg(tp); return r8168dp_ocp_read(tp, 0x0f, reg) & 0x00000800; } DECLARE_RTL_COND(rtl_ep_ocp_read_cond) { return r8168ep_ocp_read(tp, 0x0f, 0x124) & 0x00000001; } DECLARE_RTL_COND(rtl_ocp_tx_cond) { return RTL_R8(tp, IBISR0) & 0x20; } static void rtl8168ep_stop_cmac(struct rtl8169_private *tp) { RTL_W8(tp, IBCR2, RTL_R8(tp, IBCR2) & ~0x01); rtl_msleep_loop_wait_high(tp, &rtl_ocp_tx_cond, 50, 2000); RTL_W8(tp, IBISR0, RTL_R8(tp, IBISR0) | 0x20); RTL_W8(tp, IBCR0, RTL_R8(tp, IBCR0) & ~0x01); } static void rtl8168dp_driver_start(struct rtl8169_private *tp) { r8168dp_oob_notify(tp, OOB_CMD_DRIVER_START); rtl_msleep_loop_wait_high(tp, &rtl_dp_ocp_read_cond, 10, 10); } static void rtl8168ep_driver_start(struct rtl8169_private *tp) { r8168ep_ocp_write(tp, 0x01, 0x180, OOB_CMD_DRIVER_START); r8168ep_ocp_write(tp, 0x01, 0x30, r8168ep_ocp_read(tp, 0x01, 0x30) | 0x01); rtl_msleep_loop_wait_high(tp, &rtl_ep_ocp_read_cond, 10, 10); } static void rtl8168_driver_start(struct rtl8169_private *tp) { switch (tp->mac_version) { case RTL_GIGA_MAC_VER_27: case RTL_GIGA_MAC_VER_28: case RTL_GIGA_MAC_VER_31: rtl8168dp_driver_start(tp); break; case RTL_GIGA_MAC_VER_49: case RTL_GIGA_MAC_VER_50: case RTL_GIGA_MAC_VER_51: rtl8168ep_driver_start(tp); break; default: BUG(); break; } } static void rtl8168dp_driver_stop(struct rtl8169_private *tp) { r8168dp_oob_notify(tp, OOB_CMD_DRIVER_STOP); rtl_msleep_loop_wait_low(tp, &rtl_dp_ocp_read_cond, 10, 10); } static void rtl8168ep_driver_stop(struct rtl8169_private *tp) { rtl8168ep_stop_cmac(tp); r8168ep_ocp_write(tp, 0x01, 0x180, OOB_CMD_DRIVER_STOP); r8168ep_ocp_write(tp, 0x01, 0x30, r8168ep_ocp_read(tp, 0x01, 0x30) | 0x01); rtl_msleep_loop_wait_low(tp, &rtl_ep_ocp_read_cond, 10, 10); } static void rtl8168_driver_stop(struct rtl8169_private *tp) { switch (tp->mac_version) { case RTL_GIGA_MAC_VER_27: case RTL_GIGA_MAC_VER_28: case RTL_GIGA_MAC_VER_31: rtl8168dp_driver_stop(tp); break; case RTL_GIGA_MAC_VER_49: case RTL_GIGA_MAC_VER_50: case RTL_GIGA_MAC_VER_51: rtl8168ep_driver_stop(tp); break; default: BUG(); break; } } static bool r8168dp_check_dash(struct rtl8169_private *tp) { u16 reg = rtl8168_get_ocp_reg(tp); return !!(r8168dp_ocp_read(tp, 0x0f, reg) & 0x00008000); } static bool r8168ep_check_dash(struct rtl8169_private *tp) { return !!(r8168ep_ocp_read(tp, 0x0f, 0x128) & 0x00000001); } static bool r8168_check_dash(struct rtl8169_private *tp) { switch (tp->mac_version) { case RTL_GIGA_MAC_VER_27: case RTL_GIGA_MAC_VER_28: case RTL_GIGA_MAC_VER_31: return r8168dp_check_dash(tp); case RTL_GIGA_MAC_VER_49: case RTL_GIGA_MAC_VER_50: case RTL_GIGA_MAC_VER_51: return r8168ep_check_dash(tp); default: return false; } } struct exgmac_reg { u16 addr; u16 mask; u32 val; }; static void rtl_write_exgmac_batch(struct rtl8169_private *tp, const struct exgmac_reg *r, int len) { while (len-- > 0) { rtl_eri_write(tp, r->addr, r->mask, r->val, ERIAR_EXGMAC); r++; } } DECLARE_RTL_COND(rtl_efusear_cond) { return RTL_R32(tp, EFUSEAR) & EFUSEAR_FLAG; } static u8 rtl8168d_efuse_read(struct rtl8169_private *tp, int reg_addr) { RTL_W32(tp, EFUSEAR, (reg_addr & EFUSEAR_REG_MASK) << EFUSEAR_REG_SHIFT); return rtl_udelay_loop_wait_high(tp, &rtl_efusear_cond, 100, 300) ? RTL_R32(tp, EFUSEAR) & EFUSEAR_DATA_MASK : ~0; } static u16 rtl_get_events(struct rtl8169_private *tp) { return RTL_R16(tp, IntrStatus); } static void rtl_ack_events(struct rtl8169_private *tp, u16 bits) { RTL_W16(tp, IntrStatus, bits); mmiowb(); } static void rtl_irq_disable(struct rtl8169_private *tp) { RTL_W16(tp, IntrMask, 0); mmiowb(); } #define RTL_EVENT_NAPI_RX (RxOK | RxErr) #define RTL_EVENT_NAPI_TX (TxOK | TxErr) #define RTL_EVENT_NAPI (RTL_EVENT_NAPI_RX | RTL_EVENT_NAPI_TX) static void rtl_irq_enable(struct rtl8169_private *tp) { RTL_W16(tp, IntrMask, tp->irq_mask); } static void rtl8169_irq_mask_and_ack(struct rtl8169_private *tp) { rtl_irq_disable(tp); rtl_ack_events(tp, 0xffff); /* PCI commit */ RTL_R8(tp, ChipCmd); } static void rtl_link_chg_patch(struct rtl8169_private *tp) { struct net_device *dev = tp->dev; struct phy_device *phydev = dev->phydev; if (!netif_running(dev)) return; if (tp->mac_version == RTL_GIGA_MAC_VER_34 || tp->mac_version == RTL_GIGA_MAC_VER_38) { if (phydev->speed == SPEED_1000) { rtl_eri_write(tp, 0x1bc, ERIAR_MASK_1111, 0x00000011, ERIAR_EXGMAC); rtl_eri_write(tp, 0x1dc, ERIAR_MASK_1111, 0x00000005, ERIAR_EXGMAC); } else if (phydev->speed == SPEED_100) { rtl_eri_write(tp, 0x1bc, ERIAR_MASK_1111, 0x0000001f, ERIAR_EXGMAC); rtl_eri_write(tp, 0x1dc, ERIAR_MASK_1111, 0x00000005, ERIAR_EXGMAC); } else { rtl_eri_write(tp, 0x1bc, ERIAR_MASK_1111, 0x0000001f, ERIAR_EXGMAC); rtl_eri_write(tp, 0x1dc, ERIAR_MASK_1111, 0x0000003f, ERIAR_EXGMAC); } /* Reset packet filter */ rtl_w0w1_eri(tp, 0xdc, ERIAR_MASK_0001, 0x00, 0x01, ERIAR_EXGMAC); rtl_w0w1_eri(tp, 0xdc, ERIAR_MASK_0001, 0x01, 0x00, ERIAR_EXGMAC); } else if (tp->mac_version == RTL_GIGA_MAC_VER_35 || tp->mac_version == RTL_GIGA_MAC_VER_36) { if (phydev->speed == SPEED_1000) { rtl_eri_write(tp, 0x1bc, ERIAR_MASK_1111, 0x00000011, ERIAR_EXGMAC); rtl_eri_write(tp, 0x1dc, ERIAR_MASK_1111, 0x00000005, ERIAR_EXGMAC); } else { rtl_eri_write(tp, 0x1bc, ERIAR_MASK_1111, 0x0000001f, ERIAR_EXGMAC); rtl_eri_write(tp, 0x1dc, ERIAR_MASK_1111, 0x0000003f, ERIAR_EXGMAC); } } else if (tp->mac_version == RTL_GIGA_MAC_VER_37) { if (phydev->speed == SPEED_10) { rtl_eri_write(tp, 0x1d0, ERIAR_MASK_0011, 0x4d02, ERIAR_EXGMAC); rtl_eri_write(tp, 0x1dc, ERIAR_MASK_0011, 0x0060, ERIAR_EXGMAC); } else { rtl_eri_write(tp, 0x1d0, ERIAR_MASK_0011, 0x0000, ERIAR_EXGMAC); } } } #define WAKE_ANY (WAKE_PHY | WAKE_MAGIC | WAKE_UCAST | WAKE_BCAST | WAKE_MCAST) static u32 __rtl8169_get_wol(struct rtl8169_private *tp) { u8 options; u32 wolopts = 0; options = RTL_R8(tp, Config1); if (!(options & PMEnable)) return 0; options = RTL_R8(tp, Config3); if (options & LinkUp) wolopts |= WAKE_PHY; switch (tp->mac_version) { case RTL_GIGA_MAC_VER_34 ... RTL_GIGA_MAC_VER_38: case RTL_GIGA_MAC_VER_40 ... RTL_GIGA_MAC_VER_51: if (rtl_eri_read(tp, 0xdc, ERIAR_EXGMAC) & MagicPacket_v2) wolopts |= WAKE_MAGIC; break; default: if (options & MagicPacket) wolopts |= WAKE_MAGIC; break; } options = RTL_R8(tp, Config5); if (options & UWF) wolopts |= WAKE_UCAST; if (options & BWF) wolopts |= WAKE_BCAST; if (options & MWF) wolopts |= WAKE_MCAST; return wolopts; } static void rtl8169_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol) { struct rtl8169_private *tp = netdev_priv(dev); rtl_lock_work(tp); wol->supported = WAKE_ANY; wol->wolopts = tp->saved_wolopts; rtl_unlock_work(tp); } static void __rtl8169_set_wol(struct rtl8169_private *tp, u32 wolopts) { unsigned int i, tmp; static const struct { u32 opt; u16 reg; u8 mask; } cfg[] = { { WAKE_PHY, Config3, LinkUp }, { WAKE_UCAST, Config5, UWF }, { WAKE_BCAST, Config5, BWF }, { WAKE_MCAST, Config5, MWF }, { WAKE_ANY, Config5, LanWake }, { WAKE_MAGIC, Config3, MagicPacket } }; u8 options; RTL_W8(tp, Cfg9346, Cfg9346_Unlock); switch (tp->mac_version) { case RTL_GIGA_MAC_VER_34 ... RTL_GIGA_MAC_VER_38: case RTL_GIGA_MAC_VER_40 ... RTL_GIGA_MAC_VER_51: tmp = ARRAY_SIZE(cfg) - 1; if (wolopts & WAKE_MAGIC) rtl_w0w1_eri(tp, 0x0dc, ERIAR_MASK_0100, MagicPacket_v2, 0x0000, ERIAR_EXGMAC); else rtl_w0w1_eri(tp, 0x0dc, ERIAR_MASK_0100, 0x0000, MagicPacket_v2, ERIAR_EXGMAC); break; default: tmp = ARRAY_SIZE(cfg); break; } for (i = 0; i < tmp; i++) { options = RTL_R8(tp, cfg[i].reg) & ~cfg[i].mask; if (wolopts & cfg[i].opt) options |= cfg[i].mask; RTL_W8(tp, cfg[i].reg, options); } switch (tp->mac_version) { case RTL_GIGA_MAC_VER_01 ... RTL_GIGA_MAC_VER_17: options = RTL_R8(tp, Config1) & ~PMEnable; if (wolopts) options |= PMEnable; RTL_W8(tp, Config1, options); break; default: options = RTL_R8(tp, Config2) & ~PME_SIGNAL; if (wolopts) options |= PME_SIGNAL; RTL_W8(tp, Config2, options); break; } RTL_W8(tp, Cfg9346, Cfg9346_Lock); device_set_wakeup_enable(tp_to_dev(tp), wolopts); } static int rtl8169_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol) { struct rtl8169_private *tp = netdev_priv(dev); struct device *d = tp_to_dev(tp); if (wol->wolopts & ~WAKE_ANY) return -EINVAL; pm_runtime_get_noresume(d); rtl_lock_work(tp); tp->saved_wolopts = wol->wolopts; if (pm_runtime_active(d)) __rtl8169_set_wol(tp, tp->saved_wolopts); rtl_unlock_work(tp); pm_runtime_put_noidle(d); return 0; } static const char *rtl_lookup_firmware_name(struct rtl8169_private *tp) { return rtl_chip_infos[tp->mac_version].fw_name; } static void rtl8169_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) { struct rtl8169_private *tp = netdev_priv(dev); struct rtl_fw *rtl_fw = tp->rtl_fw; strlcpy(info->driver, MODULENAME, sizeof(info->driver)); strlcpy(info->bus_info, pci_name(tp->pci_dev), sizeof(info->bus_info)); BUILD_BUG_ON(sizeof(info->fw_version) < sizeof(rtl_fw->version)); if (!IS_ERR_OR_NULL(rtl_fw)) strlcpy(info->fw_version, rtl_fw->version, sizeof(info->fw_version)); } static int rtl8169_get_regs_len(struct net_device *dev) { return R8169_REGS_SIZE; } static netdev_features_t rtl8169_fix_features(struct net_device *dev, netdev_features_t features) { struct rtl8169_private *tp = netdev_priv(dev); if (dev->mtu > TD_MSS_MAX) features &= ~NETIF_F_ALL_TSO; if (dev->mtu > JUMBO_1K && tp->mac_version > RTL_GIGA_MAC_VER_06) features &= ~NETIF_F_IP_CSUM; return features; } static int rtl8169_set_features(struct net_device *dev, netdev_features_t features) { struct rtl8169_private *tp = netdev_priv(dev); u32 rx_config; rtl_lock_work(tp); rx_config = RTL_R32(tp, RxConfig); if (features & NETIF_F_RXALL) rx_config |= (AcceptErr | AcceptRunt); else rx_config &= ~(AcceptErr | AcceptRunt); RTL_W32(tp, RxConfig, rx_config); if (features & NETIF_F_RXCSUM) tp->cp_cmd |= RxChkSum; else tp->cp_cmd &= ~RxChkSum; if (features & NETIF_F_HW_VLAN_CTAG_RX) tp->cp_cmd |= RxVlan; else tp->cp_cmd &= ~RxVlan; RTL_W16(tp, CPlusCmd, tp->cp_cmd); RTL_R16(tp, CPlusCmd); rtl_unlock_work(tp); return 0; } static inline u32 rtl8169_tx_vlan_tag(struct sk_buff *skb) { return (skb_vlan_tag_present(skb)) ? TxVlanTag | swab16(skb_vlan_tag_get(skb)) : 0x00; } static void rtl8169_rx_vlan_tag(struct RxDesc *desc, struct sk_buff *skb) { u32 opts2 = le32_to_cpu(desc->opts2); if (opts2 & RxVlanTag) __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), swab16(opts2 & 0xffff)); } static void rtl8169_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *p) { struct rtl8169_private *tp = netdev_priv(dev); u32 __iomem *data = tp->mmio_addr; u32 *dw = p; int i; rtl_lock_work(tp); for (i = 0; i < R8169_REGS_SIZE; i += 4) memcpy_fromio(dw++, data++, 4); rtl_unlock_work(tp); } static u32 rtl8169_get_msglevel(struct net_device *dev) { struct rtl8169_private *tp = netdev_priv(dev); return tp->msg_enable; } static void rtl8169_set_msglevel(struct net_device *dev, u32 value) { struct rtl8169_private *tp = netdev_priv(dev); tp->msg_enable = value; } static const char rtl8169_gstrings[][ETH_GSTRING_LEN] = { "tx_packets", "rx_packets", "tx_errors", "rx_errors", "rx_missed", "align_errors", "tx_single_collisions", "tx_multi_collisions", "unicast", "broadcast", "multicast", "tx_aborted", "tx_underrun", }; static int rtl8169_get_sset_count(struct net_device *dev, int sset) { switch (sset) { case ETH_SS_STATS: return ARRAY_SIZE(rtl8169_gstrings); default: return -EOPNOTSUPP; } } DECLARE_RTL_COND(rtl_counters_cond) { return RTL_R32(tp, CounterAddrLow) & (CounterReset | CounterDump); } static bool rtl8169_do_counters(struct rtl8169_private *tp, u32 counter_cmd) { dma_addr_t paddr = tp->counters_phys_addr; u32 cmd; RTL_W32(tp, CounterAddrHigh, (u64)paddr >> 32); RTL_R32(tp, CounterAddrHigh); cmd = (u64)paddr & DMA_BIT_MASK(32); RTL_W32(tp, CounterAddrLow, cmd); RTL_W32(tp, CounterAddrLow, cmd | counter_cmd); return rtl_udelay_loop_wait_low(tp, &rtl_counters_cond, 10, 1000); } static bool rtl8169_reset_counters(struct rtl8169_private *tp) { /* * Versions prior to RTL_GIGA_MAC_VER_19 don't support resetting the * tally counters. */ if (tp->mac_version < RTL_GIGA_MAC_VER_19) return true; return rtl8169_do_counters(tp, CounterReset); } static bool rtl8169_update_counters(struct rtl8169_private *tp) { u8 val = RTL_R8(tp, ChipCmd); /* * Some chips are unable to dump tally counters when the receiver * is disabled. If 0xff chip may be in a PCI power-save state. */ if (!(val & CmdRxEnb) || val == 0xff) return true; return rtl8169_do_counters(tp, CounterDump); } static bool rtl8169_init_counter_offsets(struct rtl8169_private *tp) { struct rtl8169_counters *counters = tp->counters; bool ret = false; /* * rtl8169_init_counter_offsets is called from rtl_open. On chip * versions prior to RTL_GIGA_MAC_VER_19 the tally counters are only * reset by a power cycle, while the counter values collected by the * driver are reset at every driver unload/load cycle. * * To make sure the HW values returned by @get_stats64 match the SW * values, we collect the initial values at first open(*) and use them * as offsets to normalize the values returned by @get_stats64. * * (*) We can't call rtl8169_init_counter_offsets from rtl_init_one * for the reason stated in rtl8169_update_counters; CmdRxEnb is only * set at open time by rtl_hw_start. */ if (tp->tc_offset.inited) return true; /* If both, reset and update fail, propagate to caller. */ if (rtl8169_reset_counters(tp)) ret = true; if (rtl8169_update_counters(tp)) ret = true; tp->tc_offset.tx_errors = counters->tx_errors; tp->tc_offset.tx_multi_collision = counters->tx_multi_collision; tp->tc_offset.tx_aborted = counters->tx_aborted; tp->tc_offset.inited = true; return ret; } static void rtl8169_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *stats, u64 *data) { struct rtl8169_private *tp = netdev_priv(dev); struct device *d = tp_to_dev(tp); struct rtl8169_counters *counters = tp->counters; ASSERT_RTNL(); pm_runtime_get_noresume(d); if (pm_runtime_active(d)) rtl8169_update_counters(tp); pm_runtime_put_noidle(d); data[0] = le64_to_cpu(counters->tx_packets); data[1] = le64_to_cpu(counters->rx_packets); data[2] = le64_to_cpu(counters->tx_errors); data[3] = le32_to_cpu(counters->rx_errors); data[4] = le16_to_cpu(counters->rx_missed); data[5] = le16_to_cpu(counters->align_errors); data[6] = le32_to_cpu(counters->tx_one_collision); data[7] = le32_to_cpu(counters->tx_multi_collision); data[8] = le64_to_cpu(counters->rx_unicast); data[9] = le64_to_cpu(counters->rx_broadcast); data[10] = le32_to_cpu(counters->rx_multicast); data[11] = le16_to_cpu(counters->tx_aborted); data[12] = le16_to_cpu(counters->tx_underun); } static void rtl8169_get_strings(struct net_device *dev, u32 stringset, u8 *data) { switch(stringset) { case ETH_SS_STATS: memcpy(data, *rtl8169_gstrings, sizeof(rtl8169_gstrings)); break; } } /* * Interrupt coalescing * * > 1 - the availability of the IntrMitigate (0xe2) register through the * > 8169, 8168 and 810x line of chipsets * * 8169, 8168, and 8136(810x) serial chipsets support it. * * > 2 - the Tx timer unit at gigabit speed * * The unit of the timer depends on both the speed and the setting of CPlusCmd * (0xe0) bit 1 and bit 0. * * For 8169 * bit[1:0] \ speed 1000M 100M 10M * 0 0 320ns 2.56us 40.96us * 0 1 2.56us 20.48us 327.7us * 1 0 5.12us 40.96us 655.4us * 1 1 10.24us 81.92us 1.31ms * * For the other * bit[1:0] \ speed 1000M 100M 10M * 0 0 5us 2.56us 40.96us * 0 1 40us 20.48us 327.7us * 1 0 80us 40.96us 655.4us * 1 1 160us 81.92us 1.31ms */ /* rx/tx scale factors for one particular CPlusCmd[0:1] value */ struct rtl_coalesce_scale { /* Rx / Tx */ u32 nsecs[2]; }; /* rx/tx scale factors for all CPlusCmd[0:1] cases */ struct rtl_coalesce_info { u32 speed; struct rtl_coalesce_scale scalev[4]; /* each CPlusCmd[0:1] case */ }; /* produce (r,t) pairs with each being in series of *1, *8, *8*2, *8*2*2 */ #define rxtx_x1822(r, t) { \ {{(r), (t)}}, \ {{(r)*8, (t)*8}}, \ {{(r)*8*2, (t)*8*2}}, \ {{(r)*8*2*2, (t)*8*2*2}}, \ } static const struct rtl_coalesce_info rtl_coalesce_info_8169[] = { /* speed delays: rx00 tx00 */ { SPEED_10, rxtx_x1822(40960, 40960) }, { SPEED_100, rxtx_x1822( 2560, 2560) }, { SPEED_1000, rxtx_x1822( 320, 320) }, { 0 }, }; static const struct rtl_coalesce_info rtl_coalesce_info_8168_8136[] = { /* speed delays: rx00 tx00 */ { SPEED_10, rxtx_x1822(40960, 40960) }, { SPEED_100, rxtx_x1822( 2560, 2560) }, { SPEED_1000, rxtx_x1822( 5000, 5000) }, { 0 }, }; #undef rxtx_x1822 /* get rx/tx scale vector corresponding to current speed */ static const struct rtl_coalesce_info *rtl_coalesce_info(struct net_device *dev) { struct rtl8169_private *tp = netdev_priv(dev); struct ethtool_link_ksettings ecmd; const struct rtl_coalesce_info *ci; int rc; rc = phy_ethtool_get_link_ksettings(dev, &ecmd); if (rc < 0) return ERR_PTR(rc); for (ci = tp->coalesce_info; ci->speed != 0; ci++) { if (ecmd.base.speed == ci->speed) { return ci; } } return ERR_PTR(-ELNRNG); } static int rtl_get_coalesce(struct net_device *dev, struct ethtool_coalesce *ec) { struct rtl8169_private *tp = netdev_priv(dev); const struct rtl_coalesce_info *ci; const struct rtl_coalesce_scale *scale; struct { u32 *max_frames; u32 *usecs; } coal_settings [] = { { &ec->rx_max_coalesced_frames, &ec->rx_coalesce_usecs }, { &ec->tx_max_coalesced_frames, &ec->tx_coalesce_usecs } }, *p = coal_settings; int i; u16 w; memset(ec, 0, sizeof(*ec)); /* get rx/tx scale corresponding to current speed and CPlusCmd[0:1] */ ci = rtl_coalesce_info(dev); if (IS_ERR(ci)) return PTR_ERR(ci); scale = &ci->scalev[tp->cp_cmd & INTT_MASK]; /* read IntrMitigate and adjust according to scale */ for (w = RTL_R16(tp, IntrMitigate); w; w >>= RTL_COALESCE_SHIFT, p++) { *p->max_frames = (w & RTL_COALESCE_MASK) << 2; w >>= RTL_COALESCE_SHIFT; *p->usecs = w & RTL_COALESCE_MASK; } for (i = 0; i < 2; i++) { p = coal_settings + i; *p->usecs = (*p->usecs * scale->nsecs[i]) / 1000; /* * ethtool_coalesce says it is illegal to set both usecs and * max_frames to 0. */ if (!*p->usecs && !*p->max_frames) *p->max_frames = 1; } return 0; } /* choose appropriate scale factor and CPlusCmd[0:1] for (speed, nsec) */ static const struct rtl_coalesce_scale *rtl_coalesce_choose_scale( struct net_device *dev, u32 nsec, u16 *cp01) { const struct rtl_coalesce_info *ci; u16 i; ci = rtl_coalesce_info(dev); if (IS_ERR(ci)) return ERR_CAST(ci); for (i = 0; i < 4; i++) { u32 rxtx_maxscale = max(ci->scalev[i].nsecs[0], ci->scalev[i].nsecs[1]); if (nsec <= rxtx_maxscale * RTL_COALESCE_T_MAX) { *cp01 = i; return &ci->scalev[i]; } } return ERR_PTR(-EINVAL); } static int rtl_set_coalesce(struct net_device *dev, struct ethtool_coalesce *ec) { struct rtl8169_private *tp = netdev_priv(dev); const struct rtl_coalesce_scale *scale; struct { u32 frames; u32 usecs; } coal_settings [] = { { ec->rx_max_coalesced_frames, ec->rx_coalesce_usecs }, { ec->tx_max_coalesced_frames, ec->tx_coalesce_usecs } }, *p = coal_settings; u16 w = 0, cp01; int i; scale = rtl_coalesce_choose_scale(dev, max(p[0].usecs, p[1].usecs) * 1000, &cp01); if (IS_ERR(scale)) return PTR_ERR(scale); for (i = 0; i < 2; i++, p++) { u32 units; /* * accept max_frames=1 we returned in rtl_get_coalesce. * accept it not only when usecs=0 because of e.g. the following scenario: * * - both rx_usecs=0 & rx_frames=0 in hardware (no delay on RX) * - rtl_get_coalesce returns rx_usecs=0, rx_frames=1 * - then user does `ethtool -C eth0 rx-usecs 100` * * since ethtool sends to kernel whole ethtool_coalesce * settings, if we do not handle rx_usecs=!0, rx_frames=1 * we'll reject it below in `frames % 4 != 0`. */ if (p->frames == 1) { p->frames = 0; } units = p->usecs * 1000 / scale->nsecs[i]; if (p->frames > RTL_COALESCE_FRAME_MAX || p->frames % 4) return -EINVAL; w <<= RTL_COALESCE_SHIFT; w |= units; w <<= RTL_COALESCE_SHIFT; w |= p->frames >> 2; } rtl_lock_work(tp); RTL_W16(tp, IntrMitigate, swab16(w)); tp->cp_cmd = (tp->cp_cmd & ~INTT_MASK) | cp01; RTL_W16(tp, CPlusCmd, tp->cp_cmd); RTL_R16(tp, CPlusCmd); rtl_unlock_work(tp); return 0; } static const struct ethtool_ops rtl8169_ethtool_ops = { .get_drvinfo = rtl8169_get_drvinfo, .get_regs_len = rtl8169_get_regs_len, .get_link = ethtool_op_get_link, .get_coalesce = rtl_get_coalesce, .set_coalesce = rtl_set_coalesce, .get_msglevel = rtl8169_get_msglevel, .set_msglevel = rtl8169_set_msglevel, .get_regs = rtl8169_get_regs, .get_wol = rtl8169_get_wol, .set_wol = rtl8169_set_wol, .get_strings = rtl8169_get_strings, .get_sset_count = rtl8169_get_sset_count, .get_ethtool_stats = rtl8169_get_ethtool_stats, .get_ts_info = ethtool_op_get_ts_info, .nway_reset = phy_ethtool_nway_reset, .get_link_ksettings = phy_ethtool_get_link_ksettings, .set_link_ksettings = phy_ethtool_set_link_ksettings, }; static void rtl8169_get_mac_version(struct rtl8169_private *tp) { /* * The driver currently handles the 8168Bf and the 8168Be identically * but they can be identified more specifically through the test below * if needed: * * (RTL_R32(tp, TxConfig) & 0x700000) == 0x500000 ? 8168Bf : 8168Be * * Same thing for the 8101Eb and the 8101Ec: * * (RTL_R32(tp, TxConfig) & 0x700000) == 0x200000 ? 8101Eb : 8101Ec */ static const struct rtl_mac_info { u16 mask; u16 val; u16 mac_version; } mac_info[] = { /* 8168EP family. */ { 0x7cf, 0x502, RTL_GIGA_MAC_VER_51 }, { 0x7cf, 0x501, RTL_GIGA_MAC_VER_50 }, { 0x7cf, 0x500, RTL_GIGA_MAC_VER_49 }, /* 8168H family. */ { 0x7cf, 0x541, RTL_GIGA_MAC_VER_46 }, { 0x7cf, 0x540, RTL_GIGA_MAC_VER_45 }, /* 8168G family. */ { 0x7cf, 0x5c8, RTL_GIGA_MAC_VER_44 }, { 0x7cf, 0x509, RTL_GIGA_MAC_VER_42 }, { 0x7cf, 0x4c1, RTL_GIGA_MAC_VER_41 }, { 0x7cf, 0x4c0, RTL_GIGA_MAC_VER_40 }, /* 8168F family. */ { 0x7c8, 0x488, RTL_GIGA_MAC_VER_38 }, { 0x7cf, 0x481, RTL_GIGA_MAC_VER_36 }, { 0x7cf, 0x480, RTL_GIGA_MAC_VER_35 }, /* 8168E family. */ { 0x7c8, 0x2c8, RTL_GIGA_MAC_VER_34 }, { 0x7cf, 0x2c1, RTL_GIGA_MAC_VER_32 }, { 0x7c8, 0x2c0, RTL_GIGA_MAC_VER_33 }, /* 8168D family. */ { 0x7cf, 0x281, RTL_GIGA_MAC_VER_25 }, { 0x7c8, 0x280, RTL_GIGA_MAC_VER_26 }, /* 8168DP family. */ { 0x7cf, 0x288, RTL_GIGA_MAC_VER_27 }, { 0x7cf, 0x28a, RTL_GIGA_MAC_VER_28 }, { 0x7cf, 0x28b, RTL_GIGA_MAC_VER_31 }, /* 8168C family. */ { 0x7cf, 0x3c9, RTL_GIGA_MAC_VER_23 }, { 0x7cf, 0x3c8, RTL_GIGA_MAC_VER_18 }, { 0x7c8, 0x3c8, RTL_GIGA_MAC_VER_24 }, { 0x7cf, 0x3c0, RTL_GIGA_MAC_VER_19 }, { 0x7cf, 0x3c2, RTL_GIGA_MAC_VER_20 }, { 0x7cf, 0x3c3, RTL_GIGA_MAC_VER_21 }, { 0x7c8, 0x3c0, RTL_GIGA_MAC_VER_22 }, /* 8168B family. */ { 0x7cf, 0x380, RTL_GIGA_MAC_VER_12 }, { 0x7c8, 0x380, RTL_GIGA_MAC_VER_17 }, { 0x7c8, 0x300, RTL_GIGA_MAC_VER_11 }, /* 8101 family. */ { 0x7c8, 0x448, RTL_GIGA_MAC_VER_39 }, { 0x7c8, 0x440, RTL_GIGA_MAC_VER_37 }, { 0x7cf, 0x409, RTL_GIGA_MAC_VER_29 }, { 0x7c8, 0x408, RTL_GIGA_MAC_VER_30 }, { 0x7cf, 0x349, RTL_GIGA_MAC_VER_08 }, { 0x7cf, 0x249, RTL_GIGA_MAC_VER_08 }, { 0x7cf, 0x348, RTL_GIGA_MAC_VER_07 }, { 0x7cf, 0x248, RTL_GIGA_MAC_VER_07 }, { 0x7cf, 0x340, RTL_GIGA_MAC_VER_13 }, { 0x7cf, 0x343, RTL_GIGA_MAC_VER_10 }, { 0x7cf, 0x342, RTL_GIGA_MAC_VER_16 }, { 0x7c8, 0x348, RTL_GIGA_MAC_VER_09 }, { 0x7c8, 0x248, RTL_GIGA_MAC_VER_09 }, { 0x7c8, 0x340, RTL_GIGA_MAC_VER_16 }, /* FIXME: where did these entries come from ? -- FR */ { 0xfc8, 0x388, RTL_GIGA_MAC_VER_15 }, { 0xfc8, 0x308, RTL_GIGA_MAC_VER_14 }, /* 8110 family. */ { 0xfc8, 0x980, RTL_GIGA_MAC_VER_06 }, { 0xfc8, 0x180, RTL_GIGA_MAC_VER_05 }, { 0xfc8, 0x100, RTL_GIGA_MAC_VER_04 }, { 0xfc8, 0x040, RTL_GIGA_MAC_VER_03 }, { 0xfc8, 0x008, RTL_GIGA_MAC_VER_02 }, { 0xfc8, 0x000, RTL_GIGA_MAC_VER_01 }, /* Catch-all */ { 0x000, 0x000, RTL_GIGA_MAC_NONE } }; const struct rtl_mac_info *p = mac_info; u16 reg = RTL_R32(tp, TxConfig) >> 20; while ((reg & p->mask) != p->val) p++; tp->mac_version = p->mac_version; if (tp->mac_version == RTL_GIGA_MAC_NONE) { dev_err(tp_to_dev(tp), "unknown chip XID %03x\n", reg & 0xfcf); } else if (!tp->supports_gmii) { if (tp->mac_version == RTL_GIGA_MAC_VER_42) tp->mac_version = RTL_GIGA_MAC_VER_43; else if (tp->mac_version == RTL_GIGA_MAC_VER_45) tp->mac_version = RTL_GIGA_MAC_VER_47; else if (tp->mac_version == RTL_GIGA_MAC_VER_46) tp->mac_version = RTL_GIGA_MAC_VER_48; } } struct phy_reg { u16 reg; u16 val; }; static void rtl_writephy_batch(struct rtl8169_private *tp, const struct phy_reg *regs, int len) { while (len-- > 0) { rtl_writephy(tp, regs->reg, regs->val); regs++; } } #define PHY_READ 0x00000000 #define PHY_DATA_OR 0x10000000 #define PHY_DATA_AND 0x20000000 #define PHY_BJMPN 0x30000000 #define PHY_MDIO_CHG 0x40000000 #define PHY_CLEAR_READCOUNT 0x70000000 #define PHY_WRITE 0x80000000 #define PHY_READCOUNT_EQ_SKIP 0x90000000 #define PHY_COMP_EQ_SKIPN 0xa0000000 #define PHY_COMP_NEQ_SKIPN 0xb0000000 #define PHY_WRITE_PREVIOUS 0xc0000000 #define PHY_SKIPN 0xd0000000 #define PHY_DELAY_MS 0xe0000000 struct fw_info { u32 magic; char version[RTL_VER_SIZE]; __le32 fw_start; __le32 fw_len; u8 chksum; } __packed; #define FW_OPCODE_SIZE sizeof(typeof(*((struct rtl_fw_phy_action *)0)->code)) static bool rtl_fw_format_ok(struct rtl8169_private *tp, struct rtl_fw *rtl_fw) { const struct firmware *fw = rtl_fw->fw; struct fw_info *fw_info = (struct fw_info *)fw->data; struct rtl_fw_phy_action *pa = &rtl_fw->phy_action; char *version = rtl_fw->version; bool rc = false; if (fw->size < FW_OPCODE_SIZE) goto out; if (!fw_info->magic) { size_t i, size, start; u8 checksum = 0; if (fw->size < sizeof(*fw_info)) goto out; for (i = 0; i < fw->size; i++) checksum += fw->data[i]; if (checksum != 0) goto out; start = le32_to_cpu(fw_info->fw_start); if (start > fw->size) goto out; size = le32_to_cpu(fw_info->fw_len); if (size > (fw->size - start) / FW_OPCODE_SIZE) goto out; memcpy(version, fw_info->version, RTL_VER_SIZE); pa->code = (__le32 *)(fw->data + start); pa->size = size; } else { if (fw->size % FW_OPCODE_SIZE) goto out; strlcpy(version, rtl_lookup_firmware_name(tp), RTL_VER_SIZE); pa->code = (__le32 *)fw->data; pa->size = fw->size / FW_OPCODE_SIZE; } version[RTL_VER_SIZE - 1] = 0; rc = true; out: return rc; } static bool rtl_fw_data_ok(struct rtl8169_private *tp, struct net_device *dev, struct rtl_fw_phy_action *pa) { bool rc = false; size_t index; for (index = 0; index < pa->size; index++) { u32 action = le32_to_cpu(pa->code[index]); u32 regno = (action & 0x0fff0000) >> 16; switch(action & 0xf0000000) { case PHY_READ: case PHY_DATA_OR: case PHY_DATA_AND: case PHY_MDIO_CHG: case PHY_CLEAR_READCOUNT: case PHY_WRITE: case PHY_WRITE_PREVIOUS: case PHY_DELAY_MS: break; case PHY_BJMPN: if (regno > index) { netif_err(tp, ifup, tp->dev, "Out of range of firmware\n"); goto out; } break; case PHY_READCOUNT_EQ_SKIP: if (index + 2 >= pa->size) { netif_err(tp, ifup, tp->dev, "Out of range of firmware\n"); goto out; } break; case PHY_COMP_EQ_SKIPN: case PHY_COMP_NEQ_SKIPN: case PHY_SKIPN: if (index + 1 + regno >= pa->size) { netif_err(tp, ifup, tp->dev, "Out of range of firmware\n"); goto out; } break; default: netif_err(tp, ifup, tp->dev, "Invalid action 0x%08x\n", action); goto out; } } rc = true; out: return rc; } static int rtl_check_firmware(struct rtl8169_private *tp, struct rtl_fw *rtl_fw) { struct net_device *dev = tp->dev; int rc = -EINVAL; if (!rtl_fw_format_ok(tp, rtl_fw)) { netif_err(tp, ifup, dev, "invalid firmware\n"); goto out; } if (rtl_fw_data_ok(tp, dev, &rtl_fw->phy_action)) rc = 0; out: return rc; } static void rtl_phy_write_fw(struct rtl8169_private *tp, struct rtl_fw *rtl_fw) { struct rtl_fw_phy_action *pa = &rtl_fw->phy_action; struct mdio_ops org, *ops = &tp->mdio_ops; u32 predata, count; size_t index; predata = count = 0; org.write = ops->write; org.read = ops->read; for (index = 0; index < pa->size; ) { u32 action = le32_to_cpu(pa->code[index]); u32 data = action & 0x0000ffff; u32 regno = (action & 0x0fff0000) >> 16; if (!action) break; switch(action & 0xf0000000) { case PHY_READ: predata = rtl_readphy(tp, regno); count++; index++; break; case PHY_DATA_OR: predata |= data; index++; break; case PHY_DATA_AND: predata &= data; index++; break; case PHY_BJMPN: index -= regno; break; case PHY_MDIO_CHG: if (data == 0) { ops->write = org.write; ops->read = org.read; } else if (data == 1) { ops->write = mac_mcu_write; ops->read = mac_mcu_read; } index++; break; case PHY_CLEAR_READCOUNT: count = 0; index++; break; case PHY_WRITE: rtl_writephy(tp, regno, data); index++; break; case PHY_READCOUNT_EQ_SKIP: index += (count == data) ? 2 : 1; break; case PHY_COMP_EQ_SKIPN: if (predata == data) index += regno; index++; break; case PHY_COMP_NEQ_SKIPN: if (predata != data) index += regno; index++; break; case PHY_WRITE_PREVIOUS: rtl_writephy(tp, regno, predata); index++; break; case PHY_SKIPN: index += regno + 1; break; case PHY_DELAY_MS: mdelay(data); index++; break; default: BUG(); } } ops->write = org.write; ops->read = org.read; } static void rtl_release_firmware(struct rtl8169_private *tp) { if (!IS_ERR_OR_NULL(tp->rtl_fw)) { release_firmware(tp->rtl_fw->fw); kfree(tp->rtl_fw); } tp->rtl_fw = RTL_FIRMWARE_UNKNOWN; } static void rtl_apply_firmware(struct rtl8169_private *tp) { struct rtl_fw *rtl_fw = tp->rtl_fw; /* TODO: release firmware once rtl_phy_write_fw signals failures. */ if (!IS_ERR_OR_NULL(rtl_fw)) rtl_phy_write_fw(tp, rtl_fw); } static void rtl_apply_firmware_cond(struct rtl8169_private *tp, u8 reg, u16 val) { if (rtl_readphy(tp, reg) != val) netif_warn(tp, hw, tp->dev, "chipset not ready for firmware\n"); else rtl_apply_firmware(tp); } static void rtl8169s_hw_phy_config(struct rtl8169_private *tp) { static const struct phy_reg phy_reg_init[] = { { 0x1f, 0x0001 }, { 0x06, 0x006e }, { 0x08, 0x0708 }, { 0x15, 0x4000 }, { 0x18, 0x65c7 }, { 0x1f, 0x0001 }, { 0x03, 0x00a1 }, { 0x02, 0x0008 }, { 0x01, 0x0120 }, { 0x00, 0x1000 }, { 0x04, 0x0800 }, { 0x04, 0x0000 }, { 0x03, 0xff41 }, { 0x02, 0xdf60 }, { 0x01, 0x0140 }, { 0x00, 0x0077 }, { 0x04, 0x7800 }, { 0x04, 0x7000 }, { 0x03, 0x802f }, { 0x02, 0x4f02 }, { 0x01, 0x0409 }, { 0x00, 0xf0f9 }, { 0x04, 0x9800 }, { 0x04, 0x9000 }, { 0x03, 0xdf01 }, { 0x02, 0xdf20 }, { 0x01, 0xff95 }, { 0x00, 0xba00 }, { 0x04, 0xa800 }, { 0x04, 0xa000 }, { 0x03, 0xff41 }, { 0x02, 0xdf20 }, { 0x01, 0x0140 }, { 0x00, 0x00bb }, { 0x04, 0xb800 }, { 0x04, 0xb000 }, { 0x03, 0xdf41 }, { 0x02, 0xdc60 }, { 0x01, 0x6340 }, { 0x00, 0x007d }, { 0x04, 0xd800 }, { 0x04, 0xd000 }, { 0x03, 0xdf01 }, { 0x02, 0xdf20 }, { 0x01, 0x100a }, { 0x00, 0xa0ff }, { 0x04, 0xf800 }, { 0x04, 0xf000 }, { 0x1f, 0x0000 }, { 0x0b, 0x0000 }, { 0x00, 0x9200 } }; rtl_writephy_batch(tp, phy_reg_init, ARRAY_SIZE(phy_reg_init)); } static void rtl8169sb_hw_phy_config(struct rtl8169_private *tp) { static const struct phy_reg phy_reg_init[] = { { 0x1f, 0x0002 }, { 0x01, 0x90d0 }, { 0x1f, 0x0000 } }; rtl_writephy_batch(tp, phy_reg_init, ARRAY_SIZE(phy_reg_init)); } static void rtl8169scd_hw_phy_config_quirk(struct rtl8169_private *tp) { struct pci_dev *pdev = tp->pci_dev; if ((pdev->subsystem_vendor != PCI_VENDOR_ID_GIGABYTE) || (pdev->subsystem_device != 0xe000)) return; rtl_writephy(tp, 0x1f, 0x0001); rtl_writephy(tp, 0x10, 0xf01b); rtl_writephy(tp, 0x1f, 0x0000); } static void rtl8169scd_hw_phy_config(struct rtl8169_private *tp) { static const struct phy_reg phy_reg_init[] = { { 0x1f, 0x0001 }, { 0x04, 0x0000 }, { 0x03, 0x00a1 }, { 0x02, 0x0008 }, { 0x01, 0x0120 }, { 0x00, 0x1000 }, { 0x04, 0x0800 }, { 0x04, 0x9000 }, { 0x03, 0x802f }, { 0x02, 0x4f02 }, { 0x01, 0x0409 }, { 0x00, 0xf099 }, { 0x04, 0x9800 }, { 0x04, 0xa000 }, { 0x03, 0xdf01 }, { 0x02, 0xdf20 }, { 0x01, 0xff95 }, { 0x00, 0xba00 }, { 0x04, 0xa800 }, { 0x04, 0xf000 }, { 0x03, 0xdf01 }, { 0x02, 0xdf20 }, { 0x01, 0x101a }, { 0x00, 0xa0ff }, { 0x04, 0xf800 }, { 0x04, 0x0000 }, { 0x1f, 0x0000 }, { 0x1f, 0x0001 }, { 0x10, 0xf41b }, { 0x14, 0xfb54 }, { 0x18, 0xf5c7 }, { 0x1f, 0x0000 }, { 0x1f, 0x0001 }, { 0x17, 0x0cc0 }, { 0x1f, 0x0000 } }; rtl_writephy_batch(tp, phy_reg_init, ARRAY_SIZE(phy_reg_init)); rtl8169scd_hw_phy_config_quirk(tp); } static void rtl8169sce_hw_phy_config(struct rtl8169_private *tp) { static const struct phy_reg phy_reg_init[] = { { 0x1f, 0x0001 }, { 0x04, 0x0000 }, { 0x03, 0x00a1 }, { 0x02, 0x0008 }, { 0x01, 0x0120 }, { 0x00, 0x1000 }, { 0x04, 0x0800 }, { 0x04, 0x9000 }, { 0x03, 0x802f }, { 0x02, 0x4f02 }, { 0x01, 0x0409 }, { 0x00, 0xf099 }, { 0x04, 0x9800 }, { 0x04, 0xa000 }, { 0x03, 0xdf01 }, { 0x02, 0xdf20 }, { 0x01, 0xff95 }, { 0x00, 0xba00 }, { 0x04, 0xa800 }, { 0x04, 0xf000 }, { 0x03, 0xdf01 }, { 0x02, 0xdf20 }, { 0x01, 0x101a }, { 0x00, 0xa0ff }, { 0x04, 0xf800 }, { 0x04, 0x0000 }, { 0x1f, 0x0000 }, { 0x1f, 0x0001 }, { 0x0b, 0x8480 }, { 0x1f, 0x0000 }, { 0x1f, 0x0001 }, { 0x18, 0x67c7 }, { 0x04, 0x2000 }, { 0x03, 0x002f }, { 0x02, 0x4360 }, { 0x01, 0x0109 }, { 0x00, 0x3022 }, { 0x04, 0x2800 }, { 0x1f, 0x0000 }, { 0x1f, 0x0001 }, { 0x17, 0x0cc0 }, { 0x1f, 0x0000 } }; rtl_writephy_batch(tp, phy_reg_init, ARRAY_SIZE(phy_reg_init)); } static void rtl8168bb_hw_phy_config(struct rtl8169_private *tp) { static const struct phy_reg phy_reg_init[] = { { 0x10, 0xf41b }, { 0x1f, 0x0000 } }; rtl_writephy(tp, 0x1f, 0x0001); rtl_patchphy(tp, 0x16, 1 << 0); rtl_writephy_batch(tp, phy_reg_init, ARRAY_SIZE(phy_reg_init)); } static void rtl8168bef_hw_phy_config(struct rtl8169_private *tp) { static const struct phy_reg phy_reg_init[] = { { 0x1f, 0x0001 }, { 0x10, 0xf41b }, { 0x1f, 0x0000 } }; rtl_writephy_batch(tp, phy_reg_init, ARRAY_SIZE(phy_reg_init)); } static void rtl8168cp_1_hw_phy_config(struct rtl8169_private *tp) { static const struct phy_reg phy_reg_init[] = { { 0x1f, 0x0000 }, { 0x1d, 0x0f00 }, { 0x1f, 0x0002 }, { 0x0c, 0x1ec8 }, { 0x1f, 0x0000 } }; rtl_writephy_batch(tp, phy_reg_init, ARRAY_SIZE(phy_reg_init)); } static void rtl8168cp_2_hw_phy_config(struct rtl8169_private *tp) { static const struct phy_reg phy_reg_init[] = { { 0x1f, 0x0001 }, { 0x1d, 0x3d98 }, { 0x1f, 0x0000 } }; rtl_writephy(tp, 0x1f, 0x0000); rtl_patchphy(tp, 0x14, 1 << 5); rtl_patchphy(tp, 0x0d, 1 << 5); rtl_writephy_batch(tp, phy_reg_init, ARRAY_SIZE(phy_reg_init)); } static void rtl8168c_1_hw_phy_config(struct rtl8169_private *tp) { static const struct phy_reg phy_reg_init[] = { { 0x1f, 0x0001 }, { 0x12, 0x2300 }, { 0x1f, 0x0002 }, { 0x00, 0x88d4 }, { 0x01, 0x82b1 }, { 0x03, 0x7002 }, { 0x08, 0x9e30 }, { 0x09, 0x01f0 }, { 0x0a, 0x5500 }, { 0x0c, 0x00c8 }, { 0x1f, 0x0003 }, { 0x12, 0xc096 }, { 0x16, 0x000a }, { 0x1f, 0x0000 }, { 0x1f, 0x0000 }, { 0x09, 0x2000 }, { 0x09, 0x0000 } }; rtl_writephy_batch(tp, phy_reg_init, ARRAY_SIZE(phy_reg_init)); rtl_patchphy(tp, 0x14, 1 << 5); rtl_patchphy(tp, 0x0d, 1 << 5); rtl_writephy(tp, 0x1f, 0x0000); } static void rtl8168c_2_hw_phy_config(struct rtl8169_private *tp) { static const struct phy_reg phy_reg_init[] = { { 0x1f, 0x0001 }, { 0x12, 0x2300 }, { 0x03, 0x802f }, { 0x02, 0x4f02 }, { 0x01, 0x0409 }, { 0x00, 0xf099 }, { 0x04, 0x9800 }, { 0x04, 0x9000 }, { 0x1d, 0x3d98 }, { 0x1f, 0x0002 }, { 0x0c, 0x7eb8 }, { 0x06, 0x0761 }, { 0x1f, 0x0003 }, { 0x16, 0x0f0a }, { 0x1f, 0x0000 } }; rtl_writephy_batch(tp, phy_reg_init, ARRAY_SIZE(phy_reg_init)); rtl_patchphy(tp, 0x16, 1 << 0); rtl_patchphy(tp, 0x14, 1 << 5); rtl_patchphy(tp, 0x0d, 1 << 5); rtl_writephy(tp, 0x1f, 0x0000); } static void rtl8168c_3_hw_phy_config(struct rtl8169_private *tp) { static const struct phy_reg phy_reg_init[] = { { 0x1f, 0x0001 }, { 0x12, 0x2300 }, { 0x1d, 0x3d98 }, { 0x1f, 0x0002 }, { 0x0c, 0x7eb8 }, { 0x06, 0x5461 }, { 0x1f, 0x0003 }, { 0x16, 0x0f0a }, { 0x1f, 0x0000 } }; rtl_writephy_batch(tp, phy_reg_init, ARRAY_SIZE(phy_reg_init)); rtl_patchphy(tp, 0x16, 1 << 0); rtl_patchphy(tp, 0x14, 1 << 5); rtl_patchphy(tp, 0x0d, 1 << 5); rtl_writephy(tp, 0x1f, 0x0000); } static void rtl8168c_4_hw_phy_config(struct rtl8169_private *tp) { rtl8168c_3_hw_phy_config(tp); } static void rtl8168d_1_hw_phy_config(struct rtl8169_private *tp) { static const struct phy_reg phy_reg_init_0[] = { /* Channel Estimation */ { 0x1f, 0x0001 }, { 0x06, 0x4064 }, { 0x07, 0x2863 }, { 0x08, 0x059c }, { 0x09, 0x26b4 }, { 0x0a, 0x6a19 }, { 0x0b, 0xdcc8 }, { 0x10, 0xf06d }, { 0x14, 0x7f68 }, { 0x18, 0x7fd9 }, { 0x1c, 0xf0ff }, { 0x1d, 0x3d9c }, { 0x1f, 0x0003 }, { 0x12, 0xf49f }, { 0x13, 0x070b }, { 0x1a, 0x05ad }, { 0x14, 0x94c0 }, /* * Tx Error Issue * Enhance line driver power */ { 0x1f, 0x0002 }, { 0x06, 0x5561 }, { 0x1f, 0x0005 }, { 0x05, 0x8332 }, { 0x06, 0x5561 }, /* * Can not link to 1Gbps with bad cable * Decrease SNR threshold form 21.07dB to 19.04dB */ { 0x1f, 0x0001 }, { 0x17, 0x0cc0 }, { 0x1f, 0x0000 }, { 0x0d, 0xf880 } }; rtl_writephy_batch(tp, phy_reg_init_0, ARRAY_SIZE(phy_reg_init_0)); /* * Rx Error Issue * Fine Tune Switching regulator parameter */ rtl_writephy(tp, 0x1f, 0x0002); rtl_w0w1_phy(tp, 0x0b, 0x0010, 0x00ef); rtl_w0w1_phy(tp, 0x0c, 0xa200, 0x5d00); if (rtl8168d_efuse_read(tp, 0x01) == 0xb1) { static const struct phy_reg phy_reg_init[] = { { 0x1f, 0x0002 }, { 0x05, 0x669a }, { 0x1f, 0x0005 }, { 0x05, 0x8330 }, { 0x06, 0x669a }, { 0x1f, 0x0002 } }; int val; rtl_writephy_batch(tp, phy_reg_init, ARRAY_SIZE(phy_reg_init)); val = rtl_readphy(tp, 0x0d); if ((val & 0x00ff) != 0x006c) { static const u32 set[] = { 0x0065, 0x0066, 0x0067, 0x0068, 0x0069, 0x006a, 0x006b, 0x006c }; int i; rtl_writephy(tp, 0x1f, 0x0002); val &= 0xff00; for (i = 0; i < ARRAY_SIZE(set); i++) rtl_writephy(tp, 0x0d, val | set[i]); } } else { static const struct phy_reg phy_reg_init[] = { { 0x1f, 0x0002 }, { 0x05, 0x6662 }, { 0x1f, 0x0005 }, { 0x05, 0x8330 }, { 0x06, 0x6662 } }; rtl_writephy_batch(tp, phy_reg_init, ARRAY_SIZE(phy_reg_init)); } /* RSET couple improve */ rtl_writephy(tp, 0x1f, 0x0002); rtl_patchphy(tp, 0x0d, 0x0300); rtl_patchphy(tp, 0x0f, 0x0010); /* Fine tune PLL performance */ rtl_writephy(tp, 0x1f, 0x0002); rtl_w0w1_phy(tp, 0x02, 0x0100, 0x0600); rtl_w0w1_phy(tp, 0x03, 0x0000, 0xe000); rtl_writephy(tp, 0x1f, 0x0005); rtl_writephy(tp, 0x05, 0x001b); rtl_apply_firmware_cond(tp, MII_EXPANSION, 0xbf00); rtl_writephy(tp, 0x1f, 0x0000); } static void rtl8168d_2_hw_phy_config(struct rtl8169_private *tp) { static const struct phy_reg phy_reg_init_0[] = { /* Channel Estimation */ { 0x1f, 0x0001 }, { 0x06, 0x4064 }, { 0x07, 0x2863 }, { 0x08, 0x059c }, { 0x09, 0x26b4 }, { 0x0a, 0x6a19 }, { 0x0b, 0xdcc8 }, { 0x10, 0xf06d }, { 0x14, 0x7f68 }, { 0x18, 0x7fd9 }, { 0x1c, 0xf0ff }, { 0x1d, 0x3d9c }, { 0x1f, 0x0003 }, { 0x12, 0xf49f }, { 0x13, 0x070b }, { 0x1a, 0x05ad }, { 0x14, 0x94c0 }, /* * Tx Error Issue * Enhance line driver power */ { 0x1f, 0x0002 }, { 0x06, 0x5561 }, { 0x1f, 0x0005 }, { 0x05, 0x8332 }, { 0x06, 0x5561 }, /* * Can not link to 1Gbps with bad cable * Decrease SNR threshold form 21.07dB to 19.04dB */ { 0x1f, 0x0001 }, { 0x17, 0x0cc0 }, { 0x1f, 0x0000 }, { 0x0d, 0xf880 } }; rtl_writephy_batch(tp, phy_reg_init_0, ARRAY_SIZE(phy_reg_init_0)); if (rtl8168d_efuse_read(tp, 0x01) == 0xb1) { static const struct phy_reg phy_reg_init[] = { { 0x1f, 0x0002 }, { 0x05, 0x669a }, { 0x1f, 0x0005 }, { 0x05, 0x8330 }, { 0x06, 0x669a }, { 0x1f, 0x0002 } }; int val; rtl_writephy_batch(tp, phy_reg_init, ARRAY_SIZE(phy_reg_init)); val = rtl_readphy(tp, 0x0d); if ((val & 0x00ff) != 0x006c) { static const u32 set[] = { 0x0065, 0x0066, 0x0067, 0x0068, 0x0069, 0x006a, 0x006b, 0x006c }; int i; rtl_writephy(tp, 0x1f, 0x0002); val &= 0xff00; for (i = 0; i < ARRAY_SIZE(set); i++) rtl_writephy(tp, 0x0d, val | set[i]); } } else { static const struct phy_reg phy_reg_init[] = { { 0x1f, 0x0002 }, { 0x05, 0x2642 }, { 0x1f, 0x0005 }, { 0x05, 0x8330 }, { 0x06, 0x2642 } }; rtl_writephy_batch(tp, phy_reg_init, ARRAY_SIZE(phy_reg_init)); } /* Fine tune PLL performance */ rtl_writephy(tp, 0x1f, 0x0002); rtl_w0w1_phy(tp, 0x02, 0x0100, 0x0600); rtl_w0w1_phy(tp, 0x03, 0x0000, 0xe000); /* Switching regulator Slew rate */ rtl_writephy(tp, 0x1f, 0x0002); rtl_patchphy(tp, 0x0f, 0x0017); rtl_writephy(tp, 0x1f, 0x0005); rtl_writephy(tp, 0x05, 0x001b); rtl_apply_firmware_cond(tp, MII_EXPANSION, 0xb300); rtl_writephy(tp, 0x1f, 0x0000); } static void rtl8168d_3_hw_phy_config(struct rtl8169_private *tp) { static const struct phy_reg phy_reg_init[] = { { 0x1f, 0x0002 }, { 0x10, 0x0008 }, { 0x0d, 0x006c }, { 0x1f, 0x0000 }, { 0x0d, 0xf880 }, { 0x1f, 0x0001 }, { 0x17, 0x0cc0 }, { 0x1f, 0x0001 }, { 0x0b, 0xa4d8 }, { 0x09, 0x281c }, { 0x07, 0x2883 }, { 0x0a, 0x6b35 }, { 0x1d, 0x3da4 }, { 0x1c, 0xeffd }, { 0x14, 0x7f52 }, { 0x18, 0x7fc6 }, { 0x08, 0x0601 }, { 0x06, 0x4063 }, { 0x10, 0xf074 }, { 0x1f, 0x0003 }, { 0x13, 0x0789 }, { 0x12, 0xf4bd }, { 0x1a, 0x04fd }, { 0x14, 0x84b0 }, { 0x1f, 0x0000 }, { 0x00, 0x9200 }, { 0x1f, 0x0005 }, { 0x01, 0x0340 }, { 0x1f, 0x0001 }, { 0x04, 0x4000 }, { 0x03, 0x1d21 }, { 0x02, 0x0c32 }, { 0x01, 0x0200 }, { 0x00, 0x5554 }, { 0x04, 0x4800 }, { 0x04, 0x4000 }, { 0x04, 0xf000 }, { 0x03, 0xdf01 }, { 0x02, 0xdf20 }, { 0x01, 0x101a }, { 0x00, 0xa0ff }, { 0x04, 0xf800 }, { 0x04, 0xf000 }, { 0x1f, 0x0000 }, { 0x1f, 0x0007 }, { 0x1e, 0x0023 }, { 0x16, 0x0000 }, { 0x1f, 0x0000 } }; rtl_writephy_batch(tp, phy_reg_init, ARRAY_SIZE(phy_reg_init)); } static void rtl8168d_4_hw_phy_config(struct rtl8169_private *tp) { static const struct phy_reg phy_reg_init[] = { { 0x1f, 0x0001 }, { 0x17, 0x0cc0 }, { 0x1f, 0x0007 }, { 0x1e, 0x002d }, { 0x18, 0x0040 }, { 0x1f, 0x0000 } }; rtl_writephy_batch(tp, phy_reg_init, ARRAY_SIZE(phy_reg_init)); rtl_patchphy(tp, 0x0d, 1 << 5); } static void rtl8168e_1_hw_phy_config(struct rtl8169_private *tp) { static const struct phy_reg phy_reg_init[] = { /* Enable Delay cap */ { 0x1f, 0x0005 }, { 0x05, 0x8b80 }, { 0x06, 0xc896 }, { 0x1f, 0x0000 }, /* Channel estimation fine tune */ { 0x1f, 0x0001 }, { 0x0b, 0x6c20 }, { 0x07, 0x2872 }, { 0x1c, 0xefff }, { 0x1f, 0x0003 }, { 0x14, 0x6420 }, { 0x1f, 0x0000 }, /* Update PFM & 10M TX idle timer */ { 0x1f, 0x0007 }, { 0x1e, 0x002f }, { 0x15, 0x1919 }, { 0x1f, 0x0000 }, { 0x1f, 0x0007 }, { 0x1e, 0x00ac }, { 0x18, 0x0006 }, { 0x1f, 0x0000 } }; rtl_apply_firmware(tp); rtl_writephy_batch(tp, phy_reg_init, ARRAY_SIZE(phy_reg_init)); /* DCO enable for 10M IDLE Power */ rtl_writephy(tp, 0x1f, 0x0007); rtl_writephy(tp, 0x1e, 0x0023); rtl_w0w1_phy(tp, 0x17, 0x0006, 0x0000); rtl_writephy(tp, 0x1f, 0x0000); /* For impedance matching */ rtl_writephy(tp, 0x1f, 0x0002); rtl_w0w1_phy(tp, 0x08, 0x8000, 0x7f00); rtl_writephy(tp, 0x1f, 0x0000); /* PHY auto speed down */ rtl_writephy(tp, 0x1f, 0x0007); rtl_writephy(tp, 0x1e, 0x002d); rtl_w0w1_phy(tp, 0x18, 0x0050, 0x0000); rtl_writephy(tp, 0x1f, 0x0000); rtl_w0w1_phy(tp, 0x14, 0x8000, 0x0000); rtl_writephy(tp, 0x1f, 0x0005); rtl_writephy(tp, 0x05, 0x8b86); rtl_w0w1_phy(tp, 0x06, 0x0001, 0x0000); rtl_writephy(tp, 0x1f, 0x0000); rtl_writephy(tp, 0x1f, 0x0005); rtl_writephy(tp, 0x05, 0x8b85); rtl_w0w1_phy(tp, 0x06, 0x0000, 0x2000); rtl_writephy(tp, 0x1f, 0x0007); rtl_writephy(tp, 0x1e, 0x0020); rtl_w0w1_phy(tp, 0x15, 0x0000, 0x1100); rtl_writephy(tp, 0x1f, 0x0006); rtl_writephy(tp, 0x00, 0x5a00); rtl_writephy(tp, 0x1f, 0x0000); rtl_writephy(tp, 0x0d, 0x0007); rtl_writephy(tp, 0x0e, 0x003c); rtl_writephy(tp, 0x0d, 0x4007); rtl_writephy(tp, 0x0e, 0x0000); rtl_writephy(tp, 0x0d, 0x0000); } static void rtl_rar_exgmac_set(struct rtl8169_private *tp, u8 *addr) { const u16 w[] = { addr[0] | (addr[1] << 8), addr[2] | (addr[3] << 8), addr[4] | (addr[5] << 8) }; const struct exgmac_reg e[] = { { .addr = 0xe0, ERIAR_MASK_1111, .val = w[0] | (w[1] << 16) }, { .addr = 0xe4, ERIAR_MASK_1111, .val = w[2] }, { .addr = 0xf0, ERIAR_MASK_1111, .val = w[0] << 16 }, { .addr = 0xf4, ERIAR_MASK_1111, .val = w[1] | (w[2] << 16) } }; rtl_write_exgmac_batch(tp, e, ARRAY_SIZE(e)); } static void rtl8168e_2_hw_phy_config(struct rtl8169_private *tp) { static const struct phy_reg phy_reg_init[] = { /* Enable Delay cap */ { 0x1f, 0x0004 }, { 0x1f, 0x0007 }, { 0x1e, 0x00ac }, { 0x18, 0x0006 }, { 0x1f, 0x0002 }, { 0x1f, 0x0000 }, { 0x1f, 0x0000 }, /* Channel estimation fine tune */ { 0x1f, 0x0003 }, { 0x09, 0xa20f }, { 0x1f, 0x0000 }, { 0x1f, 0x0000 }, /* Green Setting */ { 0x1f, 0x0005 }, { 0x05, 0x8b5b }, { 0x06, 0x9222 }, { 0x05, 0x8b6d }, { 0x06, 0x8000 }, { 0x05, 0x8b76 }, { 0x06, 0x8000 }, { 0x1f, 0x0000 } }; rtl_apply_firmware(tp); rtl_writephy_batch(tp, phy_reg_init, ARRAY_SIZE(phy_reg_init)); /* For 4-corner performance improve */ rtl_writephy(tp, 0x1f, 0x0005); rtl_writephy(tp, 0x05, 0x8b80); rtl_w0w1_phy(tp, 0x17, 0x0006, 0x0000); rtl_writephy(tp, 0x1f, 0x0000); /* PHY auto speed down */ rtl_writephy(tp, 0x1f, 0x0004); rtl_writephy(tp, 0x1f, 0x0007); rtl_writephy(tp, 0x1e, 0x002d); rtl_w0w1_phy(tp, 0x18, 0x0010, 0x0000); rtl_writephy(tp, 0x1f, 0x0002); rtl_writephy(tp, 0x1f, 0x0000); rtl_w0w1_phy(tp, 0x14, 0x8000, 0x0000); /* improve 10M EEE waveform */ rtl_writephy(tp, 0x1f, 0x0005); rtl_writephy(tp, 0x05, 0x8b86); rtl_w0w1_phy(tp, 0x06, 0x0001, 0x0000); rtl_writephy(tp, 0x1f, 0x0000); /* Improve 2-pair detection performance */ rtl_writephy(tp, 0x1f, 0x0005); rtl_writephy(tp, 0x05, 0x8b85); rtl_w0w1_phy(tp, 0x06, 0x4000, 0x0000); rtl_writephy(tp, 0x1f, 0x0000); /* EEE setting */ rtl_w0w1_eri(tp, 0x1b0, ERIAR_MASK_1111, 0x0003, 0x0000, ERIAR_EXGMAC); rtl_writephy(tp, 0x1f, 0x0005); rtl_writephy(tp, 0x05, 0x8b85); rtl_w0w1_phy(tp, 0x06, 0x2000, 0x0000); rtl_writephy(tp, 0x1f, 0x0004); rtl_writephy(tp, 0x1f, 0x0007); rtl_writephy(tp, 0x1e, 0x0020); rtl_w0w1_phy(tp, 0x15, 0x0100, 0x0000); rtl_writephy(tp, 0x1f, 0x0002); rtl_writephy(tp, 0x1f, 0x0000); rtl_writephy(tp, 0x0d, 0x0007); rtl_writephy(tp, 0x0e, 0x003c); rtl_writephy(tp, 0x0d, 0x4007); rtl_writephy(tp, 0x0e, 0x0006); rtl_writephy(tp, 0x0d, 0x0000); /* Green feature */ rtl_writephy(tp, 0x1f, 0x0003); rtl_w0w1_phy(tp, 0x19, 0x0001, 0x0000); rtl_w0w1_phy(tp, 0x10, 0x0400, 0x0000); rtl_writephy(tp, 0x1f, 0x0000); rtl_writephy(tp, 0x1f, 0x0005); rtl_w0w1_phy(tp, 0x01, 0x0100, 0x0000); rtl_writephy(tp, 0x1f, 0x0000); /* Broken BIOS workaround: feed GigaMAC registers with MAC address. */ rtl_rar_exgmac_set(tp, tp->dev->dev_addr); } static void rtl8168f_hw_phy_config(struct rtl8169_private *tp) { /* For 4-corner performance improve */ rtl_writephy(tp, 0x1f, 0x0005); rtl_writephy(tp, 0x05, 0x8b80); rtl_w0w1_phy(tp, 0x06, 0x0006, 0x0000); rtl_writephy(tp, 0x1f, 0x0000); /* PHY auto speed down */ rtl_writephy(tp, 0x1f, 0x0007); rtl_writephy(tp, 0x1e, 0x002d); rtl_w0w1_phy(tp, 0x18, 0x0010, 0x0000); rtl_writephy(tp, 0x1f, 0x0000); rtl_w0w1_phy(tp, 0x14, 0x8000, 0x0000); /* Improve 10M EEE waveform */ rtl_writephy(tp, 0x1f, 0x0005); rtl_writephy(tp, 0x05, 0x8b86); rtl_w0w1_phy(tp, 0x06, 0x0001, 0x0000); rtl_writephy(tp, 0x1f, 0x0000); } static void rtl8168f_1_hw_phy_config(struct rtl8169_private *tp) { static const struct phy_reg phy_reg_init[] = { /* Channel estimation fine tune */ { 0x1f, 0x0003 }, { 0x09, 0xa20f }, { 0x1f, 0x0000 }, /* Modify green table for giga & fnet */ { 0x1f, 0x0005 }, { 0x05, 0x8b55 }, { 0x06, 0x0000 }, { 0x05, 0x8b5e }, { 0x06, 0x0000 }, { 0x05, 0x8b67 }, { 0x06, 0x0000 }, { 0x05, 0x8b70 }, { 0x06, 0x0000 }, { 0x1f, 0x0000 }, { 0x1f, 0x0007 }, { 0x1e, 0x0078 }, { 0x17, 0x0000 }, { 0x19, 0x00fb }, { 0x1f, 0x0000 }, /* Modify green table for 10M */ { 0x1f, 0x0005 }, { 0x05, 0x8b79 }, { 0x06, 0xaa00 }, { 0x1f, 0x0000 }, /* Disable hiimpedance detection (RTCT) */ { 0x1f, 0x0003 }, { 0x01, 0x328a }, { 0x1f, 0x0000 } }; rtl_apply_firmware(tp); rtl_writephy_batch(tp, phy_reg_init, ARRAY_SIZE(phy_reg_init)); rtl8168f_hw_phy_config(tp); /* Improve 2-pair detection performance */ rtl_writephy(tp, 0x1f, 0x0005); rtl_writephy(tp, 0x05, 0x8b85); rtl_w0w1_phy(tp, 0x06, 0x4000, 0x0000); rtl_writephy(tp, 0x1f, 0x0000); } static void rtl8168f_2_hw_phy_config(struct rtl8169_private *tp) { rtl_apply_firmware(tp); rtl8168f_hw_phy_config(tp); } static void rtl8411_hw_phy_config(struct rtl8169_private *tp) { static const struct phy_reg phy_reg_init[] = { /* Channel estimation fine tune */ { 0x1f, 0x0003 }, { 0x09, 0xa20f }, { 0x1f, 0x0000 }, /* Modify green table for giga & fnet */ { 0x1f, 0x0005 }, { 0x05, 0x8b55 }, { 0x06, 0x0000 }, { 0x05, 0x8b5e }, { 0x06, 0x0000 }, { 0x05, 0x8b67 }, { 0x06, 0x0000 }, { 0x05, 0x8b70 }, { 0x06, 0x0000 }, { 0x1f, 0x0000 }, { 0x1f, 0x0007 }, { 0x1e, 0x0078 }, { 0x17, 0x0000 }, { 0x19, 0x00aa }, { 0x1f, 0x0000 }, /* Modify green table for 10M */ { 0x1f, 0x0005 }, { 0x05, 0x8b79 }, { 0x06, 0xaa00 }, { 0x1f, 0x0000 }, /* Disable hiimpedance detection (RTCT) */ { 0x1f, 0x0003 }, { 0x01, 0x328a }, { 0x1f, 0x0000 } }; rtl_apply_firmware(tp); rtl8168f_hw_phy_config(tp); /* Improve 2-pair detection performance */ rtl_writephy(tp, 0x1f, 0x0005); rtl_writephy(tp, 0x05, 0x8b85); rtl_w0w1_phy(tp, 0x06, 0x4000, 0x0000); rtl_writephy(tp, 0x1f, 0x0000); rtl_writephy_batch(tp, phy_reg_init, ARRAY_SIZE(phy_reg_init)); /* Modify green table for giga */ rtl_writephy(tp, 0x1f, 0x0005); rtl_writephy(tp, 0x05, 0x8b54); rtl_w0w1_phy(tp, 0x06, 0x0000, 0x0800); rtl_writephy(tp, 0x05, 0x8b5d); rtl_w0w1_phy(tp, 0x06, 0x0000, 0x0800); rtl_writephy(tp, 0x05, 0x8a7c); rtl_w0w1_phy(tp, 0x06, 0x0000, 0x0100); rtl_writephy(tp, 0x05, 0x8a7f); rtl_w0w1_phy(tp, 0x06, 0x0100, 0x0000); rtl_writephy(tp, 0x05, 0x8a82); rtl_w0w1_phy(tp, 0x06, 0x0000, 0x0100); rtl_writephy(tp, 0x05, 0x8a85); rtl_w0w1_phy(tp, 0x06, 0x0000, 0x0100); rtl_writephy(tp, 0x05, 0x8a88); rtl_w0w1_phy(tp, 0x06, 0x0000, 0x0100); rtl_writephy(tp, 0x1f, 0x0000); /* uc same-seed solution */ rtl_writephy(tp, 0x1f, 0x0005); rtl_writephy(tp, 0x05, 0x8b85); rtl_w0w1_phy(tp, 0x06, 0x8000, 0x0000); rtl_writephy(tp, 0x1f, 0x0000); /* eee setting */ rtl_w0w1_eri(tp, 0x1b0, ERIAR_MASK_0001, 0x00, 0x03, ERIAR_EXGMAC); rtl_writephy(tp, 0x1f, 0x0005); rtl_writephy(tp, 0x05, 0x8b85); rtl_w0w1_phy(tp, 0x06, 0x0000, 0x2000); rtl_writephy(tp, 0x1f, 0x0004); rtl_writephy(tp, 0x1f, 0x0007); rtl_writephy(tp, 0x1e, 0x0020); rtl_w0w1_phy(tp, 0x15, 0x0000, 0x0100); rtl_writephy(tp, 0x1f, 0x0000); rtl_writephy(tp, 0x0d, 0x0007); rtl_writephy(tp, 0x0e, 0x003c); rtl_writephy(tp, 0x0d, 0x4007); rtl_writephy(tp, 0x0e, 0x0000); rtl_writephy(tp, 0x0d, 0x0000); /* Green feature */ rtl_writephy(tp, 0x1f, 0x0003); rtl_w0w1_phy(tp, 0x19, 0x0000, 0x0001); rtl_w0w1_phy(tp, 0x10, 0x0000, 0x0400); rtl_writephy(tp, 0x1f, 0x0000); } static void rtl8168g_1_hw_phy_config(struct rtl8169_private *tp) { rtl_apply_firmware(tp); rtl_writephy(tp, 0x1f, 0x0a46); if (rtl_readphy(tp, 0x10) & 0x0100) { rtl_writephy(tp, 0x1f, 0x0bcc); rtl_w0w1_phy(tp, 0x12, 0x0000, 0x8000); } else { rtl_writephy(tp, 0x1f, 0x0bcc); rtl_w0w1_phy(tp, 0x12, 0x8000, 0x0000); } rtl_writephy(tp, 0x1f, 0x0a46); if (rtl_readphy(tp, 0x13) & 0x0100) { rtl_writephy(tp, 0x1f, 0x0c41); rtl_w0w1_phy(tp, 0x15, 0x0002, 0x0000); } else { rtl_writephy(tp, 0x1f, 0x0c41); rtl_w0w1_phy(tp, 0x15, 0x0000, 0x0002); } /* Enable PHY auto speed down */ rtl_writephy(tp, 0x1f, 0x0a44); rtl_w0w1_phy(tp, 0x11, 0x000c, 0x0000); rtl_writephy(tp, 0x1f, 0x0bcc); rtl_w0w1_phy(tp, 0x14, 0x0100, 0x0000); rtl_writephy(tp, 0x1f, 0x0a44); rtl_w0w1_phy(tp, 0x11, 0x00c0, 0x0000); rtl_writephy(tp, 0x1f, 0x0a43); rtl_writephy(tp, 0x13, 0x8084); rtl_w0w1_phy(tp, 0x14, 0x0000, 0x6000); rtl_w0w1_phy(tp, 0x10, 0x1003, 0x0000); /* EEE auto-fallback function */ rtl_writephy(tp, 0x1f, 0x0a4b); rtl_w0w1_phy(tp, 0x11, 0x0004, 0x0000); /* Enable UC LPF tune function */ rtl_writephy(tp, 0x1f, 0x0a43); rtl_writephy(tp, 0x13, 0x8012); rtl_w0w1_phy(tp, 0x14, 0x8000, 0x0000); rtl_writephy(tp, 0x1f, 0x0c42); rtl_w0w1_phy(tp, 0x11, 0x4000, 0x2000); /* Improve SWR Efficiency */ rtl_writephy(tp, 0x1f, 0x0bcd); rtl_writephy(tp, 0x14, 0x5065); rtl_writephy(tp, 0x14, 0xd065); rtl_writephy(tp, 0x1f, 0x0bc8); rtl_writephy(tp, 0x11, 0x5655); rtl_writephy(tp, 0x1f, 0x0bcd); rtl_writephy(tp, 0x14, 0x1065); rtl_writephy(tp, 0x14, 0x9065); rtl_writephy(tp, 0x14, 0x1065); /* Check ALDPS bit, disable it if enabled */ rtl_writephy(tp, 0x1f, 0x0a43); if (rtl_readphy(tp, 0x10) & 0x0004) rtl_w0w1_phy(tp, 0x10, 0x0000, 0x0004); rtl_writephy(tp, 0x1f, 0x0000); } static void rtl8168g_2_hw_phy_config(struct rtl8169_private *tp) { rtl_apply_firmware(tp); } static void rtl8168h_1_hw_phy_config(struct rtl8169_private *tp) { u16 dout_tapbin; u32 data; rtl_apply_firmware(tp); /* CHN EST parameters adjust - giga master */ rtl_writephy(tp, 0x1f, 0x0a43); rtl_writephy(tp, 0x13, 0x809b); rtl_w0w1_phy(tp, 0x14, 0x8000, 0xf800); rtl_writephy(tp, 0x13, 0x80a2); rtl_w0w1_phy(tp, 0x14, 0x8000, 0xff00); rtl_writephy(tp, 0x13, 0x80a4); rtl_w0w1_phy(tp, 0x14, 0x8500, 0xff00); rtl_writephy(tp, 0x13, 0x809c); rtl_w0w1_phy(tp, 0x14, 0xbd00, 0xff00); rtl_writephy(tp, 0x1f, 0x0000); /* CHN EST parameters adjust - giga slave */ rtl_writephy(tp, 0x1f, 0x0a43); rtl_writephy(tp, 0x13, 0x80ad); rtl_w0w1_phy(tp, 0x14, 0x7000, 0xf800); rtl_writephy(tp, 0x13, 0x80b4); rtl_w0w1_phy(tp, 0x14, 0x5000, 0xff00); rtl_writephy(tp, 0x13, 0x80ac); rtl_w0w1_phy(tp, 0x14, 0x4000, 0xff00); rtl_writephy(tp, 0x1f, 0x0000); /* CHN EST parameters adjust - fnet */ rtl_writephy(tp, 0x1f, 0x0a43); rtl_writephy(tp, 0x13, 0x808e); rtl_w0w1_phy(tp, 0x14, 0x1200, 0xff00); rtl_writephy(tp, 0x13, 0x8090); rtl_w0w1_phy(tp, 0x14, 0xe500, 0xff00); rtl_writephy(tp, 0x13, 0x8092); rtl_w0w1_phy(tp, 0x14, 0x9f00, 0xff00); rtl_writephy(tp, 0x1f, 0x0000); /* enable R-tune & PGA-retune function */ dout_tapbin = 0; rtl_writephy(tp, 0x1f, 0x0a46); data = rtl_readphy(tp, 0x13); data &= 3; data <<= 2; dout_tapbin |= data; data = rtl_readphy(tp, 0x12); data &= 0xc000; data >>= 14; dout_tapbin |= data; dout_tapbin = ~(dout_tapbin^0x08); dout_tapbin <<= 12; dout_tapbin &= 0xf000; rtl_writephy(tp, 0x1f, 0x0a43); rtl_writephy(tp, 0x13, 0x827a); rtl_w0w1_phy(tp, 0x14, dout_tapbin, 0xf000); rtl_writephy(tp, 0x13, 0x827b); rtl_w0w1_phy(tp, 0x14, dout_tapbin, 0xf000); rtl_writephy(tp, 0x13, 0x827c); rtl_w0w1_phy(tp, 0x14, dout_tapbin, 0xf000); rtl_writephy(tp, 0x13, 0x827d); rtl_w0w1_phy(tp, 0x14, dout_tapbin, 0xf000); rtl_writephy(tp, 0x1f, 0x0a43); rtl_writephy(tp, 0x13, 0x0811); rtl_w0w1_phy(tp, 0x14, 0x0800, 0x0000); rtl_writephy(tp, 0x1f, 0x0a42); rtl_w0w1_phy(tp, 0x16, 0x0002, 0x0000); rtl_writephy(tp, 0x1f, 0x0000); /* enable GPHY 10M */ rtl_writephy(tp, 0x1f, 0x0a44); rtl_w0w1_phy(tp, 0x11, 0x0800, 0x0000); rtl_writephy(tp, 0x1f, 0x0000); /* SAR ADC performance */ rtl_writephy(tp, 0x1f, 0x0bca); rtl_w0w1_phy(tp, 0x17, 0x4000, 0x3000); rtl_writephy(tp, 0x1f, 0x0000); rtl_writephy(tp, 0x1f, 0x0a43); rtl_writephy(tp, 0x13, 0x803f); rtl_w0w1_phy(tp, 0x14, 0x0000, 0x3000); rtl_writephy(tp, 0x13, 0x8047); rtl_w0w1_phy(tp, 0x14, 0x0000, 0x3000); rtl_writephy(tp, 0x13, 0x804f); rtl_w0w1_phy(tp, 0x14, 0x0000, 0x3000); rtl_writephy(tp, 0x13, 0x8057); rtl_w0w1_phy(tp, 0x14, 0x0000, 0x3000); rtl_writephy(tp, 0x13, 0x805f); rtl_w0w1_phy(tp, 0x14, 0x0000, 0x3000); rtl_writephy(tp, 0x13, 0x8067); rtl_w0w1_phy(tp, 0x14, 0x0000, 0x3000); rtl_writephy(tp, 0x13, 0x806f); rtl_w0w1_phy(tp, 0x14, 0x0000, 0x3000); rtl_writephy(tp, 0x1f, 0x0000); /* disable phy pfm mode */ rtl_writephy(tp, 0x1f, 0x0a44); rtl_w0w1_phy(tp, 0x11, 0x0000, 0x0080); rtl_writephy(tp, 0x1f, 0x0000); /* Check ALDPS bit, disable it if enabled */ rtl_writephy(tp, 0x1f, 0x0a43); if (rtl_readphy(tp, 0x10) & 0x0004) rtl_w0w1_phy(tp, 0x10, 0x0000, 0x0004); rtl_writephy(tp, 0x1f, 0x0000); } static void rtl8168h_2_hw_phy_config(struct rtl8169_private *tp) { u16 ioffset_p3, ioffset_p2, ioffset_p1, ioffset_p0; u16 rlen; u32 data; rtl_apply_firmware(tp); /* CHIN EST parameter update */ rtl_writephy(tp, 0x1f, 0x0a43); rtl_writephy(tp, 0x13, 0x808a); rtl_w0w1_phy(tp, 0x14, 0x000a, 0x003f); rtl_writephy(tp, 0x1f, 0x0000); /* enable R-tune & PGA-retune function */ rtl_writephy(tp, 0x1f, 0x0a43); rtl_writephy(tp, 0x13, 0x0811); rtl_w0w1_phy(tp, 0x14, 0x0800, 0x0000); rtl_writephy(tp, 0x1f, 0x0a42); rtl_w0w1_phy(tp, 0x16, 0x0002, 0x0000); rtl_writephy(tp, 0x1f, 0x0000); /* enable GPHY 10M */ rtl_writephy(tp, 0x1f, 0x0a44); rtl_w0w1_phy(tp, 0x11, 0x0800, 0x0000); rtl_writephy(tp, 0x1f, 0x0000); r8168_mac_ocp_write(tp, 0xdd02, 0x807d); data = r8168_mac_ocp_read(tp, 0xdd02); ioffset_p3 = ((data & 0x80)>>7); ioffset_p3 <<= 3; data = r8168_mac_ocp_read(tp, 0xdd00); ioffset_p3 |= ((data & (0xe000))>>13); ioffset_p2 = ((data & (0x1e00))>>9); ioffset_p1 = ((data & (0x01e0))>>5); ioffset_p0 = ((data & 0x0010)>>4); ioffset_p0 <<= 3; ioffset_p0 |= (data & (0x07)); data = (ioffset_p3<<12)|(ioffset_p2<<8)|(ioffset_p1<<4)|(ioffset_p0); if ((ioffset_p3 != 0x0f) || (ioffset_p2 != 0x0f) || (ioffset_p1 != 0x0f) || (ioffset_p0 != 0x0f)) { rtl_writephy(tp, 0x1f, 0x0bcf); rtl_writephy(tp, 0x16, data); rtl_writephy(tp, 0x1f, 0x0000); } /* Modify rlen (TX LPF corner frequency) level */ rtl_writephy(tp, 0x1f, 0x0bcd); data = rtl_readphy(tp, 0x16); data &= 0x000f; rlen = 0; if (data > 3) rlen = data - 3; data = rlen | (rlen<<4) | (rlen<<8) | (rlen<<12); rtl_writephy(tp, 0x17, data); rtl_writephy(tp, 0x1f, 0x0bcd); rtl_writephy(tp, 0x1f, 0x0000); /* disable phy pfm mode */ rtl_writephy(tp, 0x1f, 0x0a44); rtl_w0w1_phy(tp, 0x11, 0x0000, 0x0080); rtl_writephy(tp, 0x1f, 0x0000); /* Check ALDPS bit, disable it if enabled */ rtl_writephy(tp, 0x1f, 0x0a43); if (rtl_readphy(tp, 0x10) & 0x0004) rtl_w0w1_phy(tp, 0x10, 0x0000, 0x0004); rtl_writephy(tp, 0x1f, 0x0000); } static void rtl8168ep_1_hw_phy_config(struct rtl8169_private *tp) { /* Enable PHY auto speed down */ rtl_writephy(tp, 0x1f, 0x0a44); rtl_w0w1_phy(tp, 0x11, 0x000c, 0x0000); rtl_writephy(tp, 0x1f, 0x0000); /* patch 10M & ALDPS */ rtl_writephy(tp, 0x1f, 0x0bcc); rtl_w0w1_phy(tp, 0x14, 0x0000, 0x0100); rtl_writephy(tp, 0x1f, 0x0a44); rtl_w0w1_phy(tp, 0x11, 0x00c0, 0x0000); rtl_writephy(tp, 0x1f, 0x0a43); rtl_writephy(tp, 0x13, 0x8084); rtl_w0w1_phy(tp, 0x14, 0x0000, 0x6000); rtl_w0w1_phy(tp, 0x10, 0x1003, 0x0000); rtl_writephy(tp, 0x1f, 0x0000); /* Enable EEE auto-fallback function */ rtl_writephy(tp, 0x1f, 0x0a4b); rtl_w0w1_phy(tp, 0x11, 0x0004, 0x0000); rtl_writephy(tp, 0x1f, 0x0000); /* Enable UC LPF tune function */ rtl_writephy(tp, 0x1f, 0x0a43); rtl_writephy(tp, 0x13, 0x8012); rtl_w0w1_phy(tp, 0x14, 0x8000, 0x0000); rtl_writephy(tp, 0x1f, 0x0000); /* set rg_sel_sdm_rate */ rtl_writephy(tp, 0x1f, 0x0c42); rtl_w0w1_phy(tp, 0x11, 0x4000, 0x2000); rtl_writephy(tp, 0x1f, 0x0000); /* Check ALDPS bit, disable it if enabled */ rtl_writephy(tp, 0x1f, 0x0a43); if (rtl_readphy(tp, 0x10) & 0x0004) rtl_w0w1_phy(tp, 0x10, 0x0000, 0x0004); rtl_writephy(tp, 0x1f, 0x0000); } static void rtl8168ep_2_hw_phy_config(struct rtl8169_private *tp) { /* patch 10M & ALDPS */ rtl_writephy(tp, 0x1f, 0x0bcc); rtl_w0w1_phy(tp, 0x14, 0x0000, 0x0100); rtl_writephy(tp, 0x1f, 0x0a44); rtl_w0w1_phy(tp, 0x11, 0x00c0, 0x0000); rtl_writephy(tp, 0x1f, 0x0a43); rtl_writephy(tp, 0x13, 0x8084); rtl_w0w1_phy(tp, 0x14, 0x0000, 0x6000); rtl_w0w1_phy(tp, 0x10, 0x1003, 0x0000); rtl_writephy(tp, 0x1f, 0x0000); /* Enable UC LPF tune function */ rtl_writephy(tp, 0x1f, 0x0a43); rtl_writephy(tp, 0x13, 0x8012); rtl_w0w1_phy(tp, 0x14, 0x8000, 0x0000); rtl_writephy(tp, 0x1f, 0x0000); /* Set rg_sel_sdm_rate */ rtl_writephy(tp, 0x1f, 0x0c42); rtl_w0w1_phy(tp, 0x11, 0x4000, 0x2000); rtl_writephy(tp, 0x1f, 0x0000); /* Channel estimation parameters */ rtl_writephy(tp, 0x1f, 0x0a43); rtl_writephy(tp, 0x13, 0x80f3); rtl_w0w1_phy(tp, 0x14, 0x8b00, ~0x8bff); rtl_writephy(tp, 0x13, 0x80f0); rtl_w0w1_phy(tp, 0x14, 0x3a00, ~0x3aff); rtl_writephy(tp, 0x13, 0x80ef); rtl_w0w1_phy(tp, 0x14, 0x0500, ~0x05ff); rtl_writephy(tp, 0x13, 0x80f6); rtl_w0w1_phy(tp, 0x14, 0x6e00, ~0x6eff); rtl_writephy(tp, 0x13, 0x80ec); rtl_w0w1_phy(tp, 0x14, 0x6800, ~0x68ff); rtl_writephy(tp, 0x13, 0x80ed); rtl_w0w1_phy(tp, 0x14, 0x7c00, ~0x7cff); rtl_writephy(tp, 0x13, 0x80f2); rtl_w0w1_phy(tp, 0x14, 0xf400, ~0xf4ff); rtl_writephy(tp, 0x13, 0x80f4); rtl_w0w1_phy(tp, 0x14, 0x8500, ~0x85ff); rtl_writephy(tp, 0x1f, 0x0a43); rtl_writephy(tp, 0x13, 0x8110); rtl_w0w1_phy(tp, 0x14, 0xa800, ~0xa8ff); rtl_writephy(tp, 0x13, 0x810f); rtl_w0w1_phy(tp, 0x14, 0x1d00, ~0x1dff); rtl_writephy(tp, 0x13, 0x8111); rtl_w0w1_phy(tp, 0x14, 0xf500, ~0xf5ff); rtl_writephy(tp, 0x13, 0x8113); rtl_w0w1_phy(tp, 0x14, 0x6100, ~0x61ff); rtl_writephy(tp, 0x13, 0x8115); rtl_w0w1_phy(tp, 0x14, 0x9200, ~0x92ff); rtl_writephy(tp, 0x13, 0x810e); rtl_w0w1_phy(tp, 0x14, 0x0400, ~0x04ff); rtl_writephy(tp, 0x13, 0x810c); rtl_w0w1_phy(tp, 0x14, 0x7c00, ~0x7cff); rtl_writephy(tp, 0x13, 0x810b); rtl_w0w1_phy(tp, 0x14, 0x5a00, ~0x5aff); rtl_writephy(tp, 0x1f, 0x0a43); rtl_writephy(tp, 0x13, 0x80d1); rtl_w0w1_phy(tp, 0x14, 0xff00, ~0xffff); rtl_writephy(tp, 0x13, 0x80cd); rtl_w0w1_phy(tp, 0x14, 0x9e00, ~0x9eff); rtl_writephy(tp, 0x13, 0x80d3); rtl_w0w1_phy(tp, 0x14, 0x0e00, ~0x0eff); rtl_writephy(tp, 0x13, 0x80d5); rtl_w0w1_phy(tp, 0x14, 0xca00, ~0xcaff); rtl_writephy(tp, 0x13, 0x80d7); rtl_w0w1_phy(tp, 0x14, 0x8400, ~0x84ff); /* Force PWM-mode */ rtl_writephy(tp, 0x1f, 0x0bcd); rtl_writephy(tp, 0x14, 0x5065); rtl_writephy(tp, 0x14, 0xd065); rtl_writephy(tp, 0x1f, 0x0bc8); rtl_writephy(tp, 0x12, 0x00ed); rtl_writephy(tp, 0x1f, 0x0bcd); rtl_writephy(tp, 0x14, 0x1065); rtl_writephy(tp, 0x14, 0x9065); rtl_writephy(tp, 0x14, 0x1065); rtl_writephy(tp, 0x1f, 0x0000); /* Check ALDPS bit, disable it if enabled */ rtl_writephy(tp, 0x1f, 0x0a43); if (rtl_readphy(tp, 0x10) & 0x0004) rtl_w0w1_phy(tp, 0x10, 0x0000, 0x0004); rtl_writephy(tp, 0x1f, 0x0000); } static void rtl8102e_hw_phy_config(struct rtl8169_private *tp) { static const struct phy_reg phy_reg_init[] = { { 0x1f, 0x0003 }, { 0x08, 0x441d }, { 0x01, 0x9100 }, { 0x1f, 0x0000 } }; rtl_writephy(tp, 0x1f, 0x0000); rtl_patchphy(tp, 0x11, 1 << 12); rtl_patchphy(tp, 0x19, 1 << 13); rtl_patchphy(tp, 0x10, 1 << 15); rtl_writephy_batch(tp, phy_reg_init, ARRAY_SIZE(phy_reg_init)); } static void rtl8105e_hw_phy_config(struct rtl8169_private *tp) { static const struct phy_reg phy_reg_init[] = { { 0x1f, 0x0005 }, { 0x1a, 0x0000 }, { 0x1f, 0x0000 }, { 0x1f, 0x0004 }, { 0x1c, 0x0000 }, { 0x1f, 0x0000 }, { 0x1f, 0x0001 }, { 0x15, 0x7701 }, { 0x1f, 0x0000 } }; /* Disable ALDPS before ram code */ rtl_writephy(tp, 0x1f, 0x0000); rtl_writephy(tp, 0x18, 0x0310); msleep(100); rtl_apply_firmware(tp); rtl_writephy_batch(tp, phy_reg_init, ARRAY_SIZE(phy_reg_init)); } static void rtl8402_hw_phy_config(struct rtl8169_private *tp) { /* Disable ALDPS before setting firmware */ rtl_writephy(tp, 0x1f, 0x0000); rtl_writephy(tp, 0x18, 0x0310); msleep(20); rtl_apply_firmware(tp); /* EEE setting */ rtl_eri_write(tp, 0x1b0, ERIAR_MASK_0011, 0x0000, ERIAR_EXGMAC); rtl_writephy(tp, 0x1f, 0x0004); rtl_writephy(tp, 0x10, 0x401f); rtl_writephy(tp, 0x19, 0x7030); rtl_writephy(tp, 0x1f, 0x0000); } static void rtl8106e_hw_phy_config(struct rtl8169_private *tp) { static const struct phy_reg phy_reg_init[] = { { 0x1f, 0x0004 }, { 0x10, 0xc07f }, { 0x19, 0x7030 }, { 0x1f, 0x0000 } }; /* Disable ALDPS before ram code */ rtl_writephy(tp, 0x1f, 0x0000); rtl_writephy(tp, 0x18, 0x0310); msleep(100); rtl_apply_firmware(tp); rtl_eri_write(tp, 0x1b0, ERIAR_MASK_0011, 0x0000, ERIAR_EXGMAC); rtl_writephy_batch(tp, phy_reg_init, ARRAY_SIZE(phy_reg_init)); rtl_eri_write(tp, 0x1d0, ERIAR_MASK_0011, 0x0000, ERIAR_EXGMAC); } static void rtl_hw_phy_config(struct net_device *dev) { struct rtl8169_private *tp = netdev_priv(dev); switch (tp->mac_version) { case RTL_GIGA_MAC_VER_01: break; case RTL_GIGA_MAC_VER_02: case RTL_GIGA_MAC_VER_03: rtl8169s_hw_phy_config(tp); break; case RTL_GIGA_MAC_VER_04: rtl8169sb_hw_phy_config(tp); break; case RTL_GIGA_MAC_VER_05: rtl8169scd_hw_phy_config(tp); break; case RTL_GIGA_MAC_VER_06: rtl8169sce_hw_phy_config(tp); break; case RTL_GIGA_MAC_VER_07: case RTL_GIGA_MAC_VER_08: case RTL_GIGA_MAC_VER_09: rtl8102e_hw_phy_config(tp); break; case RTL_GIGA_MAC_VER_11: rtl8168bb_hw_phy_config(tp); break; case RTL_GIGA_MAC_VER_12: rtl8168bef_hw_phy_config(tp); break; case RTL_GIGA_MAC_VER_17: rtl8168bef_hw_phy_config(tp); break; case RTL_GIGA_MAC_VER_18: rtl8168cp_1_hw_phy_config(tp); break; case RTL_GIGA_MAC_VER_19: rtl8168c_1_hw_phy_config(tp); break; case RTL_GIGA_MAC_VER_20: rtl8168c_2_hw_phy_config(tp); break; case RTL_GIGA_MAC_VER_21: rtl8168c_3_hw_phy_config(tp); break; case RTL_GIGA_MAC_VER_22: rtl8168c_4_hw_phy_config(tp); break; case RTL_GIGA_MAC_VER_23: case RTL_GIGA_MAC_VER_24: rtl8168cp_2_hw_phy_config(tp); break; case RTL_GIGA_MAC_VER_25: rtl8168d_1_hw_phy_config(tp); break; case RTL_GIGA_MAC_VER_26: rtl8168d_2_hw_phy_config(tp); break; case RTL_GIGA_MAC_VER_27: rtl8168d_3_hw_phy_config(tp); break; case RTL_GIGA_MAC_VER_28: rtl8168d_4_hw_phy_config(tp); break; case RTL_GIGA_MAC_VER_29: case RTL_GIGA_MAC_VER_30: rtl8105e_hw_phy_config(tp); break; case RTL_GIGA_MAC_VER_31: /* None. */ break; case RTL_GIGA_MAC_VER_32: case RTL_GIGA_MAC_VER_33: rtl8168e_1_hw_phy_config(tp); break; case RTL_GIGA_MAC_VER_34: rtl8168e_2_hw_phy_config(tp); break; case RTL_GIGA_MAC_VER_35: rtl8168f_1_hw_phy_config(tp); break; case RTL_GIGA_MAC_VER_36: rtl8168f_2_hw_phy_config(tp); break; case RTL_GIGA_MAC_VER_37: rtl8402_hw_phy_config(tp); break; case RTL_GIGA_MAC_VER_38: rtl8411_hw_phy_config(tp); break; case RTL_GIGA_MAC_VER_39: rtl8106e_hw_phy_config(tp); break; case RTL_GIGA_MAC_VER_40: rtl8168g_1_hw_phy_config(tp); break; case RTL_GIGA_MAC_VER_42: case RTL_GIGA_MAC_VER_43: case RTL_GIGA_MAC_VER_44: rtl8168g_2_hw_phy_config(tp); break; case RTL_GIGA_MAC_VER_45: case RTL_GIGA_MAC_VER_47: rtl8168h_1_hw_phy_config(tp); break; case RTL_GIGA_MAC_VER_46: case RTL_GIGA_MAC_VER_48: rtl8168h_2_hw_phy_config(tp); break; case RTL_GIGA_MAC_VER_49: rtl8168ep_1_hw_phy_config(tp); break; case RTL_GIGA_MAC_VER_50: case RTL_GIGA_MAC_VER_51: rtl8168ep_2_hw_phy_config(tp); break; case RTL_GIGA_MAC_VER_41: default: break; } } static void rtl_schedule_task(struct rtl8169_private *tp, enum rtl_flag flag) { if (!test_and_set_bit(flag, tp->wk.flags)) schedule_work(&tp->wk.work); } static bool rtl_tbi_enabled(struct rtl8169_private *tp) { return (tp->mac_version == RTL_GIGA_MAC_VER_01) && (RTL_R8(tp, PHYstatus) & TBI_Enable); } static void rtl8169_init_phy(struct net_device *dev, struct rtl8169_private *tp) { rtl_hw_phy_config(dev); if (tp->mac_version <= RTL_GIGA_MAC_VER_06) { pci_write_config_byte(tp->pci_dev, PCI_LATENCY_TIMER, 0x40); pci_write_config_byte(tp->pci_dev, PCI_CACHE_LINE_SIZE, 0x08); netif_dbg(tp, drv, dev, "Set MAC Reg C+CR Offset 0x82h = 0x01h\n"); RTL_W8(tp, 0x82, 0x01); } /* We may have called phy_speed_down before */ phy_speed_up(dev->phydev); genphy_soft_reset(dev->phydev); /* It was reported that several chips end up with 10MBit/Half on a * 1GBit link after resuming from S3. For whatever reason the PHY on * these chips doesn't properly start a renegotiation when soft-reset. * Explicitly requesting a renegotiation fixes this. */ if (dev->phydev->autoneg == AUTONEG_ENABLE) phy_restart_aneg(dev->phydev); } static void rtl_rar_set(struct rtl8169_private *tp, u8 *addr) { rtl_lock_work(tp); RTL_W8(tp, Cfg9346, Cfg9346_Unlock); RTL_W32(tp, MAC4, addr[4] | addr[5] << 8); RTL_R32(tp, MAC4); RTL_W32(tp, MAC0, addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24); RTL_R32(tp, MAC0); if (tp->mac_version == RTL_GIGA_MAC_VER_34) rtl_rar_exgmac_set(tp, addr); RTL_W8(tp, Cfg9346, Cfg9346_Lock); rtl_unlock_work(tp); } static int rtl_set_mac_address(struct net_device *dev, void *p) { struct rtl8169_private *tp = netdev_priv(dev); struct device *d = tp_to_dev(tp); int ret; ret = eth_mac_addr(dev, p); if (ret) return ret; pm_runtime_get_noresume(d); if (pm_runtime_active(d)) rtl_rar_set(tp, dev->dev_addr); pm_runtime_put_noidle(d); return 0; } static int rtl8169_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) { if (!netif_running(dev)) return -ENODEV; return phy_mii_ioctl(dev->phydev, ifr, cmd); } static void rtl_init_mdio_ops(struct rtl8169_private *tp) { struct mdio_ops *ops = &tp->mdio_ops; switch (tp->mac_version) { case RTL_GIGA_MAC_VER_27: ops->write = r8168dp_1_mdio_write; ops->read = r8168dp_1_mdio_read; break; case RTL_GIGA_MAC_VER_28: case RTL_GIGA_MAC_VER_31: ops->write = r8168dp_2_mdio_write; ops->read = r8168dp_2_mdio_read; break; case RTL_GIGA_MAC_VER_40 ... RTL_GIGA_MAC_VER_51: ops->write = r8168g_mdio_write; ops->read = r8168g_mdio_read; break; default: ops->write = r8169_mdio_write; ops->read = r8169_mdio_read; break; } } static void rtl_wol_suspend_quirk(struct rtl8169_private *tp) { switch (tp->mac_version) { case RTL_GIGA_MAC_VER_25: case RTL_GIGA_MAC_VER_26: case RTL_GIGA_MAC_VER_29: case RTL_GIGA_MAC_VER_30: case RTL_GIGA_MAC_VER_32: case RTL_GIGA_MAC_VER_33: case RTL_GIGA_MAC_VER_34: case RTL_GIGA_MAC_VER_37 ... RTL_GIGA_MAC_VER_51: RTL_W32(tp, RxConfig, RTL_R32(tp, RxConfig) | AcceptBroadcast | AcceptMulticast | AcceptMyPhys); break; default: break; } } static bool rtl_wol_pll_power_down(struct rtl8169_private *tp) { struct phy_device *phydev; if (!__rtl8169_get_wol(tp)) return false; /* phydev may not be attached to netdevice */ phydev = mdiobus_get_phy(tp->mii_bus, 0); phy_speed_down(phydev, false); rtl_wol_suspend_quirk(tp); return true; } static void r8168_pll_power_down(struct rtl8169_private *tp) { if (r8168_check_dash(tp)) return; if (tp->mac_version == RTL_GIGA_MAC_VER_32 || tp->mac_version == RTL_GIGA_MAC_VER_33) rtl_ephy_write(tp, 0x19, 0xff64); if (rtl_wol_pll_power_down(tp)) return; switch (tp->mac_version) { case RTL_GIGA_MAC_VER_25 ... RTL_GIGA_MAC_VER_33: case RTL_GIGA_MAC_VER_37: case RTL_GIGA_MAC_VER_39: case RTL_GIGA_MAC_VER_43: case RTL_GIGA_MAC_VER_44: case RTL_GIGA_MAC_VER_45: case RTL_GIGA_MAC_VER_46: case RTL_GIGA_MAC_VER_47: case RTL_GIGA_MAC_VER_48: case RTL_GIGA_MAC_VER_50: case RTL_GIGA_MAC_VER_51: RTL_W8(tp, PMCH, RTL_R8(tp, PMCH) & ~0x80); break; case RTL_GIGA_MAC_VER_40: case RTL_GIGA_MAC_VER_41: case RTL_GIGA_MAC_VER_49: rtl_w0w1_eri(tp, 0x1a8, ERIAR_MASK_1111, 0x00000000, 0xfc000000, ERIAR_EXGMAC); RTL_W8(tp, PMCH, RTL_R8(tp, PMCH) & ~0x80); break; } } static void r8168_pll_power_up(struct rtl8169_private *tp) { switch (tp->mac_version) { case RTL_GIGA_MAC_VER_25 ... RTL_GIGA_MAC_VER_33: case RTL_GIGA_MAC_VER_37: case RTL_GIGA_MAC_VER_39: case RTL_GIGA_MAC_VER_43: RTL_W8(tp, PMCH, RTL_R8(tp, PMCH) | 0x80); break; case RTL_GIGA_MAC_VER_44: case RTL_GIGA_MAC_VER_45: case RTL_GIGA_MAC_VER_46: case RTL_GIGA_MAC_VER_47: case RTL_GIGA_MAC_VER_48: case RTL_GIGA_MAC_VER_50: case RTL_GIGA_MAC_VER_51: RTL_W8(tp, PMCH, RTL_R8(tp, PMCH) | 0xc0); break; case RTL_GIGA_MAC_VER_40: case RTL_GIGA_MAC_VER_41: case RTL_GIGA_MAC_VER_49: RTL_W8(tp, PMCH, RTL_R8(tp, PMCH) | 0xc0); rtl_w0w1_eri(tp, 0x1a8, ERIAR_MASK_1111, 0xfc000000, 0x00000000, ERIAR_EXGMAC); break; } phy_resume(tp->dev->phydev); /* give MAC/PHY some time to resume */ msleep(20); } static void rtl_pll_power_down(struct rtl8169_private *tp) { switch (tp->mac_version) { case RTL_GIGA_MAC_VER_01 ... RTL_GIGA_MAC_VER_06: case RTL_GIGA_MAC_VER_13 ... RTL_GIGA_MAC_VER_15: break; default: r8168_pll_power_down(tp); } } static void rtl_pll_power_up(struct rtl8169_private *tp) { switch (tp->mac_version) { case RTL_GIGA_MAC_VER_01 ... RTL_GIGA_MAC_VER_06: case RTL_GIGA_MAC_VER_13 ... RTL_GIGA_MAC_VER_15: break; default: r8168_pll_power_up(tp); } } static void rtl_init_rxcfg(struct rtl8169_private *tp) { switch (tp->mac_version) { case RTL_GIGA_MAC_VER_01 ... RTL_GIGA_MAC_VER_06: case RTL_GIGA_MAC_VER_10 ... RTL_GIGA_MAC_VER_17: RTL_W32(tp, RxConfig, RX_FIFO_THRESH | RX_DMA_BURST); break; case RTL_GIGA_MAC_VER_18 ... RTL_GIGA_MAC_VER_24: case RTL_GIGA_MAC_VER_34 ... RTL_GIGA_MAC_VER_36: case RTL_GIGA_MAC_VER_38: RTL_W32(tp, RxConfig, RX128_INT_EN | RX_MULTI_EN | RX_DMA_BURST); break; case RTL_GIGA_MAC_VER_40 ... RTL_GIGA_MAC_VER_51: RTL_W32(tp, RxConfig, RX128_INT_EN | RX_MULTI_EN | RX_DMA_BURST | RX_EARLY_OFF); break; default: RTL_W32(tp, RxConfig, RX128_INT_EN | RX_DMA_BURST); break; } } static void rtl8169_init_ring_indexes(struct rtl8169_private *tp) { tp->dirty_tx = tp->cur_tx = tp->cur_rx = 0; } static void rtl_hw_jumbo_enable(struct rtl8169_private *tp) { if (tp->jumbo_ops.enable) { RTL_W8(tp, Cfg9346, Cfg9346_Unlock); tp->jumbo_ops.enable(tp); RTL_W8(tp, Cfg9346, Cfg9346_Lock); } } static void rtl_hw_jumbo_disable(struct rtl8169_private *tp) { if (tp->jumbo_ops.disable) { RTL_W8(tp, Cfg9346, Cfg9346_Unlock); tp->jumbo_ops.disable(tp); RTL_W8(tp, Cfg9346, Cfg9346_Lock); } } static void r8168c_hw_jumbo_enable(struct rtl8169_private *tp) { RTL_W8(tp, Config3, RTL_R8(tp, Config3) | Jumbo_En0); RTL_W8(tp, Config4, RTL_R8(tp, Config4) | Jumbo_En1); rtl_tx_performance_tweak(tp, PCI_EXP_DEVCTL_READRQ_512B); } static void r8168c_hw_jumbo_disable(struct rtl8169_private *tp) { RTL_W8(tp, Config3, RTL_R8(tp, Config3) & ~Jumbo_En0); RTL_W8(tp, Config4, RTL_R8(tp, Config4) & ~Jumbo_En1); rtl_tx_performance_tweak(tp, PCI_EXP_DEVCTL_READRQ_4096B); } static void r8168dp_hw_jumbo_enable(struct rtl8169_private *tp) { RTL_W8(tp, Config3, RTL_R8(tp, Config3) | Jumbo_En0); } static void r8168dp_hw_jumbo_disable(struct rtl8169_private *tp) { RTL_W8(tp, Config3, RTL_R8(tp, Config3) & ~Jumbo_En0); } static void r8168e_hw_jumbo_enable(struct rtl8169_private *tp) { RTL_W8(tp, MaxTxPacketSize, 0x3f); RTL_W8(tp, Config3, RTL_R8(tp, Config3) | Jumbo_En0); RTL_W8(tp, Config4, RTL_R8(tp, Config4) | 0x01); rtl_tx_performance_tweak(tp, PCI_EXP_DEVCTL_READRQ_512B); } static void r8168e_hw_jumbo_disable(struct rtl8169_private *tp) { RTL_W8(tp, MaxTxPacketSize, 0x0c); RTL_W8(tp, Config3, RTL_R8(tp, Config3) & ~Jumbo_En0); RTL_W8(tp, Config4, RTL_R8(tp, Config4) & ~0x01); rtl_tx_performance_tweak(tp, PCI_EXP_DEVCTL_READRQ_4096B); } static void r8168b_0_hw_jumbo_enable(struct rtl8169_private *tp) { rtl_tx_performance_tweak(tp, PCI_EXP_DEVCTL_READRQ_512B | PCI_EXP_DEVCTL_NOSNOOP_EN); } static void r8168b_0_hw_jumbo_disable(struct rtl8169_private *tp) { rtl_tx_performance_tweak(tp, PCI_EXP_DEVCTL_READRQ_4096B | PCI_EXP_DEVCTL_NOSNOOP_EN); } static void r8168b_1_hw_jumbo_enable(struct rtl8169_private *tp) { r8168b_0_hw_jumbo_enable(tp); RTL_W8(tp, Config4, RTL_R8(tp, Config4) | (1 << 0)); } static void r8168b_1_hw_jumbo_disable(struct rtl8169_private *tp) { r8168b_0_hw_jumbo_disable(tp); RTL_W8(tp, Config4, RTL_R8(tp, Config4) & ~(1 << 0)); } static void rtl_init_jumbo_ops(struct rtl8169_private *tp) { struct jumbo_ops *ops = &tp->jumbo_ops; switch (tp->mac_version) { case RTL_GIGA_MAC_VER_11: ops->disable = r8168b_0_hw_jumbo_disable; ops->enable = r8168b_0_hw_jumbo_enable; break; case RTL_GIGA_MAC_VER_12: case RTL_GIGA_MAC_VER_17: ops->disable = r8168b_1_hw_jumbo_disable; ops->enable = r8168b_1_hw_jumbo_enable; break; case RTL_GIGA_MAC_VER_18: /* Wild guess. Needs info from Realtek. */ case RTL_GIGA_MAC_VER_19: case RTL_GIGA_MAC_VER_20: case RTL_GIGA_MAC_VER_21: /* Wild guess. Needs info from Realtek. */ case RTL_GIGA_MAC_VER_22: case RTL_GIGA_MAC_VER_23: case RTL_GIGA_MAC_VER_24: case RTL_GIGA_MAC_VER_25: case RTL_GIGA_MAC_VER_26: ops->disable = r8168c_hw_jumbo_disable; ops->enable = r8168c_hw_jumbo_enable; break; case RTL_GIGA_MAC_VER_27: case RTL_GIGA_MAC_VER_28: ops->disable = r8168dp_hw_jumbo_disable; ops->enable = r8168dp_hw_jumbo_enable; break; case RTL_GIGA_MAC_VER_31: /* Wild guess. Needs info from Realtek. */ case RTL_GIGA_MAC_VER_32: case RTL_GIGA_MAC_VER_33: case RTL_GIGA_MAC_VER_34: ops->disable = r8168e_hw_jumbo_disable; ops->enable = r8168e_hw_jumbo_enable; break; /* * No action needed for jumbo frames with 8169. * No jumbo for 810x at all. */ case RTL_GIGA_MAC_VER_40 ... RTL_GIGA_MAC_VER_51: default: ops->disable = NULL; ops->enable = NULL; break; } } DECLARE_RTL_COND(rtl_chipcmd_cond) { return RTL_R8(tp, ChipCmd) & CmdReset; } static void rtl_hw_reset(struct rtl8169_private *tp) { RTL_W8(tp, ChipCmd, CmdReset); rtl_udelay_loop_wait_low(tp, &rtl_chipcmd_cond, 100, 100); } static void rtl_request_uncached_firmware(struct rtl8169_private *tp) { struct rtl_fw *rtl_fw; const char *name; int rc = -ENOMEM; name = rtl_lookup_firmware_name(tp); if (!name) goto out_no_firmware; rtl_fw = kzalloc(sizeof(*rtl_fw), GFP_KERNEL); if (!rtl_fw) goto err_warn; rc = request_firmware(&rtl_fw->fw, name, tp_to_dev(tp)); if (rc < 0) goto err_free; rc = rtl_check_firmware(tp, rtl_fw); if (rc < 0) goto err_release_firmware; tp->rtl_fw = rtl_fw; out: return; err_release_firmware: release_firmware(rtl_fw->fw); err_free: kfree(rtl_fw); err_warn: netif_warn(tp, ifup, tp->dev, "unable to load firmware patch %s (%d)\n", name, rc); out_no_firmware: tp->rtl_fw = NULL; goto out; } static void rtl_request_firmware(struct rtl8169_private *tp) { if (IS_ERR(tp->rtl_fw)) rtl_request_uncached_firmware(tp); } static void rtl_rx_close(struct rtl8169_private *tp) { RTL_W32(tp, RxConfig, RTL_R32(tp, RxConfig) & ~RX_CONFIG_ACCEPT_MASK); } DECLARE_RTL_COND(rtl_npq_cond) { return RTL_R8(tp, TxPoll) & NPQ; } DECLARE_RTL_COND(rtl_txcfg_empty_cond) { return RTL_R32(tp, TxConfig) & TXCFG_EMPTY; } static void rtl8169_hw_reset(struct rtl8169_private *tp) { /* Disable interrupts */ rtl8169_irq_mask_and_ack(tp); rtl_rx_close(tp); switch (tp->mac_version) { case RTL_GIGA_MAC_VER_27: case RTL_GIGA_MAC_VER_28: case RTL_GIGA_MAC_VER_31: rtl_udelay_loop_wait_low(tp, &rtl_npq_cond, 20, 42*42); break; case RTL_GIGA_MAC_VER_34 ... RTL_GIGA_MAC_VER_38: case RTL_GIGA_MAC_VER_40 ... RTL_GIGA_MAC_VER_51: RTL_W8(tp, ChipCmd, RTL_R8(tp, ChipCmd) | StopReq); rtl_udelay_loop_wait_high(tp, &rtl_txcfg_empty_cond, 100, 666); break; default: RTL_W8(tp, ChipCmd, RTL_R8(tp, ChipCmd) | StopReq); udelay(100); break; } rtl_hw_reset(tp); } static void rtl_set_tx_config_registers(struct rtl8169_private *tp) { u32 val = TX_DMA_BURST << TxDMAShift | InterFrameGap << TxInterFrameGapShift; if (tp->mac_version >= RTL_GIGA_MAC_VER_34 && tp->mac_version != RTL_GIGA_MAC_VER_39) val |= TXCFG_AUTO_FIFO; RTL_W32(tp, TxConfig, val); } static void rtl_set_rx_max_size(struct rtl8169_private *tp) { /* Low hurts. Let's disable the filtering. */ RTL_W16(tp, RxMaxSize, R8169_RX_BUF_SIZE + 1); } static void rtl_set_rx_tx_desc_registers(struct rtl8169_private *tp) { /* * Magic spell: some iop3xx ARM board needs the TxDescAddrHigh * register to be written before TxDescAddrLow to work. * Switching from MMIO to I/O access fixes the issue as well. */ RTL_W32(tp, TxDescStartAddrHigh, ((u64) tp->TxPhyAddr) >> 32); RTL_W32(tp, TxDescStartAddrLow, ((u64) tp->TxPhyAddr) & DMA_BIT_MASK(32)); RTL_W32(tp, RxDescAddrHigh, ((u64) tp->RxPhyAddr) >> 32); RTL_W32(tp, RxDescAddrLow, ((u64) tp->RxPhyAddr) & DMA_BIT_MASK(32)); } static void rtl8169_set_magic_reg(struct rtl8169_private *tp, unsigned mac_version) { u32 val; if (tp->mac_version == RTL_GIGA_MAC_VER_05) val = 0x000fff00; else if (tp->mac_version == RTL_GIGA_MAC_VER_06) val = 0x00ffff00; else return; if (RTL_R8(tp, Config2) & PCI_Clock_66MHz) val |= 0xff; RTL_W32(tp, 0x7c, val); } static void rtl_set_rx_mode(struct net_device *dev) { struct rtl8169_private *tp = netdev_priv(dev); u32 mc_filter[2]; /* Multicast hash filter */ int rx_mode; u32 tmp = 0; if (dev->flags & IFF_PROMISC) { /* Unconditionally log net taps. */ netif_notice(tp, link, dev, "Promiscuous mode enabled\n"); rx_mode = AcceptBroadcast | AcceptMulticast | AcceptMyPhys | AcceptAllPhys; mc_filter[1] = mc_filter[0] = 0xffffffff; } else if ((netdev_mc_count(dev) > multicast_filter_limit) || (dev->flags & IFF_ALLMULTI)) { /* Too many to filter perfectly -- accept all multicasts. */ rx_mode = AcceptBroadcast | AcceptMulticast | AcceptMyPhys; mc_filter[1] = mc_filter[0] = 0xffffffff; } else { struct netdev_hw_addr *ha; rx_mode = AcceptBroadcast | AcceptMyPhys; mc_filter[1] = mc_filter[0] = 0; netdev_for_each_mc_addr(ha, dev) { int bit_nr = ether_crc(ETH_ALEN, ha->addr) >> 26; mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31); rx_mode |= AcceptMulticast; } } if (dev->features & NETIF_F_RXALL) rx_mode |= (AcceptErr | AcceptRunt); tmp = (RTL_R32(tp, RxConfig) & ~RX_CONFIG_ACCEPT_MASK) | rx_mode; if (tp->mac_version > RTL_GIGA_MAC_VER_06) { u32 data = mc_filter[0]; mc_filter[0] = swab32(mc_filter[1]); mc_filter[1] = swab32(data); } if (tp->mac_version == RTL_GIGA_MAC_VER_35) mc_filter[1] = mc_filter[0] = 0xffffffff; RTL_W32(tp, MAR0 + 4, mc_filter[1]); RTL_W32(tp, MAR0 + 0, mc_filter[0]); RTL_W32(tp, RxConfig, tmp); } static void rtl_hw_start(struct rtl8169_private *tp) { RTL_W8(tp, Cfg9346, Cfg9346_Unlock); tp->hw_start(tp); rtl_set_rx_max_size(tp); rtl_set_rx_tx_desc_registers(tp); RTL_W8(tp, Cfg9346, Cfg9346_Lock); /* Initially a 10 us delay. Turned it into a PCI commit. - FR */ RTL_R8(tp, IntrMask); RTL_W8(tp, ChipCmd, CmdTxEnb | CmdRxEnb); rtl_init_rxcfg(tp); rtl_set_tx_config_registers(tp); rtl_set_rx_mode(tp->dev); /* no early-rx interrupts */ RTL_W16(tp, MultiIntr, RTL_R16(tp, MultiIntr) & 0xf000); rtl_irq_enable(tp); } static void rtl_hw_start_8169(struct rtl8169_private *tp) { if (tp->mac_version == RTL_GIGA_MAC_VER_05) pci_write_config_byte(tp->pci_dev, PCI_CACHE_LINE_SIZE, 0x08); RTL_W8(tp, EarlyTxThres, NoEarlyTx); tp->cp_cmd |= PCIMulRW; if (tp->mac_version == RTL_GIGA_MAC_VER_02 || tp->mac_version == RTL_GIGA_MAC_VER_03) { netif_dbg(tp, drv, tp->dev, "Set MAC Reg C+CR Offset 0xe0. Bit 3 and Bit 14 MUST be 1\n"); tp->cp_cmd |= (1 << 14); } RTL_W16(tp, CPlusCmd, tp->cp_cmd); rtl8169_set_magic_reg(tp, tp->mac_version); /* * Undocumented corner. Supposedly: * (TxTimer << 12) | (TxPackets << 8) | (RxTimer << 4) | RxPackets */ RTL_W16(tp, IntrMitigate, 0x0000); RTL_W32(tp, RxMissed, 0); } DECLARE_RTL_COND(rtl_csiar_cond) { return RTL_R32(tp, CSIAR) & CSIAR_FLAG; } static void rtl_csi_write(struct rtl8169_private *tp, int addr, int value) { u32 func = PCI_FUNC(tp->pci_dev->devfn); RTL_W32(tp, CSIDR, value); RTL_W32(tp, CSIAR, CSIAR_WRITE_CMD | (addr & CSIAR_ADDR_MASK) | CSIAR_BYTE_ENABLE | func << 16); rtl_udelay_loop_wait_low(tp, &rtl_csiar_cond, 10, 100); } static u32 rtl_csi_read(struct rtl8169_private *tp, int addr) { u32 func = PCI_FUNC(tp->pci_dev->devfn); RTL_W32(tp, CSIAR, (addr & CSIAR_ADDR_MASK) | func << 16 | CSIAR_BYTE_ENABLE); return rtl_udelay_loop_wait_high(tp, &rtl_csiar_cond, 10, 100) ? RTL_R32(tp, CSIDR) : ~0; } static void rtl_csi_access_enable(struct rtl8169_private *tp, u8 val) { struct pci_dev *pdev = tp->pci_dev; u32 csi; /* According to Realtek the value at config space address 0x070f * controls the L0s/L1 entrance latency. We try standard ECAM access * first and if it fails fall back to CSI. */ if (pdev->cfg_size > 0x070f && pci_write_config_byte(pdev, 0x070f, val) == PCIBIOS_SUCCESSFUL) return; netdev_notice_once(tp->dev, "No native access to PCI extended config space, falling back to CSI\n"); csi = rtl_csi_read(tp, 0x070c) & 0x00ffffff; rtl_csi_write(tp, 0x070c, csi | val << 24); } static void rtl_set_def_aspm_entry_latency(struct rtl8169_private *tp) { rtl_csi_access_enable(tp, 0x27); } struct ephy_info { unsigned int offset; u16 mask; u16 bits; }; static void rtl_ephy_init(struct rtl8169_private *tp, const struct ephy_info *e, int len) { u16 w; while (len-- > 0) { w = (rtl_ephy_read(tp, e->offset) & ~e->mask) | e->bits; rtl_ephy_write(tp, e->offset, w); e++; } } static void rtl_disable_clock_request(struct rtl8169_private *tp) { pcie_capability_clear_word(tp->pci_dev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_CLKREQ_EN); } static void rtl_enable_clock_request(struct rtl8169_private *tp) { pcie_capability_set_word(tp->pci_dev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_CLKREQ_EN); } static void rtl_pcie_state_l2l3_enable(struct rtl8169_private *tp, bool enable) { u8 data; data = RTL_R8(tp, Config3); if (enable) data |= Rdy_to_L23; else data &= ~Rdy_to_L23; RTL_W8(tp, Config3, data); } static void rtl_hw_aspm_clkreq_enable(struct rtl8169_private *tp, bool enable) { if (enable) { RTL_W8(tp, Config5, RTL_R8(tp, Config5) | ASPM_en); RTL_W8(tp, Config2, RTL_R8(tp, Config2) | ClkReqEn); } else { RTL_W8(tp, Config2, RTL_R8(tp, Config2) & ~ClkReqEn); RTL_W8(tp, Config5, RTL_R8(tp, Config5) & ~ASPM_en); } udelay(10); } static void rtl_hw_start_8168bb(struct rtl8169_private *tp) { RTL_W8(tp, Config3, RTL_R8(tp, Config3) & ~Beacon_en); tp->cp_cmd &= CPCMD_QUIRK_MASK; RTL_W16(tp, CPlusCmd, tp->cp_cmd); if (tp->dev->mtu <= ETH_DATA_LEN) { rtl_tx_performance_tweak(tp, PCI_EXP_DEVCTL_READRQ_4096B | PCI_EXP_DEVCTL_NOSNOOP_EN); } } static void rtl_hw_start_8168bef(struct rtl8169_private *tp) { rtl_hw_start_8168bb(tp); RTL_W8(tp, MaxTxPacketSize, TxPacketMax); RTL_W8(tp, Config4, RTL_R8(tp, Config4) & ~(1 << 0)); } static void __rtl_hw_start_8168cp(struct rtl8169_private *tp) { RTL_W8(tp, Config1, RTL_R8(tp, Config1) | Speed_down); RTL_W8(tp, Config3, RTL_R8(tp, Config3) & ~Beacon_en); if (tp->dev->mtu <= ETH_DATA_LEN) rtl_tx_performance_tweak(tp, PCI_EXP_DEVCTL_READRQ_4096B); rtl_disable_clock_request(tp); tp->cp_cmd &= CPCMD_QUIRK_MASK; RTL_W16(tp, CPlusCmd, tp->cp_cmd); } static void rtl_hw_start_8168cp_1(struct rtl8169_private *tp) { static const struct ephy_info e_info_8168cp[] = { { 0x01, 0, 0x0001 }, { 0x02, 0x0800, 0x1000 }, { 0x03, 0, 0x0042 }, { 0x06, 0x0080, 0x0000 }, { 0x07, 0, 0x2000 } }; rtl_set_def_aspm_entry_latency(tp); rtl_ephy_init(tp, e_info_8168cp, ARRAY_SIZE(e_info_8168cp)); __rtl_hw_start_8168cp(tp); } static void rtl_hw_start_8168cp_2(struct rtl8169_private *tp) { rtl_set_def_aspm_entry_latency(tp); RTL_W8(tp, Config3, RTL_R8(tp, Config3) & ~Beacon_en); if (tp->dev->mtu <= ETH_DATA_LEN) rtl_tx_performance_tweak(tp, PCI_EXP_DEVCTL_READRQ_4096B); tp->cp_cmd &= CPCMD_QUIRK_MASK; RTL_W16(tp, CPlusCmd, tp->cp_cmd); } static void rtl_hw_start_8168cp_3(struct rtl8169_private *tp) { rtl_set_def_aspm_entry_latency(tp); RTL_W8(tp, Config3, RTL_R8(tp, Config3) & ~Beacon_en); /* Magic. */ RTL_W8(tp, DBG_REG, 0x20); RTL_W8(tp, MaxTxPacketSize, TxPacketMax); if (tp->dev->mtu <= ETH_DATA_LEN) rtl_tx_performance_tweak(tp, PCI_EXP_DEVCTL_READRQ_4096B); tp->cp_cmd &= CPCMD_QUIRK_MASK; RTL_W16(tp, CPlusCmd, tp->cp_cmd); } static void rtl_hw_start_8168c_1(struct rtl8169_private *tp) { static const struct ephy_info e_info_8168c_1[] = { { 0x02, 0x0800, 0x1000 }, { 0x03, 0, 0x0002 }, { 0x06, 0x0080, 0x0000 } }; rtl_set_def_aspm_entry_latency(tp); RTL_W8(tp, DBG_REG, 0x06 | FIX_NAK_1 | FIX_NAK_2); rtl_ephy_init(tp, e_info_8168c_1, ARRAY_SIZE(e_info_8168c_1)); __rtl_hw_start_8168cp(tp); } static void rtl_hw_start_8168c_2(struct rtl8169_private *tp) { static const struct ephy_info e_info_8168c_2[] = { { 0x01, 0, 0x0001 }, { 0x03, 0x0400, 0x0220 } }; rtl_set_def_aspm_entry_latency(tp); rtl_ephy_init(tp, e_info_8168c_2, ARRAY_SIZE(e_info_8168c_2)); __rtl_hw_start_8168cp(tp); } static void rtl_hw_start_8168c_3(struct rtl8169_private *tp) { rtl_hw_start_8168c_2(tp); } static void rtl_hw_start_8168c_4(struct rtl8169_private *tp) { rtl_set_def_aspm_entry_latency(tp); __rtl_hw_start_8168cp(tp); } static void rtl_hw_start_8168d(struct rtl8169_private *tp) { rtl_set_def_aspm_entry_latency(tp); rtl_disable_clock_request(tp); RTL_W8(tp, MaxTxPacketSize, TxPacketMax); if (tp->dev->mtu <= ETH_DATA_LEN) rtl_tx_performance_tweak(tp, PCI_EXP_DEVCTL_READRQ_4096B); tp->cp_cmd &= CPCMD_QUIRK_MASK; RTL_W16(tp, CPlusCmd, tp->cp_cmd); } static void rtl_hw_start_8168dp(struct rtl8169_private *tp) { rtl_set_def_aspm_entry_latency(tp); if (tp->dev->mtu <= ETH_DATA_LEN) rtl_tx_performance_tweak(tp, PCI_EXP_DEVCTL_READRQ_4096B); RTL_W8(tp, MaxTxPacketSize, TxPacketMax); rtl_disable_clock_request(tp); } static void rtl_hw_start_8168d_4(struct rtl8169_private *tp) { static const struct ephy_info e_info_8168d_4[] = { { 0x0b, 0x0000, 0x0048 }, { 0x19, 0x0020, 0x0050 }, { 0x0c, 0x0100, 0x0020 } }; rtl_set_def_aspm_entry_latency(tp); rtl_tx_performance_tweak(tp, PCI_EXP_DEVCTL_READRQ_4096B); RTL_W8(tp, MaxTxPacketSize, TxPacketMax); rtl_ephy_init(tp, e_info_8168d_4, ARRAY_SIZE(e_info_8168d_4)); rtl_enable_clock_request(tp); } static void rtl_hw_start_8168e_1(struct rtl8169_private *tp) { static const struct ephy_info e_info_8168e_1[] = { { 0x00, 0x0200, 0x0100 }, { 0x00, 0x0000, 0x0004 }, { 0x06, 0x0002, 0x0001 }, { 0x06, 0x0000, 0x0030 }, { 0x07, 0x0000, 0x2000 }, { 0x00, 0x0000, 0x0020 }, { 0x03, 0x5800, 0x2000 }, { 0x03, 0x0000, 0x0001 }, { 0x01, 0x0800, 0x1000 }, { 0x07, 0x0000, 0x4000 }, { 0x1e, 0x0000, 0x2000 }, { 0x19, 0xffff, 0xfe6c }, { 0x0a, 0x0000, 0x0040 } }; rtl_set_def_aspm_entry_latency(tp); rtl_ephy_init(tp, e_info_8168e_1, ARRAY_SIZE(e_info_8168e_1)); if (tp->dev->mtu <= ETH_DATA_LEN) rtl_tx_performance_tweak(tp, PCI_EXP_DEVCTL_READRQ_4096B); RTL_W8(tp, MaxTxPacketSize, TxPacketMax); rtl_disable_clock_request(tp); /* Reset tx FIFO pointer */ RTL_W32(tp, MISC, RTL_R32(tp, MISC) | TXPLA_RST); RTL_W32(tp, MISC, RTL_R32(tp, MISC) & ~TXPLA_RST); RTL_W8(tp, Config5, RTL_R8(tp, Config5) & ~Spi_en); } static void rtl_hw_start_8168e_2(struct rtl8169_private *tp) { static const struct ephy_info e_info_8168e_2[] = { { 0x09, 0x0000, 0x0080 }, { 0x19, 0x0000, 0x0224 } }; rtl_set_def_aspm_entry_latency(tp); rtl_ephy_init(tp, e_info_8168e_2, ARRAY_SIZE(e_info_8168e_2)); if (tp->dev->mtu <= ETH_DATA_LEN) rtl_tx_performance_tweak(tp, PCI_EXP_DEVCTL_READRQ_4096B); rtl_eri_write(tp, 0xc0, ERIAR_MASK_0011, 0x0000, ERIAR_EXGMAC); rtl_eri_write(tp, 0xb8, ERIAR_MASK_0011, 0x0000, ERIAR_EXGMAC); rtl_eri_write(tp, 0xc8, ERIAR_MASK_1111, 0x00100002, ERIAR_EXGMAC); rtl_eri_write(tp, 0xe8, ERIAR_MASK_1111, 0x00100006, ERIAR_EXGMAC); rtl_eri_write(tp, 0xcc, ERIAR_MASK_1111, 0x00000050, ERIAR_EXGMAC); rtl_eri_write(tp, 0xd0, ERIAR_MASK_1111, 0x07ff0060, ERIAR_EXGMAC); rtl_w0w1_eri(tp, 0x1b0, ERIAR_MASK_0001, 0x10, 0x00, ERIAR_EXGMAC); rtl_w0w1_eri(tp, 0x0d4, ERIAR_MASK_0011, 0x0c00, 0xff00, ERIAR_EXGMAC); RTL_W8(tp, MaxTxPacketSize, EarlySize); rtl_disable_clock_request(tp); RTL_W8(tp, MCU, RTL_R8(tp, MCU) & ~NOW_IS_OOB); /* Adjust EEE LED frequency */ RTL_W8(tp, EEE_LED, RTL_R8(tp, EEE_LED) & ~0x07); RTL_W8(tp, DLLPR, RTL_R8(tp, DLLPR) | PFM_EN); RTL_W32(tp, MISC, RTL_R32(tp, MISC) | PWM_EN); RTL_W8(tp, Config5, RTL_R8(tp, Config5) & ~Spi_en); rtl_hw_aspm_clkreq_enable(tp, true); } static void rtl_hw_start_8168f(struct rtl8169_private *tp) { rtl_set_def_aspm_entry_latency(tp); rtl_tx_performance_tweak(tp, PCI_EXP_DEVCTL_READRQ_4096B); rtl_eri_write(tp, 0xc0, ERIAR_MASK_0011, 0x0000, ERIAR_EXGMAC); rtl_eri_write(tp, 0xb8, ERIAR_MASK_0011, 0x0000, ERIAR_EXGMAC); rtl_eri_write(tp, 0xc8, ERIAR_MASK_1111, 0x00100002, ERIAR_EXGMAC); rtl_eri_write(tp, 0xe8, ERIAR_MASK_1111, 0x00100006, ERIAR_EXGMAC); rtl_w0w1_eri(tp, 0xdc, ERIAR_MASK_0001, 0x00, 0x01, ERIAR_EXGMAC); rtl_w0w1_eri(tp, 0xdc, ERIAR_MASK_0001, 0x01, 0x00, ERIAR_EXGMAC); rtl_w0w1_eri(tp, 0x1b0, ERIAR_MASK_0001, 0x10, 0x00, ERIAR_EXGMAC); rtl_w0w1_eri(tp, 0x1d0, ERIAR_MASK_0001, 0x10, 0x00, ERIAR_EXGMAC); rtl_eri_write(tp, 0xcc, ERIAR_MASK_1111, 0x00000050, ERIAR_EXGMAC); rtl_eri_write(tp, 0xd0, ERIAR_MASK_1111, 0x00000060, ERIAR_EXGMAC); RTL_W8(tp, MaxTxPacketSize, EarlySize); rtl_disable_clock_request(tp); RTL_W8(tp, MCU, RTL_R8(tp, MCU) & ~NOW_IS_OOB); RTL_W8(tp, DLLPR, RTL_R8(tp, DLLPR) | PFM_EN); RTL_W32(tp, MISC, RTL_R32(tp, MISC) | PWM_EN); RTL_W8(tp, Config5, RTL_R8(tp, Config5) & ~Spi_en); } static void rtl_hw_start_8168f_1(struct rtl8169_private *tp) { static const struct ephy_info e_info_8168f_1[] = { { 0x06, 0x00c0, 0x0020 }, { 0x08, 0x0001, 0x0002 }, { 0x09, 0x0000, 0x0080 }, { 0x19, 0x0000, 0x0224 } }; rtl_hw_start_8168f(tp); rtl_ephy_init(tp, e_info_8168f_1, ARRAY_SIZE(e_info_8168f_1)); rtl_w0w1_eri(tp, 0x0d4, ERIAR_MASK_0011, 0x0c00, 0xff00, ERIAR_EXGMAC); /* Adjust EEE LED frequency */ RTL_W8(tp, EEE_LED, RTL_R8(tp, EEE_LED) & ~0x07); } static void rtl_hw_start_8411(struct rtl8169_private *tp) { static const struct ephy_info e_info_8168f_1[] = { { 0x06, 0x00c0, 0x0020 }, { 0x0f, 0xffff, 0x5200 }, { 0x1e, 0x0000, 0x4000 }, { 0x19, 0x0000, 0x0224 } }; rtl_hw_start_8168f(tp); rtl_pcie_state_l2l3_enable(tp, false); rtl_ephy_init(tp, e_info_8168f_1, ARRAY_SIZE(e_info_8168f_1)); rtl_w0w1_eri(tp, 0x0d4, ERIAR_MASK_0011, 0x0c00, 0x0000, ERIAR_EXGMAC); } static void rtl_hw_start_8168g(struct rtl8169_private *tp) { rtl_eri_write(tp, 0xc8, ERIAR_MASK_0101, 0x080002, ERIAR_EXGMAC); rtl_eri_write(tp, 0xcc, ERIAR_MASK_0001, 0x38, ERIAR_EXGMAC); rtl_eri_write(tp, 0xd0, ERIAR_MASK_0001, 0x48, ERIAR_EXGMAC); rtl_eri_write(tp, 0xe8, ERIAR_MASK_1111, 0x00100006, ERIAR_EXGMAC); rtl_set_def_aspm_entry_latency(tp); rtl_tx_performance_tweak(tp, PCI_EXP_DEVCTL_READRQ_4096B); rtl_w0w1_eri(tp, 0xdc, ERIAR_MASK_0001, 0x00, 0x01, ERIAR_EXGMAC); rtl_w0w1_eri(tp, 0xdc, ERIAR_MASK_0001, 0x01, 0x00, ERIAR_EXGMAC); rtl_eri_write(tp, 0x2f8, ERIAR_MASK_0011, 0x1d8f, ERIAR_EXGMAC); RTL_W32(tp, MISC, RTL_R32(tp, MISC) & ~RXDV_GATED_EN); RTL_W8(tp, MaxTxPacketSize, EarlySize); rtl_eri_write(tp, 0xc0, ERIAR_MASK_0011, 0x0000, ERIAR_EXGMAC); rtl_eri_write(tp, 0xb8, ERIAR_MASK_0011, 0x0000, ERIAR_EXGMAC); /* Adjust EEE LED frequency */ RTL_W8(tp, EEE_LED, RTL_R8(tp, EEE_LED) & ~0x07); rtl_w0w1_eri(tp, 0x2fc, ERIAR_MASK_0001, 0x01, 0x06, ERIAR_EXGMAC); rtl_w0w1_eri(tp, 0x1b0, ERIAR_MASK_0011, 0x0000, 0x1000, ERIAR_EXGMAC); rtl_pcie_state_l2l3_enable(tp, false); } static void rtl_hw_start_8168g_1(struct rtl8169_private *tp) { static const struct ephy_info e_info_8168g_1[] = { { 0x00, 0x0000, 0x0008 }, { 0x0c, 0x37d0, 0x0820 }, { 0x1e, 0x0000, 0x0001 }, { 0x19, 0x8000, 0x0000 } }; rtl_hw_start_8168g(tp); /* disable aspm and clock request before access ephy */ rtl_hw_aspm_clkreq_enable(tp, false); rtl_ephy_init(tp, e_info_8168g_1, ARRAY_SIZE(e_info_8168g_1)); rtl_hw_aspm_clkreq_enable(tp, true); } static void rtl_hw_start_8168g_2(struct rtl8169_private *tp) { static const struct ephy_info e_info_8168g_2[] = { { 0x00, 0x0000, 0x0008 }, { 0x0c, 0x3df0, 0x0200 }, { 0x19, 0xffff, 0xfc00 }, { 0x1e, 0xffff, 0x20eb } }; rtl_hw_start_8168g(tp); /* disable aspm and clock request before access ephy */ RTL_W8(tp, Config2, RTL_R8(tp, Config2) & ~ClkReqEn); RTL_W8(tp, Config5, RTL_R8(tp, Config5) & ~ASPM_en); rtl_ephy_init(tp, e_info_8168g_2, ARRAY_SIZE(e_info_8168g_2)); } static void rtl_hw_start_8411_2(struct rtl8169_private *tp) { static const struct ephy_info e_info_8411_2[] = { { 0x00, 0x0000, 0x0008 }, { 0x0c, 0x3df0, 0x0200 }, { 0x0f, 0xffff, 0x5200 }, { 0x19, 0x0020, 0x0000 }, { 0x1e, 0x0000, 0x2000 } }; rtl_hw_start_8168g(tp); /* disable aspm and clock request before access ephy */ rtl_hw_aspm_clkreq_enable(tp, false); rtl_ephy_init(tp, e_info_8411_2, ARRAY_SIZE(e_info_8411_2)); rtl_hw_aspm_clkreq_enable(tp, true); } static void rtl_hw_start_8168h_1(struct rtl8169_private *tp) { int rg_saw_cnt; u32 data; static const struct ephy_info e_info_8168h_1[] = { { 0x1e, 0x0800, 0x0001 }, { 0x1d, 0x0000, 0x0800 }, { 0x05, 0xffff, 0x2089 }, { 0x06, 0xffff, 0x5881 }, { 0x04, 0xffff, 0x154a }, { 0x01, 0xffff, 0x068b } }; /* disable aspm and clock request before access ephy */ rtl_hw_aspm_clkreq_enable(tp, false); rtl_ephy_init(tp, e_info_8168h_1, ARRAY_SIZE(e_info_8168h_1)); rtl_eri_write(tp, 0xc8, ERIAR_MASK_0101, 0x00080002, ERIAR_EXGMAC); rtl_eri_write(tp, 0xcc, ERIAR_MASK_0001, 0x38, ERIAR_EXGMAC); rtl_eri_write(tp, 0xd0, ERIAR_MASK_0001, 0x48, ERIAR_EXGMAC); rtl_eri_write(tp, 0xe8, ERIAR_MASK_1111, 0x00100006, ERIAR_EXGMAC); rtl_set_def_aspm_entry_latency(tp); rtl_tx_performance_tweak(tp, PCI_EXP_DEVCTL_READRQ_4096B); rtl_w0w1_eri(tp, 0xdc, ERIAR_MASK_0001, 0x00, 0x01, ERIAR_EXGMAC); rtl_w0w1_eri(tp, 0xdc, ERIAR_MASK_0001, 0x01, 0x00, ERIAR_EXGMAC); rtl_w0w1_eri(tp, 0xdc, ERIAR_MASK_1111, 0x0010, 0x00, ERIAR_EXGMAC); rtl_w0w1_eri(tp, 0xd4, ERIAR_MASK_1111, 0x1f00, 0x00, ERIAR_EXGMAC); rtl_eri_write(tp, 0x5f0, ERIAR_MASK_0011, 0x4f87, ERIAR_EXGMAC); RTL_W32(tp, MISC, RTL_R32(tp, MISC) & ~RXDV_GATED_EN); RTL_W8(tp, MaxTxPacketSize, EarlySize); rtl_eri_write(tp, 0xc0, ERIAR_MASK_0011, 0x0000, ERIAR_EXGMAC); rtl_eri_write(tp, 0xb8, ERIAR_MASK_0011, 0x0000, ERIAR_EXGMAC); /* Adjust EEE LED frequency */ RTL_W8(tp, EEE_LED, RTL_R8(tp, EEE_LED) & ~0x07); RTL_W8(tp, DLLPR, RTL_R8(tp, DLLPR) & ~PFM_EN); RTL_W8(tp, MISC_1, RTL_R8(tp, MISC_1) & ~PFM_D3COLD_EN); RTL_W8(tp, DLLPR, RTL_R8(tp, DLLPR) & ~TX_10M_PS_EN); rtl_w0w1_eri(tp, 0x1b0, ERIAR_MASK_0011, 0x0000, 0x1000, ERIAR_EXGMAC); rtl_pcie_state_l2l3_enable(tp, false); rtl_writephy(tp, 0x1f, 0x0c42); rg_saw_cnt = (rtl_readphy(tp, 0x13) & 0x3fff); rtl_writephy(tp, 0x1f, 0x0000); if (rg_saw_cnt > 0) { u16 sw_cnt_1ms_ini; sw_cnt_1ms_ini = 16000000/rg_saw_cnt; sw_cnt_1ms_ini &= 0x0fff; data = r8168_mac_ocp_read(tp, 0xd412); data &= ~0x0fff; data |= sw_cnt_1ms_ini; r8168_mac_ocp_write(tp, 0xd412, data); } data = r8168_mac_ocp_read(tp, 0xe056); data &= ~0xf0; data |= 0x70; r8168_mac_ocp_write(tp, 0xe056, data); data = r8168_mac_ocp_read(tp, 0xe052); data &= ~0x6000; data |= 0x8008; r8168_mac_ocp_write(tp, 0xe052, data); data = r8168_mac_ocp_read(tp, 0xe0d6); data &= ~0x01ff; data |= 0x017f; r8168_mac_ocp_write(tp, 0xe0d6, data); data = r8168_mac_ocp_read(tp, 0xd420); data &= ~0x0fff; data |= 0x047f; r8168_mac_ocp_write(tp, 0xd420, data); r8168_mac_ocp_write(tp, 0xe63e, 0x0001); r8168_mac_ocp_write(tp, 0xe63e, 0x0000); r8168_mac_ocp_write(tp, 0xc094, 0x0000); r8168_mac_ocp_write(tp, 0xc09e, 0x0000); rtl_hw_aspm_clkreq_enable(tp, true); } static void rtl_hw_start_8168ep(struct rtl8169_private *tp) { rtl8168ep_stop_cmac(tp); rtl_eri_write(tp, 0xc8, ERIAR_MASK_0101, 0x00080002, ERIAR_EXGMAC); rtl_eri_write(tp, 0xcc, ERIAR_MASK_0001, 0x2f, ERIAR_EXGMAC); rtl_eri_write(tp, 0xd0, ERIAR_MASK_0001, 0x5f, ERIAR_EXGMAC); rtl_eri_write(tp, 0xe8, ERIAR_MASK_1111, 0x00100006, ERIAR_EXGMAC); rtl_set_def_aspm_entry_latency(tp); rtl_tx_performance_tweak(tp, PCI_EXP_DEVCTL_READRQ_4096B); rtl_w0w1_eri(tp, 0xdc, ERIAR_MASK_0001, 0x00, 0x01, ERIAR_EXGMAC); rtl_w0w1_eri(tp, 0xdc, ERIAR_MASK_0001, 0x01, 0x00, ERIAR_EXGMAC); rtl_w0w1_eri(tp, 0xd4, ERIAR_MASK_1111, 0x1f80, 0x00, ERIAR_EXGMAC); rtl_eri_write(tp, 0x5f0, ERIAR_MASK_0011, 0x4f87, ERIAR_EXGMAC); RTL_W32(tp, MISC, RTL_R32(tp, MISC) & ~RXDV_GATED_EN); RTL_W8(tp, MaxTxPacketSize, EarlySize); rtl_eri_write(tp, 0xc0, ERIAR_MASK_0011, 0x0000, ERIAR_EXGMAC); rtl_eri_write(tp, 0xb8, ERIAR_MASK_0011, 0x0000, ERIAR_EXGMAC); /* Adjust EEE LED frequency */ RTL_W8(tp, EEE_LED, RTL_R8(tp, EEE_LED) & ~0x07); rtl_w0w1_eri(tp, 0x2fc, ERIAR_MASK_0001, 0x01, 0x06, ERIAR_EXGMAC); RTL_W8(tp, DLLPR, RTL_R8(tp, DLLPR) & ~TX_10M_PS_EN); rtl_pcie_state_l2l3_enable(tp, false); } static void rtl_hw_start_8168ep_1(struct rtl8169_private *tp) { static const struct ephy_info e_info_8168ep_1[] = { { 0x00, 0xffff, 0x10ab }, { 0x06, 0xffff, 0xf030 }, { 0x08, 0xffff, 0x2006 }, { 0x0d, 0xffff, 0x1666 }, { 0x0c, 0x3ff0, 0x0000 } }; /* disable aspm and clock request before access ephy */ rtl_hw_aspm_clkreq_enable(tp, false); rtl_ephy_init(tp, e_info_8168ep_1, ARRAY_SIZE(e_info_8168ep_1)); rtl_hw_start_8168ep(tp); rtl_hw_aspm_clkreq_enable(tp, true); } static void rtl_hw_start_8168ep_2(struct rtl8169_private *tp) { static const struct ephy_info e_info_8168ep_2[] = { { 0x00, 0xffff, 0x10a3 }, { 0x19, 0xffff, 0xfc00 }, { 0x1e, 0xffff, 0x20ea } }; /* disable aspm and clock request before access ephy */ rtl_hw_aspm_clkreq_enable(tp, false); rtl_ephy_init(tp, e_info_8168ep_2, ARRAY_SIZE(e_info_8168ep_2)); rtl_hw_start_8168ep(tp); RTL_W8(tp, DLLPR, RTL_R8(tp, DLLPR) & ~PFM_EN); RTL_W8(tp, MISC_1, RTL_R8(tp, MISC_1) & ~PFM_D3COLD_EN); rtl_hw_aspm_clkreq_enable(tp, true); } static void rtl_hw_start_8168ep_3(struct rtl8169_private *tp) { u32 data; static const struct ephy_info e_info_8168ep_3[] = { { 0x00, 0xffff, 0x10a3 }, { 0x19, 0xffff, 0x7c00 }, { 0x1e, 0xffff, 0x20eb }, { 0x0d, 0xffff, 0x1666 } }; /* disable aspm and clock request before access ephy */ rtl_hw_aspm_clkreq_enable(tp, false); rtl_ephy_init(tp, e_info_8168ep_3, ARRAY_SIZE(e_info_8168ep_3)); rtl_hw_start_8168ep(tp); RTL_W8(tp, DLLPR, RTL_R8(tp, DLLPR) & ~PFM_EN); RTL_W8(tp, MISC_1, RTL_R8(tp, MISC_1) & ~PFM_D3COLD_EN); data = r8168_mac_ocp_read(tp, 0xd3e2); data &= 0xf000; data |= 0x0271; r8168_mac_ocp_write(tp, 0xd3e2, data); data = r8168_mac_ocp_read(tp, 0xd3e4); data &= 0xff00; r8168_mac_ocp_write(tp, 0xd3e4, data); data = r8168_mac_ocp_read(tp, 0xe860); data |= 0x0080; r8168_mac_ocp_write(tp, 0xe860, data); rtl_hw_aspm_clkreq_enable(tp, true); } static void rtl_hw_start_8168(struct rtl8169_private *tp) { RTL_W8(tp, MaxTxPacketSize, TxPacketMax); tp->cp_cmd &= ~INTT_MASK; tp->cp_cmd |= PktCntrDisable | INTT_1; RTL_W16(tp, CPlusCmd, tp->cp_cmd); RTL_W16(tp, IntrMitigate, 0x5151); /* Work around for RxFIFO overflow. */ if (tp->mac_version == RTL_GIGA_MAC_VER_11) { tp->irq_mask |= RxFIFOOver; tp->irq_mask &= ~RxOverflow; } switch (tp->mac_version) { case RTL_GIGA_MAC_VER_11: rtl_hw_start_8168bb(tp); break; case RTL_GIGA_MAC_VER_12: case RTL_GIGA_MAC_VER_17: rtl_hw_start_8168bef(tp); break; case RTL_GIGA_MAC_VER_18: rtl_hw_start_8168cp_1(tp); break; case RTL_GIGA_MAC_VER_19: rtl_hw_start_8168c_1(tp); break; case RTL_GIGA_MAC_VER_20: rtl_hw_start_8168c_2(tp); break; case RTL_GIGA_MAC_VER_21: rtl_hw_start_8168c_3(tp); break; case RTL_GIGA_MAC_VER_22: rtl_hw_start_8168c_4(tp); break; case RTL_GIGA_MAC_VER_23: rtl_hw_start_8168cp_2(tp); break; case RTL_GIGA_MAC_VER_24: rtl_hw_start_8168cp_3(tp); break; case RTL_GIGA_MAC_VER_25: case RTL_GIGA_MAC_VER_26: case RTL_GIGA_MAC_VER_27: rtl_hw_start_8168d(tp); break; case RTL_GIGA_MAC_VER_28: rtl_hw_start_8168d_4(tp); break; case RTL_GIGA_MAC_VER_31: rtl_hw_start_8168dp(tp); break; case RTL_GIGA_MAC_VER_32: case RTL_GIGA_MAC_VER_33: rtl_hw_start_8168e_1(tp); break; case RTL_GIGA_MAC_VER_34: rtl_hw_start_8168e_2(tp); break; case RTL_GIGA_MAC_VER_35: case RTL_GIGA_MAC_VER_36: rtl_hw_start_8168f_1(tp); break; case RTL_GIGA_MAC_VER_38: rtl_hw_start_8411(tp); break; case RTL_GIGA_MAC_VER_40: case RTL_GIGA_MAC_VER_41: rtl_hw_start_8168g_1(tp); break; case RTL_GIGA_MAC_VER_42: rtl_hw_start_8168g_2(tp); break; case RTL_GIGA_MAC_VER_44: rtl_hw_start_8411_2(tp); break; case RTL_GIGA_MAC_VER_45: case RTL_GIGA_MAC_VER_46: rtl_hw_start_8168h_1(tp); break; case RTL_GIGA_MAC_VER_49: rtl_hw_start_8168ep_1(tp); break; case RTL_GIGA_MAC_VER_50: rtl_hw_start_8168ep_2(tp); break; case RTL_GIGA_MAC_VER_51: rtl_hw_start_8168ep_3(tp); break; default: netif_err(tp, drv, tp->dev, "unknown chipset (mac_version = %d)\n", tp->mac_version); break; } } static void rtl_hw_start_8102e_1(struct rtl8169_private *tp) { static const struct ephy_info e_info_8102e_1[] = { { 0x01, 0, 0x6e65 }, { 0x02, 0, 0x091f }, { 0x03, 0, 0xc2f9 }, { 0x06, 0, 0xafb5 }, { 0x07, 0, 0x0e00 }, { 0x19, 0, 0xec80 }, { 0x01, 0, 0x2e65 }, { 0x01, 0, 0x6e65 } }; u8 cfg1; rtl_set_def_aspm_entry_latency(tp); RTL_W8(tp, DBG_REG, FIX_NAK_1); rtl_tx_performance_tweak(tp, PCI_EXP_DEVCTL_READRQ_4096B); RTL_W8(tp, Config1, LEDS1 | LEDS0 | Speed_down | MEMMAP | IOMAP | VPD | PMEnable); RTL_W8(tp, Config3, RTL_R8(tp, Config3) & ~Beacon_en); cfg1 = RTL_R8(tp, Config1); if ((cfg1 & LEDS0) && (cfg1 & LEDS1)) RTL_W8(tp, Config1, cfg1 & ~LEDS0); rtl_ephy_init(tp, e_info_8102e_1, ARRAY_SIZE(e_info_8102e_1)); } static void rtl_hw_start_8102e_2(struct rtl8169_private *tp) { rtl_set_def_aspm_entry_latency(tp); rtl_tx_performance_tweak(tp, PCI_EXP_DEVCTL_READRQ_4096B); RTL_W8(tp, Config1, MEMMAP | IOMAP | VPD | PMEnable); RTL_W8(tp, Config3, RTL_R8(tp, Config3) & ~Beacon_en); } static void rtl_hw_start_8102e_3(struct rtl8169_private *tp) { rtl_hw_start_8102e_2(tp); rtl_ephy_write(tp, 0x03, 0xc2f9); } static void rtl_hw_start_8105e_1(struct rtl8169_private *tp) { static const struct ephy_info e_info_8105e_1[] = { { 0x07, 0, 0x4000 }, { 0x19, 0, 0x0200 }, { 0x19, 0, 0x0020 }, { 0x1e, 0, 0x2000 }, { 0x03, 0, 0x0001 }, { 0x19, 0, 0x0100 }, { 0x19, 0, 0x0004 }, { 0x0a, 0, 0x0020 } }; /* Force LAN exit from ASPM if Rx/Tx are not idle */ RTL_W32(tp, FuncEvent, RTL_R32(tp, FuncEvent) | 0x002800); /* Disable Early Tally Counter */ RTL_W32(tp, FuncEvent, RTL_R32(tp, FuncEvent) & ~0x010000); RTL_W8(tp, MCU, RTL_R8(tp, MCU) | EN_NDP | EN_OOB_RESET); RTL_W8(tp, DLLPR, RTL_R8(tp, DLLPR) | PFM_EN); rtl_ephy_init(tp, e_info_8105e_1, ARRAY_SIZE(e_info_8105e_1)); rtl_pcie_state_l2l3_enable(tp, false); } static void rtl_hw_start_8105e_2(struct rtl8169_private *tp) { rtl_hw_start_8105e_1(tp); rtl_ephy_write(tp, 0x1e, rtl_ephy_read(tp, 0x1e) | 0x8000); } static void rtl_hw_start_8402(struct rtl8169_private *tp) { static const struct ephy_info e_info_8402[] = { { 0x19, 0xffff, 0xff64 }, { 0x1e, 0, 0x4000 } }; rtl_set_def_aspm_entry_latency(tp); /* Force LAN exit from ASPM if Rx/Tx are not idle */ RTL_W32(tp, FuncEvent, RTL_R32(tp, FuncEvent) | 0x002800); RTL_W8(tp, MCU, RTL_R8(tp, MCU) & ~NOW_IS_OOB); rtl_ephy_init(tp, e_info_8402, ARRAY_SIZE(e_info_8402)); rtl_tx_performance_tweak(tp, PCI_EXP_DEVCTL_READRQ_4096B); rtl_eri_write(tp, 0xc8, ERIAR_MASK_1111, 0x00000002, ERIAR_EXGMAC); rtl_eri_write(tp, 0xe8, ERIAR_MASK_1111, 0x00000006, ERIAR_EXGMAC); rtl_w0w1_eri(tp, 0xdc, ERIAR_MASK_0001, 0x00, 0x01, ERIAR_EXGMAC); rtl_w0w1_eri(tp, 0xdc, ERIAR_MASK_0001, 0x01, 0x00, ERIAR_EXGMAC); rtl_eri_write(tp, 0xc0, ERIAR_MASK_0011, 0x0000, ERIAR_EXGMAC); rtl_eri_write(tp, 0xb8, ERIAR_MASK_0011, 0x0000, ERIAR_EXGMAC); rtl_w0w1_eri(tp, 0x0d4, ERIAR_MASK_0011, 0x0e00, 0xff00, ERIAR_EXGMAC); rtl_pcie_state_l2l3_enable(tp, false); } static void rtl_hw_start_8106(struct rtl8169_private *tp) { rtl_hw_aspm_clkreq_enable(tp, false); /* Force LAN exit from ASPM if Rx/Tx are not idle */ RTL_W32(tp, FuncEvent, RTL_R32(tp, FuncEvent) | 0x002800); RTL_W32(tp, MISC, (RTL_R32(tp, MISC) | DISABLE_LAN_EN) & ~EARLY_TALLY_EN); RTL_W8(tp, MCU, RTL_R8(tp, MCU) | EN_NDP | EN_OOB_RESET); RTL_W8(tp, DLLPR, RTL_R8(tp, DLLPR) & ~PFM_EN); rtl_pcie_state_l2l3_enable(tp, false); rtl_hw_aspm_clkreq_enable(tp, true); } static void rtl_hw_start_8101(struct rtl8169_private *tp) { if (tp->mac_version >= RTL_GIGA_MAC_VER_30) tp->irq_mask &= ~RxFIFOOver; if (tp->mac_version == RTL_GIGA_MAC_VER_13 || tp->mac_version == RTL_GIGA_MAC_VER_16) pcie_capability_set_word(tp->pci_dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_NOSNOOP_EN); RTL_W8(tp, MaxTxPacketSize, TxPacketMax); tp->cp_cmd &= CPCMD_QUIRK_MASK; RTL_W16(tp, CPlusCmd, tp->cp_cmd); switch (tp->mac_version) { case RTL_GIGA_MAC_VER_07: rtl_hw_start_8102e_1(tp); break; case RTL_GIGA_MAC_VER_08: rtl_hw_start_8102e_3(tp); break; case RTL_GIGA_MAC_VER_09: rtl_hw_start_8102e_2(tp); break; case RTL_GIGA_MAC_VER_29: rtl_hw_start_8105e_1(tp); break; case RTL_GIGA_MAC_VER_30: rtl_hw_start_8105e_2(tp); break; case RTL_GIGA_MAC_VER_37: rtl_hw_start_8402(tp); break; case RTL_GIGA_MAC_VER_39: rtl_hw_start_8106(tp); break; case RTL_GIGA_MAC_VER_43: rtl_hw_start_8168g_2(tp); break; case RTL_GIGA_MAC_VER_47: case RTL_GIGA_MAC_VER_48: rtl_hw_start_8168h_1(tp); break; } RTL_W16(tp, IntrMitigate, 0x0000); } static int rtl8169_change_mtu(struct net_device *dev, int new_mtu) { struct rtl8169_private *tp = netdev_priv(dev); if (new_mtu > ETH_DATA_LEN) rtl_hw_jumbo_enable(tp); else rtl_hw_jumbo_disable(tp); dev->mtu = new_mtu; netdev_update_features(dev); return 0; } static inline void rtl8169_make_unusable_by_asic(struct RxDesc *desc) { desc->addr = cpu_to_le64(0x0badbadbadbadbadull); desc->opts1 &= ~cpu_to_le32(DescOwn | RsvdMask); } static void rtl8169_free_rx_databuff(struct rtl8169_private *tp, void **data_buff, struct RxDesc *desc) { dma_unmap_single(tp_to_dev(tp), le64_to_cpu(desc->addr), R8169_RX_BUF_SIZE, DMA_FROM_DEVICE); kfree(*data_buff); *data_buff = NULL; rtl8169_make_unusable_by_asic(desc); } static inline void rtl8169_mark_to_asic(struct RxDesc *desc) { u32 eor = le32_to_cpu(desc->opts1) & RingEnd; /* Force memory writes to complete before releasing descriptor */ dma_wmb(); desc->opts1 = cpu_to_le32(DescOwn | eor | R8169_RX_BUF_SIZE); } static inline void *rtl8169_align(void *data) { return (void *)ALIGN((long)data, 16); } static struct sk_buff *rtl8169_alloc_rx_data(struct rtl8169_private *tp, struct RxDesc *desc) { void *data; dma_addr_t mapping; struct device *d = tp_to_dev(tp); int node = dev_to_node(d); data = kmalloc_node(R8169_RX_BUF_SIZE, GFP_KERNEL, node); if (!data) return NULL; if (rtl8169_align(data) != data) { kfree(data); data = kmalloc_node(R8169_RX_BUF_SIZE + 15, GFP_KERNEL, node); if (!data) return NULL; } mapping = dma_map_single(d, rtl8169_align(data), R8169_RX_BUF_SIZE, DMA_FROM_DEVICE); if (unlikely(dma_mapping_error(d, mapping))) { if (net_ratelimit()) netif_err(tp, drv, tp->dev, "Failed to map RX DMA!\n"); goto err_out; } desc->addr = cpu_to_le64(mapping); rtl8169_mark_to_asic(desc); return data; err_out: kfree(data); return NULL; } static void rtl8169_rx_clear(struct rtl8169_private *tp) { unsigned int i; for (i = 0; i < NUM_RX_DESC; i++) { if (tp->Rx_databuff[i]) { rtl8169_free_rx_databuff(tp, tp->Rx_databuff + i, tp->RxDescArray + i); } } } static inline void rtl8169_mark_as_last_descriptor(struct RxDesc *desc) { desc->opts1 |= cpu_to_le32(RingEnd); } static int rtl8169_rx_fill(struct rtl8169_private *tp) { unsigned int i; for (i = 0; i < NUM_RX_DESC; i++) { void *data; data = rtl8169_alloc_rx_data(tp, tp->RxDescArray + i); if (!data) { rtl8169_make_unusable_by_asic(tp->RxDescArray + i); goto err_out; } tp->Rx_databuff[i] = data; } rtl8169_mark_as_last_descriptor(tp->RxDescArray + NUM_RX_DESC - 1); return 0; err_out: rtl8169_rx_clear(tp); return -ENOMEM; } static int rtl8169_init_ring(struct rtl8169_private *tp) { rtl8169_init_ring_indexes(tp); memset(tp->tx_skb, 0, sizeof(tp->tx_skb)); memset(tp->Rx_databuff, 0, sizeof(tp->Rx_databuff)); return rtl8169_rx_fill(tp); } static void rtl8169_unmap_tx_skb(struct device *d, struct ring_info *tx_skb, struct TxDesc *desc) { unsigned int len = tx_skb->len; dma_unmap_single(d, le64_to_cpu(desc->addr), len, DMA_TO_DEVICE); desc->opts1 = 0x00; desc->opts2 = 0x00; desc->addr = 0x00; tx_skb->len = 0; } static void rtl8169_tx_clear_range(struct rtl8169_private *tp, u32 start, unsigned int n) { unsigned int i; for (i = 0; i < n; i++) { unsigned int entry = (start + i) % NUM_TX_DESC; struct ring_info *tx_skb = tp->tx_skb + entry; unsigned int len = tx_skb->len; if (len) { struct sk_buff *skb = tx_skb->skb; rtl8169_unmap_tx_skb(tp_to_dev(tp), tx_skb, tp->TxDescArray + entry); if (skb) { dev_consume_skb_any(skb); tx_skb->skb = NULL; } } } } static void rtl8169_tx_clear(struct rtl8169_private *tp) { rtl8169_tx_clear_range(tp, tp->dirty_tx, NUM_TX_DESC); tp->cur_tx = tp->dirty_tx = 0; netdev_reset_queue(tp->dev); } static void rtl_reset_work(struct rtl8169_private *tp) { struct net_device *dev = tp->dev; int i; napi_disable(&tp->napi); netif_stop_queue(dev); synchronize_rcu(); rtl8169_hw_reset(tp); for (i = 0; i < NUM_RX_DESC; i++) rtl8169_mark_to_asic(tp->RxDescArray + i); rtl8169_tx_clear(tp); rtl8169_init_ring_indexes(tp); napi_enable(&tp->napi); rtl_hw_start(tp); netif_wake_queue(dev); } static void rtl8169_tx_timeout(struct net_device *dev) { struct rtl8169_private *tp = netdev_priv(dev); rtl_schedule_task(tp, RTL_FLAG_TASK_RESET_PENDING); } static __le32 rtl8169_get_txd_opts1(u32 opts0, u32 len, unsigned int entry) { u32 status = opts0 | len; if (entry == NUM_TX_DESC - 1) status |= RingEnd; return cpu_to_le32(status); } static int rtl8169_xmit_frags(struct rtl8169_private *tp, struct sk_buff *skb, u32 *opts) { struct skb_shared_info *info = skb_shinfo(skb); unsigned int cur_frag, entry; struct TxDesc *uninitialized_var(txd); struct device *d = tp_to_dev(tp); entry = tp->cur_tx; for (cur_frag = 0; cur_frag < info->nr_frags; cur_frag++) { const skb_frag_t *frag = info->frags + cur_frag; dma_addr_t mapping; u32 len; void *addr; entry = (entry + 1) % NUM_TX_DESC; txd = tp->TxDescArray + entry; len = skb_frag_size(frag); addr = skb_frag_address(frag); mapping = dma_map_single(d, addr, len, DMA_TO_DEVICE); if (unlikely(dma_mapping_error(d, mapping))) { if (net_ratelimit()) netif_err(tp, drv, tp->dev, "Failed to map TX fragments DMA!\n"); goto err_out; } txd->opts1 = rtl8169_get_txd_opts1(opts[0], len, entry); txd->opts2 = cpu_to_le32(opts[1]); txd->addr = cpu_to_le64(mapping); tp->tx_skb[entry].len = len; } if (cur_frag) { tp->tx_skb[entry].skb = skb; txd->opts1 |= cpu_to_le32(LastFrag); } return cur_frag; err_out: rtl8169_tx_clear_range(tp, tp->cur_tx + 1, cur_frag); return -EIO; } static bool rtl_test_hw_pad_bug(struct rtl8169_private *tp, struct sk_buff *skb) { return skb->len < ETH_ZLEN && tp->mac_version == RTL_GIGA_MAC_VER_34; } static netdev_tx_t rtl8169_start_xmit(struct sk_buff *skb, struct net_device *dev); /* r8169_csum_workaround() * The hw limites the value the transport offset. When the offset is out of the * range, calculate the checksum by sw. */ static void r8169_csum_workaround(struct rtl8169_private *tp, struct sk_buff *skb) { if (skb_shinfo(skb)->gso_size) { netdev_features_t features = tp->dev->features; struct sk_buff *segs, *nskb; features &= ~(NETIF_F_SG | NETIF_F_IPV6_CSUM | NETIF_F_TSO6); segs = skb_gso_segment(skb, features); if (IS_ERR(segs) || !segs) goto drop; do { nskb = segs; segs = segs->next; nskb->next = NULL; rtl8169_start_xmit(nskb, tp->dev); } while (segs); dev_consume_skb_any(skb); } else if (skb->ip_summed == CHECKSUM_PARTIAL) { if (skb_checksum_help(skb) < 0) goto drop; rtl8169_start_xmit(skb, tp->dev); } else { struct net_device_stats *stats; drop: stats = &tp->dev->stats; stats->tx_dropped++; dev_kfree_skb_any(skb); } } /* msdn_giant_send_check() * According to the document of microsoft, the TCP Pseudo Header excludes the * packet length for IPv6 TCP large packets. */ static int msdn_giant_send_check(struct sk_buff *skb) { const struct ipv6hdr *ipv6h; struct tcphdr *th; int ret; ret = skb_cow_head(skb, 0); if (ret) return ret; ipv6h = ipv6_hdr(skb); th = tcp_hdr(skb); th->check = 0; th->check = ~tcp_v6_check(0, &ipv6h->saddr, &ipv6h->daddr, 0); return ret; } static bool rtl8169_tso_csum_v1(struct rtl8169_private *tp, struct sk_buff *skb, u32 *opts) { u32 mss = skb_shinfo(skb)->gso_size; if (mss) { opts[0] |= TD_LSO; opts[0] |= min(mss, TD_MSS_MAX) << TD0_MSS_SHIFT; } else if (skb->ip_summed == CHECKSUM_PARTIAL) { const struct iphdr *ip = ip_hdr(skb); if (ip->protocol == IPPROTO_TCP) opts[0] |= TD0_IP_CS | TD0_TCP_CS; else if (ip->protocol == IPPROTO_UDP) opts[0] |= TD0_IP_CS | TD0_UDP_CS; else WARN_ON_ONCE(1); } return true; } static bool rtl8169_tso_csum_v2(struct rtl8169_private *tp, struct sk_buff *skb, u32 *opts) { u32 transport_offset = (u32)skb_transport_offset(skb); u32 mss = skb_shinfo(skb)->gso_size; if (mss) { if (transport_offset > GTTCPHO_MAX) { netif_warn(tp, tx_err, tp->dev, "Invalid transport offset 0x%x for TSO\n", transport_offset); return false; } switch (vlan_get_protocol(skb)) { case htons(ETH_P_IP): opts[0] |= TD1_GTSENV4; break; case htons(ETH_P_IPV6): if (msdn_giant_send_check(skb)) return false; opts[0] |= TD1_GTSENV6; break; default: WARN_ON_ONCE(1); break; } opts[0] |= transport_offset << GTTCPHO_SHIFT; opts[1] |= min(mss, TD_MSS_MAX) << TD1_MSS_SHIFT; } else if (skb->ip_summed == CHECKSUM_PARTIAL) { u8 ip_protocol; if (unlikely(rtl_test_hw_pad_bug(tp, skb))) return !(skb_checksum_help(skb) || eth_skb_pad(skb)); if (transport_offset > TCPHO_MAX) { netif_warn(tp, tx_err, tp->dev, "Invalid transport offset 0x%x\n", transport_offset); return false; } switch (vlan_get_protocol(skb)) { case htons(ETH_P_IP): opts[1] |= TD1_IPv4_CS; ip_protocol = ip_hdr(skb)->protocol; break; case htons(ETH_P_IPV6): opts[1] |= TD1_IPv6_CS; ip_protocol = ipv6_hdr(skb)->nexthdr; break; default: ip_protocol = IPPROTO_RAW; break; } if (ip_protocol == IPPROTO_TCP) opts[1] |= TD1_TCP_CS; else if (ip_protocol == IPPROTO_UDP) opts[1] |= TD1_UDP_CS; else WARN_ON_ONCE(1); opts[1] |= transport_offset << TCPHO_SHIFT; } else { if (unlikely(rtl_test_hw_pad_bug(tp, skb))) return !eth_skb_pad(skb); } return true; } static bool rtl_tx_slots_avail(struct rtl8169_private *tp, unsigned int nr_frags) { unsigned int slots_avail = tp->dirty_tx + NUM_TX_DESC - tp->cur_tx; /* A skbuff with nr_frags needs nr_frags+1 entries in the tx queue */ return slots_avail > nr_frags; } static netdev_tx_t rtl8169_start_xmit(struct sk_buff *skb, struct net_device *dev) { struct rtl8169_private *tp = netdev_priv(dev); unsigned int entry = tp->cur_tx % NUM_TX_DESC; struct TxDesc *txd = tp->TxDescArray + entry; struct device *d = tp_to_dev(tp); dma_addr_t mapping; u32 opts[2], len; int frags; if (unlikely(!rtl_tx_slots_avail(tp, skb_shinfo(skb)->nr_frags))) { netif_err(tp, drv, dev, "BUG! Tx Ring full when queue awake!\n"); goto err_stop_0; } if (unlikely(le32_to_cpu(txd->opts1) & DescOwn)) goto err_stop_0; opts[1] = cpu_to_le32(rtl8169_tx_vlan_tag(skb)); opts[0] = DescOwn; if (!tp->tso_csum(tp, skb, opts)) { r8169_csum_workaround(tp, skb); return NETDEV_TX_OK; } len = skb_headlen(skb); mapping = dma_map_single(d, skb->data, len, DMA_TO_DEVICE); if (unlikely(dma_mapping_error(d, mapping))) { if (net_ratelimit()) netif_err(tp, drv, dev, "Failed to map TX DMA!\n"); goto err_dma_0; } tp->tx_skb[entry].len = len; txd->addr = cpu_to_le64(mapping); frags = rtl8169_xmit_frags(tp, skb, opts); if (frags < 0) goto err_dma_1; else if (frags) opts[0] |= FirstFrag; else { opts[0] |= FirstFrag | LastFrag; tp->tx_skb[entry].skb = skb; } txd->opts2 = cpu_to_le32(opts[1]); netdev_sent_queue(dev, skb->len); skb_tx_timestamp(skb); /* Force memory writes to complete before releasing descriptor */ dma_wmb(); txd->opts1 = rtl8169_get_txd_opts1(opts[0], len, entry); /* Force all memory writes to complete before notifying device */ wmb(); tp->cur_tx += frags + 1; RTL_W8(tp, TxPoll, NPQ); mmiowb(); if (!rtl_tx_slots_avail(tp, MAX_SKB_FRAGS)) { /* Avoid wrongly optimistic queue wake-up: rtl_tx thread must * not miss a ring update when it notices a stopped queue. */ smp_wmb(); netif_stop_queue(dev); /* Sync with rtl_tx: * - publish queue status and cur_tx ring index (write barrier) * - refresh dirty_tx ring index (read barrier). * May the current thread have a pessimistic view of the ring * status and forget to wake up queue, a racing rtl_tx thread * can't. */ smp_mb(); if (rtl_tx_slots_avail(tp, MAX_SKB_FRAGS)) netif_wake_queue(dev); } return NETDEV_TX_OK; err_dma_1: rtl8169_unmap_tx_skb(d, tp->tx_skb + entry, txd); err_dma_0: dev_kfree_skb_any(skb); dev->stats.tx_dropped++; return NETDEV_TX_OK; err_stop_0: netif_stop_queue(dev); dev->stats.tx_dropped++; return NETDEV_TX_BUSY; } static void rtl8169_pcierr_interrupt(struct net_device *dev) { struct rtl8169_private *tp = netdev_priv(dev); struct pci_dev *pdev = tp->pci_dev; u16 pci_status, pci_cmd; pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd); pci_read_config_word(pdev, PCI_STATUS, &pci_status); netif_err(tp, intr, dev, "PCI error (cmd = 0x%04x, status = 0x%04x)\n", pci_cmd, pci_status); /* * The recovery sequence below admits a very elaborated explanation: * - it seems to work; * - I did not see what else could be done; * - it makes iop3xx happy. * * Feel free to adjust to your needs. */ if (pdev->broken_parity_status) pci_cmd &= ~PCI_COMMAND_PARITY; else pci_cmd |= PCI_COMMAND_SERR | PCI_COMMAND_PARITY; pci_write_config_word(pdev, PCI_COMMAND, pci_cmd); pci_write_config_word(pdev, PCI_STATUS, pci_status & (PCI_STATUS_DETECTED_PARITY | PCI_STATUS_SIG_SYSTEM_ERROR | PCI_STATUS_REC_MASTER_ABORT | PCI_STATUS_REC_TARGET_ABORT | PCI_STATUS_SIG_TARGET_ABORT)); /* The infamous DAC f*ckup only happens at boot time */ if ((tp->cp_cmd & PCIDAC) && !tp->cur_rx) { netif_info(tp, intr, dev, "disabling PCI DAC\n"); tp->cp_cmd &= ~PCIDAC; RTL_W16(tp, CPlusCmd, tp->cp_cmd); dev->features &= ~NETIF_F_HIGHDMA; } rtl8169_hw_reset(tp); rtl_schedule_task(tp, RTL_FLAG_TASK_RESET_PENDING); } static void rtl_tx(struct net_device *dev, struct rtl8169_private *tp, int budget) { unsigned int dirty_tx, tx_left, bytes_compl = 0, pkts_compl = 0; dirty_tx = tp->dirty_tx; smp_rmb(); tx_left = tp->cur_tx - dirty_tx; while (tx_left > 0) { unsigned int entry = dirty_tx % NUM_TX_DESC; struct ring_info *tx_skb = tp->tx_skb + entry; u32 status; status = le32_to_cpu(tp->TxDescArray[entry].opts1); if (status & DescOwn) break; /* This barrier is needed to keep us from reading * any other fields out of the Tx descriptor until * we know the status of DescOwn */ dma_rmb(); rtl8169_unmap_tx_skb(tp_to_dev(tp), tx_skb, tp->TxDescArray + entry); if (status & LastFrag) { pkts_compl++; bytes_compl += tx_skb->skb->len; napi_consume_skb(tx_skb->skb, budget); tx_skb->skb = NULL; } dirty_tx++; tx_left--; } if (tp->dirty_tx != dirty_tx) { netdev_completed_queue(dev, pkts_compl, bytes_compl); u64_stats_update_begin(&tp->tx_stats.syncp); tp->tx_stats.packets += pkts_compl; tp->tx_stats.bytes += bytes_compl; u64_stats_update_end(&tp->tx_stats.syncp); tp->dirty_tx = dirty_tx; /* Sync with rtl8169_start_xmit: * - publish dirty_tx ring index (write barrier) * - refresh cur_tx ring index and queue status (read barrier) * May the current thread miss the stopped queue condition, * a racing xmit thread can only have a right view of the * ring status. */ smp_mb(); if (netif_queue_stopped(dev) && rtl_tx_slots_avail(tp, MAX_SKB_FRAGS)) { netif_wake_queue(dev); } /* * 8168 hack: TxPoll requests are lost when the Tx packets are * too close. Let's kick an extra TxPoll request when a burst * of start_xmit activity is detected (if it is not detected, * it is slow enough). -- FR */ if (tp->cur_tx != dirty_tx) RTL_W8(tp, TxPoll, NPQ); } } static inline int rtl8169_fragmented_frame(u32 status) { return (status & (FirstFrag | LastFrag)) != (FirstFrag | LastFrag); } static inline void rtl8169_rx_csum(struct sk_buff *skb, u32 opts1) { u32 status = opts1 & RxProtoMask; if (((status == RxProtoTCP) && !(opts1 & TCPFail)) || ((status == RxProtoUDP) && !(opts1 & UDPFail))) skb->ip_summed = CHECKSUM_UNNECESSARY; else skb_checksum_none_assert(skb); } static struct sk_buff *rtl8169_try_rx_copy(void *data, struct rtl8169_private *tp, int pkt_size, dma_addr_t addr) { struct sk_buff *skb; struct device *d = tp_to_dev(tp); data = rtl8169_align(data); dma_sync_single_for_cpu(d, addr, pkt_size, DMA_FROM_DEVICE); prefetch(data); skb = napi_alloc_skb(&tp->napi, pkt_size); if (skb) skb_copy_to_linear_data(skb, data, pkt_size); dma_sync_single_for_device(d, addr, pkt_size, DMA_FROM_DEVICE); return skb; } static int rtl_rx(struct net_device *dev, struct rtl8169_private *tp, u32 budget) { unsigned int cur_rx, rx_left; unsigned int count; cur_rx = tp->cur_rx; for (rx_left = min(budget, NUM_RX_DESC); rx_left > 0; rx_left--, cur_rx++) { unsigned int entry = cur_rx % NUM_RX_DESC; struct RxDesc *desc = tp->RxDescArray + entry; u32 status; status = le32_to_cpu(desc->opts1); if (status & DescOwn) break; /* This barrier is needed to keep us from reading * any other fields out of the Rx descriptor until * we know the status of DescOwn */ dma_rmb(); if (unlikely(status & RxRES)) { netif_info(tp, rx_err, dev, "Rx ERROR. status = %08x\n", status); dev->stats.rx_errors++; if (status & (RxRWT | RxRUNT)) dev->stats.rx_length_errors++; if (status & RxCRC) dev->stats.rx_crc_errors++; /* RxFOVF is a reserved bit on later chip versions */ if (tp->mac_version == RTL_GIGA_MAC_VER_01 && status & RxFOVF) { rtl_schedule_task(tp, RTL_FLAG_TASK_RESET_PENDING); dev->stats.rx_fifo_errors++; } else if (status & (RxRUNT | RxCRC) && !(status & RxRWT) && dev->features & NETIF_F_RXALL) { goto process_pkt; } } else { struct sk_buff *skb; dma_addr_t addr; int pkt_size; process_pkt: addr = le64_to_cpu(desc->addr); if (likely(!(dev->features & NETIF_F_RXFCS))) pkt_size = (status & 0x00003fff) - 4; else pkt_size = status & 0x00003fff; /* * The driver does not support incoming fragmented * frames. They are seen as a symptom of over-mtu * sized frames. */ if (unlikely(rtl8169_fragmented_frame(status))) { dev->stats.rx_dropped++; dev->stats.rx_length_errors++; goto release_descriptor; } skb = rtl8169_try_rx_copy(tp->Rx_databuff[entry], tp, pkt_size, addr); if (!skb) { dev->stats.rx_dropped++; goto release_descriptor; } rtl8169_rx_csum(skb, status); skb_put(skb, pkt_size); skb->protocol = eth_type_trans(skb, dev); rtl8169_rx_vlan_tag(desc, skb); if (skb->pkt_type == PACKET_MULTICAST) dev->stats.multicast++; napi_gro_receive(&tp->napi, skb); u64_stats_update_begin(&tp->rx_stats.syncp); tp->rx_stats.packets++; tp->rx_stats.bytes += pkt_size; u64_stats_update_end(&tp->rx_stats.syncp); } release_descriptor: desc->opts2 = 0; rtl8169_mark_to_asic(desc); } count = cur_rx - tp->cur_rx; tp->cur_rx = cur_rx; return count; } static irqreturn_t rtl8169_interrupt(int irq, void *dev_instance) { struct rtl8169_private *tp = dev_instance; u16 status = rtl_get_events(tp); u16 irq_mask = RTL_R16(tp, IntrMask); if (status == 0xffff || !(status & irq_mask)) return IRQ_NONE; if (unlikely(status & SYSErr)) { rtl8169_pcierr_interrupt(tp->dev); goto out; } if (status & LinkChg && tp->dev->phydev) phy_mac_interrupt(tp->dev->phydev); if (unlikely(status & RxFIFOOver && tp->mac_version == RTL_GIGA_MAC_VER_11)) { netif_stop_queue(tp->dev); /* XXX - Hack alert. See rtl_task(). */ set_bit(RTL_FLAG_TASK_RESET_PENDING, tp->wk.flags); } if (status & RTL_EVENT_NAPI) { rtl_irq_disable(tp); napi_schedule_irqoff(&tp->napi); } out: rtl_ack_events(tp, status); return IRQ_HANDLED; } static void rtl_task(struct work_struct *work) { static const struct { int bitnr; void (*action)(struct rtl8169_private *); } rtl_work[] = { { RTL_FLAG_TASK_RESET_PENDING, rtl_reset_work }, }; struct rtl8169_private *tp = container_of(work, struct rtl8169_private, wk.work); struct net_device *dev = tp->dev; int i; rtl_lock_work(tp); if (!netif_running(dev) || !test_bit(RTL_FLAG_TASK_ENABLED, tp->wk.flags)) goto out_unlock; for (i = 0; i < ARRAY_SIZE(rtl_work); i++) { bool pending; pending = test_and_clear_bit(rtl_work[i].bitnr, tp->wk.flags); if (pending) rtl_work[i].action(tp); } out_unlock: rtl_unlock_work(tp); } static int rtl8169_poll(struct napi_struct *napi, int budget) { struct rtl8169_private *tp = container_of(napi, struct rtl8169_private, napi); struct net_device *dev = tp->dev; int work_done; work_done = rtl_rx(dev, tp, (u32) budget); rtl_tx(dev, tp, budget); if (work_done < budget) { napi_complete_done(napi, work_done); rtl_irq_enable(tp); mmiowb(); } return work_done; } static void rtl8169_rx_missed(struct net_device *dev) { struct rtl8169_private *tp = netdev_priv(dev); if (tp->mac_version > RTL_GIGA_MAC_VER_06) return; dev->stats.rx_missed_errors += RTL_R32(tp, RxMissed) & 0xffffff; RTL_W32(tp, RxMissed, 0); } static void r8169_phylink_handler(struct net_device *ndev) { struct rtl8169_private *tp = netdev_priv(ndev); if (netif_carrier_ok(ndev)) { rtl_link_chg_patch(tp); pm_request_resume(&tp->pci_dev->dev); } else { pm_runtime_idle(&tp->pci_dev->dev); } if (net_ratelimit()) phy_print_status(ndev->phydev); } static int r8169_phy_connect(struct rtl8169_private *tp) { struct phy_device *phydev = mdiobus_get_phy(tp->mii_bus, 0); phy_interface_t phy_mode; int ret; phy_mode = tp->supports_gmii ? PHY_INTERFACE_MODE_GMII : PHY_INTERFACE_MODE_MII; ret = phy_connect_direct(tp->dev, phydev, r8169_phylink_handler, phy_mode); if (ret) return ret; if (!tp->supports_gmii) phy_set_max_speed(phydev, SPEED_100); /* Ensure to advertise everything, incl. pause */ linkmode_copy(phydev->advertising, phydev->supported); phy_attached_info(phydev); return 0; } static void rtl8169_down(struct net_device *dev) { struct rtl8169_private *tp = netdev_priv(dev); phy_stop(dev->phydev); napi_disable(&tp->napi); netif_stop_queue(dev); rtl8169_hw_reset(tp); /* * At this point device interrupts can not be enabled in any function, * as netif_running is not true (rtl8169_interrupt, rtl8169_reset_task) * and napi is disabled (rtl8169_poll). */ rtl8169_rx_missed(dev); /* Give a racing hard_start_xmit a few cycles to complete. */ synchronize_rcu(); rtl8169_tx_clear(tp); rtl8169_rx_clear(tp); rtl_pll_power_down(tp); } static int rtl8169_close(struct net_device *dev) { struct rtl8169_private *tp = netdev_priv(dev); struct pci_dev *pdev = tp->pci_dev; pm_runtime_get_sync(&pdev->dev); /* Update counters before going down */ rtl8169_update_counters(tp); rtl_lock_work(tp); /* Clear all task flags */ bitmap_zero(tp->wk.flags, RTL_FLAG_MAX); rtl8169_down(dev); rtl_unlock_work(tp); cancel_work_sync(&tp->wk.work); phy_disconnect(dev->phydev); pci_free_irq(pdev, 0, tp); dma_free_coherent(&pdev->dev, R8169_RX_RING_BYTES, tp->RxDescArray, tp->RxPhyAddr); dma_free_coherent(&pdev->dev, R8169_TX_RING_BYTES, tp->TxDescArray, tp->TxPhyAddr); tp->TxDescArray = NULL; tp->RxDescArray = NULL; pm_runtime_put_sync(&pdev->dev); return 0; } #ifdef CONFIG_NET_POLL_CONTROLLER static void rtl8169_netpoll(struct net_device *dev) { struct rtl8169_private *tp = netdev_priv(dev); rtl8169_interrupt(pci_irq_vector(tp->pci_dev, 0), tp); } #endif static int rtl_open(struct net_device *dev) { struct rtl8169_private *tp = netdev_priv(dev); struct pci_dev *pdev = tp->pci_dev; int retval = -ENOMEM; pm_runtime_get_sync(&pdev->dev); /* * Rx and Tx descriptors needs 256 bytes alignment. * dma_alloc_coherent provides more. */ tp->TxDescArray = dma_alloc_coherent(&pdev->dev, R8169_TX_RING_BYTES, &tp->TxPhyAddr, GFP_KERNEL); if (!tp->TxDescArray) goto err_pm_runtime_put; tp->RxDescArray = dma_alloc_coherent(&pdev->dev, R8169_RX_RING_BYTES, &tp->RxPhyAddr, GFP_KERNEL); if (!tp->RxDescArray) goto err_free_tx_0; retval = rtl8169_init_ring(tp); if (retval < 0) goto err_free_rx_1; INIT_WORK(&tp->wk.work, rtl_task); smp_mb(); rtl_request_firmware(tp); retval = pci_request_irq(pdev, 0, rtl8169_interrupt, NULL, tp, dev->name); if (retval < 0) goto err_release_fw_2; retval = r8169_phy_connect(tp); if (retval) goto err_free_irq; rtl_lock_work(tp); set_bit(RTL_FLAG_TASK_ENABLED, tp->wk.flags); napi_enable(&tp->napi); rtl8169_init_phy(dev, tp); rtl_pll_power_up(tp); rtl_hw_start(tp); if (!rtl8169_init_counter_offsets(tp)) netif_warn(tp, hw, dev, "counter reset/update failed\n"); phy_start(dev->phydev); netif_start_queue(dev); rtl_unlock_work(tp); pm_runtime_put_sync(&pdev->dev); out: return retval; err_free_irq: pci_free_irq(pdev, 0, tp); err_release_fw_2: rtl_release_firmware(tp); rtl8169_rx_clear(tp); err_free_rx_1: dma_free_coherent(&pdev->dev, R8169_RX_RING_BYTES, tp->RxDescArray, tp->RxPhyAddr); tp->RxDescArray = NULL; err_free_tx_0: dma_free_coherent(&pdev->dev, R8169_TX_RING_BYTES, tp->TxDescArray, tp->TxPhyAddr); tp->TxDescArray = NULL; err_pm_runtime_put: pm_runtime_put_noidle(&pdev->dev); goto out; } static void rtl8169_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats) { struct rtl8169_private *tp = netdev_priv(dev); struct pci_dev *pdev = tp->pci_dev; struct rtl8169_counters *counters = tp->counters; unsigned int start; pm_runtime_get_noresume(&pdev->dev); if (netif_running(dev) && pm_runtime_active(&pdev->dev)) rtl8169_rx_missed(dev); do { start = u64_stats_fetch_begin_irq(&tp->rx_stats.syncp); stats->rx_packets = tp->rx_stats.packets; stats->rx_bytes = tp->rx_stats.bytes; } while (u64_stats_fetch_retry_irq(&tp->rx_stats.syncp, start)); do { start = u64_stats_fetch_begin_irq(&tp->tx_stats.syncp); stats->tx_packets = tp->tx_stats.packets; stats->tx_bytes = tp->tx_stats.bytes; } while (u64_stats_fetch_retry_irq(&tp->tx_stats.syncp, start)); stats->rx_dropped = dev->stats.rx_dropped; stats->tx_dropped = dev->stats.tx_dropped; stats->rx_length_errors = dev->stats.rx_length_errors; stats->rx_errors = dev->stats.rx_errors; stats->rx_crc_errors = dev->stats.rx_crc_errors; stats->rx_fifo_errors = dev->stats.rx_fifo_errors; stats->rx_missed_errors = dev->stats.rx_missed_errors; stats->multicast = dev->stats.multicast; /* * Fetch additonal counter values missing in stats collected by driver * from tally counters. */ if (pm_runtime_active(&pdev->dev)) rtl8169_update_counters(tp); /* * Subtract values fetched during initalization. * See rtl8169_init_counter_offsets for a description why we do that. */ stats->tx_errors = le64_to_cpu(counters->tx_errors) - le64_to_cpu(tp->tc_offset.tx_errors); stats->collisions = le32_to_cpu(counters->tx_multi_collision) - le32_to_cpu(tp->tc_offset.tx_multi_collision); stats->tx_aborted_errors = le16_to_cpu(counters->tx_aborted) - le16_to_cpu(tp->tc_offset.tx_aborted); pm_runtime_put_noidle(&pdev->dev); } static void rtl8169_net_suspend(struct net_device *dev) { struct rtl8169_private *tp = netdev_priv(dev); if (!netif_running(dev)) return; phy_stop(dev->phydev); netif_device_detach(dev); rtl_lock_work(tp); napi_disable(&tp->napi); /* Clear all task flags */ bitmap_zero(tp->wk.flags, RTL_FLAG_MAX); rtl_unlock_work(tp); rtl_pll_power_down(tp); } #ifdef CONFIG_PM static int rtl8169_suspend(struct device *device) { struct net_device *dev = dev_get_drvdata(device); struct rtl8169_private *tp = netdev_priv(dev); rtl8169_net_suspend(dev); clk_disable_unprepare(tp->clk); return 0; } static void __rtl8169_resume(struct net_device *dev) { struct rtl8169_private *tp = netdev_priv(dev); netif_device_attach(dev); rtl_pll_power_up(tp); rtl8169_init_phy(dev, tp); phy_start(tp->dev->phydev); rtl_lock_work(tp); napi_enable(&tp->napi); set_bit(RTL_FLAG_TASK_ENABLED, tp->wk.flags); rtl_unlock_work(tp); rtl_schedule_task(tp, RTL_FLAG_TASK_RESET_PENDING); } static int rtl8169_resume(struct device *device) { struct net_device *dev = dev_get_drvdata(device); struct rtl8169_private *tp = netdev_priv(dev); clk_prepare_enable(tp->clk); if (netif_running(dev)) __rtl8169_resume(dev); return 0; } static int rtl8169_runtime_suspend(struct device *device) { struct net_device *dev = dev_get_drvdata(device); struct rtl8169_private *tp = netdev_priv(dev); if (!tp->TxDescArray) return 0; rtl_lock_work(tp); __rtl8169_set_wol(tp, WAKE_ANY); rtl_unlock_work(tp); rtl8169_net_suspend(dev); /* Update counters before going runtime suspend */ rtl8169_rx_missed(dev); rtl8169_update_counters(tp); return 0; } static int rtl8169_runtime_resume(struct device *device) { struct net_device *dev = dev_get_drvdata(device); struct rtl8169_private *tp = netdev_priv(dev); rtl_rar_set(tp, dev->dev_addr); if (!tp->TxDescArray) return 0; rtl_lock_work(tp); __rtl8169_set_wol(tp, tp->saved_wolopts); rtl_unlock_work(tp); __rtl8169_resume(dev); return 0; } static int rtl8169_runtime_idle(struct device *device) { struct net_device *dev = dev_get_drvdata(device); if (!netif_running(dev) || !netif_carrier_ok(dev)) pm_schedule_suspend(device, 10000); return -EBUSY; } static const struct dev_pm_ops rtl8169_pm_ops = { .suspend = rtl8169_suspend, .resume = rtl8169_resume, .freeze = rtl8169_suspend, .thaw = rtl8169_resume, .poweroff = rtl8169_suspend, .restore = rtl8169_resume, .runtime_suspend = rtl8169_runtime_suspend, .runtime_resume = rtl8169_runtime_resume, .runtime_idle = rtl8169_runtime_idle, }; #define RTL8169_PM_OPS (&rtl8169_pm_ops) #else /* !CONFIG_PM */ #define RTL8169_PM_OPS NULL #endif /* !CONFIG_PM */ static void rtl_wol_shutdown_quirk(struct rtl8169_private *tp) { /* WoL fails with 8168b when the receiver is disabled. */ switch (tp->mac_version) { case RTL_GIGA_MAC_VER_11: case RTL_GIGA_MAC_VER_12: case RTL_GIGA_MAC_VER_17: pci_clear_master(tp->pci_dev); RTL_W8(tp, ChipCmd, CmdRxEnb); /* PCI commit */ RTL_R8(tp, ChipCmd); break; default: break; } } static void rtl_shutdown(struct pci_dev *pdev) { struct net_device *dev = pci_get_drvdata(pdev); struct rtl8169_private *tp = netdev_priv(dev); rtl8169_net_suspend(dev); /* Restore original MAC address */ rtl_rar_set(tp, dev->perm_addr); rtl8169_hw_reset(tp); if (system_state == SYSTEM_POWER_OFF) { if (tp->saved_wolopts) { rtl_wol_suspend_quirk(tp); rtl_wol_shutdown_quirk(tp); } pci_wake_from_d3(pdev, true); pci_set_power_state(pdev, PCI_D3hot); } } static void rtl_remove_one(struct pci_dev *pdev) { struct net_device *dev = pci_get_drvdata(pdev); struct rtl8169_private *tp = netdev_priv(dev); if (r8168_check_dash(tp)) rtl8168_driver_stop(tp); netif_napi_del(&tp->napi); unregister_netdev(dev); mdiobus_unregister(tp->mii_bus); rtl_release_firmware(tp); if (pci_dev_run_wake(pdev)) pm_runtime_get_noresume(&pdev->dev); /* restore original MAC address */ rtl_rar_set(tp, dev->perm_addr); } static const struct net_device_ops rtl_netdev_ops = { .ndo_open = rtl_open, .ndo_stop = rtl8169_close, .ndo_get_stats64 = rtl8169_get_stats64, .ndo_start_xmit = rtl8169_start_xmit, .ndo_tx_timeout = rtl8169_tx_timeout, .ndo_validate_addr = eth_validate_addr, .ndo_change_mtu = rtl8169_change_mtu, .ndo_fix_features = rtl8169_fix_features, .ndo_set_features = rtl8169_set_features, .ndo_set_mac_address = rtl_set_mac_address, .ndo_do_ioctl = rtl8169_ioctl, .ndo_set_rx_mode = rtl_set_rx_mode, #ifdef CONFIG_NET_POLL_CONTROLLER .ndo_poll_controller = rtl8169_netpoll, #endif }; static const struct rtl_cfg_info { void (*hw_start)(struct rtl8169_private *tp); u16 irq_mask; unsigned int has_gmii:1; const struct rtl_coalesce_info *coalesce_info; } rtl_cfg_infos [] = { [RTL_CFG_0] = { .hw_start = rtl_hw_start_8169, .irq_mask = SYSErr | LinkChg | RxOverflow | RxFIFOOver, .has_gmii = 1, .coalesce_info = rtl_coalesce_info_8169, }, [RTL_CFG_1] = { .hw_start = rtl_hw_start_8168, .irq_mask = LinkChg | RxOverflow, .has_gmii = 1, .coalesce_info = rtl_coalesce_info_8168_8136, }, [RTL_CFG_2] = { .hw_start = rtl_hw_start_8101, .irq_mask = LinkChg | RxOverflow | RxFIFOOver, .coalesce_info = rtl_coalesce_info_8168_8136, } }; static int rtl_alloc_irq(struct rtl8169_private *tp) { unsigned int flags; if (tp->mac_version <= RTL_GIGA_MAC_VER_06) { RTL_W8(tp, Cfg9346, Cfg9346_Unlock); RTL_W8(tp, Config2, RTL_R8(tp, Config2) & ~MSIEnable); RTL_W8(tp, Cfg9346, Cfg9346_Lock); flags = PCI_IRQ_LEGACY; } else { flags = PCI_IRQ_ALL_TYPES; } return pci_alloc_irq_vectors(tp->pci_dev, 1, 1, flags); } DECLARE_RTL_COND(rtl_link_list_ready_cond) { return RTL_R8(tp, MCU) & LINK_LIST_RDY; } DECLARE_RTL_COND(rtl_rxtx_empty_cond) { return (RTL_R8(tp, MCU) & RXTX_EMPTY) == RXTX_EMPTY; } static int r8169_mdio_read_reg(struct mii_bus *mii_bus, int phyaddr, int phyreg) { struct rtl8169_private *tp = mii_bus->priv; if (phyaddr > 0) return -ENODEV; return rtl_readphy(tp, phyreg); } static int r8169_mdio_write_reg(struct mii_bus *mii_bus, int phyaddr, int phyreg, u16 val) { struct rtl8169_private *tp = mii_bus->priv; if (phyaddr > 0) return -ENODEV; rtl_writephy(tp, phyreg, val); return 0; } static int r8169_mdio_register(struct rtl8169_private *tp) { struct pci_dev *pdev = tp->pci_dev; struct phy_device *phydev; struct mii_bus *new_bus; int ret; new_bus = devm_mdiobus_alloc(&pdev->dev); if (!new_bus) return -ENOMEM; new_bus->name = "r8169"; new_bus->priv = tp; new_bus->parent = &pdev->dev; new_bus->irq[0] = PHY_IGNORE_INTERRUPT; snprintf(new_bus->id, MII_BUS_ID_SIZE, "r8169-%x", PCI_DEVID(pdev->bus->number, pdev->devfn)); new_bus->read = r8169_mdio_read_reg; new_bus->write = r8169_mdio_write_reg; ret = mdiobus_register(new_bus); if (ret) return ret; phydev = mdiobus_get_phy(new_bus, 0); if (!phydev) { mdiobus_unregister(new_bus); return -ENODEV; } /* PHY will be woken up in rtl_open() */ phy_suspend(phydev); tp->mii_bus = new_bus; return 0; } static void rtl_hw_init_8168g(struct rtl8169_private *tp) { u32 data; tp->ocp_base = OCP_STD_PHY_BASE; RTL_W32(tp, MISC, RTL_R32(tp, MISC) | RXDV_GATED_EN); if (!rtl_udelay_loop_wait_high(tp, &rtl_txcfg_empty_cond, 100, 42)) return; if (!rtl_udelay_loop_wait_high(tp, &rtl_rxtx_empty_cond, 100, 42)) return; RTL_W8(tp, ChipCmd, RTL_R8(tp, ChipCmd) & ~(CmdTxEnb | CmdRxEnb)); msleep(1); RTL_W8(tp, MCU, RTL_R8(tp, MCU) & ~NOW_IS_OOB); data = r8168_mac_ocp_read(tp, 0xe8de); data &= ~(1 << 14); r8168_mac_ocp_write(tp, 0xe8de, data); if (!rtl_udelay_loop_wait_high(tp, &rtl_link_list_ready_cond, 100, 42)) return; data = r8168_mac_ocp_read(tp, 0xe8de); data |= (1 << 15); r8168_mac_ocp_write(tp, 0xe8de, data); if (!rtl_udelay_loop_wait_high(tp, &rtl_link_list_ready_cond, 100, 42)) return; } static void rtl_hw_init_8168ep(struct rtl8169_private *tp) { rtl8168ep_stop_cmac(tp); rtl_hw_init_8168g(tp); } static void rtl_hw_initialize(struct rtl8169_private *tp) { switch (tp->mac_version) { case RTL_GIGA_MAC_VER_40 ... RTL_GIGA_MAC_VER_48: rtl_hw_init_8168g(tp); break; case RTL_GIGA_MAC_VER_49 ... RTL_GIGA_MAC_VER_51: rtl_hw_init_8168ep(tp); break; default: break; } } /* Versions RTL8102e and from RTL8168c onwards support csum_v2 */ static bool rtl_chip_supports_csum_v2(struct rtl8169_private *tp) { switch (tp->mac_version) { case RTL_GIGA_MAC_VER_01 ... RTL_GIGA_MAC_VER_06: case RTL_GIGA_MAC_VER_10 ... RTL_GIGA_MAC_VER_17: return false; default: return true; } } static int rtl_jumbo_max(struct rtl8169_private *tp) { /* Non-GBit versions don't support jumbo frames */ if (!tp->supports_gmii) return JUMBO_1K; switch (tp->mac_version) { /* RTL8169 */ case RTL_GIGA_MAC_VER_01 ... RTL_GIGA_MAC_VER_06: return JUMBO_7K; /* RTL8168b */ case RTL_GIGA_MAC_VER_11: case RTL_GIGA_MAC_VER_12: case RTL_GIGA_MAC_VER_17: return JUMBO_4K; /* RTL8168c */ case RTL_GIGA_MAC_VER_18 ... RTL_GIGA_MAC_VER_24: return JUMBO_6K; default: return JUMBO_9K; } } static void rtl_disable_clk(void *data) { clk_disable_unprepare(data); } static int rtl_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) { const struct rtl_cfg_info *cfg = rtl_cfg_infos + ent->driver_data; struct rtl8169_private *tp; struct net_device *dev; int chipset, region, i; int jumbo_max, rc; dev = devm_alloc_etherdev(&pdev->dev, sizeof (*tp)); if (!dev) return -ENOMEM; SET_NETDEV_DEV(dev, &pdev->dev); dev->netdev_ops = &rtl_netdev_ops; tp = netdev_priv(dev); tp->dev = dev; tp->pci_dev = pdev; tp->msg_enable = netif_msg_init(debug.msg_enable, R8169_MSG_DEFAULT); tp->supports_gmii = cfg->has_gmii; /* Get the *optional* external "ether_clk" used on some boards */ tp->clk = devm_clk_get(&pdev->dev, "ether_clk"); if (IS_ERR(tp->clk)) { rc = PTR_ERR(tp->clk); if (rc == -ENOENT) { /* clk-core allows NULL (for suspend / resume) */ tp->clk = NULL; } else if (rc == -EPROBE_DEFER) { return rc; } else { dev_err(&pdev->dev, "failed to get clk: %d\n", rc); return rc; } } else { rc = clk_prepare_enable(tp->clk); if (rc) { dev_err(&pdev->dev, "failed to enable clk: %d\n", rc); return rc; } rc = devm_add_action_or_reset(&pdev->dev, rtl_disable_clk, tp->clk); if (rc) return rc; } /* enable device (incl. PCI PM wakeup and hotplug setup) */ rc = pcim_enable_device(pdev); if (rc < 0) { dev_err(&pdev->dev, "enable failure\n"); return rc; } if (pcim_set_mwi(pdev) < 0) dev_info(&pdev->dev, "Mem-Wr-Inval unavailable\n"); /* use first MMIO region */ region = ffs(pci_select_bars(pdev, IORESOURCE_MEM)) - 1; if (region < 0) { dev_err(&pdev->dev, "no MMIO resource found\n"); return -ENODEV; } /* check for weird/broken PCI region reporting */ if (pci_resource_len(pdev, region) < R8169_REGS_SIZE) { dev_err(&pdev->dev, "Invalid PCI region size(s), aborting\n"); return -ENODEV; } rc = pcim_iomap_regions(pdev, BIT(region), MODULENAME); if (rc < 0) { dev_err(&pdev->dev, "cannot remap MMIO, aborting\n"); return rc; } tp->mmio_addr = pcim_iomap_table(pdev)[region]; /* Identify chip attached to board */ rtl8169_get_mac_version(tp); if (tp->mac_version == RTL_GIGA_MAC_NONE) return -ENODEV; if (rtl_tbi_enabled(tp)) { dev_err(&pdev->dev, "TBI fiber mode not supported\n"); return -ENODEV; } tp->cp_cmd = RTL_R16(tp, CPlusCmd); if (sizeof(dma_addr_t) > 4 && (use_dac == 1 || (use_dac == -1 && tp->mac_version >= RTL_GIGA_MAC_VER_18)) && !dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) { /* CPlusCmd Dual Access Cycle is only needed for non-PCIe */ if (!pci_is_pcie(pdev)) tp->cp_cmd |= PCIDAC; dev->features |= NETIF_F_HIGHDMA; } else { rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); if (rc < 0) { dev_err(&pdev->dev, "DMA configuration failed\n"); return rc; } } rtl_init_rxcfg(tp); rtl8169_irq_mask_and_ack(tp); rtl_hw_initialize(tp); rtl_hw_reset(tp); pci_set_master(pdev); rtl_init_mdio_ops(tp); rtl_init_jumbo_ops(tp); chipset = tp->mac_version; rc = rtl_alloc_irq(tp); if (rc < 0) { dev_err(&pdev->dev, "Can't allocate interrupt\n"); return rc; } tp->saved_wolopts = __rtl8169_get_wol(tp); mutex_init(&tp->wk.mutex); u64_stats_init(&tp->rx_stats.syncp); u64_stats_init(&tp->tx_stats.syncp); /* Get MAC address */ switch (tp->mac_version) { u8 mac_addr[ETH_ALEN] __aligned(4); case RTL_GIGA_MAC_VER_35 ... RTL_GIGA_MAC_VER_38: case RTL_GIGA_MAC_VER_40 ... RTL_GIGA_MAC_VER_51: *(u32 *)&mac_addr[0] = rtl_eri_read(tp, 0xe0, ERIAR_EXGMAC); *(u16 *)&mac_addr[4] = rtl_eri_read(tp, 0xe4, ERIAR_EXGMAC); if (is_valid_ether_addr(mac_addr)) rtl_rar_set(tp, mac_addr); break; default: break; } for (i = 0; i < ETH_ALEN; i++) dev->dev_addr[i] = RTL_R8(tp, MAC0 + i); dev->ethtool_ops = &rtl8169_ethtool_ops; netif_napi_add(dev, &tp->napi, rtl8169_poll, NAPI_POLL_WEIGHT); /* don't enable SG, IP_CSUM and TSO by default - it might not work * properly for all devices */ dev->features |= NETIF_F_RXCSUM | NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX; dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO | NETIF_F_RXCSUM | NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX; dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO | NETIF_F_HIGHDMA; dev->priv_flags |= IFF_LIVE_ADDR_CHANGE; tp->cp_cmd |= RxChkSum | RxVlan; /* * Pretend we are using VLANs; This bypasses a nasty bug where * Interrupts stop flowing on high load on 8110SCd controllers. */ if (tp->mac_version == RTL_GIGA_MAC_VER_05) /* Disallow toggling */ dev->hw_features &= ~NETIF_F_HW_VLAN_CTAG_RX; if (rtl_chip_supports_csum_v2(tp)) { tp->tso_csum = rtl8169_tso_csum_v2; dev->hw_features |= NETIF_F_IPV6_CSUM | NETIF_F_TSO6; } else { tp->tso_csum = rtl8169_tso_csum_v1; } dev->hw_features |= NETIF_F_RXALL; dev->hw_features |= NETIF_F_RXFCS; /* MTU range: 60 - hw-specific max */ dev->min_mtu = ETH_ZLEN; jumbo_max = rtl_jumbo_max(tp); dev->max_mtu = jumbo_max; tp->hw_start = cfg->hw_start; tp->irq_mask = RTL_EVENT_NAPI | cfg->irq_mask; tp->coalesce_info = cfg->coalesce_info; tp->rtl_fw = RTL_FIRMWARE_UNKNOWN; tp->counters = dmam_alloc_coherent (&pdev->dev, sizeof(*tp->counters), &tp->counters_phys_addr, GFP_KERNEL); if (!tp->counters) return -ENOMEM; pci_set_drvdata(pdev, dev); rc = r8169_mdio_register(tp); if (rc) return rc; /* chip gets powered up in rtl_open() */ rtl_pll_power_down(tp); rc = register_netdev(dev); if (rc) goto err_mdio_unregister; netif_info(tp, probe, dev, "%s, %pM, XID %03x, IRQ %d\n", rtl_chip_infos[chipset].name, dev->dev_addr, (RTL_R32(tp, TxConfig) >> 20) & 0xfcf, pci_irq_vector(pdev, 0)); if (jumbo_max > JUMBO_1K) netif_info(tp, probe, dev, "jumbo features [frames: %d bytes, tx checksumming: %s]\n", jumbo_max, tp->mac_version <= RTL_GIGA_MAC_VER_06 ? "ok" : "ko"); if (r8168_check_dash(tp)) rtl8168_driver_start(tp); if (pci_dev_run_wake(pdev)) pm_runtime_put_sync(&pdev->dev); return 0; err_mdio_unregister: mdiobus_unregister(tp->mii_bus); return rc; } static struct pci_driver rtl8169_pci_driver = { .name = MODULENAME, .id_table = rtl8169_pci_tbl, .probe = rtl_init_one, .remove = rtl_remove_one, .shutdown = rtl_shutdown, .driver.pm = RTL8169_PM_OPS, }; module_pci_driver(rtl8169_pci_driver);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1