Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Matthew Slattery | 1040 | 47.82% | 3 | 9.09% |
Ben Hutchings | 932 | 42.85% | 22 | 66.67% |
Steve Hodgson | 121 | 5.56% | 4 | 12.12% |
Edward Cree | 69 | 3.17% | 1 | 3.03% |
Philippe Reynes | 9 | 0.41% | 1 | 3.03% |
Tejun Heo | 3 | 0.14% | 1 | 3.03% |
Stephen Hemminger | 1 | 0.05% | 1 | 3.03% |
Total | 2175 | 33 |
/**************************************************************************** * Driver for Solarflare network controllers and boards * Copyright 2006-2012 Solarflare Communications Inc. * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 as published * by the Free Software Foundation, incorporated herein by reference. */ /* * Driver for AMCC QT202x SFP+ and XFP adapters; see www.amcc.com for details */ #include <linux/slab.h> #include <linux/timer.h> #include <linux/delay.h> #include "efx.h" #include "mdio_10g.h" #include "phy.h" #include "nic.h" #define QT202X_REQUIRED_DEVS (MDIO_DEVS_PCS | \ MDIO_DEVS_PMAPMD | \ MDIO_DEVS_PHYXS) #define QT202X_LOOPBACKS ((1 << LOOPBACK_PCS) | \ (1 << LOOPBACK_PMAPMD) | \ (1 << LOOPBACK_PHYXS_WS)) /****************************************************************************/ /* Quake-specific MDIO registers */ #define MDIO_QUAKE_LED0_REG (0xD006) /* QT2025C only */ #define PCS_FW_HEARTBEAT_REG 0xd7ee #define PCS_FW_HEARTB_LBN 0 #define PCS_FW_HEARTB_WIDTH 8 #define PCS_FW_PRODUCT_CODE_1 0xd7f0 #define PCS_FW_VERSION_1 0xd7f3 #define PCS_FW_BUILD_1 0xd7f6 #define PCS_UC8051_STATUS_REG 0xd7fd #define PCS_UC_STATUS_LBN 0 #define PCS_UC_STATUS_WIDTH 8 #define PCS_UC_STATUS_FW_SAVE 0x20 #define PMA_PMD_MODE_REG 0xc301 #define PMA_PMD_RXIN_SEL_LBN 6 #define PMA_PMD_FTX_CTRL2_REG 0xc309 #define PMA_PMD_FTX_STATIC_LBN 13 #define PMA_PMD_VEND1_REG 0xc001 #define PMA_PMD_VEND1_LBTXD_LBN 15 #define PCS_VEND1_REG 0xc000 #define PCS_VEND1_LBTXD_LBN 5 void falcon_qt202x_set_led(struct ef4_nic *p, int led, int mode) { int addr = MDIO_QUAKE_LED0_REG + led; ef4_mdio_write(p, MDIO_MMD_PMAPMD, addr, mode); } struct qt202x_phy_data { enum ef4_phy_mode phy_mode; bool bug17190_in_bad_state; unsigned long bug17190_timer; u32 firmware_ver; }; #define QT2022C2_MAX_RESET_TIME 500 #define QT2022C2_RESET_WAIT 10 #define QT2025C_MAX_HEARTB_TIME (5 * HZ) #define QT2025C_HEARTB_WAIT 100 #define QT2025C_MAX_FWSTART_TIME (25 * HZ / 10) #define QT2025C_FWSTART_WAIT 100 #define BUG17190_INTERVAL (2 * HZ) static int qt2025c_wait_heartbeat(struct ef4_nic *efx) { unsigned long timeout = jiffies + QT2025C_MAX_HEARTB_TIME; int reg, old_counter = 0; /* Wait for firmware heartbeat to start */ for (;;) { int counter; reg = ef4_mdio_read(efx, MDIO_MMD_PCS, PCS_FW_HEARTBEAT_REG); if (reg < 0) return reg; counter = ((reg >> PCS_FW_HEARTB_LBN) & ((1 << PCS_FW_HEARTB_WIDTH) - 1)); if (old_counter == 0) old_counter = counter; else if (counter != old_counter) break; if (time_after(jiffies, timeout)) { /* Some cables have EEPROMs that conflict with the * PHY's on-board EEPROM so it cannot load firmware */ netif_err(efx, hw, efx->net_dev, "If an SFP+ direct attach cable is" " connected, please check that it complies" " with the SFP+ specification\n"); return -ETIMEDOUT; } msleep(QT2025C_HEARTB_WAIT); } return 0; } static int qt2025c_wait_fw_status_good(struct ef4_nic *efx) { unsigned long timeout = jiffies + QT2025C_MAX_FWSTART_TIME; int reg; /* Wait for firmware status to look good */ for (;;) { reg = ef4_mdio_read(efx, MDIO_MMD_PCS, PCS_UC8051_STATUS_REG); if (reg < 0) return reg; if ((reg & ((1 << PCS_UC_STATUS_WIDTH) - 1) << PCS_UC_STATUS_LBN) >= PCS_UC_STATUS_FW_SAVE) break; if (time_after(jiffies, timeout)) return -ETIMEDOUT; msleep(QT2025C_FWSTART_WAIT); } return 0; } static void qt2025c_restart_firmware(struct ef4_nic *efx) { /* Restart microcontroller execution of firmware from RAM */ ef4_mdio_write(efx, 3, 0xe854, 0x00c0); ef4_mdio_write(efx, 3, 0xe854, 0x0040); msleep(50); } static int qt2025c_wait_reset(struct ef4_nic *efx) { int rc; rc = qt2025c_wait_heartbeat(efx); if (rc != 0) return rc; rc = qt2025c_wait_fw_status_good(efx); if (rc == -ETIMEDOUT) { /* Bug 17689: occasionally heartbeat starts but firmware status * code never progresses beyond 0x00. Try again, once, after * restarting execution of the firmware image. */ netif_dbg(efx, hw, efx->net_dev, "bashing QT2025C microcontroller\n"); qt2025c_restart_firmware(efx); rc = qt2025c_wait_heartbeat(efx); if (rc != 0) return rc; rc = qt2025c_wait_fw_status_good(efx); } return rc; } static void qt2025c_firmware_id(struct ef4_nic *efx) { struct qt202x_phy_data *phy_data = efx->phy_data; u8 firmware_id[9]; size_t i; for (i = 0; i < sizeof(firmware_id); i++) firmware_id[i] = ef4_mdio_read(efx, MDIO_MMD_PCS, PCS_FW_PRODUCT_CODE_1 + i); netif_info(efx, probe, efx->net_dev, "QT2025C firmware %xr%d v%d.%d.%d.%d [20%02d-%02d-%02d]\n", (firmware_id[0] << 8) | firmware_id[1], firmware_id[2], firmware_id[3] >> 4, firmware_id[3] & 0xf, firmware_id[4], firmware_id[5], firmware_id[6], firmware_id[7], firmware_id[8]); phy_data->firmware_ver = ((firmware_id[3] & 0xf0) << 20) | ((firmware_id[3] & 0x0f) << 16) | (firmware_id[4] << 8) | firmware_id[5]; } static void qt2025c_bug17190_workaround(struct ef4_nic *efx) { struct qt202x_phy_data *phy_data = efx->phy_data; /* The PHY can get stuck in a state where it reports PHY_XS and PMA/PMD * layers up, but PCS down (no block_lock). If we notice this state * persisting for a couple of seconds, we switch PMA/PMD loopback * briefly on and then off again, which is normally sufficient to * recover it. */ if (efx->link_state.up || !ef4_mdio_links_ok(efx, MDIO_DEVS_PMAPMD | MDIO_DEVS_PHYXS)) { phy_data->bug17190_in_bad_state = false; return; } if (!phy_data->bug17190_in_bad_state) { phy_data->bug17190_in_bad_state = true; phy_data->bug17190_timer = jiffies + BUG17190_INTERVAL; return; } if (time_after_eq(jiffies, phy_data->bug17190_timer)) { netif_dbg(efx, hw, efx->net_dev, "bashing QT2025C PMA/PMD\n"); ef4_mdio_set_flag(efx, MDIO_MMD_PMAPMD, MDIO_CTRL1, MDIO_PMA_CTRL1_LOOPBACK, true); msleep(100); ef4_mdio_set_flag(efx, MDIO_MMD_PMAPMD, MDIO_CTRL1, MDIO_PMA_CTRL1_LOOPBACK, false); phy_data->bug17190_timer = jiffies + BUG17190_INTERVAL; } } static int qt2025c_select_phy_mode(struct ef4_nic *efx) { struct qt202x_phy_data *phy_data = efx->phy_data; struct falcon_board *board = falcon_board(efx); int reg, rc, i; uint16_t phy_op_mode; /* Only 2.0.1.0+ PHY firmware supports the more optimal SFP+ * Self-Configure mode. Don't attempt any switching if we encounter * older firmware. */ if (phy_data->firmware_ver < 0x02000100) return 0; /* In general we will get optimal behaviour in "SFP+ Self-Configure" * mode; however, that powers down most of the PHY when no module is * present, so we must use a different mode (any fixed mode will do) * to be sure that loopbacks will work. */ phy_op_mode = (efx->loopback_mode == LOOPBACK_NONE) ? 0x0038 : 0x0020; /* Only change mode if really necessary */ reg = ef4_mdio_read(efx, 1, 0xc319); if ((reg & 0x0038) == phy_op_mode) return 0; netif_dbg(efx, hw, efx->net_dev, "Switching PHY to mode 0x%04x\n", phy_op_mode); /* This sequence replicates the register writes configured in the boot * EEPROM (including the differences between board revisions), except * that the operating mode is changed, and the PHY is prevented from * unnecessarily reloading the main firmware image again. */ ef4_mdio_write(efx, 1, 0xc300, 0x0000); /* (Note: this portion of the boot EEPROM sequence, which bit-bashes 9 * STOPs onto the firmware/module I2C bus to reset it, varies across * board revisions, as the bus is connected to different GPIO/LED * outputs on the PHY.) */ if (board->major == 0 && board->minor < 2) { ef4_mdio_write(efx, 1, 0xc303, 0x4498); for (i = 0; i < 9; i++) { ef4_mdio_write(efx, 1, 0xc303, 0x4488); ef4_mdio_write(efx, 1, 0xc303, 0x4480); ef4_mdio_write(efx, 1, 0xc303, 0x4490); ef4_mdio_write(efx, 1, 0xc303, 0x4498); } } else { ef4_mdio_write(efx, 1, 0xc303, 0x0920); ef4_mdio_write(efx, 1, 0xd008, 0x0004); for (i = 0; i < 9; i++) { ef4_mdio_write(efx, 1, 0xc303, 0x0900); ef4_mdio_write(efx, 1, 0xd008, 0x0005); ef4_mdio_write(efx, 1, 0xc303, 0x0920); ef4_mdio_write(efx, 1, 0xd008, 0x0004); } ef4_mdio_write(efx, 1, 0xc303, 0x4900); } ef4_mdio_write(efx, 1, 0xc303, 0x4900); ef4_mdio_write(efx, 1, 0xc302, 0x0004); ef4_mdio_write(efx, 1, 0xc316, 0x0013); ef4_mdio_write(efx, 1, 0xc318, 0x0054); ef4_mdio_write(efx, 1, 0xc319, phy_op_mode); ef4_mdio_write(efx, 1, 0xc31a, 0x0098); ef4_mdio_write(efx, 3, 0x0026, 0x0e00); ef4_mdio_write(efx, 3, 0x0027, 0x0013); ef4_mdio_write(efx, 3, 0x0028, 0xa528); ef4_mdio_write(efx, 1, 0xd006, 0x000a); ef4_mdio_write(efx, 1, 0xd007, 0x0009); ef4_mdio_write(efx, 1, 0xd008, 0x0004); /* This additional write is not present in the boot EEPROM. It * prevents the PHY's internal boot ROM doing another pointless (and * slow) reload of the firmware image (the microcontroller's code * memory is not affected by the microcontroller reset). */ ef4_mdio_write(efx, 1, 0xc317, 0x00ff); /* PMA/PMD loopback sets RXIN to inverse polarity and the firmware * restart doesn't reset it. We need to do that ourselves. */ ef4_mdio_set_flag(efx, 1, PMA_PMD_MODE_REG, 1 << PMA_PMD_RXIN_SEL_LBN, false); ef4_mdio_write(efx, 1, 0xc300, 0x0002); msleep(20); /* Restart microcontroller execution of firmware from RAM */ qt2025c_restart_firmware(efx); /* Wait for the microcontroller to be ready again */ rc = qt2025c_wait_reset(efx); if (rc < 0) { netif_err(efx, hw, efx->net_dev, "PHY microcontroller reset during mode switch " "timed out\n"); return rc; } return 0; } static int qt202x_reset_phy(struct ef4_nic *efx) { int rc; if (efx->phy_type == PHY_TYPE_QT2025C) { /* Wait for the reset triggered by falcon_reset_hw() * to complete */ rc = qt2025c_wait_reset(efx); if (rc < 0) goto fail; } else { /* Reset the PHYXS MMD. This is documented as doing * a complete soft reset. */ rc = ef4_mdio_reset_mmd(efx, MDIO_MMD_PHYXS, QT2022C2_MAX_RESET_TIME / QT2022C2_RESET_WAIT, QT2022C2_RESET_WAIT); if (rc < 0) goto fail; } /* Wait 250ms for the PHY to complete bootup */ msleep(250); falcon_board(efx)->type->init_phy(efx); return 0; fail: netif_err(efx, hw, efx->net_dev, "PHY reset timed out\n"); return rc; } static int qt202x_phy_probe(struct ef4_nic *efx) { struct qt202x_phy_data *phy_data; phy_data = kzalloc(sizeof(struct qt202x_phy_data), GFP_KERNEL); if (!phy_data) return -ENOMEM; efx->phy_data = phy_data; phy_data->phy_mode = efx->phy_mode; phy_data->bug17190_in_bad_state = false; phy_data->bug17190_timer = 0; efx->mdio.mmds = QT202X_REQUIRED_DEVS; efx->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22; efx->loopback_modes = QT202X_LOOPBACKS | FALCON_XMAC_LOOPBACKS; return 0; } static int qt202x_phy_init(struct ef4_nic *efx) { u32 devid; int rc; rc = qt202x_reset_phy(efx); if (rc) { netif_err(efx, probe, efx->net_dev, "PHY init failed\n"); return rc; } devid = ef4_mdio_read_id(efx, MDIO_MMD_PHYXS); netif_info(efx, probe, efx->net_dev, "PHY ID reg %x (OUI %06x model %02x revision %x)\n", devid, ef4_mdio_id_oui(devid), ef4_mdio_id_model(devid), ef4_mdio_id_rev(devid)); if (efx->phy_type == PHY_TYPE_QT2025C) qt2025c_firmware_id(efx); return 0; } static int qt202x_link_ok(struct ef4_nic *efx) { return ef4_mdio_links_ok(efx, QT202X_REQUIRED_DEVS); } static bool qt202x_phy_poll(struct ef4_nic *efx) { bool was_up = efx->link_state.up; efx->link_state.up = qt202x_link_ok(efx); efx->link_state.speed = 10000; efx->link_state.fd = true; efx->link_state.fc = efx->wanted_fc; if (efx->phy_type == PHY_TYPE_QT2025C) qt2025c_bug17190_workaround(efx); return efx->link_state.up != was_up; } static int qt202x_phy_reconfigure(struct ef4_nic *efx) { struct qt202x_phy_data *phy_data = efx->phy_data; if (efx->phy_type == PHY_TYPE_QT2025C) { int rc = qt2025c_select_phy_mode(efx); if (rc) return rc; /* There are several different register bits which can * disable TX (and save power) on direct-attach cables * or optical transceivers, varying somewhat between * firmware versions. Only 'static mode' appears to * cover everything. */ mdio_set_flag( &efx->mdio, efx->mdio.prtad, MDIO_MMD_PMAPMD, PMA_PMD_FTX_CTRL2_REG, 1 << PMA_PMD_FTX_STATIC_LBN, efx->phy_mode & PHY_MODE_TX_DISABLED || efx->phy_mode & PHY_MODE_LOW_POWER || efx->loopback_mode == LOOPBACK_PCS || efx->loopback_mode == LOOPBACK_PMAPMD); } else { /* Reset the PHY when moving from tx off to tx on */ if (!(efx->phy_mode & PHY_MODE_TX_DISABLED) && (phy_data->phy_mode & PHY_MODE_TX_DISABLED)) qt202x_reset_phy(efx); ef4_mdio_transmit_disable(efx); } ef4_mdio_phy_reconfigure(efx); phy_data->phy_mode = efx->phy_mode; return 0; } static void qt202x_phy_get_link_ksettings(struct ef4_nic *efx, struct ethtool_link_ksettings *cmd) { mdio45_ethtool_ksettings_get(&efx->mdio, cmd); } static void qt202x_phy_remove(struct ef4_nic *efx) { /* Free the context block */ kfree(efx->phy_data); efx->phy_data = NULL; } static int qt202x_phy_get_module_info(struct ef4_nic *efx, struct ethtool_modinfo *modinfo) { modinfo->type = ETH_MODULE_SFF_8079; modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN; return 0; } static int qt202x_phy_get_module_eeprom(struct ef4_nic *efx, struct ethtool_eeprom *ee, u8 *data) { int mmd, reg_base, rc, i; if (efx->phy_type == PHY_TYPE_QT2025C) { mmd = MDIO_MMD_PCS; reg_base = 0xd000; } else { mmd = MDIO_MMD_PMAPMD; reg_base = 0x8007; } for (i = 0; i < ee->len; i++) { rc = ef4_mdio_read(efx, mmd, reg_base + ee->offset + i); if (rc < 0) return rc; data[i] = rc; } return 0; } const struct ef4_phy_operations falcon_qt202x_phy_ops = { .probe = qt202x_phy_probe, .init = qt202x_phy_init, .reconfigure = qt202x_phy_reconfigure, .poll = qt202x_phy_poll, .fini = ef4_port_dummy_op_void, .remove = qt202x_phy_remove, .get_link_ksettings = qt202x_phy_get_link_ksettings, .set_link_ksettings = ef4_mdio_set_link_ksettings, .test_alive = ef4_mdio_test_alive, .get_module_eeprom = qt202x_phy_get_module_eeprom, .get_module_info = qt202x_phy_get_module_info, };
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1