Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Bert Kenward | 1643 | 92.98% | 1 | 33.33% |
Edward Cree | 124 | 7.02% | 2 | 66.67% |
Total | 1767 | 3 |
/**************************************************************************** * Driver for Solarflare network controllers and boards * Copyright 2005-2006 Fen Systems Ltd. * Copyright 2005-2015 Solarflare Communications Inc. * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 as published * by the Free Software Foundation, incorporated herein by reference. */ #include <linux/pci.h> #include <linux/tcp.h> #include <linux/ip.h> #include <linux/in.h> #include <linux/ipv6.h> #include <linux/slab.h> #include <net/ipv6.h> #include <linux/if_ether.h> #include <linux/highmem.h> #include <linux/moduleparam.h> #include <linux/cache.h> #include "net_driver.h" #include "efx.h" #include "io.h" #include "nic.h" #include "tx.h" #include "workarounds.h" #include "ef10_regs.h" /* Efx legacy TCP segmentation acceleration. * * Utilises firmware support to go faster than GSO (but not as fast as TSOv2). * * Requires TX checksum offload support. */ #define PTR_DIFF(p1, p2) ((u8 *)(p1) - (u8 *)(p2)) /** * struct tso_state - TSO state for an SKB * @out_len: Remaining length in current segment * @seqnum: Current sequence number * @ipv4_id: Current IPv4 ID, host endian * @packet_space: Remaining space in current packet * @dma_addr: DMA address of current position * @in_len: Remaining length in current SKB fragment * @unmap_len: Length of SKB fragment * @unmap_addr: DMA address of SKB fragment * @protocol: Network protocol (after any VLAN header) * @ip_off: Offset of IP header * @tcp_off: Offset of TCP header * @header_len: Number of bytes of header * @ip_base_len: IPv4 tot_len or IPv6 payload_len, before TCP payload * @header_dma_addr: Header DMA address * @header_unmap_len: Header DMA mapped length * * The state used during segmentation. It is put into this data structure * just to make it easy to pass into inline functions. */ struct tso_state { /* Output position */ unsigned int out_len; unsigned int seqnum; u16 ipv4_id; unsigned int packet_space; /* Input position */ dma_addr_t dma_addr; unsigned int in_len; unsigned int unmap_len; dma_addr_t unmap_addr; __be16 protocol; unsigned int ip_off; unsigned int tcp_off; unsigned int header_len; unsigned int ip_base_len; dma_addr_t header_dma_addr; unsigned int header_unmap_len; }; static inline void prefetch_ptr(struct efx_tx_queue *tx_queue) { unsigned int insert_ptr = efx_tx_queue_get_insert_index(tx_queue); char *ptr; ptr = (char *) (tx_queue->buffer + insert_ptr); prefetch(ptr); prefetch(ptr + 0x80); ptr = (char *) (((efx_qword_t *)tx_queue->txd.buf.addr) + insert_ptr); prefetch(ptr); prefetch(ptr + 0x80); } /** * efx_tx_queue_insert - push descriptors onto the TX queue * @tx_queue: Efx TX queue * @dma_addr: DMA address of fragment * @len: Length of fragment * @final_buffer: The final buffer inserted into the queue * * Push descriptors onto the TX queue. */ static void efx_tx_queue_insert(struct efx_tx_queue *tx_queue, dma_addr_t dma_addr, unsigned int len, struct efx_tx_buffer **final_buffer) { struct efx_tx_buffer *buffer; unsigned int dma_len; EFX_WARN_ON_ONCE_PARANOID(len <= 0); while (1) { buffer = efx_tx_queue_get_insert_buffer(tx_queue); ++tx_queue->insert_count; EFX_WARN_ON_ONCE_PARANOID(tx_queue->insert_count - tx_queue->read_count >= tx_queue->efx->txq_entries); buffer->dma_addr = dma_addr; dma_len = tx_queue->efx->type->tx_limit_len(tx_queue, dma_addr, len); /* If there's space for everything this is our last buffer. */ if (dma_len >= len) break; buffer->len = dma_len; buffer->flags = EFX_TX_BUF_CONT; dma_addr += dma_len; len -= dma_len; } EFX_WARN_ON_ONCE_PARANOID(!len); buffer->len = len; *final_buffer = buffer; } /* * Verify that our various assumptions about sk_buffs and the conditions * under which TSO will be attempted hold true. Return the protocol number. */ static __be16 efx_tso_check_protocol(struct sk_buff *skb) { __be16 protocol = skb->protocol; EFX_WARN_ON_ONCE_PARANOID(((struct ethhdr *)skb->data)->h_proto != protocol); if (protocol == htons(ETH_P_8021Q)) { struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data; protocol = veh->h_vlan_encapsulated_proto; } if (protocol == htons(ETH_P_IP)) { EFX_WARN_ON_ONCE_PARANOID(ip_hdr(skb)->protocol != IPPROTO_TCP); } else { EFX_WARN_ON_ONCE_PARANOID(protocol != htons(ETH_P_IPV6)); EFX_WARN_ON_ONCE_PARANOID(ipv6_hdr(skb)->nexthdr != NEXTHDR_TCP); } EFX_WARN_ON_ONCE_PARANOID((PTR_DIFF(tcp_hdr(skb), skb->data) + (tcp_hdr(skb)->doff << 2u)) > skb_headlen(skb)); return protocol; } /* Parse the SKB header and initialise state. */ static int tso_start(struct tso_state *st, struct efx_nic *efx, struct efx_tx_queue *tx_queue, const struct sk_buff *skb) { struct device *dma_dev = &efx->pci_dev->dev; unsigned int header_len, in_len; dma_addr_t dma_addr; st->ip_off = skb_network_header(skb) - skb->data; st->tcp_off = skb_transport_header(skb) - skb->data; header_len = st->tcp_off + (tcp_hdr(skb)->doff << 2u); in_len = skb_headlen(skb) - header_len; st->header_len = header_len; st->in_len = in_len; if (st->protocol == htons(ETH_P_IP)) { st->ip_base_len = st->header_len - st->ip_off; st->ipv4_id = ntohs(ip_hdr(skb)->id); } else { st->ip_base_len = st->header_len - st->tcp_off; st->ipv4_id = 0; } st->seqnum = ntohl(tcp_hdr(skb)->seq); EFX_WARN_ON_ONCE_PARANOID(tcp_hdr(skb)->urg); EFX_WARN_ON_ONCE_PARANOID(tcp_hdr(skb)->syn); EFX_WARN_ON_ONCE_PARANOID(tcp_hdr(skb)->rst); st->out_len = skb->len - header_len; dma_addr = dma_map_single(dma_dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE); st->header_dma_addr = dma_addr; st->header_unmap_len = skb_headlen(skb); st->dma_addr = dma_addr + header_len; st->unmap_len = 0; return unlikely(dma_mapping_error(dma_dev, dma_addr)) ? -ENOMEM : 0; } static int tso_get_fragment(struct tso_state *st, struct efx_nic *efx, skb_frag_t *frag) { st->unmap_addr = skb_frag_dma_map(&efx->pci_dev->dev, frag, 0, skb_frag_size(frag), DMA_TO_DEVICE); if (likely(!dma_mapping_error(&efx->pci_dev->dev, st->unmap_addr))) { st->unmap_len = skb_frag_size(frag); st->in_len = skb_frag_size(frag); st->dma_addr = st->unmap_addr; return 0; } return -ENOMEM; } /** * tso_fill_packet_with_fragment - form descriptors for the current fragment * @tx_queue: Efx TX queue * @skb: Socket buffer * @st: TSO state * * Form descriptors for the current fragment, until we reach the end * of fragment or end-of-packet. */ static void tso_fill_packet_with_fragment(struct efx_tx_queue *tx_queue, const struct sk_buff *skb, struct tso_state *st) { struct efx_tx_buffer *buffer; int n; if (st->in_len == 0) return; if (st->packet_space == 0) return; EFX_WARN_ON_ONCE_PARANOID(st->in_len <= 0); EFX_WARN_ON_ONCE_PARANOID(st->packet_space <= 0); n = min(st->in_len, st->packet_space); st->packet_space -= n; st->out_len -= n; st->in_len -= n; efx_tx_queue_insert(tx_queue, st->dma_addr, n, &buffer); if (st->out_len == 0) { /* Transfer ownership of the skb */ buffer->skb = skb; buffer->flags = EFX_TX_BUF_SKB; } else if (st->packet_space != 0) { buffer->flags = EFX_TX_BUF_CONT; } if (st->in_len == 0) { /* Transfer ownership of the DMA mapping */ buffer->unmap_len = st->unmap_len; buffer->dma_offset = buffer->unmap_len - buffer->len; st->unmap_len = 0; } st->dma_addr += n; } #define TCP_FLAGS_OFFSET 13 /** * tso_start_new_packet - generate a new header and prepare for the new packet * @tx_queue: Efx TX queue * @skb: Socket buffer * @st: TSO state * * Generate a new header and prepare for the new packet. Return 0 on * success, or -%ENOMEM if failed to alloc header, or other negative error. */ static int tso_start_new_packet(struct efx_tx_queue *tx_queue, const struct sk_buff *skb, struct tso_state *st) { struct efx_tx_buffer *buffer = efx_tx_queue_get_insert_buffer(tx_queue); bool is_last = st->out_len <= skb_shinfo(skb)->gso_size; u8 tcp_flags_mask, tcp_flags; if (!is_last) { st->packet_space = skb_shinfo(skb)->gso_size; tcp_flags_mask = 0x09; /* mask out FIN and PSH */ } else { st->packet_space = st->out_len; tcp_flags_mask = 0x00; } if (WARN_ON(!st->header_unmap_len)) return -EINVAL; /* Send the original headers with a TSO option descriptor * in front */ tcp_flags = ((u8 *)tcp_hdr(skb))[TCP_FLAGS_OFFSET] & ~tcp_flags_mask; buffer->flags = EFX_TX_BUF_OPTION; buffer->len = 0; buffer->unmap_len = 0; EFX_POPULATE_QWORD_5(buffer->option, ESF_DZ_TX_DESC_IS_OPT, 1, ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_TSO, ESF_DZ_TX_TSO_TCP_FLAGS, tcp_flags, ESF_DZ_TX_TSO_IP_ID, st->ipv4_id, ESF_DZ_TX_TSO_TCP_SEQNO, st->seqnum); ++tx_queue->insert_count; /* We mapped the headers in tso_start(). Unmap them * when the last segment is completed. */ buffer = efx_tx_queue_get_insert_buffer(tx_queue); buffer->dma_addr = st->header_dma_addr; buffer->len = st->header_len; if (is_last) { buffer->flags = EFX_TX_BUF_CONT | EFX_TX_BUF_MAP_SINGLE; buffer->unmap_len = st->header_unmap_len; buffer->dma_offset = 0; /* Ensure we only unmap them once in case of a * later DMA mapping error and rollback */ st->header_unmap_len = 0; } else { buffer->flags = EFX_TX_BUF_CONT; buffer->unmap_len = 0; } ++tx_queue->insert_count; st->seqnum += skb_shinfo(skb)->gso_size; /* Linux leaves suitable gaps in the IP ID space for us to fill. */ ++st->ipv4_id; return 0; } /** * efx_enqueue_skb_tso - segment and transmit a TSO socket buffer * @tx_queue: Efx TX queue * @skb: Socket buffer * @data_mapped: Did we map the data? Always set to true * by this on success. * * Context: You must hold netif_tx_lock() to call this function. * * Add socket buffer @skb to @tx_queue, doing TSO or return != 0 if * @skb was not enqueued. @skb is consumed unless return value is * %EINVAL. */ int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue, struct sk_buff *skb, bool *data_mapped) { struct efx_nic *efx = tx_queue->efx; int frag_i, rc; struct tso_state state; if (tx_queue->tso_version != 1) return -EINVAL; prefetch(skb->data); /* Find the packet protocol and sanity-check it */ state.protocol = efx_tso_check_protocol(skb); EFX_WARN_ON_ONCE_PARANOID(tx_queue->write_count != tx_queue->insert_count); rc = tso_start(&state, efx, tx_queue, skb); if (rc) goto fail; if (likely(state.in_len == 0)) { /* Grab the first payload fragment. */ EFX_WARN_ON_ONCE_PARANOID(skb_shinfo(skb)->nr_frags < 1); frag_i = 0; rc = tso_get_fragment(&state, efx, skb_shinfo(skb)->frags + frag_i); if (rc) goto fail; } else { /* Payload starts in the header area. */ frag_i = -1; } rc = tso_start_new_packet(tx_queue, skb, &state); if (rc) goto fail; prefetch_ptr(tx_queue); while (1) { tso_fill_packet_with_fragment(tx_queue, skb, &state); /* Move onto the next fragment? */ if (state.in_len == 0) { if (++frag_i >= skb_shinfo(skb)->nr_frags) /* End of payload reached. */ break; rc = tso_get_fragment(&state, efx, skb_shinfo(skb)->frags + frag_i); if (rc) goto fail; } /* Start at new packet? */ if (state.packet_space == 0) { rc = tso_start_new_packet(tx_queue, skb, &state); if (rc) goto fail; } } *data_mapped = true; return 0; fail: if (rc == -ENOMEM) netif_err(efx, tx_err, efx->net_dev, "Out of memory for TSO headers, or DMA mapping error\n"); else netif_err(efx, tx_err, efx->net_dev, "TSO failed, rc = %d\n", rc); /* Free the DMA mapping we were in the process of writing out */ if (state.unmap_len) { dma_unmap_page(&efx->pci_dev->dev, state.unmap_addr, state.unmap_len, DMA_TO_DEVICE); } /* Free the header DMA mapping */ if (state.header_unmap_len) dma_unmap_single(&efx->pci_dev->dev, state.header_dma_addr, state.header_unmap_len, DMA_TO_DEVICE); return rc; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1