Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Xue Liu | 5812 | 99.78% | 3 | 50.00% |
Stefan Schmidt | 8 | 0.14% | 1 | 16.67% |
Arnd Bergmann | 4 | 0.07% | 1 | 16.67% |
Gustavo A. R. Silva | 1 | 0.02% | 1 | 16.67% |
Total | 5825 | 6 |
/* * Driver for NXP MCR20A 802.15.4 Wireless-PAN Networking controller * * Copyright (C) 2018 Xue Liu <liuxuenetmail@gmail.com> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 * as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/gpio/consumer.h> #include <linux/spi/spi.h> #include <linux/workqueue.h> #include <linux/interrupt.h> #include <linux/irq.h> #include <linux/skbuff.h> #include <linux/of_gpio.h> #include <linux/regmap.h> #include <linux/ieee802154.h> #include <linux/debugfs.h> #include <net/mac802154.h> #include <net/cfg802154.h> #include <linux/device.h> #include "mcr20a.h" #define SPI_COMMAND_BUFFER 3 #define REGISTER_READ BIT(7) #define REGISTER_WRITE (0 << 7) #define REGISTER_ACCESS (0 << 6) #define PACKET_BUFF_BURST_ACCESS BIT(6) #define PACKET_BUFF_BYTE_ACCESS BIT(5) #define MCR20A_WRITE_REG(x) (x) #define MCR20A_READ_REG(x) (REGISTER_READ | (x)) #define MCR20A_BURST_READ_PACKET_BUF (0xC0) #define MCR20A_BURST_WRITE_PACKET_BUF (0x40) #define MCR20A_CMD_REG 0x80 #define MCR20A_CMD_REG_MASK 0x3f #define MCR20A_CMD_WRITE 0x40 #define MCR20A_CMD_FB 0x20 /* Number of Interrupt Request Status Register */ #define MCR20A_IRQSTS_NUM 2 /* only IRQ_STS1 and IRQ_STS2 */ /* MCR20A CCA Type */ enum { MCR20A_CCA_ED, // energy detect - CCA bit not active, // not to be used for T and CCCA sequences MCR20A_CCA_MODE1, // energy detect - CCA bit ACTIVE MCR20A_CCA_MODE2, // 802.15.4 compliant signal detect - CCA bit ACTIVE MCR20A_CCA_MODE3 }; enum { MCR20A_XCVSEQ_IDLE = 0x00, MCR20A_XCVSEQ_RX = 0x01, MCR20A_XCVSEQ_TX = 0x02, MCR20A_XCVSEQ_CCA = 0x03, MCR20A_XCVSEQ_TR = 0x04, MCR20A_XCVSEQ_CCCA = 0x05, }; /* IEEE-802.15.4 defined constants (2.4 GHz logical channels) */ #define MCR20A_MIN_CHANNEL (11) #define MCR20A_MAX_CHANNEL (26) #define MCR20A_CHANNEL_SPACING (5) /* MCR20A CCA Threshold constans */ #define MCR20A_MIN_CCA_THRESHOLD (0x6EU) #define MCR20A_MAX_CCA_THRESHOLD (0x00U) /* version 0C */ #define MCR20A_OVERWRITE_VERSION (0x0C) /* MCR20A PLL configurations */ static const u8 PLL_INT[16] = { /* 2405 */ 0x0B, /* 2410 */ 0x0B, /* 2415 */ 0x0B, /* 2420 */ 0x0B, /* 2425 */ 0x0B, /* 2430 */ 0x0B, /* 2435 */ 0x0C, /* 2440 */ 0x0C, /* 2445 */ 0x0C, /* 2450 */ 0x0C, /* 2455 */ 0x0C, /* 2460 */ 0x0C, /* 2465 */ 0x0D, /* 2470 */ 0x0D, /* 2475 */ 0x0D, /* 2480 */ 0x0D }; static const u8 PLL_FRAC[16] = { /* 2405 */ 0x28, /* 2410 */ 0x50, /* 2415 */ 0x78, /* 2420 */ 0xA0, /* 2425 */ 0xC8, /* 2430 */ 0xF0, /* 2435 */ 0x18, /* 2440 */ 0x40, /* 2445 */ 0x68, /* 2450 */ 0x90, /* 2455 */ 0xB8, /* 2460 */ 0xE0, /* 2465 */ 0x08, /* 2470 */ 0x30, /* 2475 */ 0x58, /* 2480 */ 0x80 }; static const struct reg_sequence mar20a_iar_overwrites[] = { { IAR_MISC_PAD_CTRL, 0x02 }, { IAR_VCO_CTRL1, 0xB3 }, { IAR_VCO_CTRL2, 0x07 }, { IAR_PA_TUNING, 0x71 }, { IAR_CHF_IBUF, 0x2F }, { IAR_CHF_QBUF, 0x2F }, { IAR_CHF_IRIN, 0x24 }, { IAR_CHF_QRIN, 0x24 }, { IAR_CHF_IL, 0x24 }, { IAR_CHF_QL, 0x24 }, { IAR_CHF_CC1, 0x32 }, { IAR_CHF_CCL, 0x1D }, { IAR_CHF_CC2, 0x2D }, { IAR_CHF_IROUT, 0x24 }, { IAR_CHF_QROUT, 0x24 }, { IAR_PA_CAL, 0x28 }, { IAR_AGC_THR1, 0x55 }, { IAR_AGC_THR2, 0x2D }, { IAR_ATT_RSSI1, 0x5F }, { IAR_ATT_RSSI2, 0x8F }, { IAR_RSSI_OFFSET, 0x61 }, { IAR_CHF_PMA_GAIN, 0x03 }, { IAR_CCA1_THRESH, 0x50 }, { IAR_CORR_NVAL, 0x13 }, { IAR_ACKDELAY, 0x3D }, }; #define MCR20A_VALID_CHANNELS (0x07FFF800) #define MCR20A_MAX_BUF (127) #define printdev(X) (&X->spi->dev) /* regmap information for Direct Access Register (DAR) access */ #define MCR20A_DAR_WRITE 0x01 #define MCR20A_DAR_READ 0x00 #define MCR20A_DAR_NUMREGS 0x3F /* regmap information for Indirect Access Register (IAR) access */ #define MCR20A_IAR_ACCESS 0x80 #define MCR20A_IAR_NUMREGS 0xBEFF /* Read/Write SPI Commands for DAR and IAR registers. */ #define MCR20A_READSHORT(reg) ((reg) << 1) #define MCR20A_WRITESHORT(reg) ((reg) << 1 | 1) #define MCR20A_READLONG(reg) (1 << 15 | (reg) << 5) #define MCR20A_WRITELONG(reg) (1 << 15 | (reg) << 5 | 1 << 4) /* Type definitions for link configuration of instantiable layers */ #define MCR20A_PHY_INDIRECT_QUEUE_SIZE (12) static bool mcr20a_dar_writeable(struct device *dev, unsigned int reg) { switch (reg) { case DAR_IRQ_STS1: case DAR_IRQ_STS2: case DAR_IRQ_STS3: case DAR_PHY_CTRL1: case DAR_PHY_CTRL2: case DAR_PHY_CTRL3: case DAR_PHY_CTRL4: case DAR_SRC_CTRL: case DAR_SRC_ADDRS_SUM_LSB: case DAR_SRC_ADDRS_SUM_MSB: case DAR_T3CMP_LSB: case DAR_T3CMP_MSB: case DAR_T3CMP_USB: case DAR_T2PRIMECMP_LSB: case DAR_T2PRIMECMP_MSB: case DAR_T1CMP_LSB: case DAR_T1CMP_MSB: case DAR_T1CMP_USB: case DAR_T2CMP_LSB: case DAR_T2CMP_MSB: case DAR_T2CMP_USB: case DAR_T4CMP_LSB: case DAR_T4CMP_MSB: case DAR_T4CMP_USB: case DAR_PLL_INT0: case DAR_PLL_FRAC0_LSB: case DAR_PLL_FRAC0_MSB: case DAR_PA_PWR: /* no DAR_ACM */ case DAR_OVERWRITE_VER: case DAR_CLK_OUT_CTRL: case DAR_PWR_MODES: return true; default: return false; } } static bool mcr20a_dar_readable(struct device *dev, unsigned int reg) { bool rc; /* all writeable are also readable */ rc = mcr20a_dar_writeable(dev, reg); if (rc) return rc; /* readonly regs */ switch (reg) { case DAR_RX_FRM_LEN: case DAR_CCA1_ED_FNL: case DAR_EVENT_TMR_LSB: case DAR_EVENT_TMR_MSB: case DAR_EVENT_TMR_USB: case DAR_TIMESTAMP_LSB: case DAR_TIMESTAMP_MSB: case DAR_TIMESTAMP_USB: case DAR_SEQ_STATE: case DAR_LQI_VALUE: case DAR_RSSI_CCA_CONT: return true; default: return false; } } static bool mcr20a_dar_volatile(struct device *dev, unsigned int reg) { /* can be changed during runtime */ switch (reg) { case DAR_IRQ_STS1: case DAR_IRQ_STS2: case DAR_IRQ_STS3: /* use them in spi_async and regmap so it's volatile */ return true; default: return false; } } static bool mcr20a_dar_precious(struct device *dev, unsigned int reg) { /* don't clear irq line on read */ switch (reg) { case DAR_IRQ_STS1: case DAR_IRQ_STS2: case DAR_IRQ_STS3: return true; default: return false; } } static const struct regmap_config mcr20a_dar_regmap = { .name = "mcr20a_dar", .reg_bits = 8, .val_bits = 8, .write_flag_mask = REGISTER_ACCESS | REGISTER_WRITE, .read_flag_mask = REGISTER_ACCESS | REGISTER_READ, .cache_type = REGCACHE_RBTREE, .writeable_reg = mcr20a_dar_writeable, .readable_reg = mcr20a_dar_readable, .volatile_reg = mcr20a_dar_volatile, .precious_reg = mcr20a_dar_precious, .fast_io = true, .can_multi_write = true, }; static bool mcr20a_iar_writeable(struct device *dev, unsigned int reg) { switch (reg) { case IAR_XTAL_TRIM: case IAR_PMC_LP_TRIM: case IAR_MACPANID0_LSB: case IAR_MACPANID0_MSB: case IAR_MACSHORTADDRS0_LSB: case IAR_MACSHORTADDRS0_MSB: case IAR_MACLONGADDRS0_0: case IAR_MACLONGADDRS0_8: case IAR_MACLONGADDRS0_16: case IAR_MACLONGADDRS0_24: case IAR_MACLONGADDRS0_32: case IAR_MACLONGADDRS0_40: case IAR_MACLONGADDRS0_48: case IAR_MACLONGADDRS0_56: case IAR_RX_FRAME_FILTER: case IAR_PLL_INT1: case IAR_PLL_FRAC1_LSB: case IAR_PLL_FRAC1_MSB: case IAR_MACPANID1_LSB: case IAR_MACPANID1_MSB: case IAR_MACSHORTADDRS1_LSB: case IAR_MACSHORTADDRS1_MSB: case IAR_MACLONGADDRS1_0: case IAR_MACLONGADDRS1_8: case IAR_MACLONGADDRS1_16: case IAR_MACLONGADDRS1_24: case IAR_MACLONGADDRS1_32: case IAR_MACLONGADDRS1_40: case IAR_MACLONGADDRS1_48: case IAR_MACLONGADDRS1_56: case IAR_DUAL_PAN_CTRL: case IAR_DUAL_PAN_DWELL: case IAR_CCA1_THRESH: case IAR_CCA1_ED_OFFSET_COMP: case IAR_LQI_OFFSET_COMP: case IAR_CCA_CTRL: case IAR_CCA2_CORR_PEAKS: case IAR_CCA2_CORR_THRESH: case IAR_TMR_PRESCALE: case IAR_ANT_PAD_CTRL: case IAR_MISC_PAD_CTRL: case IAR_BSM_CTRL: case IAR_RNG: case IAR_RX_WTR_MARK: case IAR_SOFT_RESET: case IAR_TXDELAY: case IAR_ACKDELAY: case IAR_CORR_NVAL: case IAR_ANT_AGC_CTRL: case IAR_AGC_THR1: case IAR_AGC_THR2: case IAR_PA_CAL: case IAR_ATT_RSSI1: case IAR_ATT_RSSI2: case IAR_RSSI_OFFSET: case IAR_XTAL_CTRL: case IAR_CHF_PMA_GAIN: case IAR_CHF_IBUF: case IAR_CHF_QBUF: case IAR_CHF_IRIN: case IAR_CHF_QRIN: case IAR_CHF_IL: case IAR_CHF_QL: case IAR_CHF_CC1: case IAR_CHF_CCL: case IAR_CHF_CC2: case IAR_CHF_IROUT: case IAR_CHF_QROUT: case IAR_PA_TUNING: case IAR_VCO_CTRL1: case IAR_VCO_CTRL2: return true; default: return false; } } static bool mcr20a_iar_readable(struct device *dev, unsigned int reg) { bool rc; /* all writeable are also readable */ rc = mcr20a_iar_writeable(dev, reg); if (rc) return rc; /* readonly regs */ switch (reg) { case IAR_PART_ID: case IAR_DUAL_PAN_STS: case IAR_RX_BYTE_COUNT: case IAR_FILTERFAIL_CODE1: case IAR_FILTERFAIL_CODE2: case IAR_RSSI: return true; default: return false; } } static bool mcr20a_iar_volatile(struct device *dev, unsigned int reg) { /* can be changed during runtime */ switch (reg) { case IAR_DUAL_PAN_STS: case IAR_RX_BYTE_COUNT: case IAR_FILTERFAIL_CODE1: case IAR_FILTERFAIL_CODE2: case IAR_RSSI: return true; default: return false; } } static const struct regmap_config mcr20a_iar_regmap = { .name = "mcr20a_iar", .reg_bits = 16, .val_bits = 8, .write_flag_mask = REGISTER_ACCESS | REGISTER_WRITE | IAR_INDEX, .read_flag_mask = REGISTER_ACCESS | REGISTER_READ | IAR_INDEX, .cache_type = REGCACHE_RBTREE, .writeable_reg = mcr20a_iar_writeable, .readable_reg = mcr20a_iar_readable, .volatile_reg = mcr20a_iar_volatile, .fast_io = true, }; struct mcr20a_local { struct spi_device *spi; struct ieee802154_hw *hw; struct regmap *regmap_dar; struct regmap *regmap_iar; u8 *buf; bool is_tx; /* for writing tx buffer */ struct spi_message tx_buf_msg; u8 tx_header[1]; /* burst buffer write command */ struct spi_transfer tx_xfer_header; u8 tx_len[1]; /* len of tx packet */ struct spi_transfer tx_xfer_len; /* data of tx packet */ struct spi_transfer tx_xfer_buf; struct sk_buff *tx_skb; /* for read length rxfifo */ struct spi_message reg_msg; u8 reg_cmd[1]; u8 reg_data[MCR20A_IRQSTS_NUM]; struct spi_transfer reg_xfer_cmd; struct spi_transfer reg_xfer_data; /* receive handling */ struct spi_message rx_buf_msg; u8 rx_header[1]; struct spi_transfer rx_xfer_header; u8 rx_lqi[1]; struct spi_transfer rx_xfer_lqi; u8 rx_buf[MCR20A_MAX_BUF]; struct spi_transfer rx_xfer_buf; /* isr handling for reading intstat */ struct spi_message irq_msg; u8 irq_header[1]; u8 irq_data[MCR20A_IRQSTS_NUM]; struct spi_transfer irq_xfer_data; struct spi_transfer irq_xfer_header; }; static void mcr20a_write_tx_buf_complete(void *context) { struct mcr20a_local *lp = context; int ret; dev_dbg(printdev(lp), "%s\n", __func__); lp->reg_msg.complete = NULL; lp->reg_cmd[0] = MCR20A_WRITE_REG(DAR_PHY_CTRL1); lp->reg_data[0] = MCR20A_XCVSEQ_TX; lp->reg_xfer_data.len = 1; ret = spi_async(lp->spi, &lp->reg_msg); if (ret) dev_err(printdev(lp), "failed to set SEQ TX\n"); } static int mcr20a_xmit(struct ieee802154_hw *hw, struct sk_buff *skb) { struct mcr20a_local *lp = hw->priv; dev_dbg(printdev(lp), "%s\n", __func__); lp->tx_skb = skb; print_hex_dump_debug("mcr20a tx: ", DUMP_PREFIX_OFFSET, 16, 1, skb->data, skb->len, 0); lp->is_tx = 1; lp->reg_msg.complete = NULL; lp->reg_cmd[0] = MCR20A_WRITE_REG(DAR_PHY_CTRL1); lp->reg_data[0] = MCR20A_XCVSEQ_IDLE; lp->reg_xfer_data.len = 1; return spi_async(lp->spi, &lp->reg_msg); } static int mcr20a_ed(struct ieee802154_hw *hw, u8 *level) { WARN_ON(!level); *level = 0xbe; return 0; } static int mcr20a_set_channel(struct ieee802154_hw *hw, u8 page, u8 channel) { struct mcr20a_local *lp = hw->priv; int ret; dev_dbg(printdev(lp), "%s\n", __func__); /* freqency = ((PLL_INT+64) + (PLL_FRAC/65536)) * 32 MHz */ ret = regmap_write(lp->regmap_dar, DAR_PLL_INT0, PLL_INT[channel - 11]); if (ret) return ret; ret = regmap_write(lp->regmap_dar, DAR_PLL_FRAC0_LSB, 0x00); if (ret) return ret; ret = regmap_write(lp->regmap_dar, DAR_PLL_FRAC0_MSB, PLL_FRAC[channel - 11]); if (ret) return ret; return 0; } static int mcr20a_start(struct ieee802154_hw *hw) { struct mcr20a_local *lp = hw->priv; int ret; dev_dbg(printdev(lp), "%s\n", __func__); /* No slotted operation */ dev_dbg(printdev(lp), "no slotted operation\n"); ret = regmap_update_bits(lp->regmap_dar, DAR_PHY_CTRL1, DAR_PHY_CTRL1_SLOTTED, 0x0); /* enable irq */ enable_irq(lp->spi->irq); /* Unmask SEQ interrupt */ ret = regmap_update_bits(lp->regmap_dar, DAR_PHY_CTRL2, DAR_PHY_CTRL2_SEQMSK, 0x0); /* Start the RX sequence */ dev_dbg(printdev(lp), "start the RX sequence\n"); ret = regmap_update_bits(lp->regmap_dar, DAR_PHY_CTRL1, DAR_PHY_CTRL1_XCVSEQ_MASK, MCR20A_XCVSEQ_RX); return 0; } static void mcr20a_stop(struct ieee802154_hw *hw) { struct mcr20a_local *lp = hw->priv; dev_dbg(printdev(lp), "%s\n", __func__); /* stop all running sequence */ regmap_update_bits(lp->regmap_dar, DAR_PHY_CTRL1, DAR_PHY_CTRL1_XCVSEQ_MASK, MCR20A_XCVSEQ_IDLE); /* disable irq */ disable_irq(lp->spi->irq); } static int mcr20a_set_hw_addr_filt(struct ieee802154_hw *hw, struct ieee802154_hw_addr_filt *filt, unsigned long changed) { struct mcr20a_local *lp = hw->priv; dev_dbg(printdev(lp), "%s\n", __func__); if (changed & IEEE802154_AFILT_SADDR_CHANGED) { u16 addr = le16_to_cpu(filt->short_addr); regmap_write(lp->regmap_iar, IAR_MACSHORTADDRS0_LSB, addr); regmap_write(lp->regmap_iar, IAR_MACSHORTADDRS0_MSB, addr >> 8); } if (changed & IEEE802154_AFILT_PANID_CHANGED) { u16 pan = le16_to_cpu(filt->pan_id); regmap_write(lp->regmap_iar, IAR_MACPANID0_LSB, pan); regmap_write(lp->regmap_iar, IAR_MACPANID0_MSB, pan >> 8); } if (changed & IEEE802154_AFILT_IEEEADDR_CHANGED) { u8 addr[8], i; memcpy(addr, &filt->ieee_addr, 8); for (i = 0; i < 8; i++) regmap_write(lp->regmap_iar, IAR_MACLONGADDRS0_0 + i, addr[i]); } if (changed & IEEE802154_AFILT_PANC_CHANGED) { if (filt->pan_coord) { regmap_update_bits(lp->regmap_dar, DAR_PHY_CTRL4, DAR_PHY_CTRL4_PANCORDNTR0, 0x10); } else { regmap_update_bits(lp->regmap_dar, DAR_PHY_CTRL4, DAR_PHY_CTRL4_PANCORDNTR0, 0x00); } } return 0; } /* -30 dBm to 10 dBm */ #define MCR20A_MAX_TX_POWERS 0x14 static const s32 mcr20a_powers[MCR20A_MAX_TX_POWERS + 1] = { -3000, -2800, -2600, -2400, -2200, -2000, -1800, -1600, -1400, -1200, -1000, -800, -600, -400, -200, 0, 200, 400, 600, 800, 1000 }; static int mcr20a_set_txpower(struct ieee802154_hw *hw, s32 mbm) { struct mcr20a_local *lp = hw->priv; u32 i; dev_dbg(printdev(lp), "%s(%d)\n", __func__, mbm); for (i = 0; i < lp->hw->phy->supported.tx_powers_size; i++) { if (lp->hw->phy->supported.tx_powers[i] == mbm) return regmap_write(lp->regmap_dar, DAR_PA_PWR, ((i + 8) & 0x1F)); } return -EINVAL; } #define MCR20A_MAX_ED_LEVELS MCR20A_MIN_CCA_THRESHOLD static s32 mcr20a_ed_levels[MCR20A_MAX_ED_LEVELS + 1]; static int mcr20a_set_cca_mode(struct ieee802154_hw *hw, const struct wpan_phy_cca *cca) { struct mcr20a_local *lp = hw->priv; unsigned int cca_mode = 0xff; bool cca_mode_and = false; int ret; dev_dbg(printdev(lp), "%s\n", __func__); /* mapping 802.15.4 to driver spec */ switch (cca->mode) { case NL802154_CCA_ENERGY: cca_mode = MCR20A_CCA_MODE1; break; case NL802154_CCA_CARRIER: cca_mode = MCR20A_CCA_MODE2; break; case NL802154_CCA_ENERGY_CARRIER: switch (cca->opt) { case NL802154_CCA_OPT_ENERGY_CARRIER_AND: cca_mode = MCR20A_CCA_MODE3; cca_mode_and = true; break; case NL802154_CCA_OPT_ENERGY_CARRIER_OR: cca_mode = MCR20A_CCA_MODE3; cca_mode_and = false; break; default: return -EINVAL; } break; default: return -EINVAL; } ret = regmap_update_bits(lp->regmap_dar, DAR_PHY_CTRL4, DAR_PHY_CTRL4_CCATYPE_MASK, cca_mode << DAR_PHY_CTRL4_CCATYPE_SHIFT); if (ret < 0) return ret; if (cca_mode == MCR20A_CCA_MODE3) { if (cca_mode_and) { ret = regmap_update_bits(lp->regmap_iar, IAR_CCA_CTRL, IAR_CCA_CTRL_CCA3_AND_NOT_OR, 0x08); } else { ret = regmap_update_bits(lp->regmap_iar, IAR_CCA_CTRL, IAR_CCA_CTRL_CCA3_AND_NOT_OR, 0x00); } if (ret < 0) return ret; } return ret; } static int mcr20a_set_cca_ed_level(struct ieee802154_hw *hw, s32 mbm) { struct mcr20a_local *lp = hw->priv; u32 i; dev_dbg(printdev(lp), "%s\n", __func__); for (i = 0; i < hw->phy->supported.cca_ed_levels_size; i++) { if (hw->phy->supported.cca_ed_levels[i] == mbm) return regmap_write(lp->regmap_iar, IAR_CCA1_THRESH, i); } return 0; } static int mcr20a_set_promiscuous_mode(struct ieee802154_hw *hw, const bool on) { struct mcr20a_local *lp = hw->priv; int ret; u8 rx_frame_filter_reg = 0x0; dev_dbg(printdev(lp), "%s(%d)\n", __func__, on); if (on) { /* All frame types accepted*/ rx_frame_filter_reg &= ~(IAR_RX_FRAME_FLT_FRM_VER); rx_frame_filter_reg |= (IAR_RX_FRAME_FLT_ACK_FT | IAR_RX_FRAME_FLT_NS_FT); ret = regmap_update_bits(lp->regmap_dar, DAR_PHY_CTRL4, DAR_PHY_CTRL4_PROMISCUOUS, DAR_PHY_CTRL4_PROMISCUOUS); if (ret < 0) return ret; ret = regmap_write(lp->regmap_iar, IAR_RX_FRAME_FILTER, rx_frame_filter_reg); if (ret < 0) return ret; } else { ret = regmap_update_bits(lp->regmap_dar, DAR_PHY_CTRL4, DAR_PHY_CTRL4_PROMISCUOUS, 0x0); if (ret < 0) return ret; ret = regmap_write(lp->regmap_iar, IAR_RX_FRAME_FILTER, IAR_RX_FRAME_FLT_FRM_VER | IAR_RX_FRAME_FLT_BEACON_FT | IAR_RX_FRAME_FLT_DATA_FT | IAR_RX_FRAME_FLT_CMD_FT); if (ret < 0) return ret; } return 0; } static const struct ieee802154_ops mcr20a_hw_ops = { .owner = THIS_MODULE, .xmit_async = mcr20a_xmit, .ed = mcr20a_ed, .set_channel = mcr20a_set_channel, .start = mcr20a_start, .stop = mcr20a_stop, .set_hw_addr_filt = mcr20a_set_hw_addr_filt, .set_txpower = mcr20a_set_txpower, .set_cca_mode = mcr20a_set_cca_mode, .set_cca_ed_level = mcr20a_set_cca_ed_level, .set_promiscuous_mode = mcr20a_set_promiscuous_mode, }; static int mcr20a_request_rx(struct mcr20a_local *lp) { dev_dbg(printdev(lp), "%s\n", __func__); /* Start the RX sequence */ regmap_update_bits_async(lp->regmap_dar, DAR_PHY_CTRL1, DAR_PHY_CTRL1_XCVSEQ_MASK, MCR20A_XCVSEQ_RX); return 0; } static void mcr20a_handle_rx_read_buf_complete(void *context) { struct mcr20a_local *lp = context; u8 len = lp->reg_data[0] & DAR_RX_FRAME_LENGTH_MASK; struct sk_buff *skb; dev_dbg(printdev(lp), "%s\n", __func__); dev_dbg(printdev(lp), "RX is done\n"); if (!ieee802154_is_valid_psdu_len(len)) { dev_vdbg(&lp->spi->dev, "corrupted frame received\n"); len = IEEE802154_MTU; } len = len - 2; /* get rid of frame check field */ skb = dev_alloc_skb(len); if (!skb) return; memcpy(skb_put(skb, len), lp->rx_buf, len); ieee802154_rx_irqsafe(lp->hw, skb, lp->rx_lqi[0]); print_hex_dump_debug("mcr20a rx: ", DUMP_PREFIX_OFFSET, 16, 1, lp->rx_buf, len, 0); pr_debug("mcr20a rx: lqi: %02hhx\n", lp->rx_lqi[0]); /* start RX sequence */ mcr20a_request_rx(lp); } static void mcr20a_handle_rx_read_len_complete(void *context) { struct mcr20a_local *lp = context; u8 len; int ret; dev_dbg(printdev(lp), "%s\n", __func__); /* get the length of received frame */ len = lp->reg_data[0] & DAR_RX_FRAME_LENGTH_MASK; dev_dbg(printdev(lp), "frame len : %d\n", len); /* prepare to read the rx buf */ lp->rx_buf_msg.complete = mcr20a_handle_rx_read_buf_complete; lp->rx_header[0] = MCR20A_BURST_READ_PACKET_BUF; lp->rx_xfer_buf.len = len; ret = spi_async(lp->spi, &lp->rx_buf_msg); if (ret) dev_err(printdev(lp), "failed to read rx buffer length\n"); } static int mcr20a_handle_rx(struct mcr20a_local *lp) { dev_dbg(printdev(lp), "%s\n", __func__); lp->reg_msg.complete = mcr20a_handle_rx_read_len_complete; lp->reg_cmd[0] = MCR20A_READ_REG(DAR_RX_FRM_LEN); lp->reg_xfer_data.len = 1; return spi_async(lp->spi, &lp->reg_msg); } static int mcr20a_handle_tx_complete(struct mcr20a_local *lp) { dev_dbg(printdev(lp), "%s\n", __func__); ieee802154_xmit_complete(lp->hw, lp->tx_skb, false); return mcr20a_request_rx(lp); } static int mcr20a_handle_tx(struct mcr20a_local *lp) { int ret; dev_dbg(printdev(lp), "%s\n", __func__); /* write tx buffer */ lp->tx_header[0] = MCR20A_BURST_WRITE_PACKET_BUF; /* add 2 bytes of FCS */ lp->tx_len[0] = lp->tx_skb->len + 2; lp->tx_xfer_buf.tx_buf = lp->tx_skb->data; /* add 1 byte psduLength */ lp->tx_xfer_buf.len = lp->tx_skb->len + 1; ret = spi_async(lp->spi, &lp->tx_buf_msg); if (ret) { dev_err(printdev(lp), "SPI write Failed for TX buf\n"); return ret; } return 0; } static void mcr20a_irq_clean_complete(void *context) { struct mcr20a_local *lp = context; u8 seq_state = lp->irq_data[DAR_IRQ_STS1] & DAR_PHY_CTRL1_XCVSEQ_MASK; dev_dbg(printdev(lp), "%s\n", __func__); enable_irq(lp->spi->irq); dev_dbg(printdev(lp), "IRQ STA1 (%02x) STA2 (%02x)\n", lp->irq_data[DAR_IRQ_STS1], lp->irq_data[DAR_IRQ_STS2]); switch (seq_state) { /* TX IRQ, RX IRQ and SEQ IRQ */ case (DAR_IRQSTS1_TXIRQ | DAR_IRQSTS1_SEQIRQ): if (lp->is_tx) { lp->is_tx = 0; dev_dbg(printdev(lp), "TX is done. No ACK\n"); mcr20a_handle_tx_complete(lp); } break; case (DAR_IRQSTS1_RXIRQ | DAR_IRQSTS1_SEQIRQ): /* rx is starting */ dev_dbg(printdev(lp), "RX is starting\n"); mcr20a_handle_rx(lp); break; case (DAR_IRQSTS1_RXIRQ | DAR_IRQSTS1_TXIRQ | DAR_IRQSTS1_SEQIRQ): if (lp->is_tx) { /* tx is done */ lp->is_tx = 0; dev_dbg(printdev(lp), "TX is done. Get ACK\n"); mcr20a_handle_tx_complete(lp); } else { /* rx is starting */ dev_dbg(printdev(lp), "RX is starting\n"); mcr20a_handle_rx(lp); } break; case (DAR_IRQSTS1_SEQIRQ): if (lp->is_tx) { dev_dbg(printdev(lp), "TX is starting\n"); mcr20a_handle_tx(lp); } else { dev_dbg(printdev(lp), "MCR20A is stop\n"); } break; } } static void mcr20a_irq_status_complete(void *context) { int ret; struct mcr20a_local *lp = context; dev_dbg(printdev(lp), "%s\n", __func__); regmap_update_bits_async(lp->regmap_dar, DAR_PHY_CTRL1, DAR_PHY_CTRL1_XCVSEQ_MASK, MCR20A_XCVSEQ_IDLE); lp->reg_msg.complete = mcr20a_irq_clean_complete; lp->reg_cmd[0] = MCR20A_WRITE_REG(DAR_IRQ_STS1); memcpy(lp->reg_data, lp->irq_data, MCR20A_IRQSTS_NUM); lp->reg_xfer_data.len = MCR20A_IRQSTS_NUM; ret = spi_async(lp->spi, &lp->reg_msg); if (ret) dev_err(printdev(lp), "failed to clean irq status\n"); } static irqreturn_t mcr20a_irq_isr(int irq, void *data) { struct mcr20a_local *lp = data; int ret; disable_irq_nosync(irq); lp->irq_header[0] = MCR20A_READ_REG(DAR_IRQ_STS1); /* read IRQSTSx */ ret = spi_async(lp->spi, &lp->irq_msg); if (ret) { enable_irq(irq); return IRQ_NONE; } return IRQ_HANDLED; } static void mcr20a_hw_setup(struct mcr20a_local *lp) { u8 i; struct ieee802154_hw *hw = lp->hw; struct wpan_phy *phy = lp->hw->phy; dev_dbg(printdev(lp), "%s\n", __func__); phy->symbol_duration = 16; phy->lifs_period = 40; phy->sifs_period = 12; hw->flags = IEEE802154_HW_TX_OMIT_CKSUM | IEEE802154_HW_AFILT | IEEE802154_HW_PROMISCUOUS; phy->flags = WPAN_PHY_FLAG_TXPOWER | WPAN_PHY_FLAG_CCA_ED_LEVEL | WPAN_PHY_FLAG_CCA_MODE; phy->supported.cca_modes = BIT(NL802154_CCA_ENERGY) | BIT(NL802154_CCA_CARRIER) | BIT(NL802154_CCA_ENERGY_CARRIER); phy->supported.cca_opts = BIT(NL802154_CCA_OPT_ENERGY_CARRIER_AND) | BIT(NL802154_CCA_OPT_ENERGY_CARRIER_OR); /* initiating cca_ed_levels */ for (i = MCR20A_MAX_CCA_THRESHOLD; i < MCR20A_MIN_CCA_THRESHOLD + 1; ++i) { mcr20a_ed_levels[i] = -i * 100; } phy->supported.cca_ed_levels = mcr20a_ed_levels; phy->supported.cca_ed_levels_size = ARRAY_SIZE(mcr20a_ed_levels); phy->cca.mode = NL802154_CCA_ENERGY; phy->supported.channels[0] = MCR20A_VALID_CHANNELS; phy->current_page = 0; /* MCR20A default reset value */ phy->current_channel = 20; phy->symbol_duration = 16; phy->supported.tx_powers = mcr20a_powers; phy->supported.tx_powers_size = ARRAY_SIZE(mcr20a_powers); phy->cca_ed_level = phy->supported.cca_ed_levels[75]; phy->transmit_power = phy->supported.tx_powers[0x0F]; } static void mcr20a_setup_tx_spi_messages(struct mcr20a_local *lp) { spi_message_init(&lp->tx_buf_msg); lp->tx_buf_msg.context = lp; lp->tx_buf_msg.complete = mcr20a_write_tx_buf_complete; lp->tx_xfer_header.len = 1; lp->tx_xfer_header.tx_buf = lp->tx_header; lp->tx_xfer_len.len = 1; lp->tx_xfer_len.tx_buf = lp->tx_len; spi_message_add_tail(&lp->tx_xfer_header, &lp->tx_buf_msg); spi_message_add_tail(&lp->tx_xfer_len, &lp->tx_buf_msg); spi_message_add_tail(&lp->tx_xfer_buf, &lp->tx_buf_msg); } static void mcr20a_setup_rx_spi_messages(struct mcr20a_local *lp) { spi_message_init(&lp->reg_msg); lp->reg_msg.context = lp; lp->reg_xfer_cmd.len = 1; lp->reg_xfer_cmd.tx_buf = lp->reg_cmd; lp->reg_xfer_cmd.rx_buf = lp->reg_cmd; lp->reg_xfer_data.rx_buf = lp->reg_data; lp->reg_xfer_data.tx_buf = lp->reg_data; spi_message_add_tail(&lp->reg_xfer_cmd, &lp->reg_msg); spi_message_add_tail(&lp->reg_xfer_data, &lp->reg_msg); spi_message_init(&lp->rx_buf_msg); lp->rx_buf_msg.context = lp; lp->rx_buf_msg.complete = mcr20a_handle_rx_read_buf_complete; lp->rx_xfer_header.len = 1; lp->rx_xfer_header.tx_buf = lp->rx_header; lp->rx_xfer_header.rx_buf = lp->rx_header; lp->rx_xfer_buf.rx_buf = lp->rx_buf; lp->rx_xfer_lqi.len = 1; lp->rx_xfer_lqi.rx_buf = lp->rx_lqi; spi_message_add_tail(&lp->rx_xfer_header, &lp->rx_buf_msg); spi_message_add_tail(&lp->rx_xfer_buf, &lp->rx_buf_msg); spi_message_add_tail(&lp->rx_xfer_lqi, &lp->rx_buf_msg); } static void mcr20a_setup_irq_spi_messages(struct mcr20a_local *lp) { spi_message_init(&lp->irq_msg); lp->irq_msg.context = lp; lp->irq_msg.complete = mcr20a_irq_status_complete; lp->irq_xfer_header.len = 1; lp->irq_xfer_header.tx_buf = lp->irq_header; lp->irq_xfer_header.rx_buf = lp->irq_header; lp->irq_xfer_data.len = MCR20A_IRQSTS_NUM; lp->irq_xfer_data.rx_buf = lp->irq_data; spi_message_add_tail(&lp->irq_xfer_header, &lp->irq_msg); spi_message_add_tail(&lp->irq_xfer_data, &lp->irq_msg); } static int mcr20a_phy_init(struct mcr20a_local *lp) { u8 index; unsigned int phy_reg = 0; int ret; dev_dbg(printdev(lp), "%s\n", __func__); /* Disable Tristate on COCO MISO for SPI reads */ ret = regmap_write(lp->regmap_iar, IAR_MISC_PAD_CTRL, 0x02); if (ret) goto err_ret; /* Clear all PP IRQ bits in IRQSTS1 to avoid unexpected interrupts * immediately after init */ ret = regmap_write(lp->regmap_dar, DAR_IRQ_STS1, 0xEF); if (ret) goto err_ret; /* Clear all PP IRQ bits in IRQSTS2 */ ret = regmap_write(lp->regmap_dar, DAR_IRQ_STS2, DAR_IRQSTS2_ASM_IRQ | DAR_IRQSTS2_PB_ERR_IRQ | DAR_IRQSTS2_WAKE_IRQ); if (ret) goto err_ret; /* Disable all timer interrupts */ ret = regmap_write(lp->regmap_dar, DAR_IRQ_STS3, 0xFF); if (ret) goto err_ret; /* PHY_CTRL1 : default HW settings + AUTOACK enabled */ ret = regmap_update_bits(lp->regmap_dar, DAR_PHY_CTRL1, DAR_PHY_CTRL1_AUTOACK, DAR_PHY_CTRL1_AUTOACK); /* PHY_CTRL2 : disable all interrupts */ ret = regmap_write(lp->regmap_dar, DAR_PHY_CTRL2, 0xFF); if (ret) goto err_ret; /* PHY_CTRL3 : disable all timers and remaining interrupts */ ret = regmap_write(lp->regmap_dar, DAR_PHY_CTRL3, DAR_PHY_CTRL3_ASM_MSK | DAR_PHY_CTRL3_PB_ERR_MSK | DAR_PHY_CTRL3_WAKE_MSK); if (ret) goto err_ret; /* SRC_CTRL : enable Acknowledge Frame Pending and * Source Address Matching Enable */ ret = regmap_write(lp->regmap_dar, DAR_SRC_CTRL, DAR_SRC_CTRL_ACK_FRM_PND | (DAR_SRC_CTRL_INDEX << DAR_SRC_CTRL_INDEX_SHIFT)); if (ret) goto err_ret; /* RX_FRAME_FILTER */ /* FRM_VER[1:0] = b11. Accept FrameVersion 0 and 1 packets */ ret = regmap_write(lp->regmap_iar, IAR_RX_FRAME_FILTER, IAR_RX_FRAME_FLT_FRM_VER | IAR_RX_FRAME_FLT_BEACON_FT | IAR_RX_FRAME_FLT_DATA_FT | IAR_RX_FRAME_FLT_CMD_FT); if (ret) goto err_ret; dev_info(printdev(lp), "MCR20A DAR overwrites version: 0x%02x\n", MCR20A_OVERWRITE_VERSION); /* Overwrites direct registers */ ret = regmap_write(lp->regmap_dar, DAR_OVERWRITE_VER, MCR20A_OVERWRITE_VERSION); if (ret) goto err_ret; /* Overwrites indirect registers */ ret = regmap_multi_reg_write(lp->regmap_iar, mar20a_iar_overwrites, ARRAY_SIZE(mar20a_iar_overwrites)); if (ret) goto err_ret; /* Clear HW indirect queue */ dev_dbg(printdev(lp), "clear HW indirect queue\n"); for (index = 0; index < MCR20A_PHY_INDIRECT_QUEUE_SIZE; index++) { phy_reg = (u8)(((index & DAR_SRC_CTRL_INDEX) << DAR_SRC_CTRL_INDEX_SHIFT) | (DAR_SRC_CTRL_SRCADDR_EN) | (DAR_SRC_CTRL_INDEX_DISABLE)); ret = regmap_write(lp->regmap_dar, DAR_SRC_CTRL, phy_reg); if (ret) goto err_ret; phy_reg = 0; } /* Assign HW Indirect hash table to PAN0 */ ret = regmap_read(lp->regmap_iar, IAR_DUAL_PAN_CTRL, &phy_reg); if (ret) goto err_ret; /* Clear current lvl */ phy_reg &= ~IAR_DUAL_PAN_CTRL_DUAL_PAN_SAM_LVL_MSK; /* Set new lvl */ phy_reg |= MCR20A_PHY_INDIRECT_QUEUE_SIZE << IAR_DUAL_PAN_CTRL_DUAL_PAN_SAM_LVL_SHIFT; ret = regmap_write(lp->regmap_iar, IAR_DUAL_PAN_CTRL, phy_reg); if (ret) goto err_ret; /* Set CCA threshold to -75 dBm */ ret = regmap_write(lp->regmap_iar, IAR_CCA1_THRESH, 0x4B); if (ret) goto err_ret; /* Set prescaller to obtain 1 symbol (16us) timebase */ ret = regmap_write(lp->regmap_iar, IAR_TMR_PRESCALE, 0x05); if (ret) goto err_ret; /* Enable autodoze mode. */ ret = regmap_update_bits(lp->regmap_dar, DAR_PWR_MODES, DAR_PWR_MODES_AUTODOZE, DAR_PWR_MODES_AUTODOZE); if (ret) goto err_ret; /* Disable clk_out */ ret = regmap_update_bits(lp->regmap_dar, DAR_CLK_OUT_CTRL, DAR_CLK_OUT_CTRL_EN, 0x0); if (ret) goto err_ret; return 0; err_ret: return ret; } static int mcr20a_probe(struct spi_device *spi) { struct ieee802154_hw *hw; struct mcr20a_local *lp; struct gpio_desc *rst_b; int irq_type; int ret = -ENOMEM; dev_dbg(&spi->dev, "%s\n", __func__); if (!spi->irq) { dev_err(&spi->dev, "no IRQ specified\n"); return -EINVAL; } rst_b = devm_gpiod_get(&spi->dev, "rst_b", GPIOD_OUT_HIGH); if (IS_ERR(rst_b)) { ret = PTR_ERR(rst_b); if (ret != -EPROBE_DEFER) dev_err(&spi->dev, "Failed to get 'rst_b' gpio: %d", ret); return ret; } /* reset mcr20a */ usleep_range(10, 20); gpiod_set_value_cansleep(rst_b, 1); usleep_range(10, 20); gpiod_set_value_cansleep(rst_b, 0); usleep_range(120, 240); /* allocate ieee802154_hw and private data */ hw = ieee802154_alloc_hw(sizeof(*lp), &mcr20a_hw_ops); if (!hw) { dev_crit(&spi->dev, "ieee802154_alloc_hw failed\n"); return ret; } /* init mcr20a local data */ lp = hw->priv; lp->hw = hw; lp->spi = spi; /* init ieee802154_hw */ hw->parent = &spi->dev; ieee802154_random_extended_addr(&hw->phy->perm_extended_addr); /* init buf */ lp->buf = devm_kzalloc(&spi->dev, SPI_COMMAND_BUFFER, GFP_KERNEL); if (!lp->buf) { ret = -ENOMEM; goto free_dev; } mcr20a_setup_tx_spi_messages(lp); mcr20a_setup_rx_spi_messages(lp); mcr20a_setup_irq_spi_messages(lp); /* setup regmap */ lp->regmap_dar = devm_regmap_init_spi(spi, &mcr20a_dar_regmap); if (IS_ERR(lp->regmap_dar)) { ret = PTR_ERR(lp->regmap_dar); dev_err(&spi->dev, "Failed to allocate dar map: %d\n", ret); goto free_dev; } lp->regmap_iar = devm_regmap_init_spi(spi, &mcr20a_iar_regmap); if (IS_ERR(lp->regmap_iar)) { ret = PTR_ERR(lp->regmap_iar); dev_err(&spi->dev, "Failed to allocate iar map: %d\n", ret); goto free_dev; } mcr20a_hw_setup(lp); spi_set_drvdata(spi, lp); ret = mcr20a_phy_init(lp); if (ret < 0) { dev_crit(&spi->dev, "mcr20a_phy_init failed\n"); goto free_dev; } irq_type = irq_get_trigger_type(spi->irq); if (!irq_type) irq_type = IRQF_TRIGGER_FALLING; ret = devm_request_irq(&spi->dev, spi->irq, mcr20a_irq_isr, irq_type, dev_name(&spi->dev), lp); if (ret) { dev_err(&spi->dev, "could not request_irq for mcr20a\n"); ret = -ENODEV; goto free_dev; } /* disable_irq by default and wait for starting hardware */ disable_irq(spi->irq); ret = ieee802154_register_hw(hw); if (ret) { dev_crit(&spi->dev, "ieee802154_register_hw failed\n"); goto free_dev; } return ret; free_dev: ieee802154_free_hw(lp->hw); return ret; } static int mcr20a_remove(struct spi_device *spi) { struct mcr20a_local *lp = spi_get_drvdata(spi); dev_dbg(&spi->dev, "%s\n", __func__); ieee802154_unregister_hw(lp->hw); ieee802154_free_hw(lp->hw); return 0; } static const struct of_device_id mcr20a_of_match[] = { { .compatible = "nxp,mcr20a", }, { }, }; MODULE_DEVICE_TABLE(of, mcr20a_of_match); static const struct spi_device_id mcr20a_device_id[] = { { .name = "mcr20a", }, { }, }; MODULE_DEVICE_TABLE(spi, mcr20a_device_id); static struct spi_driver mcr20a_driver = { .id_table = mcr20a_device_id, .driver = { .of_match_table = of_match_ptr(mcr20a_of_match), .name = "mcr20a", }, .probe = mcr20a_probe, .remove = mcr20a_remove, }; module_spi_driver(mcr20a_driver); MODULE_DESCRIPTION("MCR20A Transceiver Driver"); MODULE_LICENSE("GPL v2"); MODULE_AUTHOR("Xue Liu <liuxuenetmail@gmail>");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1