Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Nick Kossifidis | 3657 | 84.79% | 16 | 37.21% |
Felix Fietkau | 402 | 9.32% | 4 | 9.30% |
Pavel Roskin | 153 | 3.55% | 5 | 11.63% |
Bruno Randolf | 54 | 1.25% | 5 | 11.63% |
Joe Perches | 7 | 0.16% | 1 | 2.33% |
Dan Carpenter | 7 | 0.16% | 1 | 2.33% |
Hauke Mehrtens | 6 | 0.14% | 1 | 2.33% |
John W. Linville | 5 | 0.12% | 1 | 2.33% |
Jonathan Bither | 5 | 0.12% | 1 | 2.33% |
Luis R. Rodriguez | 3 | 0.07% | 1 | 2.33% |
Johannes Berg | 3 | 0.07% | 1 | 2.33% |
Bob Copeland | 3 | 0.07% | 1 | 2.33% |
Alexander Beregalov | 2 | 0.05% | 1 | 2.33% |
Sergey Ryazanov | 2 | 0.05% | 1 | 2.33% |
Jiri Slaby | 2 | 0.05% | 1 | 2.33% |
Forrest Zhang | 1 | 0.02% | 1 | 2.33% |
Rusty Russell | 1 | 0.02% | 1 | 2.33% |
Total | 4313 | 43 |
/* * Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org> * Copyright (c) 2006-2008 Nick Kossifidis <mickflemm@gmail.com> * Copyright (c) 2007-2008 Luis Rodriguez <mcgrof@winlab.rutgers.edu> * Copyright (c) 2007-2008 Pavel Roskin <proski@gnu.org> * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com> * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * */ /****************************\ Reset function and helpers \****************************/ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <asm/unaligned.h> #include <linux/pci.h> /* To determine if a card is pci-e */ #include <linux/log2.h> #include <linux/platform_device.h> #include "ath5k.h" #include "reg.h" #include "debug.h" /** * DOC: Reset function and helpers * * Here we implement the main reset routine, used to bring the card * to a working state and ready to receive. We also handle routines * that don't fit on other places such as clock, sleep and power control */ /******************\ * Helper functions * \******************/ /** * ath5k_hw_register_timeout() - Poll a register for a flag/field change * @ah: The &struct ath5k_hw * @reg: The register to read * @flag: The flag/field to check on the register * @val: The field value we expect (if we check a field) * @is_set: Instead of checking if the flag got cleared, check if it got set * * Some registers contain flags that indicate that an operation is * running. We use this function to poll these registers and check * if these flags get cleared. We also use it to poll a register * field (containing multiple flags) until it gets a specific value. * * Returns -EAGAIN if we exceeded AR5K_TUNE_REGISTER_TIMEOUT * 15us or 0 */ int ath5k_hw_register_timeout(struct ath5k_hw *ah, u32 reg, u32 flag, u32 val, bool is_set) { int i; u32 data; for (i = AR5K_TUNE_REGISTER_TIMEOUT; i > 0; i--) { data = ath5k_hw_reg_read(ah, reg); if (is_set && (data & flag)) break; else if ((data & flag) == val) break; udelay(15); } return (i <= 0) ? -EAGAIN : 0; } /*************************\ * Clock related functions * \*************************/ /** * ath5k_hw_htoclock() - Translate usec to hw clock units * @ah: The &struct ath5k_hw * @usec: value in microseconds * * Translate usecs to hw clock units based on the current * hw clock rate. * * Returns number of clock units */ unsigned int ath5k_hw_htoclock(struct ath5k_hw *ah, unsigned int usec) { struct ath_common *common = ath5k_hw_common(ah); return usec * common->clockrate; } /** * ath5k_hw_clocktoh() - Translate hw clock units to usec * @ah: The &struct ath5k_hw * @clock: value in hw clock units * * Translate hw clock units to usecs based on the current * hw clock rate. * * Returns number of usecs */ unsigned int ath5k_hw_clocktoh(struct ath5k_hw *ah, unsigned int clock) { struct ath_common *common = ath5k_hw_common(ah); return clock / common->clockrate; } /** * ath5k_hw_init_core_clock() - Initialize core clock * @ah: The &struct ath5k_hw * * Initialize core clock parameters (usec, usec32, latencies etc), * based on current bwmode and chipset properties. */ static void ath5k_hw_init_core_clock(struct ath5k_hw *ah) { struct ieee80211_channel *channel = ah->ah_current_channel; struct ath_common *common = ath5k_hw_common(ah); u32 usec_reg, txlat, rxlat, usec, clock, sclock, txf2txs; /* * Set core clock frequency */ switch (channel->hw_value) { case AR5K_MODE_11A: clock = 40; break; case AR5K_MODE_11B: clock = 22; break; case AR5K_MODE_11G: default: clock = 44; break; } /* Use clock multiplier for non-default * bwmode */ switch (ah->ah_bwmode) { case AR5K_BWMODE_40MHZ: clock *= 2; break; case AR5K_BWMODE_10MHZ: clock /= 2; break; case AR5K_BWMODE_5MHZ: clock /= 4; break; default: break; } common->clockrate = clock; /* * Set USEC parameters */ /* Set USEC counter on PCU*/ usec = clock - 1; usec = AR5K_REG_SM(usec, AR5K_USEC_1); /* Set usec duration on DCU */ if (ah->ah_version != AR5K_AR5210) AR5K_REG_WRITE_BITS(ah, AR5K_DCU_GBL_IFS_MISC, AR5K_DCU_GBL_IFS_MISC_USEC_DUR, clock); /* Set 32MHz USEC counter */ if ((ah->ah_radio == AR5K_RF5112) || (ah->ah_radio == AR5K_RF2413) || (ah->ah_radio == AR5K_RF5413) || (ah->ah_radio == AR5K_RF2316) || (ah->ah_radio == AR5K_RF2317)) /* Remain on 40MHz clock ? */ sclock = 40 - 1; else sclock = 32 - 1; sclock = AR5K_REG_SM(sclock, AR5K_USEC_32); /* * Set tx/rx latencies */ usec_reg = ath5k_hw_reg_read(ah, AR5K_USEC_5211); txlat = AR5K_REG_MS(usec_reg, AR5K_USEC_TX_LATENCY_5211); rxlat = AR5K_REG_MS(usec_reg, AR5K_USEC_RX_LATENCY_5211); /* * Set default Tx frame to Tx data start delay */ txf2txs = AR5K_INIT_TXF2TXD_START_DEFAULT; /* * 5210 initvals don't include usec settings * so we need to use magic values here for * tx/rx latencies */ if (ah->ah_version == AR5K_AR5210) { /* same for turbo */ txlat = AR5K_INIT_TX_LATENCY_5210; rxlat = AR5K_INIT_RX_LATENCY_5210; } if (ah->ah_mac_srev < AR5K_SREV_AR5211) { /* 5311 has different tx/rx latency masks * from 5211, since we deal 5311 the same * as 5211 when setting initvals, shift * values here to their proper locations * * Note: Initvals indicate tx/rx/ latencies * are the same for turbo mode */ txlat = AR5K_REG_SM(txlat, AR5K_USEC_TX_LATENCY_5210); rxlat = AR5K_REG_SM(rxlat, AR5K_USEC_RX_LATENCY_5210); } else switch (ah->ah_bwmode) { case AR5K_BWMODE_10MHZ: txlat = AR5K_REG_SM(txlat * 2, AR5K_USEC_TX_LATENCY_5211); rxlat = AR5K_REG_SM(AR5K_INIT_RX_LAT_MAX, AR5K_USEC_RX_LATENCY_5211); txf2txs = AR5K_INIT_TXF2TXD_START_DELAY_10MHZ; break; case AR5K_BWMODE_5MHZ: txlat = AR5K_REG_SM(txlat * 4, AR5K_USEC_TX_LATENCY_5211); rxlat = AR5K_REG_SM(AR5K_INIT_RX_LAT_MAX, AR5K_USEC_RX_LATENCY_5211); txf2txs = AR5K_INIT_TXF2TXD_START_DELAY_5MHZ; break; case AR5K_BWMODE_40MHZ: txlat = AR5K_INIT_TX_LAT_MIN; rxlat = AR5K_REG_SM(rxlat / 2, AR5K_USEC_RX_LATENCY_5211); txf2txs = AR5K_INIT_TXF2TXD_START_DEFAULT; break; default: break; } usec_reg = (usec | sclock | txlat | rxlat); ath5k_hw_reg_write(ah, usec_reg, AR5K_USEC); /* On 5112 set tx frame to tx data start delay */ if (ah->ah_radio == AR5K_RF5112) { AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RF_CTL2, AR5K_PHY_RF_CTL2_TXF2TXD_START, txf2txs); } } /** * ath5k_hw_set_sleep_clock() - Setup sleep clock operation * @ah: The &struct ath5k_hw * @enable: Enable sleep clock operation (false to disable) * * If there is an external 32KHz crystal available, use it * as ref. clock instead of 32/40MHz clock and baseband clocks * to save power during sleep or restore normal 32/40MHz * operation. * * NOTE: When operating on 32KHz certain PHY registers (27 - 31, * 123 - 127) require delay on access. */ static void ath5k_hw_set_sleep_clock(struct ath5k_hw *ah, bool enable) { struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; u32 scal, spending, sclock; /* Only set 32KHz settings if we have an external * 32KHz crystal present */ if ((AR5K_EEPROM_HAS32KHZCRYSTAL(ee->ee_misc1) || AR5K_EEPROM_HAS32KHZCRYSTAL_OLD(ee->ee_misc1)) && enable) { /* 1 usec/cycle */ AR5K_REG_WRITE_BITS(ah, AR5K_USEC_5211, AR5K_USEC_32, 1); /* Set up tsf increment on each cycle */ AR5K_REG_WRITE_BITS(ah, AR5K_TSF_PARM, AR5K_TSF_PARM_INC, 61); /* Set baseband sleep control registers * and sleep control rate */ ath5k_hw_reg_write(ah, 0x1f, AR5K_PHY_SCR); if ((ah->ah_radio == AR5K_RF5112) || (ah->ah_radio == AR5K_RF5413) || (ah->ah_radio == AR5K_RF2316) || (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4))) spending = 0x14; else spending = 0x18; ath5k_hw_reg_write(ah, spending, AR5K_PHY_SPENDING); if ((ah->ah_radio == AR5K_RF5112) || (ah->ah_radio == AR5K_RF5413) || (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4))) { ath5k_hw_reg_write(ah, 0x26, AR5K_PHY_SLMT); ath5k_hw_reg_write(ah, 0x0d, AR5K_PHY_SCAL); ath5k_hw_reg_write(ah, 0x07, AR5K_PHY_SCLOCK); ath5k_hw_reg_write(ah, 0x3f, AR5K_PHY_SDELAY); AR5K_REG_WRITE_BITS(ah, AR5K_PCICFG, AR5K_PCICFG_SLEEP_CLOCK_RATE, 0x02); } else { ath5k_hw_reg_write(ah, 0x0a, AR5K_PHY_SLMT); ath5k_hw_reg_write(ah, 0x0c, AR5K_PHY_SCAL); ath5k_hw_reg_write(ah, 0x03, AR5K_PHY_SCLOCK); ath5k_hw_reg_write(ah, 0x20, AR5K_PHY_SDELAY); AR5K_REG_WRITE_BITS(ah, AR5K_PCICFG, AR5K_PCICFG_SLEEP_CLOCK_RATE, 0x03); } /* Enable sleep clock operation */ AR5K_REG_ENABLE_BITS(ah, AR5K_PCICFG, AR5K_PCICFG_SLEEP_CLOCK_EN); } else { /* Disable sleep clock operation and * restore default parameters */ AR5K_REG_DISABLE_BITS(ah, AR5K_PCICFG, AR5K_PCICFG_SLEEP_CLOCK_EN); AR5K_REG_WRITE_BITS(ah, AR5K_PCICFG, AR5K_PCICFG_SLEEP_CLOCK_RATE, 0); /* Set DAC/ADC delays */ ath5k_hw_reg_write(ah, 0x1f, AR5K_PHY_SCR); ath5k_hw_reg_write(ah, AR5K_PHY_SLMT_32MHZ, AR5K_PHY_SLMT); if (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4)) scal = AR5K_PHY_SCAL_32MHZ_2417; else if (ee->ee_is_hb63) scal = AR5K_PHY_SCAL_32MHZ_HB63; else scal = AR5K_PHY_SCAL_32MHZ; ath5k_hw_reg_write(ah, scal, AR5K_PHY_SCAL); ath5k_hw_reg_write(ah, AR5K_PHY_SCLOCK_32MHZ, AR5K_PHY_SCLOCK); ath5k_hw_reg_write(ah, AR5K_PHY_SDELAY_32MHZ, AR5K_PHY_SDELAY); if ((ah->ah_radio == AR5K_RF5112) || (ah->ah_radio == AR5K_RF5413) || (ah->ah_radio == AR5K_RF2316) || (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4))) spending = 0x14; else spending = 0x18; ath5k_hw_reg_write(ah, spending, AR5K_PHY_SPENDING); /* Set up tsf increment on each cycle */ AR5K_REG_WRITE_BITS(ah, AR5K_TSF_PARM, AR5K_TSF_PARM_INC, 1); if ((ah->ah_radio == AR5K_RF5112) || (ah->ah_radio == AR5K_RF5413) || (ah->ah_radio == AR5K_RF2316) || (ah->ah_radio == AR5K_RF2317)) sclock = 40 - 1; else sclock = 32 - 1; AR5K_REG_WRITE_BITS(ah, AR5K_USEC_5211, AR5K_USEC_32, sclock); } } /*********************\ * Reset/Sleep control * \*********************/ /** * ath5k_hw_nic_reset() - Reset the various chipset units * @ah: The &struct ath5k_hw * @val: Mask to indicate what units to reset * * To reset the various chipset units we need to write * the mask to AR5K_RESET_CTL and poll the register until * all flags are cleared. * * Returns 0 if we are O.K. or -EAGAIN (from athk5_hw_register_timeout) */ static int ath5k_hw_nic_reset(struct ath5k_hw *ah, u32 val) { int ret; u32 mask = val ? val : ~0U; /* Read-and-clear RX Descriptor Pointer*/ ath5k_hw_reg_read(ah, AR5K_RXDP); /* * Reset the device and wait until success */ ath5k_hw_reg_write(ah, val, AR5K_RESET_CTL); /* Wait at least 128 PCI clocks */ usleep_range(15, 20); if (ah->ah_version == AR5K_AR5210) { val &= AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_DMA | AR5K_RESET_CTL_MAC | AR5K_RESET_CTL_PHY; mask &= AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_DMA | AR5K_RESET_CTL_MAC | AR5K_RESET_CTL_PHY; } else { val &= AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_BASEBAND; mask &= AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_BASEBAND; } ret = ath5k_hw_register_timeout(ah, AR5K_RESET_CTL, mask, val, false); /* * Reset configuration register (for hw byte-swap). Note that this * is only set for big endian. We do the necessary magic in * AR5K_INIT_CFG. */ if ((val & AR5K_RESET_CTL_PCU) == 0) ath5k_hw_reg_write(ah, AR5K_INIT_CFG, AR5K_CFG); return ret; } /** * ath5k_hw_wisoc_reset() - Reset AHB chipset * @ah: The &struct ath5k_hw * @flags: Mask to indicate what units to reset * * Same as ath5k_hw_nic_reset but for AHB based devices * * Returns 0 if we are O.K. or -EAGAIN (from athk5_hw_register_timeout) */ static int ath5k_hw_wisoc_reset(struct ath5k_hw *ah, u32 flags) { u32 mask = flags ? flags : ~0U; u32 __iomem *reg; u32 regval; u32 val = 0; /* ah->ah_mac_srev is not available at this point yet */ if (ah->devid >= AR5K_SREV_AR2315_R6) { reg = (u32 __iomem *) AR5K_AR2315_RESET; if (mask & AR5K_RESET_CTL_PCU) val |= AR5K_AR2315_RESET_WMAC; if (mask & AR5K_RESET_CTL_BASEBAND) val |= AR5K_AR2315_RESET_BB_WARM; } else { reg = (u32 __iomem *) AR5K_AR5312_RESET; if (to_platform_device(ah->dev)->id == 0) { if (mask & AR5K_RESET_CTL_PCU) val |= AR5K_AR5312_RESET_WMAC0; if (mask & AR5K_RESET_CTL_BASEBAND) val |= AR5K_AR5312_RESET_BB0_COLD | AR5K_AR5312_RESET_BB0_WARM; } else { if (mask & AR5K_RESET_CTL_PCU) val |= AR5K_AR5312_RESET_WMAC1; if (mask & AR5K_RESET_CTL_BASEBAND) val |= AR5K_AR5312_RESET_BB1_COLD | AR5K_AR5312_RESET_BB1_WARM; } } /* Put BB/MAC into reset */ regval = ioread32(reg); iowrite32(regval | val, reg); regval = ioread32(reg); udelay(100); /* NB: should be atomic */ /* Bring BB/MAC out of reset */ iowrite32(regval & ~val, reg); regval = ioread32(reg); /* * Reset configuration register (for hw byte-swap). Note that this * is only set for big endian. We do the necessary magic in * AR5K_INIT_CFG. */ if ((flags & AR5K_RESET_CTL_PCU) == 0) ath5k_hw_reg_write(ah, AR5K_INIT_CFG, AR5K_CFG); return 0; } /** * ath5k_hw_set_power_mode() - Set power mode * @ah: The &struct ath5k_hw * @mode: One of enum ath5k_power_mode * @set_chip: Set to true to write sleep control register * @sleep_duration: How much time the device is allowed to sleep * when sleep logic is enabled (in 128 microsecond increments). * * This function is used to configure sleep policy and allowed * sleep modes. For more information check out the sleep control * register on reg.h and STA_ID1. * * Returns 0 on success, -EIO if chip didn't wake up or -EINVAL if an invalid * mode is requested. */ static int ath5k_hw_set_power_mode(struct ath5k_hw *ah, enum ath5k_power_mode mode, bool set_chip, u16 sleep_duration) { unsigned int i; u32 staid, data; staid = ath5k_hw_reg_read(ah, AR5K_STA_ID1); switch (mode) { case AR5K_PM_AUTO: staid &= ~AR5K_STA_ID1_DEFAULT_ANTENNA; /* fallthrough */ case AR5K_PM_NETWORK_SLEEP: if (set_chip) ath5k_hw_reg_write(ah, AR5K_SLEEP_CTL_SLE_ALLOW | sleep_duration, AR5K_SLEEP_CTL); staid |= AR5K_STA_ID1_PWR_SV; break; case AR5K_PM_FULL_SLEEP: if (set_chip) ath5k_hw_reg_write(ah, AR5K_SLEEP_CTL_SLE_SLP, AR5K_SLEEP_CTL); staid |= AR5K_STA_ID1_PWR_SV; break; case AR5K_PM_AWAKE: staid &= ~AR5K_STA_ID1_PWR_SV; if (!set_chip) goto commit; data = ath5k_hw_reg_read(ah, AR5K_SLEEP_CTL); /* If card is down we 'll get 0xffff... so we * need to clean this up before we write the register */ if (data & 0xffc00000) data = 0; else /* Preserve sleep duration etc */ data = data & ~AR5K_SLEEP_CTL_SLE; ath5k_hw_reg_write(ah, data | AR5K_SLEEP_CTL_SLE_WAKE, AR5K_SLEEP_CTL); usleep_range(15, 20); for (i = 200; i > 0; i--) { /* Check if the chip did wake up */ if ((ath5k_hw_reg_read(ah, AR5K_PCICFG) & AR5K_PCICFG_SPWR_DN) == 0) break; /* Wait a bit and retry */ usleep_range(50, 75); ath5k_hw_reg_write(ah, data | AR5K_SLEEP_CTL_SLE_WAKE, AR5K_SLEEP_CTL); } /* Fail if the chip didn't wake up */ if (i == 0) return -EIO; break; default: return -EINVAL; } commit: ath5k_hw_reg_write(ah, staid, AR5K_STA_ID1); return 0; } /** * ath5k_hw_on_hold() - Put device on hold * @ah: The &struct ath5k_hw * * Put MAC and Baseband on warm reset and keep that state * (don't clean sleep control register). After this MAC * and Baseband are disabled and a full reset is needed * to come back. This way we save as much power as possible * without putting the card on full sleep. * * Returns 0 on success or -EIO on error */ int ath5k_hw_on_hold(struct ath5k_hw *ah) { struct pci_dev *pdev = ah->pdev; u32 bus_flags; int ret; if (ath5k_get_bus_type(ah) == ATH_AHB) return 0; /* Make sure device is awake */ ret = ath5k_hw_set_power_mode(ah, AR5K_PM_AWAKE, true, 0); if (ret) { ATH5K_ERR(ah, "failed to wakeup the MAC Chip\n"); return ret; } /* * Put chipset on warm reset... * * Note: putting PCI core on warm reset on PCI-E cards * results card to hang and always return 0xffff... so * we ignore that flag for PCI-E cards. On PCI cards * this flag gets cleared after 64 PCI clocks. */ bus_flags = (pdev && pci_is_pcie(pdev)) ? 0 : AR5K_RESET_CTL_PCI; if (ah->ah_version == AR5K_AR5210) { ret = ath5k_hw_nic_reset(ah, AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_MAC | AR5K_RESET_CTL_DMA | AR5K_RESET_CTL_PHY | AR5K_RESET_CTL_PCI); usleep_range(2000, 2500); } else { ret = ath5k_hw_nic_reset(ah, AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_BASEBAND | bus_flags); } if (ret) { ATH5K_ERR(ah, "failed to put device on warm reset\n"); return -EIO; } /* ...wakeup again!*/ ret = ath5k_hw_set_power_mode(ah, AR5K_PM_AWAKE, true, 0); if (ret) { ATH5K_ERR(ah, "failed to put device on hold\n"); return ret; } return ret; } /** * ath5k_hw_nic_wakeup() - Force card out of sleep * @ah: The &struct ath5k_hw * @channel: The &struct ieee80211_channel * * Bring up MAC + PHY Chips and program PLL * NOTE: Channel is NULL for the initial wakeup. * * Returns 0 on success, -EIO on hw failure or -EINVAL for false channel infos */ int ath5k_hw_nic_wakeup(struct ath5k_hw *ah, struct ieee80211_channel *channel) { struct pci_dev *pdev = ah->pdev; u32 turbo, mode, clock, bus_flags; int ret; turbo = 0; mode = 0; clock = 0; if ((ath5k_get_bus_type(ah) != ATH_AHB) || channel) { /* Wakeup the device */ ret = ath5k_hw_set_power_mode(ah, AR5K_PM_AWAKE, true, 0); if (ret) { ATH5K_ERR(ah, "failed to wakeup the MAC Chip\n"); return ret; } } /* * Put chipset on warm reset... * * Note: putting PCI core on warm reset on PCI-E cards * results card to hang and always return 0xffff... so * we ignore that flag for PCI-E cards. On PCI cards * this flag gets cleared after 64 PCI clocks. */ bus_flags = (pdev && pci_is_pcie(pdev)) ? 0 : AR5K_RESET_CTL_PCI; if (ah->ah_version == AR5K_AR5210) { ret = ath5k_hw_nic_reset(ah, AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_MAC | AR5K_RESET_CTL_DMA | AR5K_RESET_CTL_PHY | AR5K_RESET_CTL_PCI); usleep_range(2000, 2500); } else { if (ath5k_get_bus_type(ah) == ATH_AHB) ret = ath5k_hw_wisoc_reset(ah, AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_BASEBAND); else ret = ath5k_hw_nic_reset(ah, AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_BASEBAND | bus_flags); } if (ret) { ATH5K_ERR(ah, "failed to reset the MAC Chip\n"); return -EIO; } /* ...wakeup again!...*/ ret = ath5k_hw_set_power_mode(ah, AR5K_PM_AWAKE, true, 0); if (ret) { ATH5K_ERR(ah, "failed to resume the MAC Chip\n"); return ret; } /* ...reset configuration register on Wisoc ... * ...clear reset control register and pull device out of * warm reset on others */ if (ath5k_get_bus_type(ah) == ATH_AHB) ret = ath5k_hw_wisoc_reset(ah, 0); else ret = ath5k_hw_nic_reset(ah, 0); if (ret) { ATH5K_ERR(ah, "failed to warm reset the MAC Chip\n"); return -EIO; } /* On initialization skip PLL programming since we don't have * a channel / mode set yet */ if (!channel) return 0; if (ah->ah_version != AR5K_AR5210) { /* * Get channel mode flags */ if (ah->ah_radio >= AR5K_RF5112) { mode = AR5K_PHY_MODE_RAD_RF5112; clock = AR5K_PHY_PLL_RF5112; } else { mode = AR5K_PHY_MODE_RAD_RF5111; /*Zero*/ clock = AR5K_PHY_PLL_RF5111; /*Zero*/ } if (channel->band == NL80211_BAND_2GHZ) { mode |= AR5K_PHY_MODE_FREQ_2GHZ; clock |= AR5K_PHY_PLL_44MHZ; if (channel->hw_value == AR5K_MODE_11B) { mode |= AR5K_PHY_MODE_MOD_CCK; } else { /* XXX Dynamic OFDM/CCK is not supported by the * AR5211 so we set MOD_OFDM for plain g (no * CCK headers) operation. We need to test * this, 5211 might support ofdm-only g after * all, there are also initial register values * in the code for g mode (see initvals.c). */ if (ah->ah_version == AR5K_AR5211) mode |= AR5K_PHY_MODE_MOD_OFDM; else mode |= AR5K_PHY_MODE_MOD_DYN; } } else if (channel->band == NL80211_BAND_5GHZ) { mode |= (AR5K_PHY_MODE_FREQ_5GHZ | AR5K_PHY_MODE_MOD_OFDM); /* Different PLL setting for 5413 */ if (ah->ah_radio == AR5K_RF5413) clock = AR5K_PHY_PLL_40MHZ_5413; else clock |= AR5K_PHY_PLL_40MHZ; } else { ATH5K_ERR(ah, "invalid radio frequency mode\n"); return -EINVAL; } /*XXX: Can bwmode be used with dynamic mode ? * (I don't think it supports 44MHz) */ /* On 2425 initvals TURBO_SHORT is not present */ if (ah->ah_bwmode == AR5K_BWMODE_40MHZ) { turbo = AR5K_PHY_TURBO_MODE; if (ah->ah_radio != AR5K_RF2425) turbo |= AR5K_PHY_TURBO_SHORT; } else if (ah->ah_bwmode != AR5K_BWMODE_DEFAULT) { if (ah->ah_radio == AR5K_RF5413) { mode |= (ah->ah_bwmode == AR5K_BWMODE_10MHZ) ? AR5K_PHY_MODE_HALF_RATE : AR5K_PHY_MODE_QUARTER_RATE; } else if (ah->ah_version == AR5K_AR5212) { clock |= (ah->ah_bwmode == AR5K_BWMODE_10MHZ) ? AR5K_PHY_PLL_HALF_RATE : AR5K_PHY_PLL_QUARTER_RATE; } } } else { /* Reset the device */ /* ...enable Atheros turbo mode if requested */ if (ah->ah_bwmode == AR5K_BWMODE_40MHZ) ath5k_hw_reg_write(ah, AR5K_PHY_TURBO_MODE, AR5K_PHY_TURBO); } if (ah->ah_version != AR5K_AR5210) { /* ...update PLL if needed */ if (ath5k_hw_reg_read(ah, AR5K_PHY_PLL) != clock) { ath5k_hw_reg_write(ah, clock, AR5K_PHY_PLL); usleep_range(300, 350); } /* ...set the PHY operating mode */ ath5k_hw_reg_write(ah, mode, AR5K_PHY_MODE); ath5k_hw_reg_write(ah, turbo, AR5K_PHY_TURBO); } return 0; } /**************************************\ * Post-initvals register modifications * \**************************************/ /** * ath5k_hw_tweak_initval_settings() - Tweak initial settings * @ah: The &struct ath5k_hw * @channel: The &struct ieee80211_channel * * Some settings are not handled on initvals, e.g. bwmode * settings, some phy settings, workarounds etc that in general * don't fit anywhere else or are too small to introduce a separate * function for each one. So we have this function to handle * them all during reset and complete card's initialization. */ static void ath5k_hw_tweak_initval_settings(struct ath5k_hw *ah, struct ieee80211_channel *channel) { if (ah->ah_version == AR5K_AR5212 && ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) { /* Setup ADC control */ ath5k_hw_reg_write(ah, (AR5K_REG_SM(2, AR5K_PHY_ADC_CTL_INBUFGAIN_OFF) | AR5K_REG_SM(2, AR5K_PHY_ADC_CTL_INBUFGAIN_ON) | AR5K_PHY_ADC_CTL_PWD_DAC_OFF | AR5K_PHY_ADC_CTL_PWD_ADC_OFF), AR5K_PHY_ADC_CTL); /* Disable barker RSSI threshold */ AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_DAG_CCK_CTL, AR5K_PHY_DAG_CCK_CTL_EN_RSSI_THR); AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DAG_CCK_CTL, AR5K_PHY_DAG_CCK_CTL_RSSI_THR, 2); /* Set the mute mask */ ath5k_hw_reg_write(ah, 0x0000000f, AR5K_SEQ_MASK); } /* Clear PHY_BLUETOOTH to allow RX_CLEAR line debug */ if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212B) ath5k_hw_reg_write(ah, 0, AR5K_PHY_BLUETOOTH); /* Enable DCU double buffering */ if (ah->ah_phy_revision > AR5K_SREV_PHY_5212B) AR5K_REG_DISABLE_BITS(ah, AR5K_TXCFG, AR5K_TXCFG_DCU_DBL_BUF_DIS); /* Set fast ADC */ if ((ah->ah_radio == AR5K_RF5413) || (ah->ah_radio == AR5K_RF2317) || (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4))) { u32 fast_adc = true; if (channel->center_freq == 2462 || channel->center_freq == 2467) fast_adc = 0; /* Only update if needed */ if (ath5k_hw_reg_read(ah, AR5K_PHY_FAST_ADC) != fast_adc) ath5k_hw_reg_write(ah, fast_adc, AR5K_PHY_FAST_ADC); } /* Fix for first revision of the RF5112 RF chipset */ if (ah->ah_radio == AR5K_RF5112 && ah->ah_radio_5ghz_revision < AR5K_SREV_RAD_5112A) { u32 data; ath5k_hw_reg_write(ah, AR5K_PHY_CCKTXCTL_WORLD, AR5K_PHY_CCKTXCTL); if (channel->band == NL80211_BAND_5GHZ) data = 0xffb81020; else data = 0xffb80d20; ath5k_hw_reg_write(ah, data, AR5K_PHY_FRAME_CTL); } if (ah->ah_mac_srev < AR5K_SREV_AR5211) { /* Clear QCU/DCU clock gating register */ ath5k_hw_reg_write(ah, 0, AR5K_QCUDCU_CLKGT); /* Set DAC/ADC delays */ ath5k_hw_reg_write(ah, AR5K_PHY_SCAL_32MHZ_5311, AR5K_PHY_SCAL); /* Enable PCU FIFO corruption ECO */ AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW_5211, AR5K_DIAG_SW_ECO_ENABLE); } if (ah->ah_bwmode) { /* Increase PHY switch and AGC settling time * on turbo mode (ath5k_hw_commit_eeprom_settings * will override settling time if available) */ if (ah->ah_bwmode == AR5K_BWMODE_40MHZ) { AR5K_REG_WRITE_BITS(ah, AR5K_PHY_SETTLING, AR5K_PHY_SETTLING_AGC, AR5K_AGC_SETTLING_TURBO); /* XXX: Initvals indicate we only increase * switch time on AR5212, 5211 and 5210 * only change agc time (bug?) */ if (ah->ah_version == AR5K_AR5212) AR5K_REG_WRITE_BITS(ah, AR5K_PHY_SETTLING, AR5K_PHY_SETTLING_SWITCH, AR5K_SWITCH_SETTLING_TURBO); if (ah->ah_version == AR5K_AR5210) { /* Set Frame Control Register */ ath5k_hw_reg_write(ah, (AR5K_PHY_FRAME_CTL_INI | AR5K_PHY_TURBO_MODE | AR5K_PHY_TURBO_SHORT | 0x2020), AR5K_PHY_FRAME_CTL_5210); } /* On 5413 PHY force window length for half/quarter rate*/ } else if ((ah->ah_mac_srev >= AR5K_SREV_AR5424) && (ah->ah_mac_srev <= AR5K_SREV_AR5414)) { AR5K_REG_WRITE_BITS(ah, AR5K_PHY_FRAME_CTL_5211, AR5K_PHY_FRAME_CTL_WIN_LEN, 3); } } else if (ah->ah_version == AR5K_AR5210) { /* Set Frame Control Register for normal operation */ ath5k_hw_reg_write(ah, (AR5K_PHY_FRAME_CTL_INI | 0x1020), AR5K_PHY_FRAME_CTL_5210); } } /** * ath5k_hw_commit_eeprom_settings() - Commit settings from EEPROM * @ah: The &struct ath5k_hw * @channel: The &struct ieee80211_channel * * Use settings stored on EEPROM to properly initialize the card * based on various infos and per-mode calibration data. */ static void ath5k_hw_commit_eeprom_settings(struct ath5k_hw *ah, struct ieee80211_channel *channel) { struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; s16 cck_ofdm_pwr_delta; u8 ee_mode; /* TODO: Add support for AR5210 EEPROM */ if (ah->ah_version == AR5K_AR5210) return; ee_mode = ath5k_eeprom_mode_from_channel(ah, channel); /* Adjust power delta for channel 14 */ if (channel->center_freq == 2484) cck_ofdm_pwr_delta = ((ee->ee_cck_ofdm_power_delta - ee->ee_scaled_cck_delta) * 2) / 10; else cck_ofdm_pwr_delta = (ee->ee_cck_ofdm_power_delta * 2) / 10; /* Set CCK to OFDM power delta on tx power * adjustment register */ if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) { if (channel->hw_value == AR5K_MODE_11G) ath5k_hw_reg_write(ah, AR5K_REG_SM((ee->ee_cck_ofdm_gain_delta * -1), AR5K_PHY_TX_PWR_ADJ_CCK_GAIN_DELTA) | AR5K_REG_SM((cck_ofdm_pwr_delta * -1), AR5K_PHY_TX_PWR_ADJ_CCK_PCDAC_INDEX), AR5K_PHY_TX_PWR_ADJ); else ath5k_hw_reg_write(ah, 0, AR5K_PHY_TX_PWR_ADJ); } else { /* For older revs we scale power on sw during tx power * setup */ ah->ah_txpower.txp_cck_ofdm_pwr_delta = cck_ofdm_pwr_delta; ah->ah_txpower.txp_cck_ofdm_gainf_delta = ee->ee_cck_ofdm_gain_delta; } /* XXX: necessary here? is called from ath5k_hw_set_antenna_mode() * too */ ath5k_hw_set_antenna_switch(ah, ee_mode); /* Noise floor threshold */ ath5k_hw_reg_write(ah, AR5K_PHY_NF_SVAL(ee->ee_noise_floor_thr[ee_mode]), AR5K_PHY_NFTHRES); if ((ah->ah_bwmode == AR5K_BWMODE_40MHZ) && (ah->ah_ee_version >= AR5K_EEPROM_VERSION_5_0)) { /* Switch settling time (Turbo) */ AR5K_REG_WRITE_BITS(ah, AR5K_PHY_SETTLING, AR5K_PHY_SETTLING_SWITCH, ee->ee_switch_settling_turbo[ee_mode]); /* Tx/Rx attenuation (Turbo) */ AR5K_REG_WRITE_BITS(ah, AR5K_PHY_GAIN, AR5K_PHY_GAIN_TXRX_ATTEN, ee->ee_atn_tx_rx_turbo[ee_mode]); /* ADC/PGA desired size (Turbo) */ AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DESIRED_SIZE, AR5K_PHY_DESIRED_SIZE_ADC, ee->ee_adc_desired_size_turbo[ee_mode]); AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DESIRED_SIZE, AR5K_PHY_DESIRED_SIZE_PGA, ee->ee_pga_desired_size_turbo[ee_mode]); /* Tx/Rx margin (Turbo) */ AR5K_REG_WRITE_BITS(ah, AR5K_PHY_GAIN_2GHZ, AR5K_PHY_GAIN_2GHZ_MARGIN_TXRX, ee->ee_margin_tx_rx_turbo[ee_mode]); } else { /* Switch settling time */ AR5K_REG_WRITE_BITS(ah, AR5K_PHY_SETTLING, AR5K_PHY_SETTLING_SWITCH, ee->ee_switch_settling[ee_mode]); /* Tx/Rx attenuation */ AR5K_REG_WRITE_BITS(ah, AR5K_PHY_GAIN, AR5K_PHY_GAIN_TXRX_ATTEN, ee->ee_atn_tx_rx[ee_mode]); /* ADC/PGA desired size */ AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DESIRED_SIZE, AR5K_PHY_DESIRED_SIZE_ADC, ee->ee_adc_desired_size[ee_mode]); AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DESIRED_SIZE, AR5K_PHY_DESIRED_SIZE_PGA, ee->ee_pga_desired_size[ee_mode]); /* Tx/Rx margin */ if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1) AR5K_REG_WRITE_BITS(ah, AR5K_PHY_GAIN_2GHZ, AR5K_PHY_GAIN_2GHZ_MARGIN_TXRX, ee->ee_margin_tx_rx[ee_mode]); } /* XPA delays */ ath5k_hw_reg_write(ah, (ee->ee_tx_end2xpa_disable[ee_mode] << 24) | (ee->ee_tx_end2xpa_disable[ee_mode] << 16) | (ee->ee_tx_frm2xpa_enable[ee_mode] << 8) | (ee->ee_tx_frm2xpa_enable[ee_mode]), AR5K_PHY_RF_CTL4); /* XLNA delay */ AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RF_CTL3, AR5K_PHY_RF_CTL3_TXE2XLNA_ON, ee->ee_tx_end2xlna_enable[ee_mode]); /* Thresh64 (ANI) */ AR5K_REG_WRITE_BITS(ah, AR5K_PHY_NF, AR5K_PHY_NF_THRESH62, ee->ee_thr_62[ee_mode]); /* False detect backoff for channels * that have spur noise. Write the new * cyclic power RSSI threshold. */ if (ath5k_hw_chan_has_spur_noise(ah, channel)) AR5K_REG_WRITE_BITS(ah, AR5K_PHY_OFDM_SELFCORR, AR5K_PHY_OFDM_SELFCORR_CYPWR_THR1, AR5K_INIT_CYCRSSI_THR1 + ee->ee_false_detect[ee_mode]); else AR5K_REG_WRITE_BITS(ah, AR5K_PHY_OFDM_SELFCORR, AR5K_PHY_OFDM_SELFCORR_CYPWR_THR1, AR5K_INIT_CYCRSSI_THR1); /* I/Q correction (set enable bit last to match HAL sources) */ /* TODO: Per channel i/q infos ? */ if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) { AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_I_COFF, ee->ee_i_cal[ee_mode]); AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_Q_COFF, ee->ee_q_cal[ee_mode]); AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_ENABLE); } /* Heavy clipping -disable for now */ if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_5_1) ath5k_hw_reg_write(ah, 0, AR5K_PHY_HEAVY_CLIP_ENABLE); } /*********************\ * Main reset function * \*********************/ /** * ath5k_hw_reset() - The main reset function * @ah: The &struct ath5k_hw * @op_mode: One of enum nl80211_iftype * @channel: The &struct ieee80211_channel * @fast: Enable fast channel switching * @skip_pcu: Skip pcu initialization * * This is the function we call each time we want to (re)initialize the * card and pass new settings to hw. We also call it when hw runs into * trouble to make it come back to a working state. * * Returns 0 on success, -EINVAL on false op_mode or channel infos, or -EIO * on failure. */ int ath5k_hw_reset(struct ath5k_hw *ah, enum nl80211_iftype op_mode, struct ieee80211_channel *channel, bool fast, bool skip_pcu) { u32 s_seq[10], s_led[3], tsf_up, tsf_lo; u8 mode; int i, ret; tsf_up = 0; tsf_lo = 0; mode = 0; /* * Sanity check for fast flag * Fast channel change only available * on AR2413/AR5413. */ if (fast && (ah->ah_radio != AR5K_RF2413) && (ah->ah_radio != AR5K_RF5413)) fast = false; /* Disable sleep clock operation * to avoid register access delay on certain * PHY registers */ if (ah->ah_version == AR5K_AR5212) ath5k_hw_set_sleep_clock(ah, false); mode = channel->hw_value; switch (mode) { case AR5K_MODE_11A: break; case AR5K_MODE_11G: if (ah->ah_version <= AR5K_AR5211) { ATH5K_ERR(ah, "G mode not available on 5210/5211"); return -EINVAL; } break; case AR5K_MODE_11B: if (ah->ah_version < AR5K_AR5211) { ATH5K_ERR(ah, "B mode not available on 5210"); return -EINVAL; } break; default: ATH5K_ERR(ah, "invalid channel: %d\n", channel->center_freq); return -EINVAL; } /* * If driver requested fast channel change and DMA has stopped * go on. If it fails continue with a normal reset. */ if (fast) { ret = ath5k_hw_phy_init(ah, channel, mode, true); if (ret) { ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "fast chan change failed, falling back to normal reset\n"); /* Non fatal, can happen eg. * on mode change */ ret = 0; } else { ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "fast chan change successful\n"); return 0; } } /* * Save some registers before a reset */ if (ah->ah_version != AR5K_AR5210) { /* * Save frame sequence count * For revs. after Oahu, only save * seq num for DCU 0 (Global seq num) */ if (ah->ah_mac_srev < AR5K_SREV_AR5211) { for (i = 0; i < 10; i++) s_seq[i] = ath5k_hw_reg_read(ah, AR5K_QUEUE_DCU_SEQNUM(i)); } else { s_seq[0] = ath5k_hw_reg_read(ah, AR5K_QUEUE_DCU_SEQNUM(0)); } /* TSF accelerates on AR5211 during reset * As a workaround save it here and restore * it later so that it's back in time after * reset. This way it'll get re-synced on the * next beacon without breaking ad-hoc. * * On AR5212 TSF is almost preserved across a * reset so it stays back in time anyway and * we don't have to save/restore it. * * XXX: Since this breaks power saving we have * to disable power saving until we receive the * next beacon, so we can resync beacon timers */ if (ah->ah_version == AR5K_AR5211) { tsf_up = ath5k_hw_reg_read(ah, AR5K_TSF_U32); tsf_lo = ath5k_hw_reg_read(ah, AR5K_TSF_L32); } } /*GPIOs*/ s_led[0] = ath5k_hw_reg_read(ah, AR5K_PCICFG) & AR5K_PCICFG_LEDSTATE; s_led[1] = ath5k_hw_reg_read(ah, AR5K_GPIOCR); s_led[2] = ath5k_hw_reg_read(ah, AR5K_GPIODO); /* * Since we are going to write rf buffer * check if we have any pending gain_F * optimization settings */ if (ah->ah_version == AR5K_AR5212 && (ah->ah_radio <= AR5K_RF5112)) { if (!fast && ah->ah_rf_banks != NULL) ath5k_hw_gainf_calibrate(ah); } /* Wakeup the device */ ret = ath5k_hw_nic_wakeup(ah, channel); if (ret) return ret; /* PHY access enable */ if (ah->ah_mac_srev >= AR5K_SREV_AR5211) ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0)); else ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ | 0x40, AR5K_PHY(0)); /* Write initial settings */ ret = ath5k_hw_write_initvals(ah, mode, skip_pcu); if (ret) return ret; /* Initialize core clock settings */ ath5k_hw_init_core_clock(ah); /* * Tweak initval settings for revised * chipsets and add some more config * bits */ ath5k_hw_tweak_initval_settings(ah, channel); /* Commit values from EEPROM */ ath5k_hw_commit_eeprom_settings(ah, channel); /* * Restore saved values */ /* Seqnum, TSF */ if (ah->ah_version != AR5K_AR5210) { if (ah->ah_mac_srev < AR5K_SREV_AR5211) { for (i = 0; i < 10; i++) ath5k_hw_reg_write(ah, s_seq[i], AR5K_QUEUE_DCU_SEQNUM(i)); } else { ath5k_hw_reg_write(ah, s_seq[0], AR5K_QUEUE_DCU_SEQNUM(0)); } if (ah->ah_version == AR5K_AR5211) { ath5k_hw_reg_write(ah, tsf_up, AR5K_TSF_U32); ath5k_hw_reg_write(ah, tsf_lo, AR5K_TSF_L32); } } /* Ledstate */ AR5K_REG_ENABLE_BITS(ah, AR5K_PCICFG, s_led[0]); /* Gpio settings */ ath5k_hw_reg_write(ah, s_led[1], AR5K_GPIOCR); ath5k_hw_reg_write(ah, s_led[2], AR5K_GPIODO); /* * Initialize PCU */ ath5k_hw_pcu_init(ah, op_mode); /* * Initialize PHY */ ret = ath5k_hw_phy_init(ah, channel, mode, false); if (ret) { ATH5K_ERR(ah, "failed to initialize PHY (%i) !\n", ret); return ret; } /* * Configure QCUs/DCUs */ ret = ath5k_hw_init_queues(ah); if (ret) return ret; /* * Initialize DMA/Interrupts */ ath5k_hw_dma_init(ah); /* * Enable 32KHz clock function for AR5212+ chips * Set clocks to 32KHz operation and use an * external 32KHz crystal when sleeping if one * exists. * Disabled by default because it is also disabled in * other drivers and it is known to cause stability * issues on some devices */ if (ah->ah_use_32khz_clock && ah->ah_version == AR5K_AR5212 && op_mode != NL80211_IFTYPE_AP) ath5k_hw_set_sleep_clock(ah, true); /* * Disable beacons and reset the TSF */ AR5K_REG_DISABLE_BITS(ah, AR5K_BEACON, AR5K_BEACON_ENABLE); ath5k_hw_reset_tsf(ah); return 0; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1