Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Luis R. Rodriguez | 3763 | 39.75% | 8 | 6.61% |
Sujith Manoharan | 1872 | 19.77% | 32 | 26.45% |
Felix Fietkau | 1262 | 13.33% | 33 | 27.27% |
Lorenzo Bianconi | 737 | 7.78% | 3 | 2.48% |
Vasanthakumar Thiagarajan | 378 | 3.99% | 7 | 5.79% |
Rajkumar Manoharan | 337 | 3.56% | 7 | 5.79% |
Gabor Juhos | 298 | 3.15% | 10 | 8.26% |
Miaoqing Pan | 261 | 2.76% | 6 | 4.96% |
Simon Wunderlich | 234 | 2.47% | 1 | 0.83% |
Mohammed Shafi Shajakhan | 219 | 2.31% | 4 | 3.31% |
Joe Perches | 50 | 0.53% | 3 | 2.48% |
Senthil Balasubramanian | 25 | 0.26% | 1 | 0.83% |
Helmut Schaa | 20 | 0.21% | 3 | 2.48% |
Roel Kluin | 4 | 0.04% | 1 | 0.83% |
Andreas Herrmann | 4 | 0.04% | 1 | 0.83% |
Paul Gortmaker | 3 | 0.03% | 1 | 0.83% |
Total | 9467 | 121 |
/* * Copyright (c) 2010-2011 Atheros Communications Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include <linux/export.h> #include "hw.h" #include "ar9003_phy.h" #include "ar9003_eeprom.h" #define AR9300_OFDM_RATES 8 #define AR9300_HT_SS_RATES 8 #define AR9300_HT_DS_RATES 8 #define AR9300_HT_TS_RATES 8 #define AR9300_11NA_OFDM_SHIFT 0 #define AR9300_11NA_HT_SS_SHIFT 8 #define AR9300_11NA_HT_DS_SHIFT 16 #define AR9300_11NA_HT_TS_SHIFT 24 #define AR9300_11NG_OFDM_SHIFT 4 #define AR9300_11NG_HT_SS_SHIFT 12 #define AR9300_11NG_HT_DS_SHIFT 20 #define AR9300_11NG_HT_TS_SHIFT 28 static const int firstep_table[] = /* level: 0 1 2 3 4 5 6 7 8 */ { -4, -2, 0, 2, 4, 6, 8, 10, 12 }; /* lvl 0-8, default 2 */ static const int cycpwrThr1_table[] = /* level: 0 1 2 3 4 5 6 7 8 */ { -6, -4, -2, 0, 2, 4, 6, 8 }; /* lvl 0-7, default 3 */ /* * register values to turn OFDM weak signal detection OFF */ static const int m1ThreshLow_off = 127; static const int m2ThreshLow_off = 127; static const int m1Thresh_off = 127; static const int m2Thresh_off = 127; static const int m2CountThr_off = 31; static const int m2CountThrLow_off = 63; static const int m1ThreshLowExt_off = 127; static const int m2ThreshLowExt_off = 127; static const int m1ThreshExt_off = 127; static const int m2ThreshExt_off = 127; static const u8 ofdm2pwr[] = { ALL_TARGET_LEGACY_6_24, ALL_TARGET_LEGACY_6_24, ALL_TARGET_LEGACY_6_24, ALL_TARGET_LEGACY_6_24, ALL_TARGET_LEGACY_6_24, ALL_TARGET_LEGACY_36, ALL_TARGET_LEGACY_48, ALL_TARGET_LEGACY_54 }; static const u8 mcs2pwr_ht20[] = { ALL_TARGET_HT20_0_8_16, ALL_TARGET_HT20_1_3_9_11_17_19, ALL_TARGET_HT20_1_3_9_11_17_19, ALL_TARGET_HT20_1_3_9_11_17_19, ALL_TARGET_HT20_4, ALL_TARGET_HT20_5, ALL_TARGET_HT20_6, ALL_TARGET_HT20_7, ALL_TARGET_HT20_0_8_16, ALL_TARGET_HT20_1_3_9_11_17_19, ALL_TARGET_HT20_1_3_9_11_17_19, ALL_TARGET_HT20_1_3_9_11_17_19, ALL_TARGET_HT20_12, ALL_TARGET_HT20_13, ALL_TARGET_HT20_14, ALL_TARGET_HT20_15, ALL_TARGET_HT20_0_8_16, ALL_TARGET_HT20_1_3_9_11_17_19, ALL_TARGET_HT20_1_3_9_11_17_19, ALL_TARGET_HT20_1_3_9_11_17_19, ALL_TARGET_HT20_20, ALL_TARGET_HT20_21, ALL_TARGET_HT20_22, ALL_TARGET_HT20_23 }; static const u8 mcs2pwr_ht40[] = { ALL_TARGET_HT40_0_8_16, ALL_TARGET_HT40_1_3_9_11_17_19, ALL_TARGET_HT40_1_3_9_11_17_19, ALL_TARGET_HT40_1_3_9_11_17_19, ALL_TARGET_HT40_4, ALL_TARGET_HT40_5, ALL_TARGET_HT40_6, ALL_TARGET_HT40_7, ALL_TARGET_HT40_0_8_16, ALL_TARGET_HT40_1_3_9_11_17_19, ALL_TARGET_HT40_1_3_9_11_17_19, ALL_TARGET_HT40_1_3_9_11_17_19, ALL_TARGET_HT40_12, ALL_TARGET_HT40_13, ALL_TARGET_HT40_14, ALL_TARGET_HT40_15, ALL_TARGET_HT40_0_8_16, ALL_TARGET_HT40_1_3_9_11_17_19, ALL_TARGET_HT40_1_3_9_11_17_19, ALL_TARGET_HT40_1_3_9_11_17_19, ALL_TARGET_HT40_20, ALL_TARGET_HT40_21, ALL_TARGET_HT40_22, ALL_TARGET_HT40_23, }; /** * ar9003_hw_set_channel - set channel on single-chip device * @ah: atheros hardware structure * @chan: * * This is the function to change channel on single-chip devices, that is * for AR9300 family of chipsets. * * This function takes the channel value in MHz and sets * hardware channel value. Assumes writes have been enabled to analog bus. * * Actual Expression, * * For 2GHz channel, * Channel Frequency = (3/4) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^17) * (freq_ref = 40MHz) * * For 5GHz channel, * Channel Frequency = (3/2) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^10) * (freq_ref = 40MHz/(24>>amodeRefSel)) * * For 5GHz channels which are 5MHz spaced, * Channel Frequency = (3/2) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^17) * (freq_ref = 40MHz) */ static int ar9003_hw_set_channel(struct ath_hw *ah, struct ath9k_channel *chan) { u16 bMode, fracMode = 0, aModeRefSel = 0; u32 freq, chan_frac, div, channelSel = 0, reg32 = 0; struct chan_centers centers; int loadSynthChannel; ath9k_hw_get_channel_centers(ah, chan, ¢ers); freq = centers.synth_center; if (freq < 4800) { /* 2 GHz, fractional mode */ if (AR_SREV_9330(ah)) { if (ah->is_clk_25mhz) div = 75; else div = 120; channelSel = (freq * 4) / div; chan_frac = (((freq * 4) % div) * 0x20000) / div; channelSel = (channelSel << 17) | chan_frac; } else if (AR_SREV_9485(ah) || AR_SREV_9565(ah)) { /* * freq_ref = 40 / (refdiva >> amoderefsel); * where refdiva=1 and amoderefsel=0 * ndiv = ((chan_mhz * 4) / 3) / freq_ref; * chansel = int(ndiv), chanfrac = (ndiv - chansel) * 0x20000 */ channelSel = (freq * 4) / 120; chan_frac = (((freq * 4) % 120) * 0x20000) / 120; channelSel = (channelSel << 17) | chan_frac; } else if (AR_SREV_9340(ah)) { if (ah->is_clk_25mhz) { channelSel = (freq * 2) / 75; chan_frac = (((freq * 2) % 75) * 0x20000) / 75; channelSel = (channelSel << 17) | chan_frac; } else { channelSel = CHANSEL_2G(freq) >> 1; } } else if (AR_SREV_9550(ah) || AR_SREV_9531(ah) || AR_SREV_9561(ah)) { if (ah->is_clk_25mhz) div = 75; else div = 120; channelSel = (freq * 4) / div; chan_frac = (((freq * 4) % div) * 0x20000) / div; channelSel = (channelSel << 17) | chan_frac; } else { channelSel = CHANSEL_2G(freq); } /* Set to 2G mode */ bMode = 1; } else { if ((AR_SREV_9340(ah) || AR_SREV_9550(ah) || AR_SREV_9531(ah) || AR_SREV_9561(ah)) && ah->is_clk_25mhz) { channelSel = freq / 75; chan_frac = ((freq % 75) * 0x20000) / 75; channelSel = (channelSel << 17) | chan_frac; } else { channelSel = CHANSEL_5G(freq); /* Doubler is ON, so, divide channelSel by 2. */ channelSel >>= 1; } /* Set to 5G mode */ bMode = 0; } /* Enable fractional mode for all channels */ fracMode = 1; aModeRefSel = 0; loadSynthChannel = 0; reg32 = (bMode << 29); REG_WRITE(ah, AR_PHY_SYNTH_CONTROL, reg32); /* Enable Long shift Select for Synthesizer */ REG_RMW_FIELD(ah, AR_PHY_65NM_CH0_SYNTH4, AR_PHY_SYNTH4_LONG_SHIFT_SELECT, 1); /* Program Synth. setting */ reg32 = (channelSel << 2) | (fracMode << 30) | (aModeRefSel << 28) | (loadSynthChannel << 31); REG_WRITE(ah, AR_PHY_65NM_CH0_SYNTH7, reg32); /* Toggle Load Synth channel bit */ loadSynthChannel = 1; reg32 = (channelSel << 2) | (fracMode << 30) | (aModeRefSel << 28) | (loadSynthChannel << 31); REG_WRITE(ah, AR_PHY_65NM_CH0_SYNTH7, reg32); ah->curchan = chan; return 0; } /** * ar9003_hw_spur_mitigate_mrc_cck - convert baseband spur frequency * @ah: atheros hardware structure * @chan: * * For single-chip solutions. Converts to baseband spur frequency given the * input channel frequency and compute register settings below. * * Spur mitigation for MRC CCK */ static void ar9003_hw_spur_mitigate_mrc_cck(struct ath_hw *ah, struct ath9k_channel *chan) { static const u32 spur_freq[4] = { 2420, 2440, 2464, 2480 }; int cur_bb_spur, negative = 0, cck_spur_freq; int i; int range, max_spur_cnts, synth_freq; u8 *spur_fbin_ptr = ar9003_get_spur_chan_ptr(ah, IS_CHAN_2GHZ(chan)); /* * Need to verify range +/- 10 MHz in control channel, otherwise spur * is out-of-band and can be ignored. */ if (AR_SREV_9485(ah) || AR_SREV_9340(ah) || AR_SREV_9330(ah) || AR_SREV_9550(ah) || AR_SREV_9561(ah)) { if (spur_fbin_ptr[0] == 0) /* No spur */ return; max_spur_cnts = 5; if (IS_CHAN_HT40(chan)) { range = 19; if (REG_READ_FIELD(ah, AR_PHY_GEN_CTRL, AR_PHY_GC_DYN2040_PRI_CH) == 0) synth_freq = chan->channel + 10; else synth_freq = chan->channel - 10; } else { range = 10; synth_freq = chan->channel; } } else { range = AR_SREV_9462(ah) ? 5 : 10; max_spur_cnts = 4; synth_freq = chan->channel; } for (i = 0; i < max_spur_cnts; i++) { if (AR_SREV_9462(ah) && (i == 0 || i == 3)) continue; negative = 0; if (AR_SREV_9485(ah) || AR_SREV_9340(ah) || AR_SREV_9330(ah) || AR_SREV_9550(ah) || AR_SREV_9561(ah)) cur_bb_spur = ath9k_hw_fbin2freq(spur_fbin_ptr[i], IS_CHAN_2GHZ(chan)); else cur_bb_spur = spur_freq[i]; cur_bb_spur -= synth_freq; if (cur_bb_spur < 0) { negative = 1; cur_bb_spur = -cur_bb_spur; } if (cur_bb_spur < range) { cck_spur_freq = (int)((cur_bb_spur << 19) / 11); if (negative == 1) cck_spur_freq = -cck_spur_freq; cck_spur_freq = cck_spur_freq & 0xfffff; REG_RMW_FIELD(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_YCOK_MAX, 0x7); REG_RMW_FIELD(ah, AR_PHY_CCK_SPUR_MIT, AR_PHY_CCK_SPUR_MIT_SPUR_RSSI_THR, 0x7f); REG_RMW_FIELD(ah, AR_PHY_CCK_SPUR_MIT, AR_PHY_CCK_SPUR_MIT_SPUR_FILTER_TYPE, 0x2); REG_RMW_FIELD(ah, AR_PHY_CCK_SPUR_MIT, AR_PHY_CCK_SPUR_MIT_USE_CCK_SPUR_MIT, 0x1); REG_RMW_FIELD(ah, AR_PHY_CCK_SPUR_MIT, AR_PHY_CCK_SPUR_MIT_CCK_SPUR_FREQ, cck_spur_freq); return; } } REG_RMW_FIELD(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_YCOK_MAX, 0x5); REG_RMW_FIELD(ah, AR_PHY_CCK_SPUR_MIT, AR_PHY_CCK_SPUR_MIT_USE_CCK_SPUR_MIT, 0x0); REG_RMW_FIELD(ah, AR_PHY_CCK_SPUR_MIT, AR_PHY_CCK_SPUR_MIT_CCK_SPUR_FREQ, 0x0); } /* Clean all spur register fields */ static void ar9003_hw_spur_ofdm_clear(struct ath_hw *ah) { REG_RMW_FIELD(ah, AR_PHY_TIMING4, AR_PHY_TIMING4_ENABLE_SPUR_FILTER, 0); REG_RMW_FIELD(ah, AR_PHY_TIMING11, AR_PHY_TIMING11_SPUR_FREQ_SD, 0); REG_RMW_FIELD(ah, AR_PHY_TIMING11, AR_PHY_TIMING11_SPUR_DELTA_PHASE, 0); REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT, AR_PHY_SFCORR_EXT_SPUR_SUBCHANNEL_SD, 0); REG_RMW_FIELD(ah, AR_PHY_TIMING11, AR_PHY_TIMING11_USE_SPUR_FILTER_IN_AGC, 0); REG_RMW_FIELD(ah, AR_PHY_TIMING11, AR_PHY_TIMING11_USE_SPUR_FILTER_IN_SELFCOR, 0); REG_RMW_FIELD(ah, AR_PHY_TIMING4, AR_PHY_TIMING4_ENABLE_SPUR_RSSI, 0); REG_RMW_FIELD(ah, AR_PHY_SPUR_REG, AR_PHY_SPUR_REG_EN_VIT_SPUR_RSSI, 0); REG_RMW_FIELD(ah, AR_PHY_SPUR_REG, AR_PHY_SPUR_REG_ENABLE_NF_RSSI_SPUR_MIT, 0); REG_RMW_FIELD(ah, AR_PHY_SPUR_REG, AR_PHY_SPUR_REG_ENABLE_MASK_PPM, 0); REG_RMW_FIELD(ah, AR_PHY_TIMING4, AR_PHY_TIMING4_ENABLE_PILOT_MASK, 0); REG_RMW_FIELD(ah, AR_PHY_TIMING4, AR_PHY_TIMING4_ENABLE_CHAN_MASK, 0); REG_RMW_FIELD(ah, AR_PHY_PILOT_SPUR_MASK, AR_PHY_PILOT_SPUR_MASK_CF_PILOT_MASK_IDX_A, 0); REG_RMW_FIELD(ah, AR_PHY_SPUR_MASK_A, AR_PHY_SPUR_MASK_A_CF_PUNC_MASK_IDX_A, 0); REG_RMW_FIELD(ah, AR_PHY_CHAN_SPUR_MASK, AR_PHY_CHAN_SPUR_MASK_CF_CHAN_MASK_IDX_A, 0); REG_RMW_FIELD(ah, AR_PHY_PILOT_SPUR_MASK, AR_PHY_PILOT_SPUR_MASK_CF_PILOT_MASK_A, 0); REG_RMW_FIELD(ah, AR_PHY_CHAN_SPUR_MASK, AR_PHY_CHAN_SPUR_MASK_CF_CHAN_MASK_A, 0); REG_RMW_FIELD(ah, AR_PHY_SPUR_MASK_A, AR_PHY_SPUR_MASK_A_CF_PUNC_MASK_A, 0); REG_RMW_FIELD(ah, AR_PHY_SPUR_REG, AR_PHY_SPUR_REG_MASK_RATE_CNTL, 0); } static void ar9003_hw_spur_ofdm(struct ath_hw *ah, int freq_offset, int spur_freq_sd, int spur_delta_phase, int spur_subchannel_sd, int range, int synth_freq) { int mask_index = 0; /* OFDM Spur mitigation */ REG_RMW_FIELD(ah, AR_PHY_TIMING4, AR_PHY_TIMING4_ENABLE_SPUR_FILTER, 0x1); REG_RMW_FIELD(ah, AR_PHY_TIMING11, AR_PHY_TIMING11_SPUR_FREQ_SD, spur_freq_sd); REG_RMW_FIELD(ah, AR_PHY_TIMING11, AR_PHY_TIMING11_SPUR_DELTA_PHASE, spur_delta_phase); REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT, AR_PHY_SFCORR_EXT_SPUR_SUBCHANNEL_SD, spur_subchannel_sd); REG_RMW_FIELD(ah, AR_PHY_TIMING11, AR_PHY_TIMING11_USE_SPUR_FILTER_IN_AGC, 0x1); if (!(AR_SREV_9565(ah) && range == 10 && synth_freq == 2437)) REG_RMW_FIELD(ah, AR_PHY_TIMING11, AR_PHY_TIMING11_USE_SPUR_FILTER_IN_SELFCOR, 0x1); REG_RMW_FIELD(ah, AR_PHY_TIMING4, AR_PHY_TIMING4_ENABLE_SPUR_RSSI, 0x1); REG_RMW_FIELD(ah, AR_PHY_SPUR_REG, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH, 34); REG_RMW_FIELD(ah, AR_PHY_SPUR_REG, AR_PHY_SPUR_REG_EN_VIT_SPUR_RSSI, 1); if (!AR_SREV_9340(ah) && REG_READ_FIELD(ah, AR_PHY_MODE, AR_PHY_MODE_DYNAMIC) == 0x1) REG_RMW_FIELD(ah, AR_PHY_SPUR_REG, AR_PHY_SPUR_REG_ENABLE_NF_RSSI_SPUR_MIT, 1); mask_index = (freq_offset << 4) / 5; if (mask_index < 0) mask_index = mask_index - 1; mask_index = mask_index & 0x7f; REG_RMW_FIELD(ah, AR_PHY_SPUR_REG, AR_PHY_SPUR_REG_ENABLE_MASK_PPM, 0x1); REG_RMW_FIELD(ah, AR_PHY_TIMING4, AR_PHY_TIMING4_ENABLE_PILOT_MASK, 0x1); REG_RMW_FIELD(ah, AR_PHY_TIMING4, AR_PHY_TIMING4_ENABLE_CHAN_MASK, 0x1); REG_RMW_FIELD(ah, AR_PHY_PILOT_SPUR_MASK, AR_PHY_PILOT_SPUR_MASK_CF_PILOT_MASK_IDX_A, mask_index); REG_RMW_FIELD(ah, AR_PHY_SPUR_MASK_A, AR_PHY_SPUR_MASK_A_CF_PUNC_MASK_IDX_A, mask_index); REG_RMW_FIELD(ah, AR_PHY_CHAN_SPUR_MASK, AR_PHY_CHAN_SPUR_MASK_CF_CHAN_MASK_IDX_A, mask_index); REG_RMW_FIELD(ah, AR_PHY_PILOT_SPUR_MASK, AR_PHY_PILOT_SPUR_MASK_CF_PILOT_MASK_A, 0xc); REG_RMW_FIELD(ah, AR_PHY_CHAN_SPUR_MASK, AR_PHY_CHAN_SPUR_MASK_CF_CHAN_MASK_A, 0xc); REG_RMW_FIELD(ah, AR_PHY_SPUR_MASK_A, AR_PHY_SPUR_MASK_A_CF_PUNC_MASK_A, 0xa0); REG_RMW_FIELD(ah, AR_PHY_SPUR_REG, AR_PHY_SPUR_REG_MASK_RATE_CNTL, 0xff); } static void ar9003_hw_spur_ofdm_9565(struct ath_hw *ah, int freq_offset) { int mask_index = 0; mask_index = (freq_offset << 4) / 5; if (mask_index < 0) mask_index = mask_index - 1; mask_index = mask_index & 0x7f; REG_RMW_FIELD(ah, AR_PHY_PILOT_SPUR_MASK, AR_PHY_PILOT_SPUR_MASK_CF_PILOT_MASK_IDX_B, mask_index); /* A == B */ REG_RMW_FIELD(ah, AR_PHY_SPUR_MASK_B, AR_PHY_SPUR_MASK_A_CF_PUNC_MASK_IDX_A, mask_index); REG_RMW_FIELD(ah, AR_PHY_CHAN_SPUR_MASK, AR_PHY_CHAN_SPUR_MASK_CF_CHAN_MASK_IDX_B, mask_index); REG_RMW_FIELD(ah, AR_PHY_PILOT_SPUR_MASK, AR_PHY_PILOT_SPUR_MASK_CF_PILOT_MASK_B, 0xe); REG_RMW_FIELD(ah, AR_PHY_CHAN_SPUR_MASK, AR_PHY_CHAN_SPUR_MASK_CF_CHAN_MASK_B, 0xe); /* A == B */ REG_RMW_FIELD(ah, AR_PHY_SPUR_MASK_B, AR_PHY_SPUR_MASK_A_CF_PUNC_MASK_A, 0xa0); } static void ar9003_hw_spur_ofdm_work(struct ath_hw *ah, struct ath9k_channel *chan, int freq_offset, int range, int synth_freq) { int spur_freq_sd = 0; int spur_subchannel_sd = 0; int spur_delta_phase = 0; if (IS_CHAN_HT40(chan)) { if (freq_offset < 0) { if (REG_READ_FIELD(ah, AR_PHY_GEN_CTRL, AR_PHY_GC_DYN2040_PRI_CH) == 0x0) spur_subchannel_sd = 1; else spur_subchannel_sd = 0; spur_freq_sd = ((freq_offset + 10) << 9) / 11; } else { if (REG_READ_FIELD(ah, AR_PHY_GEN_CTRL, AR_PHY_GC_DYN2040_PRI_CH) == 0x0) spur_subchannel_sd = 0; else spur_subchannel_sd = 1; spur_freq_sd = ((freq_offset - 10) << 9) / 11; } spur_delta_phase = (freq_offset << 17) / 5; } else { spur_subchannel_sd = 0; spur_freq_sd = (freq_offset << 9) /11; spur_delta_phase = (freq_offset << 18) / 5; } spur_freq_sd = spur_freq_sd & 0x3ff; spur_delta_phase = spur_delta_phase & 0xfffff; ar9003_hw_spur_ofdm(ah, freq_offset, spur_freq_sd, spur_delta_phase, spur_subchannel_sd, range, synth_freq); } /* Spur mitigation for OFDM */ static void ar9003_hw_spur_mitigate_ofdm(struct ath_hw *ah, struct ath9k_channel *chan) { int synth_freq; int range = 10; int freq_offset = 0; int mode; u8* spurChansPtr; unsigned int i; struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep; if (IS_CHAN_5GHZ(chan)) { spurChansPtr = &(eep->modalHeader5G.spurChans[0]); mode = 0; } else { spurChansPtr = &(eep->modalHeader2G.spurChans[0]); mode = 1; } if (spurChansPtr[0] == 0) return; /* No spur in the mode */ if (IS_CHAN_HT40(chan)) { range = 19; if (REG_READ_FIELD(ah, AR_PHY_GEN_CTRL, AR_PHY_GC_DYN2040_PRI_CH) == 0x0) synth_freq = chan->channel - 10; else synth_freq = chan->channel + 10; } else { range = 10; synth_freq = chan->channel; } ar9003_hw_spur_ofdm_clear(ah); for (i = 0; i < AR_EEPROM_MODAL_SPURS && spurChansPtr[i]; i++) { freq_offset = ath9k_hw_fbin2freq(spurChansPtr[i], mode); freq_offset -= synth_freq; if (abs(freq_offset) < range) { ar9003_hw_spur_ofdm_work(ah, chan, freq_offset, range, synth_freq); if (AR_SREV_9565(ah) && (i < 4)) { freq_offset = ath9k_hw_fbin2freq(spurChansPtr[i + 1], mode); freq_offset -= synth_freq; if (abs(freq_offset) < range) ar9003_hw_spur_ofdm_9565(ah, freq_offset); } break; } } } static void ar9003_hw_spur_mitigate(struct ath_hw *ah, struct ath9k_channel *chan) { if (!AR_SREV_9565(ah)) ar9003_hw_spur_mitigate_mrc_cck(ah, chan); ar9003_hw_spur_mitigate_ofdm(ah, chan); } static u32 ar9003_hw_compute_pll_control_soc(struct ath_hw *ah, struct ath9k_channel *chan) { u32 pll; pll = SM(0x5, AR_RTC_9300_SOC_PLL_REFDIV); if (chan && IS_CHAN_HALF_RATE(chan)) pll |= SM(0x1, AR_RTC_9300_SOC_PLL_CLKSEL); else if (chan && IS_CHAN_QUARTER_RATE(chan)) pll |= SM(0x2, AR_RTC_9300_SOC_PLL_CLKSEL); pll |= SM(0x2c, AR_RTC_9300_SOC_PLL_DIV_INT); return pll; } static u32 ar9003_hw_compute_pll_control(struct ath_hw *ah, struct ath9k_channel *chan) { u32 pll; pll = SM(0x5, AR_RTC_9300_PLL_REFDIV); if (chan && IS_CHAN_HALF_RATE(chan)) pll |= SM(0x1, AR_RTC_9300_PLL_CLKSEL); else if (chan && IS_CHAN_QUARTER_RATE(chan)) pll |= SM(0x2, AR_RTC_9300_PLL_CLKSEL); pll |= SM(0x2c, AR_RTC_9300_PLL_DIV); return pll; } static void ar9003_hw_set_channel_regs(struct ath_hw *ah, struct ath9k_channel *chan) { u32 phymode; u32 enableDacFifo = 0; enableDacFifo = (REG_READ(ah, AR_PHY_GEN_CTRL) & AR_PHY_GC_ENABLE_DAC_FIFO); /* Enable 11n HT, 20 MHz */ phymode = AR_PHY_GC_HT_EN | AR_PHY_GC_SHORT_GI_40 | enableDacFifo; if (!AR_SREV_9561(ah)) phymode |= AR_PHY_GC_SINGLE_HT_LTF1; /* Configure baseband for dynamic 20/40 operation */ if (IS_CHAN_HT40(chan)) { phymode |= AR_PHY_GC_DYN2040_EN; /* Configure control (primary) channel at +-10MHz */ if (IS_CHAN_HT40PLUS(chan)) phymode |= AR_PHY_GC_DYN2040_PRI_CH; } /* make sure we preserve INI settings */ phymode |= REG_READ(ah, AR_PHY_GEN_CTRL); /* turn off Green Field detection for STA for now */ phymode &= ~AR_PHY_GC_GF_DETECT_EN; REG_WRITE(ah, AR_PHY_GEN_CTRL, phymode); /* Configure MAC for 20/40 operation */ ath9k_hw_set11nmac2040(ah, chan); /* global transmit timeout (25 TUs default)*/ REG_WRITE(ah, AR_GTXTO, 25 << AR_GTXTO_TIMEOUT_LIMIT_S); /* carrier sense timeout */ REG_WRITE(ah, AR_CST, 0xF << AR_CST_TIMEOUT_LIMIT_S); } static void ar9003_hw_init_bb(struct ath_hw *ah, struct ath9k_channel *chan) { u32 synthDelay; /* * Wait for the frequency synth to settle (synth goes on * via AR_PHY_ACTIVE_EN). Read the phy active delay register. * Value is in 100ns increments. */ synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY; /* Activate the PHY (includes baseband activate + synthesizer on) */ REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN); ath9k_hw_synth_delay(ah, chan, synthDelay); } void ar9003_hw_set_chain_masks(struct ath_hw *ah, u8 rx, u8 tx) { if (ah->caps.tx_chainmask == 5 || ah->caps.rx_chainmask == 5) REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP, AR_PHY_SWAP_ALT_CHAIN); REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx); REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx); if ((ah->caps.hw_caps & ATH9K_HW_CAP_APM) && (tx == 0x7)) tx = 3; REG_WRITE(ah, AR_SELFGEN_MASK, tx); } /* * Override INI values with chip specific configuration. */ static void ar9003_hw_override_ini(struct ath_hw *ah) { u32 val; /* * Set the RX_ABORT and RX_DIS and clear it only after * RXE is set for MAC. This prevents frames with * corrupted descriptor status. */ REG_SET_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT)); /* * For AR9280 and above, there is a new feature that allows * Multicast search based on both MAC Address and Key ID. By default, * this feature is enabled. But since the driver is not using this * feature, we switch it off; otherwise multicast search based on * MAC addr only will fail. */ val = REG_READ(ah, AR_PCU_MISC_MODE2) & (~AR_ADHOC_MCAST_KEYID_ENABLE); val |= AR_AGG_WEP_ENABLE_FIX | AR_AGG_WEP_ENABLE | AR_PCU_MISC_MODE2_CFP_IGNORE; REG_WRITE(ah, AR_PCU_MISC_MODE2, val); if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) { REG_WRITE(ah, AR_GLB_SWREG_DISCONT_MODE, AR_GLB_SWREG_DISCONT_EN_BT_WLAN); if (REG_READ_FIELD(ah, AR_PHY_TX_IQCAL_CONTROL_0, AR_PHY_TX_IQCAL_CONTROL_0_ENABLE_TXIQ_CAL)) ah->enabled_cals |= TX_IQ_CAL; else ah->enabled_cals &= ~TX_IQ_CAL; } if (REG_READ(ah, AR_PHY_CL_CAL_CTL) & AR_PHY_CL_CAL_ENABLE) ah->enabled_cals |= TX_CL_CAL; else ah->enabled_cals &= ~TX_CL_CAL; if (AR_SREV_9340(ah) || AR_SREV_9531(ah) || AR_SREV_9550(ah) || AR_SREV_9561(ah)) { if (ah->is_clk_25mhz) { REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x17c << 1); REG_WRITE(ah, AR_SLP32_MODE, 0x0010f3d7); REG_WRITE(ah, AR_SLP32_INC, 0x0001e7ae); } else { REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x261 << 1); REG_WRITE(ah, AR_SLP32_MODE, 0x0010f400); REG_WRITE(ah, AR_SLP32_INC, 0x0001e800); } udelay(100); } } static void ar9003_hw_prog_ini(struct ath_hw *ah, struct ar5416IniArray *iniArr, int column) { unsigned int i, regWrites = 0; /* New INI format: Array may be undefined (pre, core, post arrays) */ if (!iniArr->ia_array) return; /* * New INI format: Pre, core, and post arrays for a given subsystem * may be modal (> 2 columns) or non-modal (2 columns). Determine if * the array is non-modal and force the column to 1. */ if (column >= iniArr->ia_columns) column = 1; for (i = 0; i < iniArr->ia_rows; i++) { u32 reg = INI_RA(iniArr, i, 0); u32 val = INI_RA(iniArr, i, column); REG_WRITE(ah, reg, val); DO_DELAY(regWrites); } } static int ar9550_hw_get_modes_txgain_index(struct ath_hw *ah, struct ath9k_channel *chan) { int ret; if (IS_CHAN_2GHZ(chan)) { if (IS_CHAN_HT40(chan)) return 7; else return 8; } if (chan->channel <= 5350) ret = 1; else if ((chan->channel > 5350) && (chan->channel <= 5600)) ret = 3; else ret = 5; if (IS_CHAN_HT40(chan)) ret++; return ret; } static int ar9561_hw_get_modes_txgain_index(struct ath_hw *ah, struct ath9k_channel *chan) { if (IS_CHAN_2GHZ(chan)) { if (IS_CHAN_HT40(chan)) return 1; else return 2; } return 0; } static void ar9003_doubler_fix(struct ath_hw *ah) { if (AR_SREV_9300(ah) || AR_SREV_9580(ah) || AR_SREV_9550(ah)) { REG_RMW(ah, AR_PHY_65NM_CH0_RXTX2, 1 << AR_PHY_65NM_CH0_RXTX2_SYNTHON_MASK_S | 1 << AR_PHY_65NM_CH0_RXTX2_SYNTHOVR_MASK_S, 0); REG_RMW(ah, AR_PHY_65NM_CH1_RXTX2, 1 << AR_PHY_65NM_CH0_RXTX2_SYNTHON_MASK_S | 1 << AR_PHY_65NM_CH0_RXTX2_SYNTHOVR_MASK_S, 0); REG_RMW(ah, AR_PHY_65NM_CH2_RXTX2, 1 << AR_PHY_65NM_CH0_RXTX2_SYNTHON_MASK_S | 1 << AR_PHY_65NM_CH0_RXTX2_SYNTHOVR_MASK_S, 0); udelay(200); REG_CLR_BIT(ah, AR_PHY_65NM_CH0_RXTX2, AR_PHY_65NM_CH0_RXTX2_SYNTHON_MASK); REG_CLR_BIT(ah, AR_PHY_65NM_CH1_RXTX2, AR_PHY_65NM_CH0_RXTX2_SYNTHON_MASK); REG_CLR_BIT(ah, AR_PHY_65NM_CH2_RXTX2, AR_PHY_65NM_CH0_RXTX2_SYNTHON_MASK); udelay(1); REG_RMW_FIELD(ah, AR_PHY_65NM_CH0_RXTX2, AR_PHY_65NM_CH0_RXTX2_SYNTHON_MASK, 1); REG_RMW_FIELD(ah, AR_PHY_65NM_CH1_RXTX2, AR_PHY_65NM_CH0_RXTX2_SYNTHON_MASK, 1); REG_RMW_FIELD(ah, AR_PHY_65NM_CH2_RXTX2, AR_PHY_65NM_CH0_RXTX2_SYNTHON_MASK, 1); udelay(200); REG_RMW_FIELD(ah, AR_PHY_65NM_CH0_SYNTH12, AR_PHY_65NM_CH0_SYNTH12_VREFMUL3, 0xf); REG_RMW(ah, AR_PHY_65NM_CH0_RXTX2, 0, 1 << AR_PHY_65NM_CH0_RXTX2_SYNTHON_MASK_S | 1 << AR_PHY_65NM_CH0_RXTX2_SYNTHOVR_MASK_S); REG_RMW(ah, AR_PHY_65NM_CH1_RXTX2, 0, 1 << AR_PHY_65NM_CH0_RXTX2_SYNTHON_MASK_S | 1 << AR_PHY_65NM_CH0_RXTX2_SYNTHOVR_MASK_S); REG_RMW(ah, AR_PHY_65NM_CH2_RXTX2, 0, 1 << AR_PHY_65NM_CH0_RXTX2_SYNTHON_MASK_S | 1 << AR_PHY_65NM_CH0_RXTX2_SYNTHOVR_MASK_S); } } static int ar9003_hw_process_ini(struct ath_hw *ah, struct ath9k_channel *chan) { unsigned int regWrites = 0, i; u32 modesIndex; if (IS_CHAN_5GHZ(chan)) modesIndex = IS_CHAN_HT40(chan) ? 2 : 1; else modesIndex = IS_CHAN_HT40(chan) ? 3 : 4; /* * SOC, MAC, BB, RADIO initvals. */ for (i = 0; i < ATH_INI_NUM_SPLIT; i++) { ar9003_hw_prog_ini(ah, &ah->iniSOC[i], modesIndex); ar9003_hw_prog_ini(ah, &ah->iniMac[i], modesIndex); ar9003_hw_prog_ini(ah, &ah->iniBB[i], modesIndex); ar9003_hw_prog_ini(ah, &ah->iniRadio[i], modesIndex); if (i == ATH_INI_POST && AR_SREV_9462_20_OR_LATER(ah)) ar9003_hw_prog_ini(ah, &ah->ini_radio_post_sys2ant, modesIndex); } ar9003_doubler_fix(ah); /* * RXGAIN initvals. */ REG_WRITE_ARRAY(&ah->iniModesRxGain, 1, regWrites); if (AR_SREV_9462_20_OR_LATER(ah)) { /* * CUS217 mix LNA mode. */ if (ar9003_hw_get_rx_gain_idx(ah) == 2) { REG_WRITE_ARRAY(&ah->ini_modes_rxgain_bb_core, 1, regWrites); REG_WRITE_ARRAY(&ah->ini_modes_rxgain_bb_postamble, modesIndex, regWrites); } /* * 5G-XLNA */ if ((ar9003_hw_get_rx_gain_idx(ah) == 2) || (ar9003_hw_get_rx_gain_idx(ah) == 3)) { REG_WRITE_ARRAY(&ah->ini_modes_rxgain_xlna, modesIndex, regWrites); } } if (AR_SREV_9550(ah) || AR_SREV_9561(ah)) REG_WRITE_ARRAY(&ah->ini_modes_rx_gain_bounds, modesIndex, regWrites); if (AR_SREV_9561(ah) && (ar9003_hw_get_rx_gain_idx(ah) == 0)) REG_WRITE_ARRAY(&ah->ini_modes_rxgain_xlna, modesIndex, regWrites); /* * TXGAIN initvals. */ if (AR_SREV_9550(ah) || AR_SREV_9531(ah) || AR_SREV_9561(ah)) { int modes_txgain_index = 1; if (AR_SREV_9550(ah)) modes_txgain_index = ar9550_hw_get_modes_txgain_index(ah, chan); if (AR_SREV_9561(ah)) modes_txgain_index = ar9561_hw_get_modes_txgain_index(ah, chan); if (modes_txgain_index < 0) return -EINVAL; REG_WRITE_ARRAY(&ah->iniModesTxGain, modes_txgain_index, regWrites); } else { REG_WRITE_ARRAY(&ah->iniModesTxGain, modesIndex, regWrites); } /* * For 5GHz channels requiring Fast Clock, apply * different modal values. */ if (IS_CHAN_A_FAST_CLOCK(ah, chan)) REG_WRITE_ARRAY(&ah->iniModesFastClock, modesIndex, regWrites); /* * Clock frequency initvals. */ REG_WRITE_ARRAY(&ah->iniAdditional, 1, regWrites); /* * JAPAN regulatory. */ if (chan->channel == 2484) { ar9003_hw_prog_ini(ah, &ah->iniCckfirJapan2484, 1); if (AR_SREV_9531(ah)) REG_RMW_FIELD(ah, AR_PHY_FCAL_2_0, AR_PHY_FLC_PWR_THRESH, 0); } ah->modes_index = modesIndex; ar9003_hw_override_ini(ah); ar9003_hw_set_channel_regs(ah, chan); ar9003_hw_set_chain_masks(ah, ah->rxchainmask, ah->txchainmask); ath9k_hw_apply_txpower(ah, chan, false); return 0; } static void ar9003_hw_set_rfmode(struct ath_hw *ah, struct ath9k_channel *chan) { u32 rfMode = 0; if (chan == NULL) return; if (IS_CHAN_2GHZ(chan)) rfMode |= AR_PHY_MODE_DYNAMIC; else rfMode |= AR_PHY_MODE_OFDM; if (IS_CHAN_A_FAST_CLOCK(ah, chan)) rfMode |= (AR_PHY_MODE_DYNAMIC | AR_PHY_MODE_DYN_CCK_DISABLE); if (IS_CHAN_HALF_RATE(chan) || IS_CHAN_QUARTER_RATE(chan)) REG_RMW_FIELD(ah, AR_PHY_FRAME_CTL, AR_PHY_FRAME_CTL_CF_OVERLAP_WINDOW, 3); REG_WRITE(ah, AR_PHY_MODE, rfMode); } static void ar9003_hw_mark_phy_inactive(struct ath_hw *ah) { REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS); } static void ar9003_hw_set_delta_slope(struct ath_hw *ah, struct ath9k_channel *chan) { u32 coef_scaled, ds_coef_exp, ds_coef_man; u32 clockMhzScaled = 0x64000000; struct chan_centers centers; /* * half and quarter rate can divide the scaled clock by 2 or 4 * scale for selected channel bandwidth */ if (IS_CHAN_HALF_RATE(chan)) clockMhzScaled = clockMhzScaled >> 1; else if (IS_CHAN_QUARTER_RATE(chan)) clockMhzScaled = clockMhzScaled >> 2; /* * ALGO -> coef = 1e8/fcarrier*fclock/40; * scaled coef to provide precision for this floating calculation */ ath9k_hw_get_channel_centers(ah, chan, ¢ers); coef_scaled = clockMhzScaled / centers.synth_center; ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man, &ds_coef_exp); REG_RMW_FIELD(ah, AR_PHY_TIMING3, AR_PHY_TIMING3_DSC_MAN, ds_coef_man); REG_RMW_FIELD(ah, AR_PHY_TIMING3, AR_PHY_TIMING3_DSC_EXP, ds_coef_exp); /* * For Short GI, * scaled coeff is 9/10 that of normal coeff */ coef_scaled = (9 * coef_scaled) / 10; ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man, &ds_coef_exp); /* for short gi */ REG_RMW_FIELD(ah, AR_PHY_SGI_DELTA, AR_PHY_SGI_DSC_MAN, ds_coef_man); REG_RMW_FIELD(ah, AR_PHY_SGI_DELTA, AR_PHY_SGI_DSC_EXP, ds_coef_exp); } static bool ar9003_hw_rfbus_req(struct ath_hw *ah) { REG_WRITE(ah, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_EN); return ath9k_hw_wait(ah, AR_PHY_RFBUS_GRANT, AR_PHY_RFBUS_GRANT_EN, AR_PHY_RFBUS_GRANT_EN, AH_WAIT_TIMEOUT); } /* * Wait for the frequency synth to settle (synth goes on via PHY_ACTIVE_EN). * Read the phy active delay register. Value is in 100ns increments. */ static void ar9003_hw_rfbus_done(struct ath_hw *ah) { u32 synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY; ath9k_hw_synth_delay(ah, ah->curchan, synthDelay); REG_WRITE(ah, AR_PHY_RFBUS_REQ, 0); } static bool ar9003_hw_ani_control(struct ath_hw *ah, enum ath9k_ani_cmd cmd, int param) { struct ath_common *common = ath9k_hw_common(ah); struct ath9k_channel *chan = ah->curchan; struct ar5416AniState *aniState = &ah->ani; int m1ThreshLow, m2ThreshLow; int m1Thresh, m2Thresh; int m2CountThr, m2CountThrLow; int m1ThreshLowExt, m2ThreshLowExt; int m1ThreshExt, m2ThreshExt; s32 value, value2; switch (cmd & ah->ani_function) { case ATH9K_ANI_OFDM_WEAK_SIGNAL_DETECTION:{ /* * on == 1 means ofdm weak signal detection is ON * on == 1 is the default, for less noise immunity * * on == 0 means ofdm weak signal detection is OFF * on == 0 means more noise imm */ u32 on = param ? 1 : 0; if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) goto skip_ws_det; m1ThreshLow = on ? aniState->iniDef.m1ThreshLow : m1ThreshLow_off; m2ThreshLow = on ? aniState->iniDef.m2ThreshLow : m2ThreshLow_off; m1Thresh = on ? aniState->iniDef.m1Thresh : m1Thresh_off; m2Thresh = on ? aniState->iniDef.m2Thresh : m2Thresh_off; m2CountThr = on ? aniState->iniDef.m2CountThr : m2CountThr_off; m2CountThrLow = on ? aniState->iniDef.m2CountThrLow : m2CountThrLow_off; m1ThreshLowExt = on ? aniState->iniDef.m1ThreshLowExt : m1ThreshLowExt_off; m2ThreshLowExt = on ? aniState->iniDef.m2ThreshLowExt : m2ThreshLowExt_off; m1ThreshExt = on ? aniState->iniDef.m1ThreshExt : m1ThreshExt_off; m2ThreshExt = on ? aniState->iniDef.m2ThreshExt : m2ThreshExt_off; REG_RMW_FIELD(ah, AR_PHY_SFCORR_LOW, AR_PHY_SFCORR_LOW_M1_THRESH_LOW, m1ThreshLow); REG_RMW_FIELD(ah, AR_PHY_SFCORR_LOW, AR_PHY_SFCORR_LOW_M2_THRESH_LOW, m2ThreshLow); REG_RMW_FIELD(ah, AR_PHY_SFCORR, AR_PHY_SFCORR_M1_THRESH, m1Thresh); REG_RMW_FIELD(ah, AR_PHY_SFCORR, AR_PHY_SFCORR_M2_THRESH, m2Thresh); REG_RMW_FIELD(ah, AR_PHY_SFCORR, AR_PHY_SFCORR_M2COUNT_THR, m2CountThr); REG_RMW_FIELD(ah, AR_PHY_SFCORR_LOW, AR_PHY_SFCORR_LOW_M2COUNT_THR_LOW, m2CountThrLow); REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT, AR_PHY_SFCORR_EXT_M1_THRESH_LOW, m1ThreshLowExt); REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT, AR_PHY_SFCORR_EXT_M2_THRESH_LOW, m2ThreshLowExt); REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT, AR_PHY_SFCORR_EXT_M1_THRESH, m1ThreshExt); REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT, AR_PHY_SFCORR_EXT_M2_THRESH, m2ThreshExt); skip_ws_det: if (on) REG_SET_BIT(ah, AR_PHY_SFCORR_LOW, AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW); else REG_CLR_BIT(ah, AR_PHY_SFCORR_LOW, AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW); if (on != aniState->ofdmWeakSigDetect) { ath_dbg(common, ANI, "** ch %d: ofdm weak signal: %s=>%s\n", chan->channel, aniState->ofdmWeakSigDetect ? "on" : "off", on ? "on" : "off"); if (on) ah->stats.ast_ani_ofdmon++; else ah->stats.ast_ani_ofdmoff++; aniState->ofdmWeakSigDetect = on; } break; } case ATH9K_ANI_FIRSTEP_LEVEL:{ u32 level = param; if (level >= ARRAY_SIZE(firstep_table)) { ath_dbg(common, ANI, "ATH9K_ANI_FIRSTEP_LEVEL: level out of range (%u > %zu)\n", level, ARRAY_SIZE(firstep_table)); return false; } /* * make register setting relative to default * from INI file & cap value */ value = firstep_table[level] - firstep_table[ATH9K_ANI_FIRSTEP_LVL] + aniState->iniDef.firstep; if (value < ATH9K_SIG_FIRSTEP_SETTING_MIN) value = ATH9K_SIG_FIRSTEP_SETTING_MIN; if (value > ATH9K_SIG_FIRSTEP_SETTING_MAX) value = ATH9K_SIG_FIRSTEP_SETTING_MAX; REG_RMW_FIELD(ah, AR_PHY_FIND_SIG, AR_PHY_FIND_SIG_FIRSTEP, value); /* * we need to set first step low register too * make register setting relative to default * from INI file & cap value */ value2 = firstep_table[level] - firstep_table[ATH9K_ANI_FIRSTEP_LVL] + aniState->iniDef.firstepLow; if (value2 < ATH9K_SIG_FIRSTEP_SETTING_MIN) value2 = ATH9K_SIG_FIRSTEP_SETTING_MIN; if (value2 > ATH9K_SIG_FIRSTEP_SETTING_MAX) value2 = ATH9K_SIG_FIRSTEP_SETTING_MAX; REG_RMW_FIELD(ah, AR_PHY_FIND_SIG_LOW, AR_PHY_FIND_SIG_LOW_FIRSTEP_LOW, value2); if (level != aniState->firstepLevel) { ath_dbg(common, ANI, "** ch %d: level %d=>%d[def:%d] firstep[level]=%d ini=%d\n", chan->channel, aniState->firstepLevel, level, ATH9K_ANI_FIRSTEP_LVL, value, aniState->iniDef.firstep); ath_dbg(common, ANI, "** ch %d: level %d=>%d[def:%d] firstep_low[level]=%d ini=%d\n", chan->channel, aniState->firstepLevel, level, ATH9K_ANI_FIRSTEP_LVL, value2, aniState->iniDef.firstepLow); if (level > aniState->firstepLevel) ah->stats.ast_ani_stepup++; else if (level < aniState->firstepLevel) ah->stats.ast_ani_stepdown++; aniState->firstepLevel = level; } break; } case ATH9K_ANI_SPUR_IMMUNITY_LEVEL:{ u32 level = param; if (level >= ARRAY_SIZE(cycpwrThr1_table)) { ath_dbg(common, ANI, "ATH9K_ANI_SPUR_IMMUNITY_LEVEL: level out of range (%u > %zu)\n", level, ARRAY_SIZE(cycpwrThr1_table)); return false; } /* * make register setting relative to default * from INI file & cap value */ value = cycpwrThr1_table[level] - cycpwrThr1_table[ATH9K_ANI_SPUR_IMMUNE_LVL] + aniState->iniDef.cycpwrThr1; if (value < ATH9K_SIG_SPUR_IMM_SETTING_MIN) value = ATH9K_SIG_SPUR_IMM_SETTING_MIN; if (value > ATH9K_SIG_SPUR_IMM_SETTING_MAX) value = ATH9K_SIG_SPUR_IMM_SETTING_MAX; REG_RMW_FIELD(ah, AR_PHY_TIMING5, AR_PHY_TIMING5_CYCPWR_THR1, value); /* * set AR_PHY_EXT_CCA for extension channel * make register setting relative to default * from INI file & cap value */ value2 = cycpwrThr1_table[level] - cycpwrThr1_table[ATH9K_ANI_SPUR_IMMUNE_LVL] + aniState->iniDef.cycpwrThr1Ext; if (value2 < ATH9K_SIG_SPUR_IMM_SETTING_MIN) value2 = ATH9K_SIG_SPUR_IMM_SETTING_MIN; if (value2 > ATH9K_SIG_SPUR_IMM_SETTING_MAX) value2 = ATH9K_SIG_SPUR_IMM_SETTING_MAX; REG_RMW_FIELD(ah, AR_PHY_EXT_CCA, AR_PHY_EXT_CYCPWR_THR1, value2); if (level != aniState->spurImmunityLevel) { ath_dbg(common, ANI, "** ch %d: level %d=>%d[def:%d] cycpwrThr1[level]=%d ini=%d\n", chan->channel, aniState->spurImmunityLevel, level, ATH9K_ANI_SPUR_IMMUNE_LVL, value, aniState->iniDef.cycpwrThr1); ath_dbg(common, ANI, "** ch %d: level %d=>%d[def:%d] cycpwrThr1Ext[level]=%d ini=%d\n", chan->channel, aniState->spurImmunityLevel, level, ATH9K_ANI_SPUR_IMMUNE_LVL, value2, aniState->iniDef.cycpwrThr1Ext); if (level > aniState->spurImmunityLevel) ah->stats.ast_ani_spurup++; else if (level < aniState->spurImmunityLevel) ah->stats.ast_ani_spurdown++; aniState->spurImmunityLevel = level; } break; } case ATH9K_ANI_MRC_CCK:{ /* * is_on == 1 means MRC CCK ON (default, less noise imm) * is_on == 0 means MRC CCK is OFF (more noise imm) */ bool is_on = param ? 1 : 0; if (ah->caps.rx_chainmask == 1) break; REG_RMW_FIELD(ah, AR_PHY_MRC_CCK_CTRL, AR_PHY_MRC_CCK_ENABLE, is_on); REG_RMW_FIELD(ah, AR_PHY_MRC_CCK_CTRL, AR_PHY_MRC_CCK_MUX_REG, is_on); if (is_on != aniState->mrcCCK) { ath_dbg(common, ANI, "** ch %d: MRC CCK: %s=>%s\n", chan->channel, aniState->mrcCCK ? "on" : "off", is_on ? "on" : "off"); if (is_on) ah->stats.ast_ani_ccklow++; else ah->stats.ast_ani_cckhigh++; aniState->mrcCCK = is_on; } break; } default: ath_dbg(common, ANI, "invalid cmd %u\n", cmd); return false; } ath_dbg(common, ANI, "ANI parameters: SI=%d, ofdmWS=%s FS=%d MRCcck=%s listenTime=%d ofdmErrs=%d cckErrs=%d\n", aniState->spurImmunityLevel, aniState->ofdmWeakSigDetect ? "on" : "off", aniState->firstepLevel, aniState->mrcCCK ? "on" : "off", aniState->listenTime, aniState->ofdmPhyErrCount, aniState->cckPhyErrCount); return true; } static void ar9003_hw_do_getnf(struct ath_hw *ah, int16_t nfarray[NUM_NF_READINGS]) { #define AR_PHY_CH_MINCCA_PWR 0x1FF00000 #define AR_PHY_CH_MINCCA_PWR_S 20 #define AR_PHY_CH_EXT_MINCCA_PWR 0x01FF0000 #define AR_PHY_CH_EXT_MINCCA_PWR_S 16 int16_t nf; int i; for (i = 0; i < AR9300_MAX_CHAINS; i++) { if (ah->rxchainmask & BIT(i)) { nf = MS(REG_READ(ah, ah->nf_regs[i]), AR_PHY_CH_MINCCA_PWR); nfarray[i] = sign_extend32(nf, 8); if (IS_CHAN_HT40(ah->curchan)) { u8 ext_idx = AR9300_MAX_CHAINS + i; nf = MS(REG_READ(ah, ah->nf_regs[ext_idx]), AR_PHY_CH_EXT_MINCCA_PWR); nfarray[ext_idx] = sign_extend32(nf, 8); } } } } static void ar9003_hw_set_nf_limits(struct ath_hw *ah) { ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9300_2GHZ; ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_9300_2GHZ; ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9300_2GHZ; ah->nf_5g.max = AR_PHY_CCA_MAX_GOOD_VAL_9300_5GHZ; ah->nf_5g.min = AR_PHY_CCA_MIN_GOOD_VAL_9300_5GHZ; ah->nf_5g.nominal = AR_PHY_CCA_NOM_VAL_9300_5GHZ; if (AR_SREV_9330(ah)) ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9330_2GHZ; if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) { ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_9462_2GHZ; ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9462_2GHZ; ah->nf_5g.min = AR_PHY_CCA_MIN_GOOD_VAL_9462_5GHZ; ah->nf_5g.nominal = AR_PHY_CCA_NOM_VAL_9462_5GHZ; } } /* * Initialize the ANI register values with default (ini) values. * This routine is called during a (full) hardware reset after * all the registers are initialised from the INI. */ static void ar9003_hw_ani_cache_ini_regs(struct ath_hw *ah) { struct ar5416AniState *aniState; struct ath_common *common = ath9k_hw_common(ah); struct ath9k_channel *chan = ah->curchan; struct ath9k_ani_default *iniDef; u32 val; aniState = &ah->ani; iniDef = &aniState->iniDef; ath_dbg(common, ANI, "ver %d.%d opmode %u chan %d Mhz\n", ah->hw_version.macVersion, ah->hw_version.macRev, ah->opmode, chan->channel); val = REG_READ(ah, AR_PHY_SFCORR); iniDef->m1Thresh = MS(val, AR_PHY_SFCORR_M1_THRESH); iniDef->m2Thresh = MS(val, AR_PHY_SFCORR_M2_THRESH); iniDef->m2CountThr = MS(val, AR_PHY_SFCORR_M2COUNT_THR); val = REG_READ(ah, AR_PHY_SFCORR_LOW); iniDef->m1ThreshLow = MS(val, AR_PHY_SFCORR_LOW_M1_THRESH_LOW); iniDef->m2ThreshLow = MS(val, AR_PHY_SFCORR_LOW_M2_THRESH_LOW); iniDef->m2CountThrLow = MS(val, AR_PHY_SFCORR_LOW_M2COUNT_THR_LOW); val = REG_READ(ah, AR_PHY_SFCORR_EXT); iniDef->m1ThreshExt = MS(val, AR_PHY_SFCORR_EXT_M1_THRESH); iniDef->m2ThreshExt = MS(val, AR_PHY_SFCORR_EXT_M2_THRESH); iniDef->m1ThreshLowExt = MS(val, AR_PHY_SFCORR_EXT_M1_THRESH_LOW); iniDef->m2ThreshLowExt = MS(val, AR_PHY_SFCORR_EXT_M2_THRESH_LOW); iniDef->firstep = REG_READ_FIELD(ah, AR_PHY_FIND_SIG, AR_PHY_FIND_SIG_FIRSTEP); iniDef->firstepLow = REG_READ_FIELD(ah, AR_PHY_FIND_SIG_LOW, AR_PHY_FIND_SIG_LOW_FIRSTEP_LOW); iniDef->cycpwrThr1 = REG_READ_FIELD(ah, AR_PHY_TIMING5, AR_PHY_TIMING5_CYCPWR_THR1); iniDef->cycpwrThr1Ext = REG_READ_FIELD(ah, AR_PHY_EXT_CCA, AR_PHY_EXT_CYCPWR_THR1); /* these levels just got reset to defaults by the INI */ aniState->spurImmunityLevel = ATH9K_ANI_SPUR_IMMUNE_LVL; aniState->firstepLevel = ATH9K_ANI_FIRSTEP_LVL; aniState->ofdmWeakSigDetect = true; aniState->mrcCCK = true; } static void ar9003_hw_set_radar_params(struct ath_hw *ah, struct ath_hw_radar_conf *conf) { unsigned int regWrites = 0; u32 radar_0 = 0, radar_1; if (!conf) { REG_CLR_BIT(ah, AR_PHY_RADAR_0, AR_PHY_RADAR_0_ENA); return; } radar_0 |= AR_PHY_RADAR_0_ENA | AR_PHY_RADAR_0_FFT_ENA; radar_0 |= SM(conf->fir_power, AR_PHY_RADAR_0_FIRPWR); radar_0 |= SM(conf->radar_rssi, AR_PHY_RADAR_0_RRSSI); radar_0 |= SM(conf->pulse_height, AR_PHY_RADAR_0_HEIGHT); radar_0 |= SM(conf->pulse_rssi, AR_PHY_RADAR_0_PRSSI); radar_0 |= SM(conf->pulse_inband, AR_PHY_RADAR_0_INBAND); radar_1 = REG_READ(ah, AR_PHY_RADAR_1); radar_1 &= ~(AR_PHY_RADAR_1_MAXLEN | AR_PHY_RADAR_1_RELSTEP_THRESH | AR_PHY_RADAR_1_RELPWR_THRESH); radar_1 |= AR_PHY_RADAR_1_MAX_RRSSI; radar_1 |= AR_PHY_RADAR_1_BLOCK_CHECK; radar_1 |= SM(conf->pulse_maxlen, AR_PHY_RADAR_1_MAXLEN); radar_1 |= SM(conf->pulse_inband_step, AR_PHY_RADAR_1_RELSTEP_THRESH); radar_1 |= SM(conf->radar_inband, AR_PHY_RADAR_1_RELPWR_THRESH); REG_WRITE(ah, AR_PHY_RADAR_0, radar_0); REG_WRITE(ah, AR_PHY_RADAR_1, radar_1); if (conf->ext_channel) REG_SET_BIT(ah, AR_PHY_RADAR_EXT, AR_PHY_RADAR_EXT_ENA); else REG_CLR_BIT(ah, AR_PHY_RADAR_EXT, AR_PHY_RADAR_EXT_ENA); if (AR_SREV_9300(ah) || AR_SREV_9340(ah) || AR_SREV_9580(ah)) { REG_WRITE_ARRAY(&ah->ini_dfs, IS_CHAN_HT40(ah->curchan) ? 2 : 1, regWrites); } } static void ar9003_hw_set_radar_conf(struct ath_hw *ah) { struct ath_hw_radar_conf *conf = &ah->radar_conf; conf->fir_power = -28; conf->radar_rssi = 0; conf->pulse_height = 10; conf->pulse_rssi = 15; conf->pulse_inband = 8; conf->pulse_maxlen = 255; conf->pulse_inband_step = 12; conf->radar_inband = 8; } static void ar9003_hw_antdiv_comb_conf_get(struct ath_hw *ah, struct ath_hw_antcomb_conf *antconf) { u32 regval; regval = REG_READ(ah, AR_PHY_MC_GAIN_CTRL); antconf->main_lna_conf = (regval & AR_PHY_ANT_DIV_MAIN_LNACONF) >> AR_PHY_ANT_DIV_MAIN_LNACONF_S; antconf->alt_lna_conf = (regval & AR_PHY_ANT_DIV_ALT_LNACONF) >> AR_PHY_ANT_DIV_ALT_LNACONF_S; antconf->fast_div_bias = (regval & AR_PHY_ANT_FAST_DIV_BIAS) >> AR_PHY_ANT_FAST_DIV_BIAS_S; if (AR_SREV_9330_11(ah)) { antconf->lna1_lna2_switch_delta = -1; antconf->lna1_lna2_delta = -9; antconf->div_group = 1; } else if (AR_SREV_9485(ah)) { antconf->lna1_lna2_switch_delta = -1; antconf->lna1_lna2_delta = -9; antconf->div_group = 2; } else if (AR_SREV_9565(ah)) { antconf->lna1_lna2_switch_delta = 3; antconf->lna1_lna2_delta = -9; antconf->div_group = 3; } else { antconf->lna1_lna2_switch_delta = -1; antconf->lna1_lna2_delta = -3; antconf->div_group = 0; } } static void ar9003_hw_antdiv_comb_conf_set(struct ath_hw *ah, struct ath_hw_antcomb_conf *antconf) { u32 regval; regval = REG_READ(ah, AR_PHY_MC_GAIN_CTRL); regval &= ~(AR_PHY_ANT_DIV_MAIN_LNACONF | AR_PHY_ANT_DIV_ALT_LNACONF | AR_PHY_ANT_FAST_DIV_BIAS | AR_PHY_ANT_DIV_MAIN_GAINTB | AR_PHY_ANT_DIV_ALT_GAINTB); regval |= ((antconf->main_lna_conf << AR_PHY_ANT_DIV_MAIN_LNACONF_S) & AR_PHY_ANT_DIV_MAIN_LNACONF); regval |= ((antconf->alt_lna_conf << AR_PHY_ANT_DIV_ALT_LNACONF_S) & AR_PHY_ANT_DIV_ALT_LNACONF); regval |= ((antconf->fast_div_bias << AR_PHY_ANT_FAST_DIV_BIAS_S) & AR_PHY_ANT_FAST_DIV_BIAS); regval |= ((antconf->main_gaintb << AR_PHY_ANT_DIV_MAIN_GAINTB_S) & AR_PHY_ANT_DIV_MAIN_GAINTB); regval |= ((antconf->alt_gaintb << AR_PHY_ANT_DIV_ALT_GAINTB_S) & AR_PHY_ANT_DIV_ALT_GAINTB); REG_WRITE(ah, AR_PHY_MC_GAIN_CTRL, regval); } #ifdef CONFIG_ATH9K_BTCOEX_SUPPORT static void ar9003_hw_set_bt_ant_diversity(struct ath_hw *ah, bool enable) { struct ath9k_hw_capabilities *pCap = &ah->caps; u8 ant_div_ctl1; u32 regval; if (!AR_SREV_9485(ah) && !AR_SREV_9565(ah)) return; if (AR_SREV_9485(ah)) { regval = ar9003_hw_ant_ctrl_common_2_get(ah, IS_CHAN_2GHZ(ah->curchan)); if (enable) { regval &= ~AR_SWITCH_TABLE_COM2_ALL; regval |= ah->config.ant_ctrl_comm2g_switch_enable; } REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM_2, AR_SWITCH_TABLE_COM2_ALL, regval); } ant_div_ctl1 = ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1); /* * Set MAIN/ALT LNA conf. * Set MAIN/ALT gain_tb. */ regval = REG_READ(ah, AR_PHY_MC_GAIN_CTRL); regval &= (~AR_ANT_DIV_CTRL_ALL); regval |= (ant_div_ctl1 & 0x3f) << AR_ANT_DIV_CTRL_ALL_S; REG_WRITE(ah, AR_PHY_MC_GAIN_CTRL, regval); if (AR_SREV_9485_11_OR_LATER(ah)) { /* * Enable LNA diversity. */ regval = REG_READ(ah, AR_PHY_MC_GAIN_CTRL); regval &= ~AR_PHY_ANT_DIV_LNADIV; regval |= ((ant_div_ctl1 >> 6) & 0x1) << AR_PHY_ANT_DIV_LNADIV_S; if (enable) regval |= AR_ANT_DIV_ENABLE; REG_WRITE(ah, AR_PHY_MC_GAIN_CTRL, regval); /* * Enable fast antenna diversity. */ regval = REG_READ(ah, AR_PHY_CCK_DETECT); regval &= ~AR_FAST_DIV_ENABLE; regval |= ((ant_div_ctl1 >> 7) & 0x1) << AR_FAST_DIV_ENABLE_S; if (enable) regval |= AR_FAST_DIV_ENABLE; REG_WRITE(ah, AR_PHY_CCK_DETECT, regval); if (pCap->hw_caps & ATH9K_HW_CAP_ANT_DIV_COMB) { regval = REG_READ(ah, AR_PHY_MC_GAIN_CTRL); regval &= (~(AR_PHY_ANT_DIV_MAIN_LNACONF | AR_PHY_ANT_DIV_ALT_LNACONF | AR_PHY_ANT_DIV_ALT_GAINTB | AR_PHY_ANT_DIV_MAIN_GAINTB)); /* * Set MAIN to LNA1 and ALT to LNA2 at the * beginning. */ regval |= (ATH_ANT_DIV_COMB_LNA1 << AR_PHY_ANT_DIV_MAIN_LNACONF_S); regval |= (ATH_ANT_DIV_COMB_LNA2 << AR_PHY_ANT_DIV_ALT_LNACONF_S); REG_WRITE(ah, AR_PHY_MC_GAIN_CTRL, regval); } } else if (AR_SREV_9565(ah)) { if (enable) { REG_SET_BIT(ah, AR_PHY_MC_GAIN_CTRL, AR_ANT_DIV_ENABLE); REG_SET_BIT(ah, AR_PHY_MC_GAIN_CTRL, (1 << AR_PHY_ANT_SW_RX_PROT_S)); REG_SET_BIT(ah, AR_PHY_CCK_DETECT, AR_FAST_DIV_ENABLE); REG_SET_BIT(ah, AR_PHY_RESTART, AR_PHY_RESTART_ENABLE_DIV_M2FLAG); REG_SET_BIT(ah, AR_BTCOEX_WL_LNADIV, AR_BTCOEX_WL_LNADIV_FORCE_ON); } else { REG_CLR_BIT(ah, AR_PHY_MC_GAIN_CTRL, AR_ANT_DIV_ENABLE); REG_CLR_BIT(ah, AR_PHY_MC_GAIN_CTRL, (1 << AR_PHY_ANT_SW_RX_PROT_S)); REG_CLR_BIT(ah, AR_PHY_CCK_DETECT, AR_FAST_DIV_ENABLE); REG_CLR_BIT(ah, AR_PHY_RESTART, AR_PHY_RESTART_ENABLE_DIV_M2FLAG); REG_CLR_BIT(ah, AR_BTCOEX_WL_LNADIV, AR_BTCOEX_WL_LNADIV_FORCE_ON); regval = REG_READ(ah, AR_PHY_MC_GAIN_CTRL); regval &= ~(AR_PHY_ANT_DIV_MAIN_LNACONF | AR_PHY_ANT_DIV_ALT_LNACONF | AR_PHY_ANT_DIV_MAIN_GAINTB | AR_PHY_ANT_DIV_ALT_GAINTB); regval |= (ATH_ANT_DIV_COMB_LNA1 << AR_PHY_ANT_DIV_MAIN_LNACONF_S); regval |= (ATH_ANT_DIV_COMB_LNA2 << AR_PHY_ANT_DIV_ALT_LNACONF_S); REG_WRITE(ah, AR_PHY_MC_GAIN_CTRL, regval); } } } #endif static int ar9003_hw_fast_chan_change(struct ath_hw *ah, struct ath9k_channel *chan, u8 *ini_reloaded) { unsigned int regWrites = 0; u32 modesIndex, txgain_index; if (IS_CHAN_5GHZ(chan)) modesIndex = IS_CHAN_HT40(chan) ? 2 : 1; else modesIndex = IS_CHAN_HT40(chan) ? 3 : 4; txgain_index = AR_SREV_9531(ah) ? 1 : modesIndex; if (modesIndex == ah->modes_index) { *ini_reloaded = false; goto set_rfmode; } ar9003_hw_prog_ini(ah, &ah->iniSOC[ATH_INI_POST], modesIndex); ar9003_hw_prog_ini(ah, &ah->iniMac[ATH_INI_POST], modesIndex); ar9003_hw_prog_ini(ah, &ah->iniBB[ATH_INI_POST], modesIndex); ar9003_hw_prog_ini(ah, &ah->iniRadio[ATH_INI_POST], modesIndex); if (AR_SREV_9462_20_OR_LATER(ah)) ar9003_hw_prog_ini(ah, &ah->ini_radio_post_sys2ant, modesIndex); REG_WRITE_ARRAY(&ah->iniModesTxGain, txgain_index, regWrites); if (AR_SREV_9462_20_OR_LATER(ah)) { /* * CUS217 mix LNA mode. */ if (ar9003_hw_get_rx_gain_idx(ah) == 2) { REG_WRITE_ARRAY(&ah->ini_modes_rxgain_bb_core, 1, regWrites); REG_WRITE_ARRAY(&ah->ini_modes_rxgain_bb_postamble, modesIndex, regWrites); } } /* * For 5GHz channels requiring Fast Clock, apply * different modal values. */ if (IS_CHAN_A_FAST_CLOCK(ah, chan)) REG_WRITE_ARRAY(&ah->iniModesFastClock, modesIndex, regWrites); if (AR_SREV_9565(ah)) REG_WRITE_ARRAY(&ah->iniModesFastClock, 1, regWrites); /* * JAPAN regulatory. */ if (chan->channel == 2484) ar9003_hw_prog_ini(ah, &ah->iniCckfirJapan2484, 1); ah->modes_index = modesIndex; *ini_reloaded = true; set_rfmode: ar9003_hw_set_rfmode(ah, chan); return 0; } static void ar9003_hw_spectral_scan_config(struct ath_hw *ah, struct ath_spec_scan *param) { u8 count; if (!param->enabled) { REG_CLR_BIT(ah, AR_PHY_SPECTRAL_SCAN, AR_PHY_SPECTRAL_SCAN_ENABLE); return; } REG_SET_BIT(ah, AR_PHY_RADAR_0, AR_PHY_RADAR_0_FFT_ENA); REG_SET_BIT(ah, AR_PHY_SPECTRAL_SCAN, AR_PHY_SPECTRAL_SCAN_ENABLE); /* on AR93xx and newer, count = 0 will make the the chip send * spectral samples endlessly. Check if this really was intended, * and fix otherwise. */ count = param->count; if (param->endless) count = 0; else if (param->count == 0) count = 1; if (param->short_repeat) REG_SET_BIT(ah, AR_PHY_SPECTRAL_SCAN, AR_PHY_SPECTRAL_SCAN_SHORT_REPEAT); else REG_CLR_BIT(ah, AR_PHY_SPECTRAL_SCAN, AR_PHY_SPECTRAL_SCAN_SHORT_REPEAT); REG_RMW_FIELD(ah, AR_PHY_SPECTRAL_SCAN, AR_PHY_SPECTRAL_SCAN_COUNT, count); REG_RMW_FIELD(ah, AR_PHY_SPECTRAL_SCAN, AR_PHY_SPECTRAL_SCAN_PERIOD, param->period); REG_RMW_FIELD(ah, AR_PHY_SPECTRAL_SCAN, AR_PHY_SPECTRAL_SCAN_FFT_PERIOD, param->fft_period); return; } static void ar9003_hw_spectral_scan_trigger(struct ath_hw *ah) { REG_SET_BIT(ah, AR_PHY_SPECTRAL_SCAN, AR_PHY_SPECTRAL_SCAN_ENABLE); /* Activate spectral scan */ REG_SET_BIT(ah, AR_PHY_SPECTRAL_SCAN, AR_PHY_SPECTRAL_SCAN_ACTIVE); } static void ar9003_hw_spectral_scan_wait(struct ath_hw *ah) { struct ath_common *common = ath9k_hw_common(ah); /* Poll for spectral scan complete */ if (!ath9k_hw_wait(ah, AR_PHY_SPECTRAL_SCAN, AR_PHY_SPECTRAL_SCAN_ACTIVE, 0, AH_WAIT_TIMEOUT)) { ath_err(common, "spectral scan wait failed\n"); return; } } static void ar9003_hw_tx99_start(struct ath_hw *ah, u32 qnum) { REG_SET_BIT(ah, AR_PHY_TEST, PHY_AGC_CLR); REG_CLR_BIT(ah, AR_DIAG_SW, AR_DIAG_RX_DIS); REG_WRITE(ah, AR_CR, AR_CR_RXD); REG_WRITE(ah, AR_DLCL_IFS(qnum), 0); REG_WRITE(ah, AR_D_GBL_IFS_SIFS, 20); /* 50 OK */ REG_WRITE(ah, AR_D_GBL_IFS_EIFS, 20); REG_WRITE(ah, AR_TIME_OUT, 0x00000400); REG_WRITE(ah, AR_DRETRY_LIMIT(qnum), 0xffffffff); REG_SET_BIT(ah, AR_QMISC(qnum), AR_Q_MISC_DCU_EARLY_TERM_REQ); } static void ar9003_hw_tx99_stop(struct ath_hw *ah) { REG_CLR_BIT(ah, AR_PHY_TEST, PHY_AGC_CLR); REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_RX_DIS); } static void ar9003_hw_tx99_set_txpower(struct ath_hw *ah, u8 txpower) { static u8 p_pwr_array[ar9300RateSize] = { 0 }; unsigned int i; txpower = txpower <= MAX_RATE_POWER ? txpower : MAX_RATE_POWER; for (i = 0; i < ar9300RateSize; i++) p_pwr_array[i] = txpower; ar9003_hw_tx_power_regwrite(ah, p_pwr_array); } static void ar9003_hw_init_txpower_cck(struct ath_hw *ah, u8 *rate_array) { ah->tx_power[0] = rate_array[ALL_TARGET_LEGACY_1L_5L]; ah->tx_power[1] = rate_array[ALL_TARGET_LEGACY_1L_5L]; ah->tx_power[2] = min(rate_array[ALL_TARGET_LEGACY_1L_5L], rate_array[ALL_TARGET_LEGACY_5S]); ah->tx_power[3] = min(rate_array[ALL_TARGET_LEGACY_11L], rate_array[ALL_TARGET_LEGACY_11S]); } static void ar9003_hw_init_txpower_ofdm(struct ath_hw *ah, u8 *rate_array, int offset) { int i, j; for (i = offset; i < offset + AR9300_OFDM_RATES; i++) { /* OFDM rate to power table idx */ j = ofdm2pwr[i - offset]; ah->tx_power[i] = rate_array[j]; } } static void ar9003_hw_init_txpower_ht(struct ath_hw *ah, u8 *rate_array, int ss_offset, int ds_offset, int ts_offset, bool is_40) { int i, j, mcs_idx = 0; const u8 *mcs2pwr = (is_40) ? mcs2pwr_ht40 : mcs2pwr_ht20; for (i = ss_offset; i < ss_offset + AR9300_HT_SS_RATES; i++) { j = mcs2pwr[mcs_idx]; ah->tx_power[i] = rate_array[j]; mcs_idx++; } for (i = ds_offset; i < ds_offset + AR9300_HT_DS_RATES; i++) { j = mcs2pwr[mcs_idx]; ah->tx_power[i] = rate_array[j]; mcs_idx++; } for (i = ts_offset; i < ts_offset + AR9300_HT_TS_RATES; i++) { j = mcs2pwr[mcs_idx]; ah->tx_power[i] = rate_array[j]; mcs_idx++; } } static void ar9003_hw_init_txpower_stbc(struct ath_hw *ah, int ss_offset, int ds_offset, int ts_offset) { memcpy(&ah->tx_power_stbc[ss_offset], &ah->tx_power[ss_offset], AR9300_HT_SS_RATES); memcpy(&ah->tx_power_stbc[ds_offset], &ah->tx_power[ds_offset], AR9300_HT_DS_RATES); memcpy(&ah->tx_power_stbc[ts_offset], &ah->tx_power[ts_offset], AR9300_HT_TS_RATES); } void ar9003_hw_init_rate_txpower(struct ath_hw *ah, u8 *rate_array, struct ath9k_channel *chan) { if (IS_CHAN_5GHZ(chan)) { ar9003_hw_init_txpower_ofdm(ah, rate_array, AR9300_11NA_OFDM_SHIFT); if (IS_CHAN_HT20(chan) || IS_CHAN_HT40(chan)) { ar9003_hw_init_txpower_ht(ah, rate_array, AR9300_11NA_HT_SS_SHIFT, AR9300_11NA_HT_DS_SHIFT, AR9300_11NA_HT_TS_SHIFT, IS_CHAN_HT40(chan)); ar9003_hw_init_txpower_stbc(ah, AR9300_11NA_HT_SS_SHIFT, AR9300_11NA_HT_DS_SHIFT, AR9300_11NA_HT_TS_SHIFT); } } else { ar9003_hw_init_txpower_cck(ah, rate_array); ar9003_hw_init_txpower_ofdm(ah, rate_array, AR9300_11NG_OFDM_SHIFT); if (IS_CHAN_HT20(chan) || IS_CHAN_HT40(chan)) { ar9003_hw_init_txpower_ht(ah, rate_array, AR9300_11NG_HT_SS_SHIFT, AR9300_11NG_HT_DS_SHIFT, AR9300_11NG_HT_TS_SHIFT, IS_CHAN_HT40(chan)); ar9003_hw_init_txpower_stbc(ah, AR9300_11NG_HT_SS_SHIFT, AR9300_11NG_HT_DS_SHIFT, AR9300_11NG_HT_TS_SHIFT); } } } void ar9003_hw_attach_phy_ops(struct ath_hw *ah) { struct ath_hw_private_ops *priv_ops = ath9k_hw_private_ops(ah); struct ath_hw_ops *ops = ath9k_hw_ops(ah); static const u32 ar9300_cca_regs[6] = { AR_PHY_CCA_0, AR_PHY_CCA_1, AR_PHY_CCA_2, AR_PHY_EXT_CCA, AR_PHY_EXT_CCA_1, AR_PHY_EXT_CCA_2, }; priv_ops->rf_set_freq = ar9003_hw_set_channel; priv_ops->spur_mitigate_freq = ar9003_hw_spur_mitigate; if (AR_SREV_9340(ah) || AR_SREV_9550(ah) || AR_SREV_9531(ah) || AR_SREV_9561(ah)) priv_ops->compute_pll_control = ar9003_hw_compute_pll_control_soc; else priv_ops->compute_pll_control = ar9003_hw_compute_pll_control; priv_ops->set_channel_regs = ar9003_hw_set_channel_regs; priv_ops->init_bb = ar9003_hw_init_bb; priv_ops->process_ini = ar9003_hw_process_ini; priv_ops->set_rfmode = ar9003_hw_set_rfmode; priv_ops->mark_phy_inactive = ar9003_hw_mark_phy_inactive; priv_ops->set_delta_slope = ar9003_hw_set_delta_slope; priv_ops->rfbus_req = ar9003_hw_rfbus_req; priv_ops->rfbus_done = ar9003_hw_rfbus_done; priv_ops->ani_control = ar9003_hw_ani_control; priv_ops->do_getnf = ar9003_hw_do_getnf; priv_ops->ani_cache_ini_regs = ar9003_hw_ani_cache_ini_regs; priv_ops->set_radar_params = ar9003_hw_set_radar_params; priv_ops->fast_chan_change = ar9003_hw_fast_chan_change; ops->antdiv_comb_conf_get = ar9003_hw_antdiv_comb_conf_get; ops->antdiv_comb_conf_set = ar9003_hw_antdiv_comb_conf_set; ops->spectral_scan_config = ar9003_hw_spectral_scan_config; ops->spectral_scan_trigger = ar9003_hw_spectral_scan_trigger; ops->spectral_scan_wait = ar9003_hw_spectral_scan_wait; #ifdef CONFIG_ATH9K_BTCOEX_SUPPORT ops->set_bt_ant_diversity = ar9003_hw_set_bt_ant_diversity; #endif ops->tx99_start = ar9003_hw_tx99_start; ops->tx99_stop = ar9003_hw_tx99_stop; ops->tx99_set_txpower = ar9003_hw_tx99_set_txpower; ar9003_hw_set_nf_limits(ah); ar9003_hw_set_radar_conf(ah); memcpy(ah->nf_regs, ar9300_cca_regs, sizeof(ah->nf_regs)); } /* * Baseband Watchdog signatures: * * 0x04000539: BB hang when operating in HT40 DFS Channel. * Full chip reset is not required, but a recovery * mechanism is needed. * * 0x1300000a: Related to CAC deafness. * Chip reset is not required. * * 0x0400000a: Related to CAC deafness. * Full chip reset is required. * * 0x04000b09: RX state machine gets into an illegal state * when a packet with unsupported rate is received. * Full chip reset is required and PHY_RESTART has * to be disabled. * * 0x04000409: Packet stuck on receive. * Full chip reset is required for all chips except * AR9340, AR9531 and AR9561. */ /* * ar9003_hw_bb_watchdog_check(): Returns true if a chip reset is required. */ bool ar9003_hw_bb_watchdog_check(struct ath_hw *ah) { u32 val; switch(ah->bb_watchdog_last_status) { case 0x04000539: val = REG_READ(ah, AR_PHY_RADAR_0); val &= (~AR_PHY_RADAR_0_FIRPWR); val |= SM(0x7f, AR_PHY_RADAR_0_FIRPWR); REG_WRITE(ah, AR_PHY_RADAR_0, val); udelay(1); val = REG_READ(ah, AR_PHY_RADAR_0); val &= ~AR_PHY_RADAR_0_FIRPWR; val |= SM(AR9300_DFS_FIRPWR, AR_PHY_RADAR_0_FIRPWR); REG_WRITE(ah, AR_PHY_RADAR_0, val); return false; case 0x1300000a: return false; case 0x0400000a: case 0x04000b09: return true; case 0x04000409: if (AR_SREV_9340(ah) || AR_SREV_9531(ah) || AR_SREV_9561(ah)) return false; else return true; default: /* * For any other unknown signatures, do a * full chip reset. */ return true; } } EXPORT_SYMBOL(ar9003_hw_bb_watchdog_check); void ar9003_hw_bb_watchdog_config(struct ath_hw *ah) { struct ath_common *common = ath9k_hw_common(ah); u32 idle_tmo_ms = ah->bb_watchdog_timeout_ms; u32 val, idle_count; if (!idle_tmo_ms) { /* disable IRQ, disable chip-reset for BB panic */ REG_WRITE(ah, AR_PHY_WATCHDOG_CTL_2, REG_READ(ah, AR_PHY_WATCHDOG_CTL_2) & ~(AR_PHY_WATCHDOG_RST_ENABLE | AR_PHY_WATCHDOG_IRQ_ENABLE)); /* disable watchdog in non-IDLE mode, disable in IDLE mode */ REG_WRITE(ah, AR_PHY_WATCHDOG_CTL_1, REG_READ(ah, AR_PHY_WATCHDOG_CTL_1) & ~(AR_PHY_WATCHDOG_NON_IDLE_ENABLE | AR_PHY_WATCHDOG_IDLE_ENABLE)); ath_dbg(common, RESET, "Disabled BB Watchdog\n"); return; } /* enable IRQ, disable chip-reset for BB watchdog */ val = REG_READ(ah, AR_PHY_WATCHDOG_CTL_2) & AR_PHY_WATCHDOG_CNTL2_MASK; REG_WRITE(ah, AR_PHY_WATCHDOG_CTL_2, (val | AR_PHY_WATCHDOG_IRQ_ENABLE) & ~AR_PHY_WATCHDOG_RST_ENABLE); /* bound limit to 10 secs */ if (idle_tmo_ms > 10000) idle_tmo_ms = 10000; /* * The time unit for watchdog event is 2^15 44/88MHz cycles. * * For HT20 we have a time unit of 2^15/44 MHz = .74 ms per tick * For HT40 we have a time unit of 2^15/88 MHz = .37 ms per tick * * Given we use fast clock now in 5 GHz, these time units should * be common for both 2 GHz and 5 GHz. */ idle_count = (100 * idle_tmo_ms) / 74; if (ah->curchan && IS_CHAN_HT40(ah->curchan)) idle_count = (100 * idle_tmo_ms) / 37; /* * enable watchdog in non-IDLE mode, disable in IDLE mode, * set idle time-out. */ REG_WRITE(ah, AR_PHY_WATCHDOG_CTL_1, AR_PHY_WATCHDOG_NON_IDLE_ENABLE | AR_PHY_WATCHDOG_IDLE_MASK | (AR_PHY_WATCHDOG_NON_IDLE_MASK & (idle_count << 2))); ath_dbg(common, RESET, "Enabled BB Watchdog timeout (%u ms)\n", idle_tmo_ms); } void ar9003_hw_bb_watchdog_read(struct ath_hw *ah) { /* * we want to avoid printing in ISR context so we save the * watchdog status to be printed later in bottom half context. */ ah->bb_watchdog_last_status = REG_READ(ah, AR_PHY_WATCHDOG_STATUS); /* * the watchdog timer should reset on status read but to be sure * sure we write 0 to the watchdog status bit. */ REG_WRITE(ah, AR_PHY_WATCHDOG_STATUS, ah->bb_watchdog_last_status & ~AR_PHY_WATCHDOG_STATUS_CLR); } void ar9003_hw_bb_watchdog_dbg_info(struct ath_hw *ah) { struct ath_common *common = ath9k_hw_common(ah); u32 status; if (likely(!(common->debug_mask & ATH_DBG_RESET))) return; status = ah->bb_watchdog_last_status; ath_dbg(common, RESET, "\n==== BB update: BB status=0x%08x ====\n", status); ath_dbg(common, RESET, "** BB state: wd=%u det=%u rdar=%u rOFDM=%d rCCK=%u tOFDM=%u tCCK=%u agc=%u src=%u **\n", MS(status, AR_PHY_WATCHDOG_INFO), MS(status, AR_PHY_WATCHDOG_DET_HANG), MS(status, AR_PHY_WATCHDOG_RADAR_SM), MS(status, AR_PHY_WATCHDOG_RX_OFDM_SM), MS(status, AR_PHY_WATCHDOG_RX_CCK_SM), MS(status, AR_PHY_WATCHDOG_TX_OFDM_SM), MS(status, AR_PHY_WATCHDOG_TX_CCK_SM), MS(status, AR_PHY_WATCHDOG_AGC_SM), MS(status, AR_PHY_WATCHDOG_SRCH_SM)); ath_dbg(common, RESET, "** BB WD cntl: cntl1=0x%08x cntl2=0x%08x **\n", REG_READ(ah, AR_PHY_WATCHDOG_CTL_1), REG_READ(ah, AR_PHY_WATCHDOG_CTL_2)); ath_dbg(common, RESET, "** BB mode: BB_gen_controls=0x%08x **\n", REG_READ(ah, AR_PHY_GEN_CTRL)); #define PCT(_field) (common->cc_survey._field * 100 / common->cc_survey.cycles) if (common->cc_survey.cycles) ath_dbg(common, RESET, "** BB busy times: rx_clear=%d%%, rx_frame=%d%%, tx_frame=%d%% **\n", PCT(rx_busy), PCT(rx_frame), PCT(tx_frame)); ath_dbg(common, RESET, "==== BB update: done ====\n\n"); } EXPORT_SYMBOL(ar9003_hw_bb_watchdog_dbg_info); void ar9003_hw_disable_phy_restart(struct ath_hw *ah) { u8 result; u32 val; /* While receiving unsupported rate frame rx state machine * gets into a state 0xb and if phy_restart happens in that * state, BB would go hang. If RXSM is in 0xb state after * first bb panic, ensure to disable the phy_restart. */ result = MS(ah->bb_watchdog_last_status, AR_PHY_WATCHDOG_RX_OFDM_SM); if ((result == 0xb) || ah->bb_hang_rx_ofdm) { ah->bb_hang_rx_ofdm = true; val = REG_READ(ah, AR_PHY_RESTART); val &= ~AR_PHY_RESTART_ENA; REG_WRITE(ah, AR_PHY_RESTART, val); } } EXPORT_SYMBOL(ar9003_hw_disable_phy_restart);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1