Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Sujith Manoharan | 2615 | 45.72% | 40 | 25.97% |
Felix Fietkau | 1079 | 18.86% | 35 | 22.73% |
Martin Blumenstingl | 343 | 6.00% | 3 | 1.95% |
Rajkumar Manoharan | 300 | 5.24% | 11 | 7.14% |
Oleksij Rempel | 282 | 4.93% | 8 | 5.19% |
Gabor Juhos | 215 | 3.76% | 1 | 0.65% |
AceLan Kao | 195 | 3.41% | 1 | 0.65% |
Johannes Berg | 115 | 2.01% | 5 | 3.25% |
Vasanthakumar Thiagarajan | 87 | 1.52% | 3 | 1.95% |
Simon Wunderlich | 83 | 1.45% | 5 | 3.25% |
Zefir Kurtisi | 61 | 1.07% | 3 | 1.95% |
Vittorio Gambaletta (VittGam) | 42 | 0.73% | 1 | 0.65% |
Janusz Dziedzic | 40 | 0.70% | 2 | 1.30% |
Luis R. Rodriguez | 39 | 0.68% | 4 | 2.60% |
Ben Greear | 37 | 0.65% | 3 | 1.95% |
Timothy Redaelli | 24 | 0.42% | 1 | 0.65% |
Jouni Malinen | 24 | 0.42% | 3 | 1.95% |
Toke Höiland-Jörgensen | 22 | 0.38% | 2 | 1.30% |
Russell Hu | 21 | 0.37% | 1 | 0.65% |
Vivek Natarajan | 19 | 0.33% | 1 | 0.65% |
Joe Perches | 17 | 0.30% | 5 | 3.25% |
Mohammed Shafi Shajakhan | 15 | 0.26% | 3 | 1.95% |
Andrzej Zaborowski | 9 | 0.16% | 1 | 0.65% |
Pawel Kulakowski | 7 | 0.12% | 1 | 0.65% |
Jan Kaisrlik | 5 | 0.09% | 1 | 0.65% |
Kees Cook | 4 | 0.07% | 1 | 0.65% |
Alexey Dobriyan | 3 | 0.05% | 1 | 0.65% |
Tejun Heo | 3 | 0.05% | 1 | 0.65% |
Paul Gortmaker | 3 | 0.05% | 1 | 0.65% |
John W. Linville | 3 | 0.05% | 1 | 0.65% |
Fengguang Wu | 3 | 0.05% | 1 | 0.65% |
Eric Xu | 2 | 0.03% | 1 | 0.65% |
Benjamin Berg | 1 | 0.02% | 1 | 0.65% |
Masahiro Yamada | 1 | 0.02% | 1 | 0.65% |
Bhumika Goyal | 1 | 0.02% | 1 | 0.65% |
Total | 5720 | 154 |
/* * Copyright (c) 2008-2011 Atheros Communications Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/dma-mapping.h> #include <linux/slab.h> #include <linux/ath9k_platform.h> #include <linux/module.h> #include <linux/of.h> #include <linux/of_net.h> #include <linux/relay.h> #include <linux/dmi.h> #include <net/ieee80211_radiotap.h> #include "ath9k.h" struct ath9k_eeprom_ctx { struct completion complete; struct ath_hw *ah; }; static char *dev_info = "ath9k"; MODULE_AUTHOR("Atheros Communications"); MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards."); MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards"); MODULE_LICENSE("Dual BSD/GPL"); static unsigned int ath9k_debug = ATH_DBG_DEFAULT; module_param_named(debug, ath9k_debug, uint, 0); MODULE_PARM_DESC(debug, "Debugging mask"); int ath9k_modparam_nohwcrypt; module_param_named(nohwcrypt, ath9k_modparam_nohwcrypt, int, 0444); MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption"); int ath9k_led_blink; module_param_named(blink, ath9k_led_blink, int, 0444); MODULE_PARM_DESC(blink, "Enable LED blink on activity"); static int ath9k_led_active_high = -1; module_param_named(led_active_high, ath9k_led_active_high, int, 0444); MODULE_PARM_DESC(led_active_high, "Invert LED polarity"); static int ath9k_btcoex_enable; module_param_named(btcoex_enable, ath9k_btcoex_enable, int, 0444); MODULE_PARM_DESC(btcoex_enable, "Enable wifi-BT coexistence"); static int ath9k_bt_ant_diversity; module_param_named(bt_ant_diversity, ath9k_bt_ant_diversity, int, 0444); MODULE_PARM_DESC(bt_ant_diversity, "Enable WLAN/BT RX antenna diversity"); static int ath9k_ps_enable; module_param_named(ps_enable, ath9k_ps_enable, int, 0444); MODULE_PARM_DESC(ps_enable, "Enable WLAN PowerSave"); #ifdef CONFIG_ATH9K_CHANNEL_CONTEXT int ath9k_use_chanctx; module_param_named(use_chanctx, ath9k_use_chanctx, int, 0444); MODULE_PARM_DESC(use_chanctx, "Enable channel context for concurrency"); #endif /* CONFIG_ATH9K_CHANNEL_CONTEXT */ int ath9k_use_msi; module_param_named(use_msi, ath9k_use_msi, int, 0444); MODULE_PARM_DESC(use_msi, "Use MSI instead of INTx if possible"); bool is_ath9k_unloaded; #ifdef CONFIG_MAC80211_LEDS static const struct ieee80211_tpt_blink ath9k_tpt_blink[] = { { .throughput = 0 * 1024, .blink_time = 334 }, { .throughput = 1 * 1024, .blink_time = 260 }, { .throughput = 5 * 1024, .blink_time = 220 }, { .throughput = 10 * 1024, .blink_time = 190 }, { .throughput = 20 * 1024, .blink_time = 170 }, { .throughput = 50 * 1024, .blink_time = 150 }, { .throughput = 70 * 1024, .blink_time = 130 }, { .throughput = 100 * 1024, .blink_time = 110 }, { .throughput = 200 * 1024, .blink_time = 80 }, { .throughput = 300 * 1024, .blink_time = 50 }, }; #endif static int __init set_use_msi(const struct dmi_system_id *dmi) { ath9k_use_msi = 1; return 1; } static const struct dmi_system_id ath9k_quirks[] __initconst = { { .callback = set_use_msi, .ident = "Dell Inspiron 24-3460", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Dell Inc."), DMI_MATCH(DMI_PRODUCT_NAME, "Inspiron 24-3460"), }, }, { .callback = set_use_msi, .ident = "Dell Vostro 3262", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Dell Inc."), DMI_MATCH(DMI_PRODUCT_NAME, "Vostro 3262"), }, }, { .callback = set_use_msi, .ident = "Dell Inspiron 3472", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Dell Inc."), DMI_MATCH(DMI_PRODUCT_NAME, "Inspiron 3472"), }, }, { .callback = set_use_msi, .ident = "Dell Vostro 15-3572", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Dell Inc."), DMI_MATCH(DMI_PRODUCT_NAME, "Vostro 15-3572"), }, }, { .callback = set_use_msi, .ident = "Dell Inspiron 14-3473", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Dell Inc."), DMI_MATCH(DMI_PRODUCT_NAME, "Inspiron 14-3473"), }, }, {} }; static void ath9k_deinit_softc(struct ath_softc *sc); static void ath9k_op_ps_wakeup(struct ath_common *common) { ath9k_ps_wakeup((struct ath_softc *) common->priv); } static void ath9k_op_ps_restore(struct ath_common *common) { ath9k_ps_restore((struct ath_softc *) common->priv); } static const struct ath_ps_ops ath9k_ps_ops = { .wakeup = ath9k_op_ps_wakeup, .restore = ath9k_op_ps_restore, }; /* * Read and write, they both share the same lock. We do this to serialize * reads and writes on Atheros 802.11n PCI devices only. This is required * as the FIFO on these devices can only accept sanely 2 requests. */ static void ath9k_iowrite32(void *hw_priv, u32 val, u32 reg_offset) { struct ath_hw *ah = hw_priv; struct ath_common *common = ath9k_hw_common(ah); struct ath_softc *sc = (struct ath_softc *) common->priv; if (NR_CPUS > 1 && ah->config.serialize_regmode == SER_REG_MODE_ON) { unsigned long flags; spin_lock_irqsave(&sc->sc_serial_rw, flags); iowrite32(val, sc->mem + reg_offset); spin_unlock_irqrestore(&sc->sc_serial_rw, flags); } else iowrite32(val, sc->mem + reg_offset); } static unsigned int ath9k_ioread32(void *hw_priv, u32 reg_offset) { struct ath_hw *ah = hw_priv; struct ath_common *common = ath9k_hw_common(ah); struct ath_softc *sc = (struct ath_softc *) common->priv; u32 val; if (NR_CPUS > 1 && ah->config.serialize_regmode == SER_REG_MODE_ON) { unsigned long flags; spin_lock_irqsave(&sc->sc_serial_rw, flags); val = ioread32(sc->mem + reg_offset); spin_unlock_irqrestore(&sc->sc_serial_rw, flags); } else val = ioread32(sc->mem + reg_offset); return val; } static void ath9k_multi_ioread32(void *hw_priv, u32 *addr, u32 *val, u16 count) { int i; for (i = 0; i < count; i++) val[i] = ath9k_ioread32(hw_priv, addr[i]); } static unsigned int __ath9k_reg_rmw(struct ath_softc *sc, u32 reg_offset, u32 set, u32 clr) { u32 val; val = ioread32(sc->mem + reg_offset); val &= ~clr; val |= set; iowrite32(val, sc->mem + reg_offset); return val; } static unsigned int ath9k_reg_rmw(void *hw_priv, u32 reg_offset, u32 set, u32 clr) { struct ath_hw *ah = hw_priv; struct ath_common *common = ath9k_hw_common(ah); struct ath_softc *sc = (struct ath_softc *) common->priv; unsigned long uninitialized_var(flags); u32 val; if (NR_CPUS > 1 && ah->config.serialize_regmode == SER_REG_MODE_ON) { spin_lock_irqsave(&sc->sc_serial_rw, flags); val = __ath9k_reg_rmw(sc, reg_offset, set, clr); spin_unlock_irqrestore(&sc->sc_serial_rw, flags); } else val = __ath9k_reg_rmw(sc, reg_offset, set, clr); return val; } /**************************/ /* Initialization */ /**************************/ static void ath9k_reg_notifier(struct wiphy *wiphy, struct regulatory_request *request) { struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy); struct ath_softc *sc = hw->priv; struct ath_hw *ah = sc->sc_ah; struct ath_regulatory *reg = ath9k_hw_regulatory(ah); ath_reg_notifier_apply(wiphy, request, reg); /* synchronize DFS detector if regulatory domain changed */ if (sc->dfs_detector != NULL) sc->dfs_detector->set_dfs_domain(sc->dfs_detector, request->dfs_region); /* Set tx power */ if (!ah->curchan) return; sc->cur_chan->txpower = 2 * ah->curchan->chan->max_power; ath9k_ps_wakeup(sc); ath9k_hw_set_txpowerlimit(ah, sc->cur_chan->txpower, false); ath9k_cmn_update_txpow(ah, sc->cur_chan->cur_txpower, sc->cur_chan->txpower, &sc->cur_chan->cur_txpower); ath9k_ps_restore(sc); } /* * This function will allocate both the DMA descriptor structure, and the * buffers it contains. These are used to contain the descriptors used * by the system. */ int ath_descdma_setup(struct ath_softc *sc, struct ath_descdma *dd, struct list_head *head, const char *name, int nbuf, int ndesc, bool is_tx) { struct ath_common *common = ath9k_hw_common(sc->sc_ah); u8 *ds; int i, bsize, desc_len; ath_dbg(common, CONFIG, "%s DMA: %u buffers %u desc/buf\n", name, nbuf, ndesc); INIT_LIST_HEAD(head); if (is_tx) desc_len = sc->sc_ah->caps.tx_desc_len; else desc_len = sizeof(struct ath_desc); /* ath_desc must be a multiple of DWORDs */ if ((desc_len % 4) != 0) { ath_err(common, "ath_desc not DWORD aligned\n"); BUG_ON((desc_len % 4) != 0); return -ENOMEM; } dd->dd_desc_len = desc_len * nbuf * ndesc; /* * Need additional DMA memory because we can't use * descriptors that cross the 4K page boundary. Assume * one skipped descriptor per 4K page. */ if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_4KB_SPLITTRANS)) { u32 ndesc_skipped = ATH_DESC_4KB_BOUND_NUM_SKIPPED(dd->dd_desc_len); u32 dma_len; while (ndesc_skipped) { dma_len = ndesc_skipped * desc_len; dd->dd_desc_len += dma_len; ndesc_skipped = ATH_DESC_4KB_BOUND_NUM_SKIPPED(dma_len); } } /* allocate descriptors */ dd->dd_desc = dmam_alloc_coherent(sc->dev, dd->dd_desc_len, &dd->dd_desc_paddr, GFP_KERNEL); if (!dd->dd_desc) return -ENOMEM; ds = dd->dd_desc; ath_dbg(common, CONFIG, "%s DMA map: %p (%u) -> %llx (%u)\n", name, ds, (u32) dd->dd_desc_len, ito64(dd->dd_desc_paddr), /*XXX*/(u32) dd->dd_desc_len); /* allocate buffers */ if (is_tx) { struct ath_buf *bf; bsize = sizeof(struct ath_buf) * nbuf; bf = devm_kzalloc(sc->dev, bsize, GFP_KERNEL); if (!bf) return -ENOMEM; for (i = 0; i < nbuf; i++, bf++, ds += (desc_len * ndesc)) { bf->bf_desc = ds; bf->bf_daddr = DS2PHYS(dd, ds); if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_4KB_SPLITTRANS)) { /* * Skip descriptor addresses which can cause 4KB * boundary crossing (addr + length) with a 32 dword * descriptor fetch. */ while (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr)) { BUG_ON((caddr_t) bf->bf_desc >= ((caddr_t) dd->dd_desc + dd->dd_desc_len)); ds += (desc_len * ndesc); bf->bf_desc = ds; bf->bf_daddr = DS2PHYS(dd, ds); } } list_add_tail(&bf->list, head); } } else { struct ath_rxbuf *bf; bsize = sizeof(struct ath_rxbuf) * nbuf; bf = devm_kzalloc(sc->dev, bsize, GFP_KERNEL); if (!bf) return -ENOMEM; for (i = 0; i < nbuf; i++, bf++, ds += (desc_len * ndesc)) { bf->bf_desc = ds; bf->bf_daddr = DS2PHYS(dd, ds); if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_4KB_SPLITTRANS)) { /* * Skip descriptor addresses which can cause 4KB * boundary crossing (addr + length) with a 32 dword * descriptor fetch. */ while (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr)) { BUG_ON((caddr_t) bf->bf_desc >= ((caddr_t) dd->dd_desc + dd->dd_desc_len)); ds += (desc_len * ndesc); bf->bf_desc = ds; bf->bf_daddr = DS2PHYS(dd, ds); } } list_add_tail(&bf->list, head); } } return 0; } static int ath9k_init_queues(struct ath_softc *sc) { int i = 0; sc->beacon.beaconq = ath9k_hw_beaconq_setup(sc->sc_ah); sc->beacon.cabq = ath_txq_setup(sc, ATH9K_TX_QUEUE_CAB, 0); ath_cabq_update(sc); sc->tx.uapsdq = ath_txq_setup(sc, ATH9K_TX_QUEUE_UAPSD, 0); for (i = 0; i < IEEE80211_NUM_ACS; i++) { sc->tx.txq_map[i] = ath_txq_setup(sc, ATH9K_TX_QUEUE_DATA, i); sc->tx.txq_map[i]->mac80211_qnum = i; } return 0; } static void ath9k_init_misc(struct ath_softc *sc) { struct ath_common *common = ath9k_hw_common(sc->sc_ah); int i = 0; timer_setup(&common->ani.timer, ath_ani_calibrate, 0); common->last_rssi = ATH_RSSI_DUMMY_MARKER; eth_broadcast_addr(common->bssidmask); sc->beacon.slottime = 9; for (i = 0; i < ARRAY_SIZE(sc->beacon.bslot); i++) sc->beacon.bslot[i] = NULL; if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_ANT_DIV_COMB) sc->ant_comb.count = ATH_ANT_DIV_COMB_INIT_COUNT; sc->spec_priv.ah = sc->sc_ah; sc->spec_priv.spec_config.enabled = 0; sc->spec_priv.spec_config.short_repeat = true; sc->spec_priv.spec_config.count = 8; sc->spec_priv.spec_config.endless = false; sc->spec_priv.spec_config.period = 0xFF; sc->spec_priv.spec_config.fft_period = 0xF; } static void ath9k_init_pcoem_platform(struct ath_softc *sc) { struct ath_hw *ah = sc->sc_ah; struct ath9k_hw_capabilities *pCap = &ah->caps; struct ath_common *common = ath9k_hw_common(ah); if (!IS_ENABLED(CONFIG_ATH9K_PCOEM)) return; if (common->bus_ops->ath_bus_type != ATH_PCI) return; if (sc->driver_data & (ATH9K_PCI_CUS198 | ATH9K_PCI_CUS230)) { ah->config.xlna_gpio = 9; ah->config.xatten_margin_cfg = true; ah->config.alt_mingainidx = true; ah->config.ant_ctrl_comm2g_switch_enable = 0x000BBB88; sc->ant_comb.low_rssi_thresh = 20; sc->ant_comb.fast_div_bias = 3; ath_info(common, "Set parameters for %s\n", (sc->driver_data & ATH9K_PCI_CUS198) ? "CUS198" : "CUS230"); } if (sc->driver_data & ATH9K_PCI_CUS217) ath_info(common, "CUS217 card detected\n"); if (sc->driver_data & ATH9K_PCI_CUS252) ath_info(common, "CUS252 card detected\n"); if (sc->driver_data & ATH9K_PCI_AR9565_1ANT) ath_info(common, "WB335 1-ANT card detected\n"); if (sc->driver_data & ATH9K_PCI_AR9565_2ANT) ath_info(common, "WB335 2-ANT card detected\n"); if (sc->driver_data & ATH9K_PCI_KILLER) ath_info(common, "Killer Wireless card detected\n"); /* * Some WB335 cards do not support antenna diversity. Since * we use a hardcoded value for AR9565 instead of using the * EEPROM/OTP data, remove the combining feature from * the HW capabilities bitmap. */ if (sc->driver_data & (ATH9K_PCI_AR9565_1ANT | ATH9K_PCI_AR9565_2ANT)) { if (!(sc->driver_data & ATH9K_PCI_BT_ANT_DIV)) pCap->hw_caps &= ~ATH9K_HW_CAP_ANT_DIV_COMB; } if (sc->driver_data & ATH9K_PCI_BT_ANT_DIV) { pCap->hw_caps |= ATH9K_HW_CAP_BT_ANT_DIV; ath_info(common, "Set BT/WLAN RX diversity capability\n"); } if (sc->driver_data & ATH9K_PCI_D3_L1_WAR) { ah->config.pcie_waen = 0x0040473b; ath_info(common, "Enable WAR for ASPM D3/L1\n"); } /* * The default value of pll_pwrsave is 1. * For certain AR9485 cards, it is set to 0. * For AR9462, AR9565 it's set to 7. */ ah->config.pll_pwrsave = 1; if (sc->driver_data & ATH9K_PCI_NO_PLL_PWRSAVE) { ah->config.pll_pwrsave = 0; ath_info(common, "Disable PLL PowerSave\n"); } if (sc->driver_data & ATH9K_PCI_LED_ACT_HI) ah->config.led_active_high = true; } static void ath9k_eeprom_request_cb(const struct firmware *eeprom_blob, void *ctx) { struct ath9k_eeprom_ctx *ec = ctx; if (eeprom_blob) ec->ah->eeprom_blob = eeprom_blob; complete(&ec->complete); } static int ath9k_eeprom_request(struct ath_softc *sc, const char *name) { struct ath9k_eeprom_ctx ec; struct ath_hw *ah = sc->sc_ah; int err; /* try to load the EEPROM content asynchronously */ init_completion(&ec.complete); ec.ah = sc->sc_ah; err = request_firmware_nowait(THIS_MODULE, 1, name, sc->dev, GFP_KERNEL, &ec, ath9k_eeprom_request_cb); if (err < 0) { ath_err(ath9k_hw_common(ah), "EEPROM request failed\n"); return err; } wait_for_completion(&ec.complete); if (!ah->eeprom_blob) { ath_err(ath9k_hw_common(ah), "Unable to load EEPROM file %s\n", name); return -EINVAL; } return 0; } static void ath9k_eeprom_release(struct ath_softc *sc) { release_firmware(sc->sc_ah->eeprom_blob); } static int ath9k_init_platform(struct ath_softc *sc) { struct ath9k_platform_data *pdata = sc->dev->platform_data; struct ath_hw *ah = sc->sc_ah; struct ath_common *common = ath9k_hw_common(ah); int ret; if (!pdata) return 0; if (!pdata->use_eeprom) { ah->ah_flags &= ~AH_USE_EEPROM; ah->gpio_mask = pdata->gpio_mask; ah->gpio_val = pdata->gpio_val; ah->led_pin = pdata->led_pin; ah->is_clk_25mhz = pdata->is_clk_25mhz; ah->get_mac_revision = pdata->get_mac_revision; ah->external_reset = pdata->external_reset; ah->disable_2ghz = pdata->disable_2ghz; ah->disable_5ghz = pdata->disable_5ghz; if (!pdata->endian_check) ah->ah_flags |= AH_NO_EEP_SWAP; } if (pdata->eeprom_name) { ret = ath9k_eeprom_request(sc, pdata->eeprom_name); if (ret) return ret; } if (pdata->led_active_high) ah->config.led_active_high = true; if (pdata->tx_gain_buffalo) ah->config.tx_gain_buffalo = true; if (pdata->macaddr) ether_addr_copy(common->macaddr, pdata->macaddr); return 0; } static int ath9k_of_init(struct ath_softc *sc) { struct device_node *np = sc->dev->of_node; struct ath_hw *ah = sc->sc_ah; struct ath_common *common = ath9k_hw_common(ah); enum ath_bus_type bus_type = common->bus_ops->ath_bus_type; const char *mac; char eeprom_name[100]; int ret; if (!of_device_is_available(np)) return 0; ath_dbg(common, CONFIG, "parsing configuration from OF node\n"); if (of_property_read_bool(np, "qca,no-eeprom")) { /* ath9k-eeprom-<bus>-<id>.bin */ scnprintf(eeprom_name, sizeof(eeprom_name), "ath9k-eeprom-%s-%s.bin", ath_bus_type_to_string(bus_type), dev_name(ah->dev)); ret = ath9k_eeprom_request(sc, eeprom_name); if (ret) return ret; } mac = of_get_mac_address(np); if (mac) ether_addr_copy(common->macaddr, mac); ah->ah_flags &= ~AH_USE_EEPROM; ah->ah_flags |= AH_NO_EEP_SWAP; return 0; } static int ath9k_init_softc(u16 devid, struct ath_softc *sc, const struct ath_bus_ops *bus_ops) { struct ath_hw *ah = NULL; struct ath9k_hw_capabilities *pCap; struct ath_common *common; int ret = 0, i; int csz = 0; ah = devm_kzalloc(sc->dev, sizeof(struct ath_hw), GFP_KERNEL); if (!ah) return -ENOMEM; ah->dev = sc->dev; ah->hw = sc->hw; ah->hw_version.devid = devid; ah->ah_flags |= AH_USE_EEPROM; ah->led_pin = -1; ah->reg_ops.read = ath9k_ioread32; ah->reg_ops.multi_read = ath9k_multi_ioread32; ah->reg_ops.write = ath9k_iowrite32; ah->reg_ops.rmw = ath9k_reg_rmw; pCap = &ah->caps; common = ath9k_hw_common(ah); /* Will be cleared in ath9k_start() */ set_bit(ATH_OP_INVALID, &common->op_flags); sc->airtime_flags = (AIRTIME_USE_TX | AIRTIME_USE_RX | AIRTIME_USE_NEW_QUEUES); sc->sc_ah = ah; sc->dfs_detector = dfs_pattern_detector_init(common, NL80211_DFS_UNSET); sc->tx99_power = MAX_RATE_POWER + 1; init_waitqueue_head(&sc->tx_wait); sc->cur_chan = &sc->chanctx[0]; if (!ath9k_is_chanctx_enabled()) sc->cur_chan->hw_queue_base = 0; common->ops = &ah->reg_ops; common->bus_ops = bus_ops; common->ps_ops = &ath9k_ps_ops; common->ah = ah; common->hw = sc->hw; common->priv = sc; common->debug_mask = ath9k_debug; common->btcoex_enabled = ath9k_btcoex_enable == 1; common->disable_ani = false; /* * Platform quirks. */ ath9k_init_pcoem_platform(sc); ret = ath9k_init_platform(sc); if (ret) return ret; ret = ath9k_of_init(sc); if (ret) return ret; if (ath9k_led_active_high != -1) ah->config.led_active_high = ath9k_led_active_high == 1; /* * Enable WLAN/BT RX Antenna diversity only when: * * - BTCOEX is disabled. * - the user manually requests the feature. * - the HW cap is set using the platform data. */ if (!common->btcoex_enabled && ath9k_bt_ant_diversity && (pCap->hw_caps & ATH9K_HW_CAP_BT_ANT_DIV)) common->bt_ant_diversity = 1; spin_lock_init(&common->cc_lock); spin_lock_init(&sc->intr_lock); spin_lock_init(&sc->sc_serial_rw); spin_lock_init(&sc->sc_pm_lock); spin_lock_init(&sc->chan_lock); mutex_init(&sc->mutex); tasklet_init(&sc->intr_tq, ath9k_tasklet, (unsigned long)sc); tasklet_init(&sc->bcon_tasklet, ath9k_beacon_tasklet, (unsigned long)sc); timer_setup(&sc->sleep_timer, ath_ps_full_sleep, 0); INIT_WORK(&sc->hw_reset_work, ath_reset_work); INIT_WORK(&sc->paprd_work, ath_paprd_calibrate); INIT_DELAYED_WORK(&sc->hw_pll_work, ath_hw_pll_work); INIT_DELAYED_WORK(&sc->hw_check_work, ath_hw_check_work); ath9k_init_channel_context(sc); /* * Cache line size is used to size and align various * structures used to communicate with the hardware. */ ath_read_cachesize(common, &csz); common->cachelsz = csz << 2; /* convert to bytes */ /* Initializes the hardware for all supported chipsets */ ret = ath9k_hw_init(ah); if (ret) goto err_hw; ret = ath9k_init_queues(sc); if (ret) goto err_queues; ret = ath9k_init_btcoex(sc); if (ret) goto err_btcoex; ret = ath9k_cmn_init_channels_rates(common); if (ret) goto err_btcoex; ret = ath9k_init_p2p(sc); if (ret) goto err_btcoex; ath9k_cmn_init_crypto(sc->sc_ah); ath9k_init_misc(sc); ath_chanctx_init(sc); ath9k_offchannel_init(sc); if (common->bus_ops->aspm_init) common->bus_ops->aspm_init(common); return 0; err_btcoex: for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) if (ATH_TXQ_SETUP(sc, i)) ath_tx_cleanupq(sc, &sc->tx.txq[i]); err_queues: ath9k_hw_deinit(ah); err_hw: ath9k_eeprom_release(sc); dev_kfree_skb_any(sc->tx99_skb); return ret; } static void ath9k_init_band_txpower(struct ath_softc *sc, int band) { struct ieee80211_supported_band *sband; struct ieee80211_channel *chan; struct ath_hw *ah = sc->sc_ah; struct ath_common *common = ath9k_hw_common(ah); struct cfg80211_chan_def chandef; int i; sband = &common->sbands[band]; for (i = 0; i < sband->n_channels; i++) { chan = &sband->channels[i]; ah->curchan = &ah->channels[chan->hw_value]; cfg80211_chandef_create(&chandef, chan, NL80211_CHAN_HT20); ath9k_cmn_get_channel(sc->hw, ah, &chandef); ath9k_hw_set_txpowerlimit(ah, MAX_RATE_POWER, true); } } static void ath9k_init_txpower_limits(struct ath_softc *sc) { struct ath_hw *ah = sc->sc_ah; struct ath9k_channel *curchan = ah->curchan; if (ah->caps.hw_caps & ATH9K_HW_CAP_2GHZ) ath9k_init_band_txpower(sc, NL80211_BAND_2GHZ); if (ah->caps.hw_caps & ATH9K_HW_CAP_5GHZ) ath9k_init_band_txpower(sc, NL80211_BAND_5GHZ); ah->curchan = curchan; } static const struct ieee80211_iface_limit if_limits[] = { { .max = 2048, .types = BIT(NL80211_IFTYPE_STATION) }, { .max = 8, .types = #ifdef CONFIG_MAC80211_MESH BIT(NL80211_IFTYPE_MESH_POINT) | #endif BIT(NL80211_IFTYPE_AP) }, { .max = 1, .types = BIT(NL80211_IFTYPE_P2P_CLIENT) | BIT(NL80211_IFTYPE_P2P_GO) }, }; #ifdef CONFIG_WIRELESS_WDS static const struct ieee80211_iface_limit wds_limits[] = { { .max = 2048, .types = BIT(NL80211_IFTYPE_WDS) }, }; #endif #ifdef CONFIG_ATH9K_CHANNEL_CONTEXT static const struct ieee80211_iface_limit if_limits_multi[] = { { .max = 2, .types = BIT(NL80211_IFTYPE_STATION) | BIT(NL80211_IFTYPE_AP) | BIT(NL80211_IFTYPE_P2P_CLIENT) | BIT(NL80211_IFTYPE_P2P_GO) }, { .max = 1, .types = BIT(NL80211_IFTYPE_ADHOC) }, { .max = 1, .types = BIT(NL80211_IFTYPE_P2P_DEVICE) }, }; static const struct ieee80211_iface_combination if_comb_multi[] = { { .limits = if_limits_multi, .n_limits = ARRAY_SIZE(if_limits_multi), .max_interfaces = 3, .num_different_channels = 2, .beacon_int_infra_match = true, }, }; #endif /* CONFIG_ATH9K_CHANNEL_CONTEXT */ static const struct ieee80211_iface_combination if_comb[] = { { .limits = if_limits, .n_limits = ARRAY_SIZE(if_limits), .max_interfaces = 2048, .num_different_channels = 1, .beacon_int_infra_match = true, #ifdef CONFIG_ATH9K_DFS_CERTIFIED .radar_detect_widths = BIT(NL80211_CHAN_WIDTH_20_NOHT) | BIT(NL80211_CHAN_WIDTH_20) | BIT(NL80211_CHAN_WIDTH_40), #endif }, #ifdef CONFIG_WIRELESS_WDS { .limits = wds_limits, .n_limits = ARRAY_SIZE(wds_limits), .max_interfaces = 2048, .num_different_channels = 1, .beacon_int_infra_match = true, }, #endif }; #ifdef CONFIG_ATH9K_CHANNEL_CONTEXT static void ath9k_set_mcc_capab(struct ath_softc *sc, struct ieee80211_hw *hw) { struct ath_hw *ah = sc->sc_ah; struct ath_common *common = ath9k_hw_common(ah); if (!ath9k_is_chanctx_enabled()) return; ieee80211_hw_set(hw, QUEUE_CONTROL); hw->queues = ATH9K_NUM_TX_QUEUES; hw->offchannel_tx_hw_queue = hw->queues - 1; hw->wiphy->interface_modes &= ~ BIT(NL80211_IFTYPE_WDS); hw->wiphy->iface_combinations = if_comb_multi; hw->wiphy->n_iface_combinations = ARRAY_SIZE(if_comb_multi); hw->wiphy->max_scan_ssids = 255; hw->wiphy->max_scan_ie_len = IEEE80211_MAX_DATA_LEN; hw->wiphy->max_remain_on_channel_duration = 10000; hw->chanctx_data_size = sizeof(void *); hw->extra_beacon_tailroom = sizeof(struct ieee80211_p2p_noa_attr) + 9; ath_dbg(common, CHAN_CTX, "Use channel contexts\n"); } #endif /* CONFIG_ATH9K_CHANNEL_CONTEXT */ static void ath9k_set_hw_capab(struct ath_softc *sc, struct ieee80211_hw *hw) { struct ath_hw *ah = sc->sc_ah; struct ath_common *common = ath9k_hw_common(ah); ieee80211_hw_set(hw, SUPPORTS_HT_CCK_RATES); ieee80211_hw_set(hw, SUPPORTS_RC_TABLE); ieee80211_hw_set(hw, REPORTS_TX_ACK_STATUS); ieee80211_hw_set(hw, SPECTRUM_MGMT); ieee80211_hw_set(hw, PS_NULLFUNC_STACK); ieee80211_hw_set(hw, SIGNAL_DBM); ieee80211_hw_set(hw, RX_INCLUDES_FCS); ieee80211_hw_set(hw, HOST_BROADCAST_PS_BUFFERING); ieee80211_hw_set(hw, SUPPORT_FAST_XMIT); ieee80211_hw_set(hw, SUPPORTS_CLONED_SKBS); if (ath9k_ps_enable) ieee80211_hw_set(hw, SUPPORTS_PS); if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT) { ieee80211_hw_set(hw, AMPDU_AGGREGATION); if (AR_SREV_9280_20_OR_LATER(ah)) hw->radiotap_mcs_details |= IEEE80211_RADIOTAP_MCS_HAVE_STBC; } if (AR_SREV_9160_10_OR_LATER(sc->sc_ah) || ath9k_modparam_nohwcrypt) ieee80211_hw_set(hw, MFP_CAPABLE); hw->wiphy->features |= NL80211_FEATURE_ACTIVE_MONITOR | NL80211_FEATURE_AP_MODE_CHAN_WIDTH_CHANGE | NL80211_FEATURE_P2P_GO_CTWIN; if (!IS_ENABLED(CONFIG_ATH9K_TX99)) { hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_P2P_GO) | BIT(NL80211_IFTYPE_P2P_CLIENT) | BIT(NL80211_IFTYPE_AP) | BIT(NL80211_IFTYPE_STATION) | BIT(NL80211_IFTYPE_ADHOC) | BIT(NL80211_IFTYPE_MESH_POINT) | #ifdef CONFIG_WIRELESS_WDS BIT(NL80211_IFTYPE_WDS) | #endif BIT(NL80211_IFTYPE_OCB); if (ath9k_is_chanctx_enabled()) hw->wiphy->interface_modes |= BIT(NL80211_IFTYPE_P2P_DEVICE); hw->wiphy->iface_combinations = if_comb; hw->wiphy->n_iface_combinations = ARRAY_SIZE(if_comb); } hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT; hw->wiphy->flags |= WIPHY_FLAG_IBSS_RSN; hw->wiphy->flags |= WIPHY_FLAG_SUPPORTS_TDLS; hw->wiphy->flags |= WIPHY_FLAG_HAS_REMAIN_ON_CHANNEL; hw->wiphy->flags |= WIPHY_FLAG_SUPPORTS_5_10_MHZ; hw->wiphy->flags |= WIPHY_FLAG_HAS_CHANNEL_SWITCH; hw->wiphy->flags |= WIPHY_FLAG_AP_UAPSD; hw->queues = 4; hw->max_rates = 4; hw->max_listen_interval = 10; hw->max_rate_tries = 10; hw->sta_data_size = sizeof(struct ath_node); hw->vif_data_size = sizeof(struct ath_vif); hw->txq_data_size = sizeof(struct ath_atx_tid); hw->extra_tx_headroom = 4; hw->wiphy->available_antennas_rx = BIT(ah->caps.max_rxchains) - 1; hw->wiphy->available_antennas_tx = BIT(ah->caps.max_txchains) - 1; /* single chain devices with rx diversity */ if (ah->caps.hw_caps & ATH9K_HW_CAP_ANT_DIV_COMB) hw->wiphy->available_antennas_rx = BIT(0) | BIT(1); sc->ant_rx = hw->wiphy->available_antennas_rx; sc->ant_tx = hw->wiphy->available_antennas_tx; if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_2GHZ) hw->wiphy->bands[NL80211_BAND_2GHZ] = &common->sbands[NL80211_BAND_2GHZ]; if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_5GHZ) hw->wiphy->bands[NL80211_BAND_5GHZ] = &common->sbands[NL80211_BAND_5GHZ]; #ifdef CONFIG_ATH9K_CHANNEL_CONTEXT ath9k_set_mcc_capab(sc, hw); #endif ath9k_init_wow(hw); ath9k_cmn_reload_chainmask(ah); SET_IEEE80211_PERM_ADDR(hw, common->macaddr); wiphy_ext_feature_set(hw->wiphy, NL80211_EXT_FEATURE_CQM_RSSI_LIST); } int ath9k_init_device(u16 devid, struct ath_softc *sc, const struct ath_bus_ops *bus_ops) { struct ieee80211_hw *hw = sc->hw; struct ath_common *common; struct ath_hw *ah; int error = 0; struct ath_regulatory *reg; /* Bring up device */ error = ath9k_init_softc(devid, sc, bus_ops); if (error) return error; ah = sc->sc_ah; common = ath9k_hw_common(ah); ath9k_set_hw_capab(sc, hw); /* Initialize regulatory */ error = ath_regd_init(&common->regulatory, sc->hw->wiphy, ath9k_reg_notifier); if (error) goto deinit; reg = &common->regulatory; /* Setup TX DMA */ error = ath_tx_init(sc, ATH_TXBUF); if (error != 0) goto deinit; /* Setup RX DMA */ error = ath_rx_init(sc, ATH_RXBUF); if (error != 0) goto deinit; ath9k_init_txpower_limits(sc); #ifdef CONFIG_MAC80211_LEDS /* must be initialized before ieee80211_register_hw */ sc->led_cdev.default_trigger = ieee80211_create_tpt_led_trigger(sc->hw, IEEE80211_TPT_LEDTRIG_FL_RADIO, ath9k_tpt_blink, ARRAY_SIZE(ath9k_tpt_blink)); #endif /* Register with mac80211 */ error = ieee80211_register_hw(hw); if (error) goto rx_cleanup; error = ath9k_init_debug(ah); if (error) { ath_err(common, "Unable to create debugfs files\n"); goto unregister; } /* Handle world regulatory */ if (!ath_is_world_regd(reg)) { error = regulatory_hint(hw->wiphy, reg->alpha2); if (error) goto debug_cleanup; } ath_init_leds(sc); ath_start_rfkill_poll(sc); return 0; debug_cleanup: ath9k_deinit_debug(sc); unregister: ieee80211_unregister_hw(hw); rx_cleanup: ath_rx_cleanup(sc); deinit: ath9k_deinit_softc(sc); return error; } /*****************************/ /* De-Initialization */ /*****************************/ static void ath9k_deinit_softc(struct ath_softc *sc) { int i = 0; ath9k_deinit_p2p(sc); ath9k_deinit_btcoex(sc); for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) if (ATH_TXQ_SETUP(sc, i)) ath_tx_cleanupq(sc, &sc->tx.txq[i]); del_timer_sync(&sc->sleep_timer); ath9k_hw_deinit(sc->sc_ah); if (sc->dfs_detector != NULL) sc->dfs_detector->exit(sc->dfs_detector); ath9k_eeprom_release(sc); } void ath9k_deinit_device(struct ath_softc *sc) { struct ieee80211_hw *hw = sc->hw; ath9k_ps_wakeup(sc); wiphy_rfkill_stop_polling(sc->hw->wiphy); ath_deinit_leds(sc); ath9k_ps_restore(sc); ath9k_deinit_debug(sc); ath9k_deinit_wow(hw); ieee80211_unregister_hw(hw); ath_rx_cleanup(sc); ath9k_deinit_softc(sc); } /************************/ /* Module Hooks */ /************************/ static int __init ath9k_init(void) { int error; error = ath_pci_init(); if (error < 0) { pr_err("No PCI devices found, driver not installed\n"); error = -ENODEV; goto err_out; } error = ath_ahb_init(); if (error < 0) { error = -ENODEV; goto err_pci_exit; } dmi_check_system(ath9k_quirks); return 0; err_pci_exit: ath_pci_exit(); err_out: return error; } module_init(ath9k_init); static void __exit ath9k_exit(void) { is_ath9k_unloaded = true; ath_ahb_exit(); ath_pci_exit(); pr_info("%s: Driver unloaded\n", dev_info); } module_exit(ath9k_exit);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1