Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Zefir Kurtisi | 1785 | 96.33% | 6 | 50.00% |
Peter Oh | 45 | 2.43% | 2 | 16.67% |
Janusz Dziedzic | 21 | 1.13% | 2 | 16.67% |
Dan Carpenter | 1 | 0.05% | 1 | 8.33% |
Sachin Kamat | 1 | 0.05% | 1 | 8.33% |
Total | 1853 | 12 |
/* * Copyright (c) 2012 Neratec Solutions AG * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include <linux/slab.h> #include <linux/spinlock.h> #include "ath.h" #include "dfs_pattern_detector.h" #include "dfs_pri_detector.h" struct ath_dfs_pool_stats global_dfs_pool_stats = {}; #define DFS_POOL_STAT_INC(c) (global_dfs_pool_stats.c++) #define DFS_POOL_STAT_DEC(c) (global_dfs_pool_stats.c--) #define GET_PRI_TO_USE(MIN, MAX, RUNTIME) \ (MIN + PRI_TOLERANCE == MAX - PRI_TOLERANCE ? \ MIN + PRI_TOLERANCE : RUNTIME) /** * struct pulse_elem - elements in pulse queue * @ts: time stamp in usecs */ struct pulse_elem { struct list_head head; u64 ts; }; /** * pde_get_multiple() - get number of multiples considering a given tolerance * @return factor if abs(val - factor*fraction) <= tolerance, 0 otherwise */ static u32 pde_get_multiple(u32 val, u32 fraction, u32 tolerance) { u32 remainder; u32 factor; u32 delta; if (fraction == 0) return 0; delta = (val < fraction) ? (fraction - val) : (val - fraction); if (delta <= tolerance) /* val and fraction are within tolerance */ return 1; factor = val / fraction; remainder = val % fraction; if (remainder > tolerance) { /* no exact match */ if ((fraction - remainder) <= tolerance) /* remainder is within tolerance */ factor++; else factor = 0; } return factor; } /** * DOC: Singleton Pulse and Sequence Pools * * Instances of pri_sequence and pulse_elem are kept in singleton pools to * reduce the number of dynamic allocations. They are shared between all * instances and grow up to the peak number of simultaneously used objects. * * Memory is freed after all references to the pools are released. */ static u32 singleton_pool_references; static LIST_HEAD(pulse_pool); static LIST_HEAD(pseq_pool); static DEFINE_SPINLOCK(pool_lock); static void pool_register_ref(void) { spin_lock_bh(&pool_lock); singleton_pool_references++; DFS_POOL_STAT_INC(pool_reference); spin_unlock_bh(&pool_lock); } static void pool_deregister_ref(void) { spin_lock_bh(&pool_lock); singleton_pool_references--; DFS_POOL_STAT_DEC(pool_reference); if (singleton_pool_references == 0) { /* free singleton pools with no references left */ struct pri_sequence *ps, *ps0; struct pulse_elem *p, *p0; list_for_each_entry_safe(p, p0, &pulse_pool, head) { list_del(&p->head); DFS_POOL_STAT_DEC(pulse_allocated); kfree(p); } list_for_each_entry_safe(ps, ps0, &pseq_pool, head) { list_del(&ps->head); DFS_POOL_STAT_DEC(pseq_allocated); kfree(ps); } } spin_unlock_bh(&pool_lock); } static void pool_put_pulse_elem(struct pulse_elem *pe) { spin_lock_bh(&pool_lock); list_add(&pe->head, &pulse_pool); DFS_POOL_STAT_DEC(pulse_used); spin_unlock_bh(&pool_lock); } static void pool_put_pseq_elem(struct pri_sequence *pse) { spin_lock_bh(&pool_lock); list_add(&pse->head, &pseq_pool); DFS_POOL_STAT_DEC(pseq_used); spin_unlock_bh(&pool_lock); } static struct pri_sequence *pool_get_pseq_elem(void) { struct pri_sequence *pse = NULL; spin_lock_bh(&pool_lock); if (!list_empty(&pseq_pool)) { pse = list_first_entry(&pseq_pool, struct pri_sequence, head); list_del(&pse->head); DFS_POOL_STAT_INC(pseq_used); } spin_unlock_bh(&pool_lock); return pse; } static struct pulse_elem *pool_get_pulse_elem(void) { struct pulse_elem *pe = NULL; spin_lock_bh(&pool_lock); if (!list_empty(&pulse_pool)) { pe = list_first_entry(&pulse_pool, struct pulse_elem, head); list_del(&pe->head); DFS_POOL_STAT_INC(pulse_used); } spin_unlock_bh(&pool_lock); return pe; } static struct pulse_elem *pulse_queue_get_tail(struct pri_detector *pde) { struct list_head *l = &pde->pulses; if (list_empty(l)) return NULL; return list_entry(l->prev, struct pulse_elem, head); } static bool pulse_queue_dequeue(struct pri_detector *pde) { struct pulse_elem *p = pulse_queue_get_tail(pde); if (p != NULL) { list_del_init(&p->head); pde->count--; /* give it back to pool */ pool_put_pulse_elem(p); } return (pde->count > 0); } /* remove pulses older than window */ static void pulse_queue_check_window(struct pri_detector *pde) { u64 min_valid_ts; struct pulse_elem *p; /* there is no delta time with less than 2 pulses */ if (pde->count < 2) return; if (pde->last_ts <= pde->window_size) return; min_valid_ts = pde->last_ts - pde->window_size; while ((p = pulse_queue_get_tail(pde)) != NULL) { if (p->ts >= min_valid_ts) return; pulse_queue_dequeue(pde); } } static bool pulse_queue_enqueue(struct pri_detector *pde, u64 ts) { struct pulse_elem *p = pool_get_pulse_elem(); if (p == NULL) { p = kmalloc(sizeof(*p), GFP_ATOMIC); if (p == NULL) { DFS_POOL_STAT_INC(pulse_alloc_error); return false; } DFS_POOL_STAT_INC(pulse_allocated); DFS_POOL_STAT_INC(pulse_used); } INIT_LIST_HEAD(&p->head); p->ts = ts; list_add(&p->head, &pde->pulses); pde->count++; pde->last_ts = ts; pulse_queue_check_window(pde); if (pde->count >= pde->max_count) pulse_queue_dequeue(pde); return true; } static bool pseq_handler_create_sequences(struct pri_detector *pde, u64 ts, u32 min_count) { struct pulse_elem *p; list_for_each_entry(p, &pde->pulses, head) { struct pri_sequence ps, *new_ps; struct pulse_elem *p2; u32 tmp_false_count; u64 min_valid_ts; u32 delta_ts = ts - p->ts; if (delta_ts < pde->rs->pri_min) /* ignore too small pri */ continue; if (delta_ts > pde->rs->pri_max) /* stop on too large pri (sorted list) */ break; /* build a new sequence with new potential pri */ ps.count = 2; ps.count_falses = 0; ps.first_ts = p->ts; ps.last_ts = ts; ps.pri = GET_PRI_TO_USE(pde->rs->pri_min, pde->rs->pri_max, ts - p->ts); ps.dur = ps.pri * (pde->rs->ppb - 1) + 2 * pde->rs->max_pri_tolerance; p2 = p; tmp_false_count = 0; min_valid_ts = ts - ps.dur; /* check which past pulses are candidates for new sequence */ list_for_each_entry_continue(p2, &pde->pulses, head) { u32 factor; if (p2->ts < min_valid_ts) /* stop on crossing window border */ break; /* check if pulse match (multi)PRI */ factor = pde_get_multiple(ps.last_ts - p2->ts, ps.pri, pde->rs->max_pri_tolerance); if (factor > 0) { ps.count++; ps.first_ts = p2->ts; /* * on match, add the intermediate falses * and reset counter */ ps.count_falses += tmp_false_count; tmp_false_count = 0; } else { /* this is a potential false one */ tmp_false_count++; } } if (ps.count <= min_count) /* did not reach minimum count, drop sequence */ continue; /* this is a valid one, add it */ ps.deadline_ts = ps.first_ts + ps.dur; new_ps = pool_get_pseq_elem(); if (new_ps == NULL) { new_ps = kmalloc(sizeof(*new_ps), GFP_ATOMIC); if (new_ps == NULL) { DFS_POOL_STAT_INC(pseq_alloc_error); return false; } DFS_POOL_STAT_INC(pseq_allocated); DFS_POOL_STAT_INC(pseq_used); } memcpy(new_ps, &ps, sizeof(ps)); INIT_LIST_HEAD(&new_ps->head); list_add(&new_ps->head, &pde->sequences); } return true; } /* check new ts and add to all matching existing sequences */ static u32 pseq_handler_add_to_existing_seqs(struct pri_detector *pde, u64 ts) { u32 max_count = 0; struct pri_sequence *ps, *ps2; list_for_each_entry_safe(ps, ps2, &pde->sequences, head) { u32 delta_ts; u32 factor; /* first ensure that sequence is within window */ if (ts > ps->deadline_ts) { list_del_init(&ps->head); pool_put_pseq_elem(ps); continue; } delta_ts = ts - ps->last_ts; factor = pde_get_multiple(delta_ts, ps->pri, pde->rs->max_pri_tolerance); if (factor > 0) { ps->last_ts = ts; ps->count++; if (max_count < ps->count) max_count = ps->count; } else { ps->count_falses++; } } return max_count; } static struct pri_sequence * pseq_handler_check_detection(struct pri_detector *pde) { struct pri_sequence *ps; if (list_empty(&pde->sequences)) return NULL; list_for_each_entry(ps, &pde->sequences, head) { /* * we assume to have enough matching confidence if we * 1) have enough pulses * 2) have more matching than false pulses */ if ((ps->count >= pde->rs->ppb_thresh) && (ps->count * pde->rs->num_pri >= ps->count_falses)) return ps; } return NULL; } /* free pulse queue and sequences list and give objects back to pools */ static void pri_detector_reset(struct pri_detector *pde, u64 ts) { struct pri_sequence *ps, *ps0; struct pulse_elem *p, *p0; list_for_each_entry_safe(ps, ps0, &pde->sequences, head) { list_del_init(&ps->head); pool_put_pseq_elem(ps); } list_for_each_entry_safe(p, p0, &pde->pulses, head) { list_del_init(&p->head); pool_put_pulse_elem(p); } pde->count = 0; pde->last_ts = ts; } static void pri_detector_exit(struct pri_detector *de) { pri_detector_reset(de, 0); pool_deregister_ref(); kfree(de); } static struct pri_sequence *pri_detector_add_pulse(struct pri_detector *de, struct pulse_event *event) { u32 max_updated_seq; struct pri_sequence *ps; u64 ts = event->ts; const struct radar_detector_specs *rs = de->rs; /* ignore pulses not within width range */ if ((rs->width_min > event->width) || (rs->width_max < event->width)) return NULL; if ((ts - de->last_ts) < rs->max_pri_tolerance) /* if delta to last pulse is too short, don't use this pulse */ return NULL; /* radar detector spec needs chirp, but not detected */ if (rs->chirp && rs->chirp != event->chirp) return NULL; de->last_ts = ts; max_updated_seq = pseq_handler_add_to_existing_seqs(de, ts); if (!pseq_handler_create_sequences(de, ts, max_updated_seq)) { pri_detector_reset(de, ts); return NULL; } ps = pseq_handler_check_detection(de); if (ps == NULL) pulse_queue_enqueue(de, ts); return ps; } struct pri_detector *pri_detector_init(const struct radar_detector_specs *rs) { struct pri_detector *de; de = kzalloc(sizeof(*de), GFP_ATOMIC); if (de == NULL) return NULL; de->exit = pri_detector_exit; de->add_pulse = pri_detector_add_pulse; de->reset = pri_detector_reset; INIT_LIST_HEAD(&de->sequences); INIT_LIST_HEAD(&de->pulses); de->window_size = rs->pri_max * rs->ppb * rs->num_pri; de->max_count = rs->ppb * 2; de->rs = rs; pool_register_ref(); return de; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1