Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Vladimir Kondratiev | 2177 | 56.97% | 30 | 60.00% |
Maya Erez | 755 | 19.76% | 8 | 16.00% |
Gidon Studinski | 494 | 12.93% | 2 | 4.00% |
Alexei Avshalom Lazar | 220 | 5.76% | 1 | 2.00% |
Lior David | 161 | 4.21% | 7 | 14.00% |
Lazar Alexei | 13 | 0.34% | 1 | 2.00% |
Dedy Lansky | 1 | 0.03% | 1 | 2.00% |
Total | 3821 | 50 |
/* * Copyright (c) 2012-2017 Qualcomm Atheros, Inc. * Copyright (c) 2018, The Linux Foundation. All rights reserved. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include <linux/interrupt.h> #include "wil6210.h" #include "trace.h" /** * Theory of operation: * * There is ISR pseudo-cause register, * dma_rgf->DMA_RGF.PSEUDO_CAUSE.PSEUDO_CAUSE * Its bits represents OR'ed bits from 3 real ISR registers: * TX, RX, and MISC. * * Registers may be configured to either "write 1 to clear" or * "clear on read" mode * * When handling interrupt, one have to mask/unmask interrupts for the * real ISR registers, or hardware may malfunction. * */ #define WIL6210_IRQ_DISABLE (0xFFFFFFFFUL) #define WIL6210_IRQ_DISABLE_NO_HALP (0xF7FFFFFFUL) #define WIL6210_IMC_RX (BIT_DMA_EP_RX_ICR_RX_DONE | \ BIT_DMA_EP_RX_ICR_RX_HTRSH) #define WIL6210_IMC_RX_NO_RX_HTRSH (WIL6210_IMC_RX & \ (~(BIT_DMA_EP_RX_ICR_RX_HTRSH))) #define WIL6210_IMC_TX (BIT_DMA_EP_TX_ICR_TX_DONE | \ BIT_DMA_EP_TX_ICR_TX_DONE_N(0)) #define WIL6210_IMC_TX_EDMA BIT_TX_STATUS_IRQ #define WIL6210_IMC_RX_EDMA BIT_RX_STATUS_IRQ #define WIL6210_IMC_MISC_NO_HALP (ISR_MISC_FW_READY | \ ISR_MISC_MBOX_EVT | \ ISR_MISC_FW_ERROR) #define WIL6210_IMC_MISC (WIL6210_IMC_MISC_NO_HALP | \ BIT_DMA_EP_MISC_ICR_HALP) #define WIL6210_IRQ_PSEUDO_MASK (u32)(~(BIT_DMA_PSEUDO_CAUSE_RX | \ BIT_DMA_PSEUDO_CAUSE_TX | \ BIT_DMA_PSEUDO_CAUSE_MISC)) #if defined(CONFIG_WIL6210_ISR_COR) /* configure to Clear-On-Read mode */ #define WIL_ICR_ICC_VALUE (0xFFFFFFFFUL) #define WIL_ICR_ICC_MISC_VALUE (0xF7FFFFFFUL) static inline void wil_icr_clear(u32 x, void __iomem *addr) { } #else /* defined(CONFIG_WIL6210_ISR_COR) */ /* configure to Write-1-to-Clear mode */ #define WIL_ICR_ICC_VALUE (0UL) #define WIL_ICR_ICC_MISC_VALUE (0UL) static inline void wil_icr_clear(u32 x, void __iomem *addr) { writel(x, addr); } #endif /* defined(CONFIG_WIL6210_ISR_COR) */ static inline u32 wil_ioread32_and_clear(void __iomem *addr) { u32 x = readl(addr); wil_icr_clear(x, addr); return x; } static void wil6210_mask_irq_tx(struct wil6210_priv *wil) { wil_w(wil, RGF_DMA_EP_TX_ICR + offsetof(struct RGF_ICR, IMS), WIL6210_IRQ_DISABLE); } static void wil6210_mask_irq_tx_edma(struct wil6210_priv *wil) { wil_w(wil, RGF_INT_GEN_TX_ICR + offsetof(struct RGF_ICR, IMS), WIL6210_IRQ_DISABLE); } static void wil6210_mask_irq_rx(struct wil6210_priv *wil) { wil_w(wil, RGF_DMA_EP_RX_ICR + offsetof(struct RGF_ICR, IMS), WIL6210_IRQ_DISABLE); } static void wil6210_mask_irq_rx_edma(struct wil6210_priv *wil) { wil_w(wil, RGF_INT_GEN_RX_ICR + offsetof(struct RGF_ICR, IMS), WIL6210_IRQ_DISABLE); } static void wil6210_mask_irq_misc(struct wil6210_priv *wil, bool mask_halp) { wil_dbg_irq(wil, "mask_irq_misc: mask_halp(%s)\n", mask_halp ? "true" : "false"); wil_w(wil, RGF_DMA_EP_MISC_ICR + offsetof(struct RGF_ICR, IMS), mask_halp ? WIL6210_IRQ_DISABLE : WIL6210_IRQ_DISABLE_NO_HALP); } void wil6210_mask_halp(struct wil6210_priv *wil) { wil_dbg_irq(wil, "mask_halp\n"); wil_w(wil, RGF_DMA_EP_MISC_ICR + offsetof(struct RGF_ICR, IMS), BIT_DMA_EP_MISC_ICR_HALP); } static void wil6210_mask_irq_pseudo(struct wil6210_priv *wil) { wil_dbg_irq(wil, "mask_irq_pseudo\n"); wil_w(wil, RGF_DMA_PSEUDO_CAUSE_MASK_SW, WIL6210_IRQ_DISABLE); clear_bit(wil_status_irqen, wil->status); } void wil6210_unmask_irq_tx(struct wil6210_priv *wil) { wil_w(wil, RGF_DMA_EP_TX_ICR + offsetof(struct RGF_ICR, IMC), WIL6210_IMC_TX); } void wil6210_unmask_irq_tx_edma(struct wil6210_priv *wil) { wil_w(wil, RGF_INT_GEN_TX_ICR + offsetof(struct RGF_ICR, IMC), WIL6210_IMC_TX_EDMA); } void wil6210_unmask_irq_rx(struct wil6210_priv *wil) { bool unmask_rx_htrsh = atomic_read(&wil->connected_vifs) > 0; wil_w(wil, RGF_DMA_EP_RX_ICR + offsetof(struct RGF_ICR, IMC), unmask_rx_htrsh ? WIL6210_IMC_RX : WIL6210_IMC_RX_NO_RX_HTRSH); } void wil6210_unmask_irq_rx_edma(struct wil6210_priv *wil) { wil_w(wil, RGF_INT_GEN_RX_ICR + offsetof(struct RGF_ICR, IMC), WIL6210_IMC_RX_EDMA); } static void wil6210_unmask_irq_misc(struct wil6210_priv *wil, bool unmask_halp) { wil_dbg_irq(wil, "unmask_irq_misc: unmask_halp(%s)\n", unmask_halp ? "true" : "false"); wil_w(wil, RGF_DMA_EP_MISC_ICR + offsetof(struct RGF_ICR, IMC), unmask_halp ? WIL6210_IMC_MISC : WIL6210_IMC_MISC_NO_HALP); } static void wil6210_unmask_halp(struct wil6210_priv *wil) { wil_dbg_irq(wil, "unmask_halp\n"); wil_w(wil, RGF_DMA_EP_MISC_ICR + offsetof(struct RGF_ICR, IMC), BIT_DMA_EP_MISC_ICR_HALP); } static void wil6210_unmask_irq_pseudo(struct wil6210_priv *wil) { wil_dbg_irq(wil, "unmask_irq_pseudo\n"); set_bit(wil_status_irqen, wil->status); wil_w(wil, RGF_DMA_PSEUDO_CAUSE_MASK_SW, WIL6210_IRQ_PSEUDO_MASK); } void wil_mask_irq(struct wil6210_priv *wil) { wil_dbg_irq(wil, "mask_irq\n"); wil6210_mask_irq_tx(wil); wil6210_mask_irq_tx_edma(wil); wil6210_mask_irq_rx(wil); wil6210_mask_irq_rx_edma(wil); wil6210_mask_irq_misc(wil, true); wil6210_mask_irq_pseudo(wil); } void wil_unmask_irq(struct wil6210_priv *wil) { wil_dbg_irq(wil, "unmask_irq\n"); wil_w(wil, RGF_DMA_EP_RX_ICR + offsetof(struct RGF_ICR, ICC), WIL_ICR_ICC_VALUE); wil_w(wil, RGF_DMA_EP_TX_ICR + offsetof(struct RGF_ICR, ICC), WIL_ICR_ICC_VALUE); wil_w(wil, RGF_DMA_EP_MISC_ICR + offsetof(struct RGF_ICR, ICC), WIL_ICR_ICC_MISC_VALUE); wil_w(wil, RGF_INT_GEN_TX_ICR + offsetof(struct RGF_ICR, ICC), WIL_ICR_ICC_VALUE); wil_w(wil, RGF_INT_GEN_RX_ICR + offsetof(struct RGF_ICR, ICC), WIL_ICR_ICC_VALUE); wil6210_unmask_irq_pseudo(wil); if (wil->use_enhanced_dma_hw) { wil6210_unmask_irq_tx_edma(wil); wil6210_unmask_irq_rx_edma(wil); } else { wil6210_unmask_irq_tx(wil); wil6210_unmask_irq_rx(wil); } wil6210_unmask_irq_misc(wil, true); } void wil_configure_interrupt_moderation_edma(struct wil6210_priv *wil) { u32 moderation; wil_s(wil, RGF_INT_GEN_IDLE_TIME_LIMIT, WIL_EDMA_IDLE_TIME_LIMIT_USEC); wil_s(wil, RGF_INT_GEN_TIME_UNIT_LIMIT, WIL_EDMA_TIME_UNIT_CLK_CYCLES); /* Update RX and TX moderation */ moderation = wil->rx_max_burst_duration | (WIL_EDMA_AGG_WATERMARK << WIL_EDMA_AGG_WATERMARK_POS); wil_w(wil, RGF_INT_CTRL_INT_GEN_CFG_0, moderation); wil_w(wil, RGF_INT_CTRL_INT_GEN_CFG_1, moderation); /* Treat special events as regular * (set bit 0 to 0x1 and clear bits 1-8) */ wil_c(wil, RGF_INT_COUNT_ON_SPECIAL_EVT, 0x1FE); wil_s(wil, RGF_INT_COUNT_ON_SPECIAL_EVT, 0x1); } void wil_configure_interrupt_moderation(struct wil6210_priv *wil) { struct wireless_dev *wdev = wil->main_ndev->ieee80211_ptr; wil_dbg_irq(wil, "configure_interrupt_moderation\n"); /* disable interrupt moderation for monitor * to get better timestamp precision */ if (wdev->iftype == NL80211_IFTYPE_MONITOR) return; /* Disable and clear tx counter before (re)configuration */ wil_w(wil, RGF_DMA_ITR_TX_CNT_CTL, BIT_DMA_ITR_TX_CNT_CTL_CLR); wil_w(wil, RGF_DMA_ITR_TX_CNT_TRSH, wil->tx_max_burst_duration); wil_info(wil, "set ITR_TX_CNT_TRSH = %d usec\n", wil->tx_max_burst_duration); /* Configure TX max burst duration timer to use usec units */ wil_w(wil, RGF_DMA_ITR_TX_CNT_CTL, BIT_DMA_ITR_TX_CNT_CTL_EN | BIT_DMA_ITR_TX_CNT_CTL_EXT_TIC_SEL); /* Disable and clear tx idle counter before (re)configuration */ wil_w(wil, RGF_DMA_ITR_TX_IDL_CNT_CTL, BIT_DMA_ITR_TX_IDL_CNT_CTL_CLR); wil_w(wil, RGF_DMA_ITR_TX_IDL_CNT_TRSH, wil->tx_interframe_timeout); wil_info(wil, "set ITR_TX_IDL_CNT_TRSH = %d usec\n", wil->tx_interframe_timeout); /* Configure TX max burst duration timer to use usec units */ wil_w(wil, RGF_DMA_ITR_TX_IDL_CNT_CTL, BIT_DMA_ITR_TX_IDL_CNT_CTL_EN | BIT_DMA_ITR_TX_IDL_CNT_CTL_EXT_TIC_SEL); /* Disable and clear rx counter before (re)configuration */ wil_w(wil, RGF_DMA_ITR_RX_CNT_CTL, BIT_DMA_ITR_RX_CNT_CTL_CLR); wil_w(wil, RGF_DMA_ITR_RX_CNT_TRSH, wil->rx_max_burst_duration); wil_info(wil, "set ITR_RX_CNT_TRSH = %d usec\n", wil->rx_max_burst_duration); /* Configure TX max burst duration timer to use usec units */ wil_w(wil, RGF_DMA_ITR_RX_CNT_CTL, BIT_DMA_ITR_RX_CNT_CTL_EN | BIT_DMA_ITR_RX_CNT_CTL_EXT_TIC_SEL); /* Disable and clear rx idle counter before (re)configuration */ wil_w(wil, RGF_DMA_ITR_RX_IDL_CNT_CTL, BIT_DMA_ITR_RX_IDL_CNT_CTL_CLR); wil_w(wil, RGF_DMA_ITR_RX_IDL_CNT_TRSH, wil->rx_interframe_timeout); wil_info(wil, "set ITR_RX_IDL_CNT_TRSH = %d usec\n", wil->rx_interframe_timeout); /* Configure TX max burst duration timer to use usec units */ wil_w(wil, RGF_DMA_ITR_RX_IDL_CNT_CTL, BIT_DMA_ITR_RX_IDL_CNT_CTL_EN | BIT_DMA_ITR_RX_IDL_CNT_CTL_EXT_TIC_SEL); } static irqreturn_t wil6210_irq_rx(int irq, void *cookie) { struct wil6210_priv *wil = cookie; u32 isr = wil_ioread32_and_clear(wil->csr + HOSTADDR(RGF_DMA_EP_RX_ICR) + offsetof(struct RGF_ICR, ICR)); bool need_unmask = true; trace_wil6210_irq_rx(isr); wil_dbg_irq(wil, "ISR RX 0x%08x\n", isr); if (unlikely(!isr)) { wil_err_ratelimited(wil, "spurious IRQ: RX\n"); return IRQ_NONE; } wil6210_mask_irq_rx(wil); /* RX_DONE and RX_HTRSH interrupts are the same if interrupt * moderation is not used. Interrupt moderation may cause RX * buffer overflow while RX_DONE is delayed. The required * action is always the same - should empty the accumulated * packets from the RX ring. */ if (likely(isr & (BIT_DMA_EP_RX_ICR_RX_DONE | BIT_DMA_EP_RX_ICR_RX_HTRSH))) { wil_dbg_irq(wil, "RX done / RX_HTRSH received, ISR (0x%x)\n", isr); isr &= ~(BIT_DMA_EP_RX_ICR_RX_DONE | BIT_DMA_EP_RX_ICR_RX_HTRSH); if (likely(test_bit(wil_status_fwready, wil->status))) { if (likely(test_bit(wil_status_napi_en, wil->status))) { wil_dbg_txrx(wil, "NAPI(Rx) schedule\n"); need_unmask = false; napi_schedule(&wil->napi_rx); } else { wil_err_ratelimited( wil, "Got Rx interrupt while stopping interface\n"); } } else { wil_err_ratelimited(wil, "Got Rx interrupt while in reset\n"); } } if (unlikely(isr)) wil_err(wil, "un-handled RX ISR bits 0x%08x\n", isr); /* Rx IRQ will be enabled when NAPI processing finished */ atomic_inc(&wil->isr_count_rx); if (unlikely(need_unmask)) wil6210_unmask_irq_rx(wil); return IRQ_HANDLED; } static irqreturn_t wil6210_irq_rx_edma(int irq, void *cookie) { struct wil6210_priv *wil = cookie; u32 isr = wil_ioread32_and_clear(wil->csr + HOSTADDR(RGF_INT_GEN_RX_ICR) + offsetof(struct RGF_ICR, ICR)); bool need_unmask = true; trace_wil6210_irq_rx(isr); wil_dbg_irq(wil, "ISR RX 0x%08x\n", isr); if (unlikely(!isr)) { wil_err(wil, "spurious IRQ: RX\n"); return IRQ_NONE; } wil6210_mask_irq_rx_edma(wil); if (likely(isr & BIT_RX_STATUS_IRQ)) { wil_dbg_irq(wil, "RX status ring\n"); isr &= ~BIT_RX_STATUS_IRQ; if (likely(test_bit(wil_status_fwready, wil->status))) { if (likely(test_bit(wil_status_napi_en, wil->status))) { wil_dbg_txrx(wil, "NAPI(Rx) schedule\n"); need_unmask = false; napi_schedule(&wil->napi_rx); } else { wil_err(wil, "Got Rx interrupt while stopping interface\n"); } } else { wil_err(wil, "Got Rx interrupt while in reset\n"); } } if (unlikely(isr)) wil_err(wil, "un-handled RX ISR bits 0x%08x\n", isr); /* Rx IRQ will be enabled when NAPI processing finished */ atomic_inc(&wil->isr_count_rx); if (unlikely(need_unmask)) wil6210_unmask_irq_rx_edma(wil); return IRQ_HANDLED; } static irqreturn_t wil6210_irq_tx_edma(int irq, void *cookie) { struct wil6210_priv *wil = cookie; u32 isr = wil_ioread32_and_clear(wil->csr + HOSTADDR(RGF_INT_GEN_TX_ICR) + offsetof(struct RGF_ICR, ICR)); bool need_unmask = true; trace_wil6210_irq_tx(isr); wil_dbg_irq(wil, "ISR TX 0x%08x\n", isr); if (unlikely(!isr)) { wil_err(wil, "spurious IRQ: TX\n"); return IRQ_NONE; } wil6210_mask_irq_tx_edma(wil); if (likely(isr & BIT_TX_STATUS_IRQ)) { wil_dbg_irq(wil, "TX status ring\n"); isr &= ~BIT_TX_STATUS_IRQ; if (likely(test_bit(wil_status_fwready, wil->status))) { wil_dbg_txrx(wil, "NAPI(Tx) schedule\n"); need_unmask = false; napi_schedule(&wil->napi_tx); } else { wil_err(wil, "Got Tx status ring IRQ while in reset\n"); } } if (unlikely(isr)) wil_err(wil, "un-handled TX ISR bits 0x%08x\n", isr); /* Tx IRQ will be enabled when NAPI processing finished */ atomic_inc(&wil->isr_count_tx); if (unlikely(need_unmask)) wil6210_unmask_irq_tx_edma(wil); return IRQ_HANDLED; } static irqreturn_t wil6210_irq_tx(int irq, void *cookie) { struct wil6210_priv *wil = cookie; u32 isr = wil_ioread32_and_clear(wil->csr + HOSTADDR(RGF_DMA_EP_TX_ICR) + offsetof(struct RGF_ICR, ICR)); bool need_unmask = true; trace_wil6210_irq_tx(isr); wil_dbg_irq(wil, "ISR TX 0x%08x\n", isr); if (unlikely(!isr)) { wil_err_ratelimited(wil, "spurious IRQ: TX\n"); return IRQ_NONE; } wil6210_mask_irq_tx(wil); if (likely(isr & BIT_DMA_EP_TX_ICR_TX_DONE)) { wil_dbg_irq(wil, "TX done\n"); isr &= ~BIT_DMA_EP_TX_ICR_TX_DONE; /* clear also all VRING interrupts */ isr &= ~(BIT(25) - 1UL); if (likely(test_bit(wil_status_fwready, wil->status))) { wil_dbg_txrx(wil, "NAPI(Tx) schedule\n"); need_unmask = false; napi_schedule(&wil->napi_tx); } else { wil_err_ratelimited(wil, "Got Tx interrupt while in reset\n"); } } if (unlikely(isr)) wil_err_ratelimited(wil, "un-handled TX ISR bits 0x%08x\n", isr); /* Tx IRQ will be enabled when NAPI processing finished */ atomic_inc(&wil->isr_count_tx); if (unlikely(need_unmask)) wil6210_unmask_irq_tx(wil); return IRQ_HANDLED; } static void wil_notify_fw_error(struct wil6210_priv *wil) { struct device *dev = &wil->main_ndev->dev; char *envp[3] = { [0] = "SOURCE=wil6210", [1] = "EVENT=FW_ERROR", [2] = NULL, }; wil_err(wil, "Notify about firmware error\n"); kobject_uevent_env(&dev->kobj, KOBJ_CHANGE, envp); } static void wil_cache_mbox_regs(struct wil6210_priv *wil) { /* make shadow copy of registers that should not change on run time */ wil_memcpy_fromio_32(&wil->mbox_ctl, wil->csr + HOST_MBOX, sizeof(struct wil6210_mbox_ctl)); wil_mbox_ring_le2cpus(&wil->mbox_ctl.rx); wil_mbox_ring_le2cpus(&wil->mbox_ctl.tx); } static bool wil_validate_mbox_regs(struct wil6210_priv *wil) { size_t min_size = sizeof(struct wil6210_mbox_hdr) + sizeof(struct wmi_cmd_hdr); if (wil->mbox_ctl.rx.entry_size < min_size) { wil_err(wil, "rx mbox entry too small (%d)\n", wil->mbox_ctl.rx.entry_size); return false; } if (wil->mbox_ctl.tx.entry_size < min_size) { wil_err(wil, "tx mbox entry too small (%d)\n", wil->mbox_ctl.tx.entry_size); return false; } return true; } static irqreturn_t wil6210_irq_misc(int irq, void *cookie) { struct wil6210_priv *wil = cookie; u32 isr = wil_ioread32_and_clear(wil->csr + HOSTADDR(RGF_DMA_EP_MISC_ICR) + offsetof(struct RGF_ICR, ICR)); trace_wil6210_irq_misc(isr); wil_dbg_irq(wil, "ISR MISC 0x%08x\n", isr); if (!isr) { wil_err(wil, "spurious IRQ: MISC\n"); return IRQ_NONE; } wil6210_mask_irq_misc(wil, false); if (isr & ISR_MISC_FW_ERROR) { u32 fw_assert_code = wil_r(wil, wil->rgf_fw_assert_code_addr); u32 ucode_assert_code = wil_r(wil, wil->rgf_ucode_assert_code_addr); wil_err(wil, "Firmware error detected, assert codes FW 0x%08x, UCODE 0x%08x\n", fw_assert_code, ucode_assert_code); clear_bit(wil_status_fwready, wil->status); /* * do not clear @isr here - we do 2-nd part in thread * there, user space get notified, and it should be done * in non-atomic context */ } if (isr & ISR_MISC_FW_READY) { wil_dbg_irq(wil, "IRQ: FW ready\n"); wil_cache_mbox_regs(wil); if (wil_validate_mbox_regs(wil)) set_bit(wil_status_mbox_ready, wil->status); /** * Actual FW ready indicated by the * WMI_FW_READY_EVENTID */ isr &= ~ISR_MISC_FW_READY; } if (isr & BIT_DMA_EP_MISC_ICR_HALP) { wil_dbg_irq(wil, "irq_misc: HALP IRQ invoked\n"); wil6210_mask_halp(wil); isr &= ~BIT_DMA_EP_MISC_ICR_HALP; complete(&wil->halp.comp); } wil->isr_misc = isr; if (isr) { return IRQ_WAKE_THREAD; } else { wil6210_unmask_irq_misc(wil, false); return IRQ_HANDLED; } } static irqreturn_t wil6210_irq_misc_thread(int irq, void *cookie) { struct wil6210_priv *wil = cookie; u32 isr = wil->isr_misc; trace_wil6210_irq_misc_thread(isr); wil_dbg_irq(wil, "Thread ISR MISC 0x%08x\n", isr); if (isr & ISR_MISC_FW_ERROR) { wil->recovery_state = fw_recovery_pending; wil_fw_core_dump(wil); wil_notify_fw_error(wil); isr &= ~ISR_MISC_FW_ERROR; if (wil->platform_ops.notify) { wil_err(wil, "notify platform driver about FW crash"); wil->platform_ops.notify(wil->platform_handle, WIL_PLATFORM_EVT_FW_CRASH); } else { wil_fw_error_recovery(wil); } } if (isr & ISR_MISC_MBOX_EVT) { wil_dbg_irq(wil, "MBOX event\n"); wmi_recv_cmd(wil); isr &= ~ISR_MISC_MBOX_EVT; } if (isr) wil_dbg_irq(wil, "un-handled MISC ISR bits 0x%08x\n", isr); wil->isr_misc = 0; wil6210_unmask_irq_misc(wil, false); /* in non-triple MSI case, this is done inside wil6210_thread_irq * because it has to be done after unmasking the pseudo. */ if (wil->n_msi == 3 && wil->suspend_resp_rcvd) { wil_dbg_irq(wil, "set suspend_resp_comp to true\n"); wil->suspend_resp_comp = true; wake_up_interruptible(&wil->wq); } return IRQ_HANDLED; } /** * thread IRQ handler */ static irqreturn_t wil6210_thread_irq(int irq, void *cookie) { struct wil6210_priv *wil = cookie; wil_dbg_irq(wil, "Thread IRQ\n"); /* Discover real IRQ cause */ if (wil->isr_misc) wil6210_irq_misc_thread(irq, cookie); wil6210_unmask_irq_pseudo(wil); if (wil->suspend_resp_rcvd) { wil_dbg_irq(wil, "set suspend_resp_comp to true\n"); wil->suspend_resp_comp = true; wake_up_interruptible(&wil->wq); } return IRQ_HANDLED; } /* DEBUG * There is subtle bug in hardware that causes IRQ to raise when it should be * masked. It is quite rare and hard to debug. * * Catch irq issue if it happens and print all I can. */ static int wil6210_debug_irq_mask(struct wil6210_priv *wil, u32 pseudo_cause) { u32 icm_rx, icr_rx, imv_rx; u32 icm_tx, icr_tx, imv_tx; u32 icm_misc, icr_misc, imv_misc; if (!test_bit(wil_status_irqen, wil->status)) { if (wil->use_enhanced_dma_hw) { icm_rx = wil_ioread32_and_clear(wil->csr + HOSTADDR(RGF_INT_GEN_RX_ICR) + offsetof(struct RGF_ICR, ICM)); icr_rx = wil_ioread32_and_clear(wil->csr + HOSTADDR(RGF_INT_GEN_RX_ICR) + offsetof(struct RGF_ICR, ICR)); imv_rx = wil_r(wil, RGF_INT_GEN_RX_ICR + offsetof(struct RGF_ICR, IMV)); icm_tx = wil_ioread32_and_clear(wil->csr + HOSTADDR(RGF_INT_GEN_TX_ICR) + offsetof(struct RGF_ICR, ICM)); icr_tx = wil_ioread32_and_clear(wil->csr + HOSTADDR(RGF_INT_GEN_TX_ICR) + offsetof(struct RGF_ICR, ICR)); imv_tx = wil_r(wil, RGF_INT_GEN_TX_ICR + offsetof(struct RGF_ICR, IMV)); } else { icm_rx = wil_ioread32_and_clear(wil->csr + HOSTADDR(RGF_DMA_EP_RX_ICR) + offsetof(struct RGF_ICR, ICM)); icr_rx = wil_ioread32_and_clear(wil->csr + HOSTADDR(RGF_DMA_EP_RX_ICR) + offsetof(struct RGF_ICR, ICR)); imv_rx = wil_r(wil, RGF_DMA_EP_RX_ICR + offsetof(struct RGF_ICR, IMV)); icm_tx = wil_ioread32_and_clear(wil->csr + HOSTADDR(RGF_DMA_EP_TX_ICR) + offsetof(struct RGF_ICR, ICM)); icr_tx = wil_ioread32_and_clear(wil->csr + HOSTADDR(RGF_DMA_EP_TX_ICR) + offsetof(struct RGF_ICR, ICR)); imv_tx = wil_r(wil, RGF_DMA_EP_TX_ICR + offsetof(struct RGF_ICR, IMV)); } icm_misc = wil_ioread32_and_clear(wil->csr + HOSTADDR(RGF_DMA_EP_MISC_ICR) + offsetof(struct RGF_ICR, ICM)); icr_misc = wil_ioread32_and_clear(wil->csr + HOSTADDR(RGF_DMA_EP_MISC_ICR) + offsetof(struct RGF_ICR, ICR)); imv_misc = wil_r(wil, RGF_DMA_EP_MISC_ICR + offsetof(struct RGF_ICR, IMV)); /* HALP interrupt can be unmasked when misc interrupts are * masked */ if (icr_misc & BIT_DMA_EP_MISC_ICR_HALP) return 0; wil_err(wil, "IRQ when it should be masked: pseudo 0x%08x\n" "Rx icm:icr:imv 0x%08x 0x%08x 0x%08x\n" "Tx icm:icr:imv 0x%08x 0x%08x 0x%08x\n" "Misc icm:icr:imv 0x%08x 0x%08x 0x%08x\n", pseudo_cause, icm_rx, icr_rx, imv_rx, icm_tx, icr_tx, imv_tx, icm_misc, icr_misc, imv_misc); return -EINVAL; } return 0; } static irqreturn_t wil6210_hardirq(int irq, void *cookie) { irqreturn_t rc = IRQ_HANDLED; struct wil6210_priv *wil = cookie; u32 pseudo_cause = wil_r(wil, RGF_DMA_PSEUDO_CAUSE); /** * pseudo_cause is Clear-On-Read, no need to ACK */ if (unlikely((pseudo_cause == 0) || ((pseudo_cause & 0xff) == 0xff))) return IRQ_NONE; /* IRQ mask debug */ if (unlikely(wil6210_debug_irq_mask(wil, pseudo_cause))) return IRQ_NONE; trace_wil6210_irq_pseudo(pseudo_cause); wil_dbg_irq(wil, "Pseudo IRQ 0x%08x\n", pseudo_cause); wil6210_mask_irq_pseudo(wil); /* Discover real IRQ cause * There are 2 possible phases for every IRQ: * - hard IRQ handler called right here * - threaded handler called later * * Hard IRQ handler reads and clears ISR. * * If threaded handler requested, hard IRQ handler * returns IRQ_WAKE_THREAD and saves ISR register value * for the threaded handler use. * * voting for wake thread - need at least 1 vote */ if ((pseudo_cause & BIT_DMA_PSEUDO_CAUSE_RX) && (wil->txrx_ops.irq_rx(irq, cookie) == IRQ_WAKE_THREAD)) rc = IRQ_WAKE_THREAD; if ((pseudo_cause & BIT_DMA_PSEUDO_CAUSE_TX) && (wil->txrx_ops.irq_tx(irq, cookie) == IRQ_WAKE_THREAD)) rc = IRQ_WAKE_THREAD; if ((pseudo_cause & BIT_DMA_PSEUDO_CAUSE_MISC) && (wil6210_irq_misc(irq, cookie) == IRQ_WAKE_THREAD)) rc = IRQ_WAKE_THREAD; /* if thread is requested, it will unmask IRQ */ if (rc != IRQ_WAKE_THREAD) wil6210_unmask_irq_pseudo(wil); return rc; } static int wil6210_request_3msi(struct wil6210_priv *wil, int irq) { int rc; /* IRQ's are in the following order: * - Tx * - Rx * - Misc */ rc = request_irq(irq, wil->txrx_ops.irq_tx, IRQF_SHARED, WIL_NAME "_tx", wil); if (rc) return rc; rc = request_irq(irq + 1, wil->txrx_ops.irq_rx, IRQF_SHARED, WIL_NAME "_rx", wil); if (rc) goto free0; rc = request_threaded_irq(irq + 2, wil6210_irq_misc, wil6210_irq_misc_thread, IRQF_SHARED, WIL_NAME "_misc", wil); if (rc) goto free1; return 0; free1: free_irq(irq + 1, wil); free0: free_irq(irq, wil); return rc; } /* can't use wil_ioread32_and_clear because ICC value is not set yet */ static inline void wil_clear32(void __iomem *addr) { u32 x = readl(addr); writel(x, addr); } void wil6210_clear_irq(struct wil6210_priv *wil) { wil_clear32(wil->csr + HOSTADDR(RGF_DMA_EP_RX_ICR) + offsetof(struct RGF_ICR, ICR)); wil_clear32(wil->csr + HOSTADDR(RGF_DMA_EP_TX_ICR) + offsetof(struct RGF_ICR, ICR)); wil_clear32(wil->csr + HOSTADDR(RGF_INT_GEN_RX_ICR) + offsetof(struct RGF_ICR, ICR)); wil_clear32(wil->csr + HOSTADDR(RGF_INT_GEN_TX_ICR) + offsetof(struct RGF_ICR, ICR)); wil_clear32(wil->csr + HOSTADDR(RGF_DMA_EP_MISC_ICR) + offsetof(struct RGF_ICR, ICR)); wmb(); /* make sure write completed */ } void wil6210_set_halp(struct wil6210_priv *wil) { wil_dbg_irq(wil, "set_halp\n"); wil_w(wil, RGF_DMA_EP_MISC_ICR + offsetof(struct RGF_ICR, ICS), BIT_DMA_EP_MISC_ICR_HALP); } void wil6210_clear_halp(struct wil6210_priv *wil) { wil_dbg_irq(wil, "clear_halp\n"); wil_w(wil, RGF_DMA_EP_MISC_ICR + offsetof(struct RGF_ICR, ICR), BIT_DMA_EP_MISC_ICR_HALP); wil6210_unmask_halp(wil); } int wil6210_init_irq(struct wil6210_priv *wil, int irq) { int rc; wil_dbg_misc(wil, "init_irq: %s, n_msi=%d\n", wil->n_msi ? "MSI" : "INTx", wil->n_msi); if (wil->use_enhanced_dma_hw) { wil->txrx_ops.irq_tx = wil6210_irq_tx_edma; wil->txrx_ops.irq_rx = wil6210_irq_rx_edma; } else { wil->txrx_ops.irq_tx = wil6210_irq_tx; wil->txrx_ops.irq_rx = wil6210_irq_rx; } if (wil->n_msi == 3) rc = wil6210_request_3msi(wil, irq); else rc = request_threaded_irq(irq, wil6210_hardirq, wil6210_thread_irq, wil->n_msi ? 0 : IRQF_SHARED, WIL_NAME, wil); return rc; } void wil6210_fini_irq(struct wil6210_priv *wil, int irq) { wil_dbg_misc(wil, "fini_irq:\n"); wil_mask_irq(wil); free_irq(irq, wil); if (wil->n_msi == 3) { free_irq(irq + 1, wil); free_irq(irq + 2, wil); } }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1