Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Solomon Peachy | 1363 | 100.00% | 3 | 100.00% |
Total | 1363 | 3 |
/* * Low-level device IO routines for ST-Ericsson CW1200 drivers * * Copyright (c) 2010, ST-Ericsson * Author: Dmitry Tarnyagin <dmitry.tarnyagin@lockless.no> * * Based on: * ST-Ericsson UMAC CW1200 driver, which is * Copyright (c) 2010, ST-Ericsson * Author: Ajitpal Singh <ajitpal.singh@lockless.no> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include <linux/types.h> #include "cw1200.h" #include "hwio.h" #include "hwbus.h" /* Sdio addr is 4*spi_addr */ #define SPI_REG_ADDR_TO_SDIO(spi_reg_addr) ((spi_reg_addr) << 2) #define SDIO_ADDR17BIT(buf_id, mpf, rfu, reg_id_ofs) \ ((((buf_id) & 0x1F) << 7) \ | (((mpf) & 1) << 6) \ | (((rfu) & 1) << 5) \ | (((reg_id_ofs) & 0x1F) << 0)) #define MAX_RETRY 3 static int __cw1200_reg_read(struct cw1200_common *priv, u16 addr, void *buf, size_t buf_len, int buf_id) { u16 addr_sdio; u32 sdio_reg_addr_17bit; /* Check if buffer is aligned to 4 byte boundary */ if (WARN_ON(((unsigned long)buf & 3) && (buf_len > 4))) { pr_err("buffer is not aligned.\n"); return -EINVAL; } /* Convert to SDIO Register Address */ addr_sdio = SPI_REG_ADDR_TO_SDIO(addr); sdio_reg_addr_17bit = SDIO_ADDR17BIT(buf_id, 0, 0, addr_sdio); return priv->hwbus_ops->hwbus_memcpy_fromio(priv->hwbus_priv, sdio_reg_addr_17bit, buf, buf_len); } static int __cw1200_reg_write(struct cw1200_common *priv, u16 addr, const void *buf, size_t buf_len, int buf_id) { u16 addr_sdio; u32 sdio_reg_addr_17bit; /* Convert to SDIO Register Address */ addr_sdio = SPI_REG_ADDR_TO_SDIO(addr); sdio_reg_addr_17bit = SDIO_ADDR17BIT(buf_id, 0, 0, addr_sdio); return priv->hwbus_ops->hwbus_memcpy_toio(priv->hwbus_priv, sdio_reg_addr_17bit, buf, buf_len); } static inline int __cw1200_reg_read_32(struct cw1200_common *priv, u16 addr, u32 *val) { __le32 tmp; int i = __cw1200_reg_read(priv, addr, &tmp, sizeof(tmp), 0); *val = le32_to_cpu(tmp); return i; } static inline int __cw1200_reg_write_32(struct cw1200_common *priv, u16 addr, u32 val) { __le32 tmp = cpu_to_le32(val); return __cw1200_reg_write(priv, addr, &tmp, sizeof(tmp), 0); } static inline int __cw1200_reg_read_16(struct cw1200_common *priv, u16 addr, u16 *val) { __le16 tmp; int i = __cw1200_reg_read(priv, addr, &tmp, sizeof(tmp), 0); *val = le16_to_cpu(tmp); return i; } static inline int __cw1200_reg_write_16(struct cw1200_common *priv, u16 addr, u16 val) { __le16 tmp = cpu_to_le16(val); return __cw1200_reg_write(priv, addr, &tmp, sizeof(tmp), 0); } int cw1200_reg_read(struct cw1200_common *priv, u16 addr, void *buf, size_t buf_len) { int ret; priv->hwbus_ops->lock(priv->hwbus_priv); ret = __cw1200_reg_read(priv, addr, buf, buf_len, 0); priv->hwbus_ops->unlock(priv->hwbus_priv); return ret; } int cw1200_reg_write(struct cw1200_common *priv, u16 addr, const void *buf, size_t buf_len) { int ret; priv->hwbus_ops->lock(priv->hwbus_priv); ret = __cw1200_reg_write(priv, addr, buf, buf_len, 0); priv->hwbus_ops->unlock(priv->hwbus_priv); return ret; } int cw1200_data_read(struct cw1200_common *priv, void *buf, size_t buf_len) { int ret, retry = 1; int buf_id_rx = priv->buf_id_rx; priv->hwbus_ops->lock(priv->hwbus_priv); while (retry <= MAX_RETRY) { ret = __cw1200_reg_read(priv, ST90TDS_IN_OUT_QUEUE_REG_ID, buf, buf_len, buf_id_rx + 1); if (!ret) { buf_id_rx = (buf_id_rx + 1) & 3; priv->buf_id_rx = buf_id_rx; break; } else { retry++; mdelay(1); pr_err("error :[%d]\n", ret); } } priv->hwbus_ops->unlock(priv->hwbus_priv); return ret; } int cw1200_data_write(struct cw1200_common *priv, const void *buf, size_t buf_len) { int ret, retry = 1; int buf_id_tx = priv->buf_id_tx; priv->hwbus_ops->lock(priv->hwbus_priv); while (retry <= MAX_RETRY) { ret = __cw1200_reg_write(priv, ST90TDS_IN_OUT_QUEUE_REG_ID, buf, buf_len, buf_id_tx); if (!ret) { buf_id_tx = (buf_id_tx + 1) & 31; priv->buf_id_tx = buf_id_tx; break; } else { retry++; mdelay(1); pr_err("error :[%d]\n", ret); } } priv->hwbus_ops->unlock(priv->hwbus_priv); return ret; } int cw1200_indirect_read(struct cw1200_common *priv, u32 addr, void *buf, size_t buf_len, u32 prefetch, u16 port_addr) { u32 val32 = 0; int i, ret; if ((buf_len / 2) >= 0x1000) { pr_err("Can't read more than 0xfff words.\n"); return -EINVAL; } priv->hwbus_ops->lock(priv->hwbus_priv); /* Write address */ ret = __cw1200_reg_write_32(priv, ST90TDS_SRAM_BASE_ADDR_REG_ID, addr); if (ret < 0) { pr_err("Can't write address register.\n"); goto out; } /* Read CONFIG Register Value - We will read 32 bits */ ret = __cw1200_reg_read_32(priv, ST90TDS_CONFIG_REG_ID, &val32); if (ret < 0) { pr_err("Can't read config register.\n"); goto out; } /* Set PREFETCH bit */ ret = __cw1200_reg_write_32(priv, ST90TDS_CONFIG_REG_ID, val32 | prefetch); if (ret < 0) { pr_err("Can't write prefetch bit.\n"); goto out; } /* Check for PRE-FETCH bit to be cleared */ for (i = 0; i < 20; i++) { ret = __cw1200_reg_read_32(priv, ST90TDS_CONFIG_REG_ID, &val32); if (ret < 0) { pr_err("Can't check prefetch bit.\n"); goto out; } if (!(val32 & prefetch)) break; mdelay(i); } if (val32 & prefetch) { pr_err("Prefetch bit is not cleared.\n"); goto out; } /* Read data port */ ret = __cw1200_reg_read(priv, port_addr, buf, buf_len, 0); if (ret < 0) { pr_err("Can't read data port.\n"); goto out; } out: priv->hwbus_ops->unlock(priv->hwbus_priv); return ret; } int cw1200_apb_write(struct cw1200_common *priv, u32 addr, const void *buf, size_t buf_len) { int ret; if ((buf_len / 2) >= 0x1000) { pr_err("Can't write more than 0xfff words.\n"); return -EINVAL; } priv->hwbus_ops->lock(priv->hwbus_priv); /* Write address */ ret = __cw1200_reg_write_32(priv, ST90TDS_SRAM_BASE_ADDR_REG_ID, addr); if (ret < 0) { pr_err("Can't write address register.\n"); goto out; } /* Write data port */ ret = __cw1200_reg_write(priv, ST90TDS_SRAM_DPORT_REG_ID, buf, buf_len, 0); if (ret < 0) { pr_err("Can't write data port.\n"); goto out; } out: priv->hwbus_ops->unlock(priv->hwbus_priv); return ret; } int __cw1200_irq_enable(struct cw1200_common *priv, int enable) { u32 val32; u16 val16; int ret; if (HIF_8601_SILICON == priv->hw_type) { ret = __cw1200_reg_read_32(priv, ST90TDS_CONFIG_REG_ID, &val32); if (ret < 0) { pr_err("Can't read config register.\n"); return ret; } if (enable) val32 |= ST90TDS_CONF_IRQ_RDY_ENABLE; else val32 &= ~ST90TDS_CONF_IRQ_RDY_ENABLE; ret = __cw1200_reg_write_32(priv, ST90TDS_CONFIG_REG_ID, val32); if (ret < 0) { pr_err("Can't write config register.\n"); return ret; } } else { ret = __cw1200_reg_read_16(priv, ST90TDS_CONFIG_REG_ID, &val16); if (ret < 0) { pr_err("Can't read control register.\n"); return ret; } if (enable) val16 |= ST90TDS_CONT_IRQ_RDY_ENABLE; else val16 &= ~ST90TDS_CONT_IRQ_RDY_ENABLE; ret = __cw1200_reg_write_16(priv, ST90TDS_CONFIG_REG_ID, val16); if (ret < 0) { pr_err("Can't write control register.\n"); return ret; } } return 0; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1