Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Luciano Coelho | 677 | 26.27% | 9 | 20.00% |
Eyal Reizer | 422 | 16.38% | 2 | 4.44% |
Felipe Balbi | 358 | 13.89% | 3 | 6.67% |
Uri Mashiach | 313 | 12.15% | 3 | 6.67% |
Teemu Paasikivi | 244 | 9.47% | 3 | 6.67% |
Juuso Oikarinen | 225 | 8.73% | 2 | 4.44% |
Ido Yariv | 146 | 5.67% | 3 | 6.67% |
Tony Lindgren | 65 | 2.52% | 2 | 4.44% |
George Spelvin | 61 | 2.37% | 2 | 4.44% |
Himangi Saraogi | 15 | 0.58% | 1 | 2.22% |
Sebastian Reichel | 13 | 0.50% | 1 | 2.22% |
Ameya Palande | 5 | 0.19% | 1 | 2.22% |
Vasiliy Kulikov | 5 | 0.19% | 1 | 2.22% |
Dan Carpenter | 5 | 0.19% | 1 | 2.22% |
Arik Nemtsov | 4 | 0.16% | 1 | 2.22% |
Silvan Jegen | 4 | 0.16% | 1 | 2.22% |
Alexey Dobriyan | 3 | 0.12% | 1 | 2.22% |
Tejun Heo | 2 | 0.08% | 1 | 2.22% |
Peter Hüwe | 2 | 0.08% | 1 | 2.22% |
Arnd Bergmann | 2 | 0.08% | 1 | 2.22% |
Wei Yongjun | 2 | 0.08% | 2 | 4.44% |
Christian Engelmayer | 2 | 0.08% | 1 | 2.22% |
Shahar Levi | 1 | 0.04% | 1 | 2.22% |
Gustavo A. R. Silva | 1 | 0.04% | 1 | 2.22% |
Total | 2577 | 45 |
/* * This file is part of wl1271 * * Copyright (C) 2008-2009 Nokia Corporation * * Contact: Luciano Coelho <luciano.coelho@nokia.com> * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * version 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA * 02110-1301 USA * */ #include <linux/interrupt.h> #include <linux/irq.h> #include <linux/module.h> #include <linux/slab.h> #include <linux/swab.h> #include <linux/crc7.h> #include <linux/spi/spi.h> #include <linux/wl12xx.h> #include <linux/platform_device.h> #include <linux/of_irq.h> #include <linux/regulator/consumer.h> #include "wlcore.h" #include "wl12xx_80211.h" #include "io.h" #define WSPI_CMD_READ 0x40000000 #define WSPI_CMD_WRITE 0x00000000 #define WSPI_CMD_FIXED 0x20000000 #define WSPI_CMD_BYTE_LENGTH 0x1FFE0000 #define WSPI_CMD_BYTE_LENGTH_OFFSET 17 #define WSPI_CMD_BYTE_ADDR 0x0001FFFF #define WSPI_INIT_CMD_CRC_LEN 5 #define WSPI_INIT_CMD_START 0x00 #define WSPI_INIT_CMD_TX 0x40 /* the extra bypass bit is sampled by the TNET as '1' */ #define WSPI_INIT_CMD_BYPASS_BIT 0x80 #define WSPI_INIT_CMD_FIXEDBUSY_LEN 0x07 #define WSPI_INIT_CMD_EN_FIXEDBUSY 0x80 #define WSPI_INIT_CMD_DIS_FIXEDBUSY 0x00 #define WSPI_INIT_CMD_IOD 0x40 #define WSPI_INIT_CMD_IP 0x20 #define WSPI_INIT_CMD_CS 0x10 #define WSPI_INIT_CMD_WS 0x08 #define WSPI_INIT_CMD_WSPI 0x01 #define WSPI_INIT_CMD_END 0x01 #define WSPI_INIT_CMD_LEN 8 #define HW_ACCESS_WSPI_FIXED_BUSY_LEN \ ((WL1271_BUSY_WORD_LEN - 4) / sizeof(u32)) #define HW_ACCESS_WSPI_INIT_CMD_MASK 0 /* HW limitation: maximum possible chunk size is 4095 bytes */ #define WSPI_MAX_CHUNK_SIZE 4092 /* * wl18xx driver aggregation buffer size is (13 * 4K) compared to * (4 * 4K) for wl12xx, so use the larger buffer needed for wl18xx */ #define SPI_AGGR_BUFFER_SIZE (13 * SZ_4K) /* Maximum number of SPI write chunks */ #define WSPI_MAX_NUM_OF_CHUNKS \ ((SPI_AGGR_BUFFER_SIZE / WSPI_MAX_CHUNK_SIZE) + 1) static const struct wilink_family_data wl127x_data = { .name = "wl127x", .nvs_name = "ti-connectivity/wl127x-nvs.bin", }; static const struct wilink_family_data wl128x_data = { .name = "wl128x", .nvs_name = "ti-connectivity/wl128x-nvs.bin", }; static const struct wilink_family_data wl18xx_data = { .name = "wl18xx", .cfg_name = "ti-connectivity/wl18xx-conf.bin", .nvs_name = "ti-connectivity/wl1271-nvs.bin", }; struct wl12xx_spi_glue { struct device *dev; struct platform_device *core; struct regulator *reg; /* Power regulator */ }; static void wl12xx_spi_reset(struct device *child) { struct wl12xx_spi_glue *glue = dev_get_drvdata(child->parent); u8 *cmd; struct spi_transfer t; struct spi_message m; cmd = kzalloc(WSPI_INIT_CMD_LEN, GFP_KERNEL); if (!cmd) { dev_err(child->parent, "could not allocate cmd for spi reset\n"); return; } memset(&t, 0, sizeof(t)); spi_message_init(&m); memset(cmd, 0xff, WSPI_INIT_CMD_LEN); t.tx_buf = cmd; t.len = WSPI_INIT_CMD_LEN; spi_message_add_tail(&t, &m); spi_sync(to_spi_device(glue->dev), &m); kfree(cmd); } static void wl12xx_spi_init(struct device *child) { struct wl12xx_spi_glue *glue = dev_get_drvdata(child->parent); struct spi_transfer t; struct spi_message m; struct spi_device *spi = to_spi_device(glue->dev); u8 *cmd = kzalloc(WSPI_INIT_CMD_LEN, GFP_KERNEL); if (!cmd) { dev_err(child->parent, "could not allocate cmd for spi init\n"); return; } memset(&t, 0, sizeof(t)); spi_message_init(&m); /* * Set WSPI_INIT_COMMAND * the data is being send from the MSB to LSB */ cmd[0] = 0xff; cmd[1] = 0xff; cmd[2] = WSPI_INIT_CMD_START | WSPI_INIT_CMD_TX; cmd[3] = 0; cmd[4] = 0; cmd[5] = HW_ACCESS_WSPI_INIT_CMD_MASK << 3; cmd[5] |= HW_ACCESS_WSPI_FIXED_BUSY_LEN & WSPI_INIT_CMD_FIXEDBUSY_LEN; cmd[6] = WSPI_INIT_CMD_IOD | WSPI_INIT_CMD_IP | WSPI_INIT_CMD_CS | WSPI_INIT_CMD_WSPI | WSPI_INIT_CMD_WS; if (HW_ACCESS_WSPI_FIXED_BUSY_LEN == 0) cmd[6] |= WSPI_INIT_CMD_DIS_FIXEDBUSY; else cmd[6] |= WSPI_INIT_CMD_EN_FIXEDBUSY; cmd[7] = crc7_be(0, cmd+2, WSPI_INIT_CMD_CRC_LEN) | WSPI_INIT_CMD_END; /* * The above is the logical order; it must actually be stored * in the buffer byte-swapped. */ __swab32s((u32 *)cmd); __swab32s((u32 *)cmd+1); t.tx_buf = cmd; t.len = WSPI_INIT_CMD_LEN; spi_message_add_tail(&t, &m); spi_sync(to_spi_device(glue->dev), &m); /* Send extra clocks with inverted CS (high). this is required * by the wilink family in order to successfully enter WSPI mode. */ spi->mode ^= SPI_CS_HIGH; memset(&m, 0, sizeof(m)); spi_message_init(&m); cmd[0] = 0xff; cmd[1] = 0xff; cmd[2] = 0xff; cmd[3] = 0xff; __swab32s((u32 *)cmd); t.tx_buf = cmd; t.len = 4; spi_message_add_tail(&t, &m); spi_sync(to_spi_device(glue->dev), &m); /* Restore chip select configration to normal */ spi->mode ^= SPI_CS_HIGH; kfree(cmd); } #define WL1271_BUSY_WORD_TIMEOUT 1000 static int wl12xx_spi_read_busy(struct device *child) { struct wl12xx_spi_glue *glue = dev_get_drvdata(child->parent); struct wl1271 *wl = dev_get_drvdata(child); struct spi_transfer t[1]; struct spi_message m; u32 *busy_buf; int num_busy_bytes = 0; /* * Read further busy words from SPI until a non-busy word is * encountered, then read the data itself into the buffer. */ num_busy_bytes = WL1271_BUSY_WORD_TIMEOUT; busy_buf = wl->buffer_busyword; while (num_busy_bytes) { num_busy_bytes--; spi_message_init(&m); memset(t, 0, sizeof(t)); t[0].rx_buf = busy_buf; t[0].len = sizeof(u32); t[0].cs_change = true; spi_message_add_tail(&t[0], &m); spi_sync(to_spi_device(glue->dev), &m); if (*busy_buf & 0x1) return 0; } /* The SPI bus is unresponsive, the read failed. */ dev_err(child->parent, "SPI read busy-word timeout!\n"); return -ETIMEDOUT; } static int __must_check wl12xx_spi_raw_read(struct device *child, int addr, void *buf, size_t len, bool fixed) { struct wl12xx_spi_glue *glue = dev_get_drvdata(child->parent); struct wl1271 *wl = dev_get_drvdata(child); struct spi_transfer t[2]; struct spi_message m; u32 *busy_buf; u32 *cmd; u32 chunk_len; while (len > 0) { chunk_len = min_t(size_t, WSPI_MAX_CHUNK_SIZE, len); cmd = &wl->buffer_cmd; busy_buf = wl->buffer_busyword; *cmd = 0; *cmd |= WSPI_CMD_READ; *cmd |= (chunk_len << WSPI_CMD_BYTE_LENGTH_OFFSET) & WSPI_CMD_BYTE_LENGTH; *cmd |= addr & WSPI_CMD_BYTE_ADDR; if (fixed) *cmd |= WSPI_CMD_FIXED; spi_message_init(&m); memset(t, 0, sizeof(t)); t[0].tx_buf = cmd; t[0].len = 4; t[0].cs_change = true; spi_message_add_tail(&t[0], &m); /* Busy and non busy words read */ t[1].rx_buf = busy_buf; t[1].len = WL1271_BUSY_WORD_LEN; t[1].cs_change = true; spi_message_add_tail(&t[1], &m); spi_sync(to_spi_device(glue->dev), &m); if (!(busy_buf[WL1271_BUSY_WORD_CNT - 1] & 0x1) && wl12xx_spi_read_busy(child)) { memset(buf, 0, chunk_len); return 0; } spi_message_init(&m); memset(t, 0, sizeof(t)); t[0].rx_buf = buf; t[0].len = chunk_len; t[0].cs_change = true; spi_message_add_tail(&t[0], &m); spi_sync(to_spi_device(glue->dev), &m); if (!fixed) addr += chunk_len; buf += chunk_len; len -= chunk_len; } return 0; } static int __wl12xx_spi_raw_write(struct device *child, int addr, void *buf, size_t len, bool fixed) { struct wl12xx_spi_glue *glue = dev_get_drvdata(child->parent); struct spi_transfer *t; struct spi_message m; u32 commands[WSPI_MAX_NUM_OF_CHUNKS]; /* 1 command per chunk */ u32 *cmd; u32 chunk_len; int i; /* SPI write buffers - 2 for each chunk */ t = kzalloc(sizeof(*t) * 2 * WSPI_MAX_NUM_OF_CHUNKS, GFP_KERNEL); if (!t) return -ENOMEM; WARN_ON(len > SPI_AGGR_BUFFER_SIZE); spi_message_init(&m); cmd = &commands[0]; i = 0; while (len > 0) { chunk_len = min_t(size_t, WSPI_MAX_CHUNK_SIZE, len); *cmd = 0; *cmd |= WSPI_CMD_WRITE; *cmd |= (chunk_len << WSPI_CMD_BYTE_LENGTH_OFFSET) & WSPI_CMD_BYTE_LENGTH; *cmd |= addr & WSPI_CMD_BYTE_ADDR; if (fixed) *cmd |= WSPI_CMD_FIXED; t[i].tx_buf = cmd; t[i].len = sizeof(*cmd); spi_message_add_tail(&t[i++], &m); t[i].tx_buf = buf; t[i].len = chunk_len; spi_message_add_tail(&t[i++], &m); if (!fixed) addr += chunk_len; buf += chunk_len; len -= chunk_len; cmd++; } spi_sync(to_spi_device(glue->dev), &m); kfree(t); return 0; } static int __must_check wl12xx_spi_raw_write(struct device *child, int addr, void *buf, size_t len, bool fixed) { /* The ELP wakeup write may fail the first time due to internal * hardware latency. It is safer to send the wakeup command twice to * avoid unexpected failures. */ if (addr == HW_ACCESS_ELP_CTRL_REG) __wl12xx_spi_raw_write(child, addr, buf, len, fixed); return __wl12xx_spi_raw_write(child, addr, buf, len, fixed); } /** * wl12xx_spi_set_power - power on/off the wl12xx unit * @child: wl12xx device handle. * @enable: true/false to power on/off the unit. * * use the WiFi enable regulator to enable/disable the WiFi unit. */ static int wl12xx_spi_set_power(struct device *child, bool enable) { int ret = 0; struct wl12xx_spi_glue *glue = dev_get_drvdata(child->parent); WARN_ON(!glue->reg); /* Update regulator state */ if (enable) { ret = regulator_enable(glue->reg); if (ret) dev_err(child, "Power enable failure\n"); } else { ret = regulator_disable(glue->reg); if (ret) dev_err(child, "Power disable failure\n"); } return ret; } /** * wl12xx_spi_set_block_size * * This function is not needed for spi mode, but need to be present. * Without it defined the wlcore fallback to use the wrong packet * allignment on tx. */ static void wl12xx_spi_set_block_size(struct device *child, unsigned int blksz) { } static struct wl1271_if_operations spi_ops = { .read = wl12xx_spi_raw_read, .write = wl12xx_spi_raw_write, .reset = wl12xx_spi_reset, .init = wl12xx_spi_init, .power = wl12xx_spi_set_power, .set_block_size = wl12xx_spi_set_block_size, }; static const struct of_device_id wlcore_spi_of_match_table[] = { { .compatible = "ti,wl1271", .data = &wl127x_data}, { .compatible = "ti,wl1273", .data = &wl127x_data}, { .compatible = "ti,wl1281", .data = &wl128x_data}, { .compatible = "ti,wl1283", .data = &wl128x_data}, { .compatible = "ti,wl1285", .data = &wl128x_data}, { .compatible = "ti,wl1801", .data = &wl18xx_data}, { .compatible = "ti,wl1805", .data = &wl18xx_data}, { .compatible = "ti,wl1807", .data = &wl18xx_data}, { .compatible = "ti,wl1831", .data = &wl18xx_data}, { .compatible = "ti,wl1835", .data = &wl18xx_data}, { .compatible = "ti,wl1837", .data = &wl18xx_data}, { } }; MODULE_DEVICE_TABLE(of, wlcore_spi_of_match_table); /** * wlcore_probe_of - DT node parsing. * @spi: SPI slave device parameters. * @res: resource parameters. * @glue: wl12xx SPI bus to slave device glue parameters. * @pdev_data: wlcore device parameters */ static int wlcore_probe_of(struct spi_device *spi, struct wl12xx_spi_glue *glue, struct wlcore_platdev_data *pdev_data) { struct device_node *dt_node = spi->dev.of_node; const struct of_device_id *of_id; of_id = of_match_node(wlcore_spi_of_match_table, dt_node); if (!of_id) return -ENODEV; pdev_data->family = of_id->data; dev_info(&spi->dev, "selected chip family is %s\n", pdev_data->family->name); if (of_find_property(dt_node, "clock-xtal", NULL)) pdev_data->ref_clock_xtal = true; /* optional clock frequency params */ of_property_read_u32(dt_node, "ref-clock-frequency", &pdev_data->ref_clock_freq); of_property_read_u32(dt_node, "tcxo-clock-frequency", &pdev_data->tcxo_clock_freq); return 0; } static int wl1271_probe(struct spi_device *spi) { struct wl12xx_spi_glue *glue; struct wlcore_platdev_data *pdev_data; struct resource res[1]; int ret; pdev_data = devm_kzalloc(&spi->dev, sizeof(*pdev_data), GFP_KERNEL); if (!pdev_data) return -ENOMEM; pdev_data->if_ops = &spi_ops; glue = devm_kzalloc(&spi->dev, sizeof(*glue), GFP_KERNEL); if (!glue) { dev_err(&spi->dev, "can't allocate glue\n"); return -ENOMEM; } glue->dev = &spi->dev; spi_set_drvdata(spi, glue); /* This is the only SPI value that we need to set here, the rest * comes from the board-peripherals file */ spi->bits_per_word = 32; glue->reg = devm_regulator_get(&spi->dev, "vwlan"); if (PTR_ERR(glue->reg) == -EPROBE_DEFER) return -EPROBE_DEFER; if (IS_ERR(glue->reg)) { dev_err(glue->dev, "can't get regulator\n"); return PTR_ERR(glue->reg); } ret = wlcore_probe_of(spi, glue, pdev_data); if (ret) { dev_err(glue->dev, "can't get device tree parameters (%d)\n", ret); return ret; } ret = spi_setup(spi); if (ret < 0) { dev_err(glue->dev, "spi_setup failed\n"); return ret; } glue->core = platform_device_alloc(pdev_data->family->name, PLATFORM_DEVID_AUTO); if (!glue->core) { dev_err(glue->dev, "can't allocate platform_device\n"); return -ENOMEM; } glue->core->dev.parent = &spi->dev; memset(res, 0x00, sizeof(res)); res[0].start = spi->irq; res[0].flags = IORESOURCE_IRQ | irq_get_trigger_type(spi->irq); res[0].name = "irq"; ret = platform_device_add_resources(glue->core, res, ARRAY_SIZE(res)); if (ret) { dev_err(glue->dev, "can't add resources\n"); goto out_dev_put; } ret = platform_device_add_data(glue->core, pdev_data, sizeof(*pdev_data)); if (ret) { dev_err(glue->dev, "can't add platform data\n"); goto out_dev_put; } ret = platform_device_add(glue->core); if (ret) { dev_err(glue->dev, "can't register platform device\n"); goto out_dev_put; } return 0; out_dev_put: platform_device_put(glue->core); return ret; } static int wl1271_remove(struct spi_device *spi) { struct wl12xx_spi_glue *glue = spi_get_drvdata(spi); platform_device_unregister(glue->core); return 0; } static struct spi_driver wl1271_spi_driver = { .driver = { .name = "wl1271_spi", .of_match_table = of_match_ptr(wlcore_spi_of_match_table), }, .probe = wl1271_probe, .remove = wl1271_remove, }; module_spi_driver(wl1271_spi_driver); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Luciano Coelho <coelho@ti.com>"); MODULE_AUTHOR("Juuso Oikarinen <juuso.oikarinen@nokia.com>"); MODULE_ALIAS("spi:wl1271");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1