Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Ray Jui | 4849 | 83.19% | 22 | 59.46% |
Oza Pawandeep | 469 | 8.05% | 3 | 8.11% |
Lorenzo Pieralisi | 424 | 7.27% | 3 | 8.11% |
Björn Helgaas | 67 | 1.15% | 5 | 13.51% |
Jon Mason | 13 | 0.22% | 1 | 2.70% |
Hauke Mehrtens | 5 | 0.09% | 1 | 2.70% |
Rob Herring | 1 | 0.02% | 1 | 2.70% |
Marc Gonzalez | 1 | 0.02% | 1 | 2.70% |
Total | 5829 | 37 |
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2014 Hauke Mehrtens <hauke@hauke-m.de> * Copyright (C) 2015 Broadcom Corporation */ #include <linux/kernel.h> #include <linux/pci.h> #include <linux/msi.h> #include <linux/clk.h> #include <linux/module.h> #include <linux/mbus.h> #include <linux/slab.h> #include <linux/delay.h> #include <linux/interrupt.h> #include <linux/irqchip/arm-gic-v3.h> #include <linux/platform_device.h> #include <linux/of_address.h> #include <linux/of_pci.h> #include <linux/of_irq.h> #include <linux/of_platform.h> #include <linux/phy/phy.h> #include "pcie-iproc.h" #define EP_PERST_SOURCE_SELECT_SHIFT 2 #define EP_PERST_SOURCE_SELECT BIT(EP_PERST_SOURCE_SELECT_SHIFT) #define EP_MODE_SURVIVE_PERST_SHIFT 1 #define EP_MODE_SURVIVE_PERST BIT(EP_MODE_SURVIVE_PERST_SHIFT) #define RC_PCIE_RST_OUTPUT_SHIFT 0 #define RC_PCIE_RST_OUTPUT BIT(RC_PCIE_RST_OUTPUT_SHIFT) #define PAXC_RESET_MASK 0x7f #define GIC_V3_CFG_SHIFT 0 #define GIC_V3_CFG BIT(GIC_V3_CFG_SHIFT) #define MSI_ENABLE_CFG_SHIFT 0 #define MSI_ENABLE_CFG BIT(MSI_ENABLE_CFG_SHIFT) #define CFG_IND_ADDR_MASK 0x00001ffc #define CFG_ADDR_BUS_NUM_SHIFT 20 #define CFG_ADDR_BUS_NUM_MASK 0x0ff00000 #define CFG_ADDR_DEV_NUM_SHIFT 15 #define CFG_ADDR_DEV_NUM_MASK 0x000f8000 #define CFG_ADDR_FUNC_NUM_SHIFT 12 #define CFG_ADDR_FUNC_NUM_MASK 0x00007000 #define CFG_ADDR_REG_NUM_SHIFT 2 #define CFG_ADDR_REG_NUM_MASK 0x00000ffc #define CFG_ADDR_CFG_TYPE_SHIFT 0 #define CFG_ADDR_CFG_TYPE_MASK 0x00000003 #define SYS_RC_INTX_MASK 0xf #define PCIE_PHYLINKUP_SHIFT 3 #define PCIE_PHYLINKUP BIT(PCIE_PHYLINKUP_SHIFT) #define PCIE_DL_ACTIVE_SHIFT 2 #define PCIE_DL_ACTIVE BIT(PCIE_DL_ACTIVE_SHIFT) #define APB_ERR_EN_SHIFT 0 #define APB_ERR_EN BIT(APB_ERR_EN_SHIFT) #define CFG_RETRY_STATUS 0xffff0001 #define CFG_RETRY_STATUS_TIMEOUT_US 500000 /* 500 milliseconds */ /* derive the enum index of the outbound/inbound mapping registers */ #define MAP_REG(base_reg, index) ((base_reg) + (index) * 2) /* * Maximum number of outbound mapping window sizes that can be supported by any * OARR/OMAP mapping pair */ #define MAX_NUM_OB_WINDOW_SIZES 4 #define OARR_VALID_SHIFT 0 #define OARR_VALID BIT(OARR_VALID_SHIFT) #define OARR_SIZE_CFG_SHIFT 1 /* * Maximum number of inbound mapping region sizes that can be supported by an * IARR */ #define MAX_NUM_IB_REGION_SIZES 9 #define IMAP_VALID_SHIFT 0 #define IMAP_VALID BIT(IMAP_VALID_SHIFT) #define IPROC_PCI_PM_CAP 0x48 #define IPROC_PCI_PM_CAP_MASK 0xffff #define IPROC_PCI_EXP_CAP 0xac #define IPROC_PCIE_REG_INVALID 0xffff /** * iProc PCIe outbound mapping controller specific parameters * * @window_sizes: list of supported outbound mapping window sizes in MB * @nr_sizes: number of supported outbound mapping window sizes */ struct iproc_pcie_ob_map { resource_size_t window_sizes[MAX_NUM_OB_WINDOW_SIZES]; unsigned int nr_sizes; }; static const struct iproc_pcie_ob_map paxb_ob_map[] = { { /* OARR0/OMAP0 */ .window_sizes = { 128, 256 }, .nr_sizes = 2, }, { /* OARR1/OMAP1 */ .window_sizes = { 128, 256 }, .nr_sizes = 2, }, }; static const struct iproc_pcie_ob_map paxb_v2_ob_map[] = { { /* OARR0/OMAP0 */ .window_sizes = { 128, 256 }, .nr_sizes = 2, }, { /* OARR1/OMAP1 */ .window_sizes = { 128, 256 }, .nr_sizes = 2, }, { /* OARR2/OMAP2 */ .window_sizes = { 128, 256, 512, 1024 }, .nr_sizes = 4, }, { /* OARR3/OMAP3 */ .window_sizes = { 128, 256, 512, 1024 }, .nr_sizes = 4, }, }; /** * iProc PCIe inbound mapping type */ enum iproc_pcie_ib_map_type { /* for DDR memory */ IPROC_PCIE_IB_MAP_MEM = 0, /* for device I/O memory */ IPROC_PCIE_IB_MAP_IO, /* invalid or unused */ IPROC_PCIE_IB_MAP_INVALID }; /** * iProc PCIe inbound mapping controller specific parameters * * @type: inbound mapping region type * @size_unit: inbound mapping region size unit, could be SZ_1K, SZ_1M, or * SZ_1G * @region_sizes: list of supported inbound mapping region sizes in KB, MB, or * GB, depedning on the size unit * @nr_sizes: number of supported inbound mapping region sizes * @nr_windows: number of supported inbound mapping windows for the region * @imap_addr_offset: register offset between the upper and lower 32-bit * IMAP address registers * @imap_window_offset: register offset between each IMAP window */ struct iproc_pcie_ib_map { enum iproc_pcie_ib_map_type type; unsigned int size_unit; resource_size_t region_sizes[MAX_NUM_IB_REGION_SIZES]; unsigned int nr_sizes; unsigned int nr_windows; u16 imap_addr_offset; u16 imap_window_offset; }; static const struct iproc_pcie_ib_map paxb_v2_ib_map[] = { { /* IARR0/IMAP0 */ .type = IPROC_PCIE_IB_MAP_IO, .size_unit = SZ_1K, .region_sizes = { 32 }, .nr_sizes = 1, .nr_windows = 8, .imap_addr_offset = 0x40, .imap_window_offset = 0x4, }, { /* IARR1/IMAP1 (currently unused) */ .type = IPROC_PCIE_IB_MAP_INVALID, }, { /* IARR2/IMAP2 */ .type = IPROC_PCIE_IB_MAP_MEM, .size_unit = SZ_1M, .region_sizes = { 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384 }, .nr_sizes = 9, .nr_windows = 1, .imap_addr_offset = 0x4, .imap_window_offset = 0x8, }, { /* IARR3/IMAP3 */ .type = IPROC_PCIE_IB_MAP_MEM, .size_unit = SZ_1G, .region_sizes = { 1, 2, 4, 8, 16, 32 }, .nr_sizes = 6, .nr_windows = 8, .imap_addr_offset = 0x4, .imap_window_offset = 0x8, }, { /* IARR4/IMAP4 */ .type = IPROC_PCIE_IB_MAP_MEM, .size_unit = SZ_1G, .region_sizes = { 32, 64, 128, 256, 512 }, .nr_sizes = 5, .nr_windows = 8, .imap_addr_offset = 0x4, .imap_window_offset = 0x8, }, }; /* * iProc PCIe host registers */ enum iproc_pcie_reg { /* clock/reset signal control */ IPROC_PCIE_CLK_CTRL = 0, /* * To allow MSI to be steered to an external MSI controller (e.g., ARM * GICv3 ITS) */ IPROC_PCIE_MSI_GIC_MODE, /* * IPROC_PCIE_MSI_BASE_ADDR and IPROC_PCIE_MSI_WINDOW_SIZE define the * window where the MSI posted writes are written, for the writes to be * interpreted as MSI writes. */ IPROC_PCIE_MSI_BASE_ADDR, IPROC_PCIE_MSI_WINDOW_SIZE, /* * To hold the address of the register where the MSI writes are * programed. When ARM GICv3 ITS is used, this should be programmed * with the address of the GITS_TRANSLATER register. */ IPROC_PCIE_MSI_ADDR_LO, IPROC_PCIE_MSI_ADDR_HI, /* enable MSI */ IPROC_PCIE_MSI_EN_CFG, /* allow access to root complex configuration space */ IPROC_PCIE_CFG_IND_ADDR, IPROC_PCIE_CFG_IND_DATA, /* allow access to device configuration space */ IPROC_PCIE_CFG_ADDR, IPROC_PCIE_CFG_DATA, /* enable INTx */ IPROC_PCIE_INTX_EN, /* outbound address mapping */ IPROC_PCIE_OARR0, IPROC_PCIE_OMAP0, IPROC_PCIE_OARR1, IPROC_PCIE_OMAP1, IPROC_PCIE_OARR2, IPROC_PCIE_OMAP2, IPROC_PCIE_OARR3, IPROC_PCIE_OMAP3, /* inbound address mapping */ IPROC_PCIE_IARR0, IPROC_PCIE_IMAP0, IPROC_PCIE_IARR1, IPROC_PCIE_IMAP1, IPROC_PCIE_IARR2, IPROC_PCIE_IMAP2, IPROC_PCIE_IARR3, IPROC_PCIE_IMAP3, IPROC_PCIE_IARR4, IPROC_PCIE_IMAP4, /* link status */ IPROC_PCIE_LINK_STATUS, /* enable APB error for unsupported requests */ IPROC_PCIE_APB_ERR_EN, /* total number of core registers */ IPROC_PCIE_MAX_NUM_REG, }; /* iProc PCIe PAXB BCMA registers */ static const u16 iproc_pcie_reg_paxb_bcma[] = { [IPROC_PCIE_CLK_CTRL] = 0x000, [IPROC_PCIE_CFG_IND_ADDR] = 0x120, [IPROC_PCIE_CFG_IND_DATA] = 0x124, [IPROC_PCIE_CFG_ADDR] = 0x1f8, [IPROC_PCIE_CFG_DATA] = 0x1fc, [IPROC_PCIE_INTX_EN] = 0x330, [IPROC_PCIE_LINK_STATUS] = 0xf0c, }; /* iProc PCIe PAXB registers */ static const u16 iproc_pcie_reg_paxb[] = { [IPROC_PCIE_CLK_CTRL] = 0x000, [IPROC_PCIE_CFG_IND_ADDR] = 0x120, [IPROC_PCIE_CFG_IND_DATA] = 0x124, [IPROC_PCIE_CFG_ADDR] = 0x1f8, [IPROC_PCIE_CFG_DATA] = 0x1fc, [IPROC_PCIE_INTX_EN] = 0x330, [IPROC_PCIE_OARR0] = 0xd20, [IPROC_PCIE_OMAP0] = 0xd40, [IPROC_PCIE_OARR1] = 0xd28, [IPROC_PCIE_OMAP1] = 0xd48, [IPROC_PCIE_LINK_STATUS] = 0xf0c, [IPROC_PCIE_APB_ERR_EN] = 0xf40, }; /* iProc PCIe PAXB v2 registers */ static const u16 iproc_pcie_reg_paxb_v2[] = { [IPROC_PCIE_CLK_CTRL] = 0x000, [IPROC_PCIE_CFG_IND_ADDR] = 0x120, [IPROC_PCIE_CFG_IND_DATA] = 0x124, [IPROC_PCIE_CFG_ADDR] = 0x1f8, [IPROC_PCIE_CFG_DATA] = 0x1fc, [IPROC_PCIE_INTX_EN] = 0x330, [IPROC_PCIE_OARR0] = 0xd20, [IPROC_PCIE_OMAP0] = 0xd40, [IPROC_PCIE_OARR1] = 0xd28, [IPROC_PCIE_OMAP1] = 0xd48, [IPROC_PCIE_OARR2] = 0xd60, [IPROC_PCIE_OMAP2] = 0xd68, [IPROC_PCIE_OARR3] = 0xdf0, [IPROC_PCIE_OMAP3] = 0xdf8, [IPROC_PCIE_IARR0] = 0xd00, [IPROC_PCIE_IMAP0] = 0xc00, [IPROC_PCIE_IARR2] = 0xd10, [IPROC_PCIE_IMAP2] = 0xcc0, [IPROC_PCIE_IARR3] = 0xe00, [IPROC_PCIE_IMAP3] = 0xe08, [IPROC_PCIE_IARR4] = 0xe68, [IPROC_PCIE_IMAP4] = 0xe70, [IPROC_PCIE_LINK_STATUS] = 0xf0c, [IPROC_PCIE_APB_ERR_EN] = 0xf40, }; /* iProc PCIe PAXC v1 registers */ static const u16 iproc_pcie_reg_paxc[] = { [IPROC_PCIE_CLK_CTRL] = 0x000, [IPROC_PCIE_CFG_IND_ADDR] = 0x1f0, [IPROC_PCIE_CFG_IND_DATA] = 0x1f4, [IPROC_PCIE_CFG_ADDR] = 0x1f8, [IPROC_PCIE_CFG_DATA] = 0x1fc, }; /* iProc PCIe PAXC v2 registers */ static const u16 iproc_pcie_reg_paxc_v2[] = { [IPROC_PCIE_MSI_GIC_MODE] = 0x050, [IPROC_PCIE_MSI_BASE_ADDR] = 0x074, [IPROC_PCIE_MSI_WINDOW_SIZE] = 0x078, [IPROC_PCIE_MSI_ADDR_LO] = 0x07c, [IPROC_PCIE_MSI_ADDR_HI] = 0x080, [IPROC_PCIE_MSI_EN_CFG] = 0x09c, [IPROC_PCIE_CFG_IND_ADDR] = 0x1f0, [IPROC_PCIE_CFG_IND_DATA] = 0x1f4, [IPROC_PCIE_CFG_ADDR] = 0x1f8, [IPROC_PCIE_CFG_DATA] = 0x1fc, }; /* * List of device IDs of controllers that have corrupted capability list that * require SW fixup */ static const u16 iproc_pcie_corrupt_cap_did[] = { 0x16cd, 0x16f0, 0xd802, 0xd804 }; static inline struct iproc_pcie *iproc_data(struct pci_bus *bus) { struct iproc_pcie *pcie = bus->sysdata; return pcie; } static inline bool iproc_pcie_reg_is_invalid(u16 reg_offset) { return !!(reg_offset == IPROC_PCIE_REG_INVALID); } static inline u16 iproc_pcie_reg_offset(struct iproc_pcie *pcie, enum iproc_pcie_reg reg) { return pcie->reg_offsets[reg]; } static inline u32 iproc_pcie_read_reg(struct iproc_pcie *pcie, enum iproc_pcie_reg reg) { u16 offset = iproc_pcie_reg_offset(pcie, reg); if (iproc_pcie_reg_is_invalid(offset)) return 0; return readl(pcie->base + offset); } static inline void iproc_pcie_write_reg(struct iproc_pcie *pcie, enum iproc_pcie_reg reg, u32 val) { u16 offset = iproc_pcie_reg_offset(pcie, reg); if (iproc_pcie_reg_is_invalid(offset)) return; writel(val, pcie->base + offset); } /** * APB error forwarding can be disabled during access of configuration * registers of the endpoint device, to prevent unsupported requests * (typically seen during enumeration with multi-function devices) from * triggering a system exception. */ static inline void iproc_pcie_apb_err_disable(struct pci_bus *bus, bool disable) { struct iproc_pcie *pcie = iproc_data(bus); u32 val; if (bus->number && pcie->has_apb_err_disable) { val = iproc_pcie_read_reg(pcie, IPROC_PCIE_APB_ERR_EN); if (disable) val &= ~APB_ERR_EN; else val |= APB_ERR_EN; iproc_pcie_write_reg(pcie, IPROC_PCIE_APB_ERR_EN, val); } } static void __iomem *iproc_pcie_map_ep_cfg_reg(struct iproc_pcie *pcie, unsigned int busno, unsigned int slot, unsigned int fn, int where) { u16 offset; u32 val; /* EP device access */ val = (busno << CFG_ADDR_BUS_NUM_SHIFT) | (slot << CFG_ADDR_DEV_NUM_SHIFT) | (fn << CFG_ADDR_FUNC_NUM_SHIFT) | (where & CFG_ADDR_REG_NUM_MASK) | (1 & CFG_ADDR_CFG_TYPE_MASK); iproc_pcie_write_reg(pcie, IPROC_PCIE_CFG_ADDR, val); offset = iproc_pcie_reg_offset(pcie, IPROC_PCIE_CFG_DATA); if (iproc_pcie_reg_is_invalid(offset)) return NULL; return (pcie->base + offset); } static unsigned int iproc_pcie_cfg_retry(void __iomem *cfg_data_p) { int timeout = CFG_RETRY_STATUS_TIMEOUT_US; unsigned int data; /* * As per PCIe spec r3.1, sec 2.3.2, CRS Software Visibility only * affects config reads of the Vendor ID. For config writes or any * other config reads, the Root may automatically reissue the * configuration request again as a new request. * * For config reads, this hardware returns CFG_RETRY_STATUS data * when it receives a CRS completion, regardless of the address of * the read or the CRS Software Visibility Enable bit. As a * partial workaround for this, we retry in software any read that * returns CFG_RETRY_STATUS. * * Note that a non-Vendor ID config register may have a value of * CFG_RETRY_STATUS. If we read that, we can't distinguish it from * a CRS completion, so we will incorrectly retry the read and * eventually return the wrong data (0xffffffff). */ data = readl(cfg_data_p); while (data == CFG_RETRY_STATUS && timeout--) { udelay(1); data = readl(cfg_data_p); } if (data == CFG_RETRY_STATUS) data = 0xffffffff; return data; } static void iproc_pcie_fix_cap(struct iproc_pcie *pcie, int where, u32 *val) { u32 i, dev_id; switch (where & ~0x3) { case PCI_VENDOR_ID: dev_id = *val >> 16; /* * Activate fixup for those controllers that have corrupted * capability list registers */ for (i = 0; i < ARRAY_SIZE(iproc_pcie_corrupt_cap_did); i++) if (dev_id == iproc_pcie_corrupt_cap_did[i]) pcie->fix_paxc_cap = true; break; case IPROC_PCI_PM_CAP: if (pcie->fix_paxc_cap) { /* advertise PM, force next capability to PCIe */ *val &= ~IPROC_PCI_PM_CAP_MASK; *val |= IPROC_PCI_EXP_CAP << 8 | PCI_CAP_ID_PM; } break; case IPROC_PCI_EXP_CAP: if (pcie->fix_paxc_cap) { /* advertise root port, version 2, terminate here */ *val = (PCI_EXP_TYPE_ROOT_PORT << 4 | 2) << 16 | PCI_CAP_ID_EXP; } break; case IPROC_PCI_EXP_CAP + PCI_EXP_RTCTL: /* Don't advertise CRS SV support */ *val &= ~(PCI_EXP_RTCAP_CRSVIS << 16); break; default: break; } } static int iproc_pcie_config_read(struct pci_bus *bus, unsigned int devfn, int where, int size, u32 *val) { struct iproc_pcie *pcie = iproc_data(bus); unsigned int slot = PCI_SLOT(devfn); unsigned int fn = PCI_FUNC(devfn); unsigned int busno = bus->number; void __iomem *cfg_data_p; unsigned int data; int ret; /* root complex access */ if (busno == 0) { ret = pci_generic_config_read32(bus, devfn, where, size, val); if (ret == PCIBIOS_SUCCESSFUL) iproc_pcie_fix_cap(pcie, where, val); return ret; } cfg_data_p = iproc_pcie_map_ep_cfg_reg(pcie, busno, slot, fn, where); if (!cfg_data_p) return PCIBIOS_DEVICE_NOT_FOUND; data = iproc_pcie_cfg_retry(cfg_data_p); *val = data; if (size <= 2) *val = (data >> (8 * (where & 3))) & ((1 << (size * 8)) - 1); /* * For PAXC and PAXCv2, the total number of PFs that one can enumerate * depends on the firmware configuration. Unfortunately, due to an ASIC * bug, unconfigured PFs cannot be properly hidden from the root * complex. As a result, write access to these PFs will cause bus lock * up on the embedded processor * * Since all unconfigured PFs are left with an incorrect, staled device * ID of 0x168e (PCI_DEVICE_ID_NX2_57810), we try to catch those access * early here and reject them all */ #define DEVICE_ID_MASK 0xffff0000 #define DEVICE_ID_SHIFT 16 if (pcie->rej_unconfig_pf && (where & CFG_ADDR_REG_NUM_MASK) == PCI_VENDOR_ID) if ((*val & DEVICE_ID_MASK) == (PCI_DEVICE_ID_NX2_57810 << DEVICE_ID_SHIFT)) return PCIBIOS_FUNC_NOT_SUPPORTED; return PCIBIOS_SUCCESSFUL; } /** * Note access to the configuration registers are protected at the higher layer * by 'pci_lock' in drivers/pci/access.c */ static void __iomem *iproc_pcie_map_cfg_bus(struct iproc_pcie *pcie, int busno, unsigned int devfn, int where) { unsigned slot = PCI_SLOT(devfn); unsigned fn = PCI_FUNC(devfn); u16 offset; /* root complex access */ if (busno == 0) { if (slot > 0 || fn > 0) return NULL; iproc_pcie_write_reg(pcie, IPROC_PCIE_CFG_IND_ADDR, where & CFG_IND_ADDR_MASK); offset = iproc_pcie_reg_offset(pcie, IPROC_PCIE_CFG_IND_DATA); if (iproc_pcie_reg_is_invalid(offset)) return NULL; else return (pcie->base + offset); } return iproc_pcie_map_ep_cfg_reg(pcie, busno, slot, fn, where); } static void __iomem *iproc_pcie_bus_map_cfg_bus(struct pci_bus *bus, unsigned int devfn, int where) { return iproc_pcie_map_cfg_bus(iproc_data(bus), bus->number, devfn, where); } static int iproc_pci_raw_config_read32(struct iproc_pcie *pcie, unsigned int devfn, int where, int size, u32 *val) { void __iomem *addr; addr = iproc_pcie_map_cfg_bus(pcie, 0, devfn, where & ~0x3); if (!addr) { *val = ~0; return PCIBIOS_DEVICE_NOT_FOUND; } *val = readl(addr); if (size <= 2) *val = (*val >> (8 * (where & 3))) & ((1 << (size * 8)) - 1); return PCIBIOS_SUCCESSFUL; } static int iproc_pci_raw_config_write32(struct iproc_pcie *pcie, unsigned int devfn, int where, int size, u32 val) { void __iomem *addr; u32 mask, tmp; addr = iproc_pcie_map_cfg_bus(pcie, 0, devfn, where & ~0x3); if (!addr) return PCIBIOS_DEVICE_NOT_FOUND; if (size == 4) { writel(val, addr); return PCIBIOS_SUCCESSFUL; } mask = ~(((1 << (size * 8)) - 1) << ((where & 0x3) * 8)); tmp = readl(addr) & mask; tmp |= val << ((where & 0x3) * 8); writel(tmp, addr); return PCIBIOS_SUCCESSFUL; } static int iproc_pcie_config_read32(struct pci_bus *bus, unsigned int devfn, int where, int size, u32 *val) { int ret; struct iproc_pcie *pcie = iproc_data(bus); iproc_pcie_apb_err_disable(bus, true); if (pcie->iproc_cfg_read) ret = iproc_pcie_config_read(bus, devfn, where, size, val); else ret = pci_generic_config_read32(bus, devfn, where, size, val); iproc_pcie_apb_err_disable(bus, false); return ret; } static int iproc_pcie_config_write32(struct pci_bus *bus, unsigned int devfn, int where, int size, u32 val) { int ret; iproc_pcie_apb_err_disable(bus, true); ret = pci_generic_config_write32(bus, devfn, where, size, val); iproc_pcie_apb_err_disable(bus, false); return ret; } static struct pci_ops iproc_pcie_ops = { .map_bus = iproc_pcie_bus_map_cfg_bus, .read = iproc_pcie_config_read32, .write = iproc_pcie_config_write32, }; static void iproc_pcie_perst_ctrl(struct iproc_pcie *pcie, bool assert) { u32 val; /* * PAXC and the internal emulated endpoint device downstream should not * be reset. If firmware has been loaded on the endpoint device at an * earlier boot stage, reset here causes issues. */ if (pcie->ep_is_internal) return; if (assert) { val = iproc_pcie_read_reg(pcie, IPROC_PCIE_CLK_CTRL); val &= ~EP_PERST_SOURCE_SELECT & ~EP_MODE_SURVIVE_PERST & ~RC_PCIE_RST_OUTPUT; iproc_pcie_write_reg(pcie, IPROC_PCIE_CLK_CTRL, val); udelay(250); } else { val = iproc_pcie_read_reg(pcie, IPROC_PCIE_CLK_CTRL); val |= RC_PCIE_RST_OUTPUT; iproc_pcie_write_reg(pcie, IPROC_PCIE_CLK_CTRL, val); msleep(100); } } int iproc_pcie_shutdown(struct iproc_pcie *pcie) { iproc_pcie_perst_ctrl(pcie, true); msleep(500); return 0; } EXPORT_SYMBOL_GPL(iproc_pcie_shutdown); static int iproc_pcie_check_link(struct iproc_pcie *pcie) { struct device *dev = pcie->dev; u32 hdr_type, link_ctrl, link_status, class, val; bool link_is_active = false; /* * PAXC connects to emulated endpoint devices directly and does not * have a Serdes. Therefore skip the link detection logic here. */ if (pcie->ep_is_internal) return 0; val = iproc_pcie_read_reg(pcie, IPROC_PCIE_LINK_STATUS); if (!(val & PCIE_PHYLINKUP) || !(val & PCIE_DL_ACTIVE)) { dev_err(dev, "PHY or data link is INACTIVE!\n"); return -ENODEV; } /* make sure we are not in EP mode */ iproc_pci_raw_config_read32(pcie, 0, PCI_HEADER_TYPE, 1, &hdr_type); if ((hdr_type & 0x7f) != PCI_HEADER_TYPE_BRIDGE) { dev_err(dev, "in EP mode, hdr=%#02x\n", hdr_type); return -EFAULT; } /* force class to PCI_CLASS_BRIDGE_PCI (0x0604) */ #define PCI_BRIDGE_CTRL_REG_OFFSET 0x43c #define PCI_CLASS_BRIDGE_MASK 0xffff00 #define PCI_CLASS_BRIDGE_SHIFT 8 iproc_pci_raw_config_read32(pcie, 0, PCI_BRIDGE_CTRL_REG_OFFSET, 4, &class); class &= ~PCI_CLASS_BRIDGE_MASK; class |= (PCI_CLASS_BRIDGE_PCI << PCI_CLASS_BRIDGE_SHIFT); iproc_pci_raw_config_write32(pcie, 0, PCI_BRIDGE_CTRL_REG_OFFSET, 4, class); /* check link status to see if link is active */ iproc_pci_raw_config_read32(pcie, 0, IPROC_PCI_EXP_CAP + PCI_EXP_LNKSTA, 2, &link_status); if (link_status & PCI_EXP_LNKSTA_NLW) link_is_active = true; if (!link_is_active) { /* try GEN 1 link speed */ #define PCI_TARGET_LINK_SPEED_MASK 0xf #define PCI_TARGET_LINK_SPEED_GEN2 0x2 #define PCI_TARGET_LINK_SPEED_GEN1 0x1 iproc_pci_raw_config_read32(pcie, 0, IPROC_PCI_EXP_CAP + PCI_EXP_LNKCTL2, 4, &link_ctrl); if ((link_ctrl & PCI_TARGET_LINK_SPEED_MASK) == PCI_TARGET_LINK_SPEED_GEN2) { link_ctrl &= ~PCI_TARGET_LINK_SPEED_MASK; link_ctrl |= PCI_TARGET_LINK_SPEED_GEN1; iproc_pci_raw_config_write32(pcie, 0, IPROC_PCI_EXP_CAP + PCI_EXP_LNKCTL2, 4, link_ctrl); msleep(100); iproc_pci_raw_config_read32(pcie, 0, IPROC_PCI_EXP_CAP + PCI_EXP_LNKSTA, 2, &link_status); if (link_status & PCI_EXP_LNKSTA_NLW) link_is_active = true; } } dev_info(dev, "link: %s\n", link_is_active ? "UP" : "DOWN"); return link_is_active ? 0 : -ENODEV; } static void iproc_pcie_enable(struct iproc_pcie *pcie) { iproc_pcie_write_reg(pcie, IPROC_PCIE_INTX_EN, SYS_RC_INTX_MASK); } static inline bool iproc_pcie_ob_is_valid(struct iproc_pcie *pcie, int window_idx) { u32 val; val = iproc_pcie_read_reg(pcie, MAP_REG(IPROC_PCIE_OARR0, window_idx)); return !!(val & OARR_VALID); } static inline int iproc_pcie_ob_write(struct iproc_pcie *pcie, int window_idx, int size_idx, u64 axi_addr, u64 pci_addr) { struct device *dev = pcie->dev; u16 oarr_offset, omap_offset; /* * Derive the OARR/OMAP offset from the first pair (OARR0/OMAP0) based * on window index. */ oarr_offset = iproc_pcie_reg_offset(pcie, MAP_REG(IPROC_PCIE_OARR0, window_idx)); omap_offset = iproc_pcie_reg_offset(pcie, MAP_REG(IPROC_PCIE_OMAP0, window_idx)); if (iproc_pcie_reg_is_invalid(oarr_offset) || iproc_pcie_reg_is_invalid(omap_offset)) return -EINVAL; /* * Program the OARR registers. The upper 32-bit OARR register is * always right after the lower 32-bit OARR register. */ writel(lower_32_bits(axi_addr) | (size_idx << OARR_SIZE_CFG_SHIFT) | OARR_VALID, pcie->base + oarr_offset); writel(upper_32_bits(axi_addr), pcie->base + oarr_offset + 4); /* now program the OMAP registers */ writel(lower_32_bits(pci_addr), pcie->base + omap_offset); writel(upper_32_bits(pci_addr), pcie->base + omap_offset + 4); dev_dbg(dev, "ob window [%d]: offset 0x%x axi %pap pci %pap\n", window_idx, oarr_offset, &axi_addr, &pci_addr); dev_dbg(dev, "oarr lo 0x%x oarr hi 0x%x\n", readl(pcie->base + oarr_offset), readl(pcie->base + oarr_offset + 4)); dev_dbg(dev, "omap lo 0x%x omap hi 0x%x\n", readl(pcie->base + omap_offset), readl(pcie->base + omap_offset + 4)); return 0; } /** * Some iProc SoCs require the SW to configure the outbound address mapping * * Outbound address translation: * * iproc_pcie_address = axi_address - axi_offset * OARR = iproc_pcie_address * OMAP = pci_addr * * axi_addr -> iproc_pcie_address -> OARR -> OMAP -> pci_address */ static int iproc_pcie_setup_ob(struct iproc_pcie *pcie, u64 axi_addr, u64 pci_addr, resource_size_t size) { struct iproc_pcie_ob *ob = &pcie->ob; struct device *dev = pcie->dev; int ret = -EINVAL, window_idx, size_idx; if (axi_addr < ob->axi_offset) { dev_err(dev, "axi address %pap less than offset %pap\n", &axi_addr, &ob->axi_offset); return -EINVAL; } /* * Translate the AXI address to the internal address used by the iProc * PCIe core before programming the OARR */ axi_addr -= ob->axi_offset; /* iterate through all OARR/OMAP mapping windows */ for (window_idx = ob->nr_windows - 1; window_idx >= 0; window_idx--) { const struct iproc_pcie_ob_map *ob_map = &pcie->ob_map[window_idx]; /* * If current outbound window is already in use, move on to the * next one. */ if (iproc_pcie_ob_is_valid(pcie, window_idx)) continue; /* * Iterate through all supported window sizes within the * OARR/OMAP pair to find a match. Go through the window sizes * in a descending order. */ for (size_idx = ob_map->nr_sizes - 1; size_idx >= 0; size_idx--) { resource_size_t window_size = ob_map->window_sizes[size_idx] * SZ_1M; if (size < window_size) continue; if (!IS_ALIGNED(axi_addr, window_size) || !IS_ALIGNED(pci_addr, window_size)) { dev_err(dev, "axi %pap or pci %pap not aligned\n", &axi_addr, &pci_addr); return -EINVAL; } /* * Match found! Program both OARR and OMAP and mark * them as a valid entry. */ ret = iproc_pcie_ob_write(pcie, window_idx, size_idx, axi_addr, pci_addr); if (ret) goto err_ob; size -= window_size; if (size == 0) return 0; /* * If we are here, we are done with the current window, * but not yet finished all mappings. Need to move on * to the next window. */ axi_addr += window_size; pci_addr += window_size; break; } } err_ob: dev_err(dev, "unable to configure outbound mapping\n"); dev_err(dev, "axi %pap, axi offset %pap, pci %pap, res size %pap\n", &axi_addr, &ob->axi_offset, &pci_addr, &size); return ret; } static int iproc_pcie_map_ranges(struct iproc_pcie *pcie, struct list_head *resources) { struct device *dev = pcie->dev; struct resource_entry *window; int ret; resource_list_for_each_entry(window, resources) { struct resource *res = window->res; u64 res_type = resource_type(res); switch (res_type) { case IORESOURCE_IO: case IORESOURCE_BUS: break; case IORESOURCE_MEM: ret = iproc_pcie_setup_ob(pcie, res->start, res->start - window->offset, resource_size(res)); if (ret) return ret; break; default: dev_err(dev, "invalid resource %pR\n", res); return -EINVAL; } } return 0; } static inline bool iproc_pcie_ib_is_in_use(struct iproc_pcie *pcie, int region_idx) { const struct iproc_pcie_ib_map *ib_map = &pcie->ib_map[region_idx]; u32 val; val = iproc_pcie_read_reg(pcie, MAP_REG(IPROC_PCIE_IARR0, region_idx)); return !!(val & (BIT(ib_map->nr_sizes) - 1)); } static inline bool iproc_pcie_ib_check_type(const struct iproc_pcie_ib_map *ib_map, enum iproc_pcie_ib_map_type type) { return !!(ib_map->type == type); } static int iproc_pcie_ib_write(struct iproc_pcie *pcie, int region_idx, int size_idx, int nr_windows, u64 axi_addr, u64 pci_addr, resource_size_t size) { struct device *dev = pcie->dev; const struct iproc_pcie_ib_map *ib_map = &pcie->ib_map[region_idx]; u16 iarr_offset, imap_offset; u32 val; int window_idx; iarr_offset = iproc_pcie_reg_offset(pcie, MAP_REG(IPROC_PCIE_IARR0, region_idx)); imap_offset = iproc_pcie_reg_offset(pcie, MAP_REG(IPROC_PCIE_IMAP0, region_idx)); if (iproc_pcie_reg_is_invalid(iarr_offset) || iproc_pcie_reg_is_invalid(imap_offset)) return -EINVAL; dev_dbg(dev, "ib region [%d]: offset 0x%x axi %pap pci %pap\n", region_idx, iarr_offset, &axi_addr, &pci_addr); /* * Program the IARR registers. The upper 32-bit IARR register is * always right after the lower 32-bit IARR register. */ writel(lower_32_bits(pci_addr) | BIT(size_idx), pcie->base + iarr_offset); writel(upper_32_bits(pci_addr), pcie->base + iarr_offset + 4); dev_dbg(dev, "iarr lo 0x%x iarr hi 0x%x\n", readl(pcie->base + iarr_offset), readl(pcie->base + iarr_offset + 4)); /* * Now program the IMAP registers. Each IARR region may have one or * more IMAP windows. */ size >>= ilog2(nr_windows); for (window_idx = 0; window_idx < nr_windows; window_idx++) { val = readl(pcie->base + imap_offset); val |= lower_32_bits(axi_addr) | IMAP_VALID; writel(val, pcie->base + imap_offset); writel(upper_32_bits(axi_addr), pcie->base + imap_offset + ib_map->imap_addr_offset); dev_dbg(dev, "imap window [%d] lo 0x%x hi 0x%x\n", window_idx, readl(pcie->base + imap_offset), readl(pcie->base + imap_offset + ib_map->imap_addr_offset)); imap_offset += ib_map->imap_window_offset; axi_addr += size; } return 0; } static int iproc_pcie_setup_ib(struct iproc_pcie *pcie, struct of_pci_range *range, enum iproc_pcie_ib_map_type type) { struct device *dev = pcie->dev; struct iproc_pcie_ib *ib = &pcie->ib; int ret; unsigned int region_idx, size_idx; u64 axi_addr = range->cpu_addr, pci_addr = range->pci_addr; resource_size_t size = range->size; /* iterate through all IARR mapping regions */ for (region_idx = 0; region_idx < ib->nr_regions; region_idx++) { const struct iproc_pcie_ib_map *ib_map = &pcie->ib_map[region_idx]; /* * If current inbound region is already in use or not a * compatible type, move on to the next. */ if (iproc_pcie_ib_is_in_use(pcie, region_idx) || !iproc_pcie_ib_check_type(ib_map, type)) continue; /* iterate through all supported region sizes to find a match */ for (size_idx = 0; size_idx < ib_map->nr_sizes; size_idx++) { resource_size_t region_size = ib_map->region_sizes[size_idx] * ib_map->size_unit; if (size != region_size) continue; if (!IS_ALIGNED(axi_addr, region_size) || !IS_ALIGNED(pci_addr, region_size)) { dev_err(dev, "axi %pap or pci %pap not aligned\n", &axi_addr, &pci_addr); return -EINVAL; } /* Match found! Program IARR and all IMAP windows. */ ret = iproc_pcie_ib_write(pcie, region_idx, size_idx, ib_map->nr_windows, axi_addr, pci_addr, size); if (ret) goto err_ib; else return 0; } } ret = -EINVAL; err_ib: dev_err(dev, "unable to configure inbound mapping\n"); dev_err(dev, "axi %pap, pci %pap, res size %pap\n", &axi_addr, &pci_addr, &size); return ret; } static int iproc_pcie_map_dma_ranges(struct iproc_pcie *pcie) { struct of_pci_range range; struct of_pci_range_parser parser; int ret; /* Get the dma-ranges from DT */ ret = of_pci_dma_range_parser_init(&parser, pcie->dev->of_node); if (ret) return ret; for_each_of_pci_range(&parser, &range) { /* Each range entry corresponds to an inbound mapping region */ ret = iproc_pcie_setup_ib(pcie, &range, IPROC_PCIE_IB_MAP_MEM); if (ret) return ret; } return 0; } static int iproce_pcie_get_msi(struct iproc_pcie *pcie, struct device_node *msi_node, u64 *msi_addr) { struct device *dev = pcie->dev; int ret; struct resource res; /* * Check if 'msi-map' points to ARM GICv3 ITS, which is the only * supported external MSI controller that requires steering. */ if (!of_device_is_compatible(msi_node, "arm,gic-v3-its")) { dev_err(dev, "unable to find compatible MSI controller\n"); return -ENODEV; } /* derive GITS_TRANSLATER address from GICv3 */ ret = of_address_to_resource(msi_node, 0, &res); if (ret < 0) { dev_err(dev, "unable to obtain MSI controller resources\n"); return ret; } *msi_addr = res.start + GITS_TRANSLATER; return 0; } static int iproc_pcie_paxb_v2_msi_steer(struct iproc_pcie *pcie, u64 msi_addr) { int ret; struct of_pci_range range; memset(&range, 0, sizeof(range)); range.size = SZ_32K; range.pci_addr = range.cpu_addr = msi_addr & ~(range.size - 1); ret = iproc_pcie_setup_ib(pcie, &range, IPROC_PCIE_IB_MAP_IO); return ret; } static void iproc_pcie_paxc_v2_msi_steer(struct iproc_pcie *pcie, u64 msi_addr, bool enable) { u32 val; if (!enable) { /* * Disable PAXC MSI steering. All write transfers will be * treated as non-MSI transfers */ val = iproc_pcie_read_reg(pcie, IPROC_PCIE_MSI_EN_CFG); val &= ~MSI_ENABLE_CFG; iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_EN_CFG, val); return; } /* * Program bits [43:13] of address of GITS_TRANSLATER register into * bits [30:0] of the MSI base address register. In fact, in all iProc * based SoCs, all I/O register bases are well below the 32-bit * boundary, so we can safely assume bits [43:32] are always zeros. */ iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_BASE_ADDR, (u32)(msi_addr >> 13)); /* use a default 8K window size */ iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_WINDOW_SIZE, 0); /* steering MSI to GICv3 ITS */ val = iproc_pcie_read_reg(pcie, IPROC_PCIE_MSI_GIC_MODE); val |= GIC_V3_CFG; iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_GIC_MODE, val); /* * Program bits [43:2] of address of GITS_TRANSLATER register into the * iProc MSI address registers. */ msi_addr >>= 2; iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_ADDR_HI, upper_32_bits(msi_addr)); iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_ADDR_LO, lower_32_bits(msi_addr)); /* enable MSI */ val = iproc_pcie_read_reg(pcie, IPROC_PCIE_MSI_EN_CFG); val |= MSI_ENABLE_CFG; iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_EN_CFG, val); } static int iproc_pcie_msi_steer(struct iproc_pcie *pcie, struct device_node *msi_node) { struct device *dev = pcie->dev; int ret; u64 msi_addr; ret = iproce_pcie_get_msi(pcie, msi_node, &msi_addr); if (ret < 0) { dev_err(dev, "msi steering failed\n"); return ret; } switch (pcie->type) { case IPROC_PCIE_PAXB_V2: ret = iproc_pcie_paxb_v2_msi_steer(pcie, msi_addr); if (ret) return ret; break; case IPROC_PCIE_PAXC_V2: iproc_pcie_paxc_v2_msi_steer(pcie, msi_addr, true); break; default: return -EINVAL; } return 0; } static int iproc_pcie_msi_enable(struct iproc_pcie *pcie) { struct device_node *msi_node; int ret; /* * Either the "msi-parent" or the "msi-map" phandle needs to exist * for us to obtain the MSI node. */ msi_node = of_parse_phandle(pcie->dev->of_node, "msi-parent", 0); if (!msi_node) { const __be32 *msi_map = NULL; int len; u32 phandle; msi_map = of_get_property(pcie->dev->of_node, "msi-map", &len); if (!msi_map) return -ENODEV; phandle = be32_to_cpup(msi_map + 1); msi_node = of_find_node_by_phandle(phandle); if (!msi_node) return -ENODEV; } /* * Certain revisions of the iProc PCIe controller require additional * configurations to steer the MSI writes towards an external MSI * controller. */ if (pcie->need_msi_steer) { ret = iproc_pcie_msi_steer(pcie, msi_node); if (ret) return ret; } /* * If another MSI controller is being used, the call below should fail * but that is okay */ return iproc_msi_init(pcie, msi_node); } static void iproc_pcie_msi_disable(struct iproc_pcie *pcie) { iproc_msi_exit(pcie); } static int iproc_pcie_rev_init(struct iproc_pcie *pcie) { struct device *dev = pcie->dev; unsigned int reg_idx; const u16 *regs; switch (pcie->type) { case IPROC_PCIE_PAXB_BCMA: regs = iproc_pcie_reg_paxb_bcma; break; case IPROC_PCIE_PAXB: regs = iproc_pcie_reg_paxb; pcie->iproc_cfg_read = true; pcie->has_apb_err_disable = true; if (pcie->need_ob_cfg) { pcie->ob_map = paxb_ob_map; pcie->ob.nr_windows = ARRAY_SIZE(paxb_ob_map); } break; case IPROC_PCIE_PAXB_V2: regs = iproc_pcie_reg_paxb_v2; pcie->has_apb_err_disable = true; if (pcie->need_ob_cfg) { pcie->ob_map = paxb_v2_ob_map; pcie->ob.nr_windows = ARRAY_SIZE(paxb_v2_ob_map); } pcie->ib.nr_regions = ARRAY_SIZE(paxb_v2_ib_map); pcie->ib_map = paxb_v2_ib_map; pcie->need_msi_steer = true; dev_warn(dev, "reads of config registers that contain %#x return incorrect data\n", CFG_RETRY_STATUS); break; case IPROC_PCIE_PAXC: regs = iproc_pcie_reg_paxc; pcie->ep_is_internal = true; pcie->iproc_cfg_read = true; pcie->rej_unconfig_pf = true; break; case IPROC_PCIE_PAXC_V2: regs = iproc_pcie_reg_paxc_v2; pcie->ep_is_internal = true; pcie->iproc_cfg_read = true; pcie->rej_unconfig_pf = true; pcie->need_msi_steer = true; break; default: dev_err(dev, "incompatible iProc PCIe interface\n"); return -EINVAL; } pcie->reg_offsets = devm_kcalloc(dev, IPROC_PCIE_MAX_NUM_REG, sizeof(*pcie->reg_offsets), GFP_KERNEL); if (!pcie->reg_offsets) return -ENOMEM; /* go through the register table and populate all valid registers */ pcie->reg_offsets[0] = (pcie->type == IPROC_PCIE_PAXC_V2) ? IPROC_PCIE_REG_INVALID : regs[0]; for (reg_idx = 1; reg_idx < IPROC_PCIE_MAX_NUM_REG; reg_idx++) pcie->reg_offsets[reg_idx] = regs[reg_idx] ? regs[reg_idx] : IPROC_PCIE_REG_INVALID; return 0; } int iproc_pcie_setup(struct iproc_pcie *pcie, struct list_head *res) { struct device *dev; int ret; struct pci_bus *child; struct pci_host_bridge *host = pci_host_bridge_from_priv(pcie); dev = pcie->dev; ret = iproc_pcie_rev_init(pcie); if (ret) { dev_err(dev, "unable to initialize controller parameters\n"); return ret; } ret = devm_request_pci_bus_resources(dev, res); if (ret) return ret; ret = phy_init(pcie->phy); if (ret) { dev_err(dev, "unable to initialize PCIe PHY\n"); return ret; } ret = phy_power_on(pcie->phy); if (ret) { dev_err(dev, "unable to power on PCIe PHY\n"); goto err_exit_phy; } iproc_pcie_perst_ctrl(pcie, true); iproc_pcie_perst_ctrl(pcie, false); if (pcie->need_ob_cfg) { ret = iproc_pcie_map_ranges(pcie, res); if (ret) { dev_err(dev, "map failed\n"); goto err_power_off_phy; } } if (pcie->need_ib_cfg) { ret = iproc_pcie_map_dma_ranges(pcie); if (ret && ret != -ENOENT) goto err_power_off_phy; } ret = iproc_pcie_check_link(pcie); if (ret) { dev_err(dev, "no PCIe EP device detected\n"); goto err_power_off_phy; } iproc_pcie_enable(pcie); if (IS_ENABLED(CONFIG_PCI_MSI)) if (iproc_pcie_msi_enable(pcie)) dev_info(dev, "not using iProc MSI\n"); list_splice_init(res, &host->windows); host->busnr = 0; host->dev.parent = dev; host->ops = &iproc_pcie_ops; host->sysdata = pcie; host->map_irq = pcie->map_irq; host->swizzle_irq = pci_common_swizzle; ret = pci_scan_root_bus_bridge(host); if (ret < 0) { dev_err(dev, "failed to scan host: %d\n", ret); goto err_power_off_phy; } pci_assign_unassigned_bus_resources(host->bus); pcie->root_bus = host->bus; list_for_each_entry(child, &host->bus->children, node) pcie_bus_configure_settings(child); pci_bus_add_devices(host->bus); return 0; err_power_off_phy: phy_power_off(pcie->phy); err_exit_phy: phy_exit(pcie->phy); return ret; } EXPORT_SYMBOL(iproc_pcie_setup); int iproc_pcie_remove(struct iproc_pcie *pcie) { pci_stop_root_bus(pcie->root_bus); pci_remove_root_bus(pcie->root_bus); iproc_pcie_msi_disable(pcie); phy_power_off(pcie->phy); phy_exit(pcie->phy); return 0; } EXPORT_SYMBOL(iproc_pcie_remove); /* * The MSI parsing logic in certain revisions of Broadcom PAXC based root * complex does not work and needs to be disabled */ static void quirk_paxc_disable_msi_parsing(struct pci_dev *pdev) { struct iproc_pcie *pcie = iproc_data(pdev->bus); if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) iproc_pcie_paxc_v2_msi_steer(pcie, 0, false); } DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_BROADCOM, 0x16f0, quirk_paxc_disable_msi_parsing); DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_BROADCOM, 0xd802, quirk_paxc_disable_msi_parsing); DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_BROADCOM, 0xd804, quirk_paxc_disable_msi_parsing); MODULE_AUTHOR("Ray Jui <rjui@broadcom.com>"); MODULE_DESCRIPTION("Broadcom iPROC PCIe common driver"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1