Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Kishon Vijay Abraham I | 2276 | 84.23% | 4 | 25.00% |
Gustavo Pimentel | 301 | 11.14% | 4 | 25.00% |
Cyrille Pitchen | 68 | 2.52% | 1 | 6.25% |
Niklas Cassel | 44 | 1.63% | 4 | 25.00% |
John Keeping | 7 | 0.26% | 1 | 6.25% |
Jia-Ju Bai | 4 | 0.15% | 1 | 6.25% |
Björn Helgaas | 2 | 0.07% | 1 | 6.25% |
Total | 2702 | 16 |
// SPDX-License-Identifier: GPL-2.0 /** * Test driver to test endpoint functionality * * Copyright (C) 2017 Texas Instruments * Author: Kishon Vijay Abraham I <kishon@ti.com> */ #include <linux/crc32.h> #include <linux/delay.h> #include <linux/io.h> #include <linux/module.h> #include <linux/slab.h> #include <linux/pci_ids.h> #include <linux/random.h> #include <linux/pci-epc.h> #include <linux/pci-epf.h> #include <linux/pci_regs.h> #define IRQ_TYPE_LEGACY 0 #define IRQ_TYPE_MSI 1 #define IRQ_TYPE_MSIX 2 #define COMMAND_RAISE_LEGACY_IRQ BIT(0) #define COMMAND_RAISE_MSI_IRQ BIT(1) #define COMMAND_RAISE_MSIX_IRQ BIT(2) #define COMMAND_READ BIT(3) #define COMMAND_WRITE BIT(4) #define COMMAND_COPY BIT(5) #define STATUS_READ_SUCCESS BIT(0) #define STATUS_READ_FAIL BIT(1) #define STATUS_WRITE_SUCCESS BIT(2) #define STATUS_WRITE_FAIL BIT(3) #define STATUS_COPY_SUCCESS BIT(4) #define STATUS_COPY_FAIL BIT(5) #define STATUS_IRQ_RAISED BIT(6) #define STATUS_SRC_ADDR_INVALID BIT(7) #define STATUS_DST_ADDR_INVALID BIT(8) #define TIMER_RESOLUTION 1 static struct workqueue_struct *kpcitest_workqueue; struct pci_epf_test { void *reg[6]; struct pci_epf *epf; enum pci_barno test_reg_bar; bool linkup_notifier; bool msix_available; struct delayed_work cmd_handler; }; struct pci_epf_test_reg { u32 magic; u32 command; u32 status; u64 src_addr; u64 dst_addr; u32 size; u32 checksum; u32 irq_type; u32 irq_number; } __packed; static struct pci_epf_header test_header = { .vendorid = PCI_ANY_ID, .deviceid = PCI_ANY_ID, .baseclass_code = PCI_CLASS_OTHERS, .interrupt_pin = PCI_INTERRUPT_INTA, }; struct pci_epf_test_data { enum pci_barno test_reg_bar; bool linkup_notifier; }; static size_t bar_size[] = { 512, 512, 1024, 16384, 131072, 1048576 }; static int pci_epf_test_copy(struct pci_epf_test *epf_test) { int ret; void __iomem *src_addr; void __iomem *dst_addr; phys_addr_t src_phys_addr; phys_addr_t dst_phys_addr; struct pci_epf *epf = epf_test->epf; struct device *dev = &epf->dev; struct pci_epc *epc = epf->epc; enum pci_barno test_reg_bar = epf_test->test_reg_bar; struct pci_epf_test_reg *reg = epf_test->reg[test_reg_bar]; src_addr = pci_epc_mem_alloc_addr(epc, &src_phys_addr, reg->size); if (!src_addr) { dev_err(dev, "Failed to allocate source address\n"); reg->status = STATUS_SRC_ADDR_INVALID; ret = -ENOMEM; goto err; } ret = pci_epc_map_addr(epc, epf->func_no, src_phys_addr, reg->src_addr, reg->size); if (ret) { dev_err(dev, "Failed to map source address\n"); reg->status = STATUS_SRC_ADDR_INVALID; goto err_src_addr; } dst_addr = pci_epc_mem_alloc_addr(epc, &dst_phys_addr, reg->size); if (!dst_addr) { dev_err(dev, "Failed to allocate destination address\n"); reg->status = STATUS_DST_ADDR_INVALID; ret = -ENOMEM; goto err_src_map_addr; } ret = pci_epc_map_addr(epc, epf->func_no, dst_phys_addr, reg->dst_addr, reg->size); if (ret) { dev_err(dev, "Failed to map destination address\n"); reg->status = STATUS_DST_ADDR_INVALID; goto err_dst_addr; } memcpy(dst_addr, src_addr, reg->size); pci_epc_unmap_addr(epc, epf->func_no, dst_phys_addr); err_dst_addr: pci_epc_mem_free_addr(epc, dst_phys_addr, dst_addr, reg->size); err_src_map_addr: pci_epc_unmap_addr(epc, epf->func_no, src_phys_addr); err_src_addr: pci_epc_mem_free_addr(epc, src_phys_addr, src_addr, reg->size); err: return ret; } static int pci_epf_test_read(struct pci_epf_test *epf_test) { int ret; void __iomem *src_addr; void *buf; u32 crc32; phys_addr_t phys_addr; struct pci_epf *epf = epf_test->epf; struct device *dev = &epf->dev; struct pci_epc *epc = epf->epc; enum pci_barno test_reg_bar = epf_test->test_reg_bar; struct pci_epf_test_reg *reg = epf_test->reg[test_reg_bar]; src_addr = pci_epc_mem_alloc_addr(epc, &phys_addr, reg->size); if (!src_addr) { dev_err(dev, "Failed to allocate address\n"); reg->status = STATUS_SRC_ADDR_INVALID; ret = -ENOMEM; goto err; } ret = pci_epc_map_addr(epc, epf->func_no, phys_addr, reg->src_addr, reg->size); if (ret) { dev_err(dev, "Failed to map address\n"); reg->status = STATUS_SRC_ADDR_INVALID; goto err_addr; } buf = kzalloc(reg->size, GFP_KERNEL); if (!buf) { ret = -ENOMEM; goto err_map_addr; } memcpy(buf, src_addr, reg->size); crc32 = crc32_le(~0, buf, reg->size); if (crc32 != reg->checksum) ret = -EIO; kfree(buf); err_map_addr: pci_epc_unmap_addr(epc, epf->func_no, phys_addr); err_addr: pci_epc_mem_free_addr(epc, phys_addr, src_addr, reg->size); err: return ret; } static int pci_epf_test_write(struct pci_epf_test *epf_test) { int ret; void __iomem *dst_addr; void *buf; phys_addr_t phys_addr; struct pci_epf *epf = epf_test->epf; struct device *dev = &epf->dev; struct pci_epc *epc = epf->epc; enum pci_barno test_reg_bar = epf_test->test_reg_bar; struct pci_epf_test_reg *reg = epf_test->reg[test_reg_bar]; dst_addr = pci_epc_mem_alloc_addr(epc, &phys_addr, reg->size); if (!dst_addr) { dev_err(dev, "Failed to allocate address\n"); reg->status = STATUS_DST_ADDR_INVALID; ret = -ENOMEM; goto err; } ret = pci_epc_map_addr(epc, epf->func_no, phys_addr, reg->dst_addr, reg->size); if (ret) { dev_err(dev, "Failed to map address\n"); reg->status = STATUS_DST_ADDR_INVALID; goto err_addr; } buf = kzalloc(reg->size, GFP_KERNEL); if (!buf) { ret = -ENOMEM; goto err_map_addr; } get_random_bytes(buf, reg->size); reg->checksum = crc32_le(~0, buf, reg->size); memcpy(dst_addr, buf, reg->size); /* * wait 1ms inorder for the write to complete. Without this delay L3 * error in observed in the host system. */ usleep_range(1000, 2000); kfree(buf); err_map_addr: pci_epc_unmap_addr(epc, epf->func_no, phys_addr); err_addr: pci_epc_mem_free_addr(epc, phys_addr, dst_addr, reg->size); err: return ret; } static void pci_epf_test_raise_irq(struct pci_epf_test *epf_test, u8 irq_type, u16 irq) { struct pci_epf *epf = epf_test->epf; struct device *dev = &epf->dev; struct pci_epc *epc = epf->epc; enum pci_barno test_reg_bar = epf_test->test_reg_bar; struct pci_epf_test_reg *reg = epf_test->reg[test_reg_bar]; reg->status |= STATUS_IRQ_RAISED; switch (irq_type) { case IRQ_TYPE_LEGACY: pci_epc_raise_irq(epc, epf->func_no, PCI_EPC_IRQ_LEGACY, 0); break; case IRQ_TYPE_MSI: pci_epc_raise_irq(epc, epf->func_no, PCI_EPC_IRQ_MSI, irq); break; case IRQ_TYPE_MSIX: pci_epc_raise_irq(epc, epf->func_no, PCI_EPC_IRQ_MSIX, irq); break; default: dev_err(dev, "Failed to raise IRQ, unknown type\n"); break; } } static void pci_epf_test_cmd_handler(struct work_struct *work) { int ret; int count; u32 command; struct pci_epf_test *epf_test = container_of(work, struct pci_epf_test, cmd_handler.work); struct pci_epf *epf = epf_test->epf; struct device *dev = &epf->dev; struct pci_epc *epc = epf->epc; enum pci_barno test_reg_bar = epf_test->test_reg_bar; struct pci_epf_test_reg *reg = epf_test->reg[test_reg_bar]; command = reg->command; if (!command) goto reset_handler; reg->command = 0; reg->status = 0; if (reg->irq_type > IRQ_TYPE_MSIX) { dev_err(dev, "Failed to detect IRQ type\n"); goto reset_handler; } if (command & COMMAND_RAISE_LEGACY_IRQ) { reg->status = STATUS_IRQ_RAISED; pci_epc_raise_irq(epc, epf->func_no, PCI_EPC_IRQ_LEGACY, 0); goto reset_handler; } if (command & COMMAND_WRITE) { ret = pci_epf_test_write(epf_test); if (ret) reg->status |= STATUS_WRITE_FAIL; else reg->status |= STATUS_WRITE_SUCCESS; pci_epf_test_raise_irq(epf_test, reg->irq_type, reg->irq_number); goto reset_handler; } if (command & COMMAND_READ) { ret = pci_epf_test_read(epf_test); if (!ret) reg->status |= STATUS_READ_SUCCESS; else reg->status |= STATUS_READ_FAIL; pci_epf_test_raise_irq(epf_test, reg->irq_type, reg->irq_number); goto reset_handler; } if (command & COMMAND_COPY) { ret = pci_epf_test_copy(epf_test); if (!ret) reg->status |= STATUS_COPY_SUCCESS; else reg->status |= STATUS_COPY_FAIL; pci_epf_test_raise_irq(epf_test, reg->irq_type, reg->irq_number); goto reset_handler; } if (command & COMMAND_RAISE_MSI_IRQ) { count = pci_epc_get_msi(epc, epf->func_no); if (reg->irq_number > count || count <= 0) goto reset_handler; reg->status = STATUS_IRQ_RAISED; pci_epc_raise_irq(epc, epf->func_no, PCI_EPC_IRQ_MSI, reg->irq_number); goto reset_handler; } if (command & COMMAND_RAISE_MSIX_IRQ) { count = pci_epc_get_msix(epc, epf->func_no); if (reg->irq_number > count || count <= 0) goto reset_handler; reg->status = STATUS_IRQ_RAISED; pci_epc_raise_irq(epc, epf->func_no, PCI_EPC_IRQ_MSIX, reg->irq_number); goto reset_handler; } reset_handler: queue_delayed_work(kpcitest_workqueue, &epf_test->cmd_handler, msecs_to_jiffies(1)); } static void pci_epf_test_linkup(struct pci_epf *epf) { struct pci_epf_test *epf_test = epf_get_drvdata(epf); queue_delayed_work(kpcitest_workqueue, &epf_test->cmd_handler, msecs_to_jiffies(1)); } static void pci_epf_test_unbind(struct pci_epf *epf) { struct pci_epf_test *epf_test = epf_get_drvdata(epf); struct pci_epc *epc = epf->epc; struct pci_epf_bar *epf_bar; int bar; cancel_delayed_work(&epf_test->cmd_handler); pci_epc_stop(epc); for (bar = BAR_0; bar <= BAR_5; bar++) { epf_bar = &epf->bar[bar]; if (epf_test->reg[bar]) { pci_epf_free_space(epf, epf_test->reg[bar], bar); pci_epc_clear_bar(epc, epf->func_no, epf_bar); } } } static int pci_epf_test_set_bar(struct pci_epf *epf) { int bar; int ret; struct pci_epf_bar *epf_bar; struct pci_epc *epc = epf->epc; struct device *dev = &epf->dev; struct pci_epf_test *epf_test = epf_get_drvdata(epf); enum pci_barno test_reg_bar = epf_test->test_reg_bar; for (bar = BAR_0; bar <= BAR_5; bar++) { epf_bar = &epf->bar[bar]; epf_bar->flags |= upper_32_bits(epf_bar->size) ? PCI_BASE_ADDRESS_MEM_TYPE_64 : PCI_BASE_ADDRESS_MEM_TYPE_32; ret = pci_epc_set_bar(epc, epf->func_no, epf_bar); if (ret) { pci_epf_free_space(epf, epf_test->reg[bar], bar); dev_err(dev, "Failed to set BAR%d\n", bar); if (bar == test_reg_bar) return ret; } /* * pci_epc_set_bar() sets PCI_BASE_ADDRESS_MEM_TYPE_64 * if the specific implementation required a 64-bit BAR, * even if we only requested a 32-bit BAR. */ if (epf_bar->flags & PCI_BASE_ADDRESS_MEM_TYPE_64) bar++; } return 0; } static int pci_epf_test_alloc_space(struct pci_epf *epf) { struct pci_epf_test *epf_test = epf_get_drvdata(epf); struct device *dev = &epf->dev; void *base; int bar; enum pci_barno test_reg_bar = epf_test->test_reg_bar; base = pci_epf_alloc_space(epf, sizeof(struct pci_epf_test_reg), test_reg_bar); if (!base) { dev_err(dev, "Failed to allocated register space\n"); return -ENOMEM; } epf_test->reg[test_reg_bar] = base; for (bar = BAR_0; bar <= BAR_5; bar++) { if (bar == test_reg_bar) continue; base = pci_epf_alloc_space(epf, bar_size[bar], bar); if (!base) dev_err(dev, "Failed to allocate space for BAR%d\n", bar); epf_test->reg[bar] = base; } return 0; } static int pci_epf_test_bind(struct pci_epf *epf) { int ret; struct pci_epf_test *epf_test = epf_get_drvdata(epf); struct pci_epf_header *header = epf->header; struct pci_epc *epc = epf->epc; struct device *dev = &epf->dev; if (WARN_ON_ONCE(!epc)) return -EINVAL; if (epc->features & EPC_FEATURE_NO_LINKUP_NOTIFIER) epf_test->linkup_notifier = false; else epf_test->linkup_notifier = true; epf_test->msix_available = epc->features & EPC_FEATURE_MSIX_AVAILABLE; epf_test->test_reg_bar = EPC_FEATURE_GET_BAR(epc->features); ret = pci_epc_write_header(epc, epf->func_no, header); if (ret) { dev_err(dev, "Configuration header write failed\n"); return ret; } ret = pci_epf_test_alloc_space(epf); if (ret) return ret; ret = pci_epf_test_set_bar(epf); if (ret) return ret; ret = pci_epc_set_msi(epc, epf->func_no, epf->msi_interrupts); if (ret) { dev_err(dev, "MSI configuration failed\n"); return ret; } if (epf_test->msix_available) { ret = pci_epc_set_msix(epc, epf->func_no, epf->msix_interrupts); if (ret) { dev_err(dev, "MSI-X configuration failed\n"); return ret; } } if (!epf_test->linkup_notifier) queue_work(kpcitest_workqueue, &epf_test->cmd_handler.work); return 0; } static const struct pci_epf_device_id pci_epf_test_ids[] = { { .name = "pci_epf_test", }, {}, }; static int pci_epf_test_probe(struct pci_epf *epf) { struct pci_epf_test *epf_test; struct device *dev = &epf->dev; const struct pci_epf_device_id *match; struct pci_epf_test_data *data; enum pci_barno test_reg_bar = BAR_0; bool linkup_notifier = true; match = pci_epf_match_device(pci_epf_test_ids, epf); data = (struct pci_epf_test_data *)match->driver_data; if (data) { test_reg_bar = data->test_reg_bar; linkup_notifier = data->linkup_notifier; } epf_test = devm_kzalloc(dev, sizeof(*epf_test), GFP_KERNEL); if (!epf_test) return -ENOMEM; epf->header = &test_header; epf_test->epf = epf; epf_test->test_reg_bar = test_reg_bar; epf_test->linkup_notifier = linkup_notifier; INIT_DELAYED_WORK(&epf_test->cmd_handler, pci_epf_test_cmd_handler); epf_set_drvdata(epf, epf_test); return 0; } static struct pci_epf_ops ops = { .unbind = pci_epf_test_unbind, .bind = pci_epf_test_bind, .linkup = pci_epf_test_linkup, }; static struct pci_epf_driver test_driver = { .driver.name = "pci_epf_test", .probe = pci_epf_test_probe, .id_table = pci_epf_test_ids, .ops = &ops, .owner = THIS_MODULE, }; static int __init pci_epf_test_init(void) { int ret; kpcitest_workqueue = alloc_workqueue("kpcitest", WQ_MEM_RECLAIM | WQ_HIGHPRI, 0); ret = pci_epf_register_driver(&test_driver); if (ret) { pr_err("Failed to register pci epf test driver --> %d\n", ret); return ret; } return 0; } module_init(pci_epf_test_init); static void __exit pci_epf_test_exit(void) { pci_epf_unregister_driver(&test_driver); } module_exit(pci_epf_test_exit); MODULE_DESCRIPTION("PCI EPF TEST DRIVER"); MODULE_AUTHOR("Kishon Vijay Abraham I <kishon@ti.com>"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1