Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Linus Torvalds | 10540 | 86.17% | 1 | 2.38% |
Rolf Eike Beer | 942 | 7.70% | 10 | 23.81% |
Greg Kroah-Hartman | 351 | 2.87% | 6 | 14.29% |
Torben Mathiasen | 117 | 0.96% | 2 | 4.76% |
Matthew Wilcox | 53 | 0.43% | 1 | 2.38% |
Alexander Chiang | 39 | 0.32% | 2 | 4.76% |
Harvey Harrison | 32 | 0.26% | 1 | 2.38% |
Christoph Hellwig | 31 | 0.25% | 1 | 2.38% |
Kees Cook | 27 | 0.22% | 1 | 2.38% |
Ingo Molnar | 25 | 0.20% | 2 | 4.76% |
Randy Dunlap | 22 | 0.18% | 1 | 2.38% |
Andrew Morton | 16 | 0.13% | 1 | 2.38% |
Shawn Lin | 9 | 0.07% | 1 | 2.38% |
Björn Helgaas | 7 | 0.06% | 3 | 7.14% |
Lukas Wunner | 5 | 0.04% | 1 | 2.38% |
Rickard Strandqvist | 4 | 0.03% | 1 | 2.38% |
Nishanth Aravamudan | 3 | 0.02% | 1 | 2.38% |
Bogicevic Sasa | 2 | 0.02% | 1 | 2.38% |
Dely Sy | 2 | 0.02% | 1 | 2.38% |
Mariusz Kozlowski | 1 | 0.01% | 1 | 2.38% |
Al Viro | 1 | 0.01% | 1 | 2.38% |
Alan Cox | 1 | 0.01% | 1 | 2.38% |
Sasha Levin | 1 | 0.01% | 1 | 2.38% |
Total | 12231 | 42 |
// SPDX-License-Identifier: GPL-2.0+ /* * Compaq Hot Plug Controller Driver * * Copyright (C) 1995,2001 Compaq Computer Corporation * Copyright (C) 2001 Greg Kroah-Hartman (greg@kroah.com) * Copyright (C) 2001 IBM Corp. * * All rights reserved. * * Send feedback to <greg@kroah.com> * */ #include <linux/module.h> #include <linux/kernel.h> #include <linux/types.h> #include <linux/slab.h> #include <linux/workqueue.h> #include <linux/interrupt.h> #include <linux/delay.h> #include <linux/wait.h> #include <linux/pci.h> #include <linux/pci_hotplug.h> #include <linux/kthread.h> #include "cpqphp.h" static u32 configure_new_device(struct controller *ctrl, struct pci_func *func, u8 behind_bridge, struct resource_lists *resources); static int configure_new_function(struct controller *ctrl, struct pci_func *func, u8 behind_bridge, struct resource_lists *resources); static void interrupt_event_handler(struct controller *ctrl); static struct task_struct *cpqhp_event_thread; static struct timer_list *pushbutton_pending; /* = NULL */ /* delay is in jiffies to wait for */ static void long_delay(int delay) { /* * XXX(hch): if someone is bored please convert all callers * to call msleep_interruptible directly. They really want * to specify timeouts in natural units and spend a lot of * effort converting them to jiffies.. */ msleep_interruptible(jiffies_to_msecs(delay)); } /* FIXME: The following line needs to be somewhere else... */ #define WRONG_BUS_FREQUENCY 0x07 static u8 handle_switch_change(u8 change, struct controller *ctrl) { int hp_slot; u8 rc = 0; u16 temp_word; struct pci_func *func; struct event_info *taskInfo; if (!change) return 0; /* Switch Change */ dbg("cpqsbd: Switch interrupt received.\n"); for (hp_slot = 0; hp_slot < 6; hp_slot++) { if (change & (0x1L << hp_slot)) { /* * this one changed. */ func = cpqhp_slot_find(ctrl->bus, (hp_slot + ctrl->slot_device_offset), 0); /* this is the structure that tells the worker thread * what to do */ taskInfo = &(ctrl->event_queue[ctrl->next_event]); ctrl->next_event = (ctrl->next_event + 1) % 10; taskInfo->hp_slot = hp_slot; rc++; temp_word = ctrl->ctrl_int_comp >> 16; func->presence_save = (temp_word >> hp_slot) & 0x01; func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02; if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) { /* * Switch opened */ func->switch_save = 0; taskInfo->event_type = INT_SWITCH_OPEN; } else { /* * Switch closed */ func->switch_save = 0x10; taskInfo->event_type = INT_SWITCH_CLOSE; } } } return rc; } /** * cpqhp_find_slot - find the struct slot of given device * @ctrl: scan lots of this controller * @device: the device id to find */ static struct slot *cpqhp_find_slot(struct controller *ctrl, u8 device) { struct slot *slot = ctrl->slot; while (slot && (slot->device != device)) slot = slot->next; return slot; } static u8 handle_presence_change(u16 change, struct controller *ctrl) { int hp_slot; u8 rc = 0; u8 temp_byte; u16 temp_word; struct pci_func *func; struct event_info *taskInfo; struct slot *p_slot; if (!change) return 0; /* * Presence Change */ dbg("cpqsbd: Presence/Notify input change.\n"); dbg(" Changed bits are 0x%4.4x\n", change); for (hp_slot = 0; hp_slot < 6; hp_slot++) { if (change & (0x0101 << hp_slot)) { /* * this one changed. */ func = cpqhp_slot_find(ctrl->bus, (hp_slot + ctrl->slot_device_offset), 0); taskInfo = &(ctrl->event_queue[ctrl->next_event]); ctrl->next_event = (ctrl->next_event + 1) % 10; taskInfo->hp_slot = hp_slot; rc++; p_slot = cpqhp_find_slot(ctrl, hp_slot + (readb(ctrl->hpc_reg + SLOT_MASK) >> 4)); if (!p_slot) return 0; /* If the switch closed, must be a button * If not in button mode, nevermind */ if (func->switch_save && (ctrl->push_button == 1)) { temp_word = ctrl->ctrl_int_comp >> 16; temp_byte = (temp_word >> hp_slot) & 0x01; temp_byte |= (temp_word >> (hp_slot + 7)) & 0x02; if (temp_byte != func->presence_save) { /* * button Pressed (doesn't do anything) */ dbg("hp_slot %d button pressed\n", hp_slot); taskInfo->event_type = INT_BUTTON_PRESS; } else { /* * button Released - TAKE ACTION!!!! */ dbg("hp_slot %d button released\n", hp_slot); taskInfo->event_type = INT_BUTTON_RELEASE; /* Cancel if we are still blinking */ if ((p_slot->state == BLINKINGON_STATE) || (p_slot->state == BLINKINGOFF_STATE)) { taskInfo->event_type = INT_BUTTON_CANCEL; dbg("hp_slot %d button cancel\n", hp_slot); } else if ((p_slot->state == POWERON_STATE) || (p_slot->state == POWEROFF_STATE)) { /* info(msg_button_ignore, p_slot->number); */ taskInfo->event_type = INT_BUTTON_IGNORE; dbg("hp_slot %d button ignore\n", hp_slot); } } } else { /* Switch is open, assume a presence change * Save the presence state */ temp_word = ctrl->ctrl_int_comp >> 16; func->presence_save = (temp_word >> hp_slot) & 0x01; func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02; if ((!(ctrl->ctrl_int_comp & (0x010000 << hp_slot))) || (!(ctrl->ctrl_int_comp & (0x01000000 << hp_slot)))) { /* Present */ taskInfo->event_type = INT_PRESENCE_ON; } else { /* Not Present */ taskInfo->event_type = INT_PRESENCE_OFF; } } } } return rc; } static u8 handle_power_fault(u8 change, struct controller *ctrl) { int hp_slot; u8 rc = 0; struct pci_func *func; struct event_info *taskInfo; if (!change) return 0; /* * power fault */ info("power fault interrupt\n"); for (hp_slot = 0; hp_slot < 6; hp_slot++) { if (change & (0x01 << hp_slot)) { /* * this one changed. */ func = cpqhp_slot_find(ctrl->bus, (hp_slot + ctrl->slot_device_offset), 0); taskInfo = &(ctrl->event_queue[ctrl->next_event]); ctrl->next_event = (ctrl->next_event + 1) % 10; taskInfo->hp_slot = hp_slot; rc++; if (ctrl->ctrl_int_comp & (0x00000100 << hp_slot)) { /* * power fault Cleared */ func->status = 0x00; taskInfo->event_type = INT_POWER_FAULT_CLEAR; } else { /* * power fault */ taskInfo->event_type = INT_POWER_FAULT; if (ctrl->rev < 4) { amber_LED_on(ctrl, hp_slot); green_LED_off(ctrl, hp_slot); set_SOGO(ctrl); /* this is a fatal condition, we want * to crash the machine to protect from * data corruption. simulated_NMI * shouldn't ever return */ /* FIXME simulated_NMI(hp_slot, ctrl); */ /* The following code causes a software * crash just in case simulated_NMI did * return */ /*FIXME panic(msg_power_fault); */ } else { /* set power fault status for this board */ func->status = 0xFF; info("power fault bit %x set\n", hp_slot); } } } } return rc; } /** * sort_by_size - sort nodes on the list by their length, smallest first. * @head: list to sort */ static int sort_by_size(struct pci_resource **head) { struct pci_resource *current_res; struct pci_resource *next_res; int out_of_order = 1; if (!(*head)) return 1; if (!((*head)->next)) return 0; while (out_of_order) { out_of_order = 0; /* Special case for swapping list head */ if (((*head)->next) && ((*head)->length > (*head)->next->length)) { out_of_order++; current_res = *head; *head = (*head)->next; current_res->next = (*head)->next; (*head)->next = current_res; } current_res = *head; while (current_res->next && current_res->next->next) { if (current_res->next->length > current_res->next->next->length) { out_of_order++; next_res = current_res->next; current_res->next = current_res->next->next; current_res = current_res->next; next_res->next = current_res->next; current_res->next = next_res; } else current_res = current_res->next; } } /* End of out_of_order loop */ return 0; } /** * sort_by_max_size - sort nodes on the list by their length, largest first. * @head: list to sort */ static int sort_by_max_size(struct pci_resource **head) { struct pci_resource *current_res; struct pci_resource *next_res; int out_of_order = 1; if (!(*head)) return 1; if (!((*head)->next)) return 0; while (out_of_order) { out_of_order = 0; /* Special case for swapping list head */ if (((*head)->next) && ((*head)->length < (*head)->next->length)) { out_of_order++; current_res = *head; *head = (*head)->next; current_res->next = (*head)->next; (*head)->next = current_res; } current_res = *head; while (current_res->next && current_res->next->next) { if (current_res->next->length < current_res->next->next->length) { out_of_order++; next_res = current_res->next; current_res->next = current_res->next->next; current_res = current_res->next; next_res->next = current_res->next; current_res->next = next_res; } else current_res = current_res->next; } } /* End of out_of_order loop */ return 0; } /** * do_pre_bridge_resource_split - find node of resources that are unused * @head: new list head * @orig_head: original list head * @alignment: max node size (?) */ static struct pci_resource *do_pre_bridge_resource_split(struct pci_resource **head, struct pci_resource **orig_head, u32 alignment) { struct pci_resource *prevnode = NULL; struct pci_resource *node; struct pci_resource *split_node; u32 rc; u32 temp_dword; dbg("do_pre_bridge_resource_split\n"); if (!(*head) || !(*orig_head)) return NULL; rc = cpqhp_resource_sort_and_combine(head); if (rc) return NULL; if ((*head)->base != (*orig_head)->base) return NULL; if ((*head)->length == (*orig_head)->length) return NULL; /* If we got here, there the bridge requires some of the resource, but * we may be able to split some off of the front */ node = *head; if (node->length & (alignment - 1)) { /* this one isn't an aligned length, so we'll make a new entry * and split it up. */ split_node = kmalloc(sizeof(*split_node), GFP_KERNEL); if (!split_node) return NULL; temp_dword = (node->length | (alignment-1)) + 1 - alignment; split_node->base = node->base; split_node->length = temp_dword; node->length -= temp_dword; node->base += split_node->length; /* Put it in the list */ *head = split_node; split_node->next = node; } if (node->length < alignment) return NULL; /* Now unlink it */ if (*head == node) { *head = node->next; } else { prevnode = *head; while (prevnode->next != node) prevnode = prevnode->next; prevnode->next = node->next; } node->next = NULL; return node; } /** * do_bridge_resource_split - find one node of resources that aren't in use * @head: list head * @alignment: max node size (?) */ static struct pci_resource *do_bridge_resource_split(struct pci_resource **head, u32 alignment) { struct pci_resource *prevnode = NULL; struct pci_resource *node; u32 rc; u32 temp_dword; rc = cpqhp_resource_sort_and_combine(head); if (rc) return NULL; node = *head; while (node->next) { prevnode = node; node = node->next; kfree(prevnode); } if (node->length < alignment) goto error; if (node->base & (alignment - 1)) { /* Short circuit if adjusted size is too small */ temp_dword = (node->base | (alignment-1)) + 1; if ((node->length - (temp_dword - node->base)) < alignment) goto error; node->length -= (temp_dword - node->base); node->base = temp_dword; } if (node->length & (alignment - 1)) /* There's stuff in use after this node */ goto error; return node; error: kfree(node); return NULL; } /** * get_io_resource - find first node of given size not in ISA aliasing window. * @head: list to search * @size: size of node to find, must be a power of two. * * Description: This function sorts the resource list by size and then returns * returns the first node of "size" length that is not in the ISA aliasing * window. If it finds a node larger than "size" it will split it up. */ static struct pci_resource *get_io_resource(struct pci_resource **head, u32 size) { struct pci_resource *prevnode; struct pci_resource *node; struct pci_resource *split_node; u32 temp_dword; if (!(*head)) return NULL; if (cpqhp_resource_sort_and_combine(head)) return NULL; if (sort_by_size(head)) return NULL; for (node = *head; node; node = node->next) { if (node->length < size) continue; if (node->base & (size - 1)) { /* this one isn't base aligned properly * so we'll make a new entry and split it up */ temp_dword = (node->base | (size-1)) + 1; /* Short circuit if adjusted size is too small */ if ((node->length - (temp_dword - node->base)) < size) continue; split_node = kmalloc(sizeof(*split_node), GFP_KERNEL); if (!split_node) return NULL; split_node->base = node->base; split_node->length = temp_dword - node->base; node->base = temp_dword; node->length -= split_node->length; /* Put it in the list */ split_node->next = node->next; node->next = split_node; } /* End of non-aligned base */ /* Don't need to check if too small since we already did */ if (node->length > size) { /* this one is longer than we need * so we'll make a new entry and split it up */ split_node = kmalloc(sizeof(*split_node), GFP_KERNEL); if (!split_node) return NULL; split_node->base = node->base + size; split_node->length = node->length - size; node->length = size; /* Put it in the list */ split_node->next = node->next; node->next = split_node; } /* End of too big on top end */ /* For IO make sure it's not in the ISA aliasing space */ if (node->base & 0x300L) continue; /* If we got here, then it is the right size * Now take it out of the list and break */ if (*head == node) { *head = node->next; } else { prevnode = *head; while (prevnode->next != node) prevnode = prevnode->next; prevnode->next = node->next; } node->next = NULL; break; } return node; } /** * get_max_resource - get largest node which has at least the given size. * @head: the list to search the node in * @size: the minimum size of the node to find * * Description: Gets the largest node that is at least "size" big from the * list pointed to by head. It aligns the node on top and bottom * to "size" alignment before returning it. */ static struct pci_resource *get_max_resource(struct pci_resource **head, u32 size) { struct pci_resource *max; struct pci_resource *temp; struct pci_resource *split_node; u32 temp_dword; if (cpqhp_resource_sort_and_combine(head)) return NULL; if (sort_by_max_size(head)) return NULL; for (max = *head; max; max = max->next) { /* If not big enough we could probably just bail, * instead we'll continue to the next. */ if (max->length < size) continue; if (max->base & (size - 1)) { /* this one isn't base aligned properly * so we'll make a new entry and split it up */ temp_dword = (max->base | (size-1)) + 1; /* Short circuit if adjusted size is too small */ if ((max->length - (temp_dword - max->base)) < size) continue; split_node = kmalloc(sizeof(*split_node), GFP_KERNEL); if (!split_node) return NULL; split_node->base = max->base; split_node->length = temp_dword - max->base; max->base = temp_dword; max->length -= split_node->length; split_node->next = max->next; max->next = split_node; } if ((max->base + max->length) & (size - 1)) { /* this one isn't end aligned properly at the top * so we'll make a new entry and split it up */ split_node = kmalloc(sizeof(*split_node), GFP_KERNEL); if (!split_node) return NULL; temp_dword = ((max->base + max->length) & ~(size - 1)); split_node->base = temp_dword; split_node->length = max->length + max->base - split_node->base; max->length -= split_node->length; split_node->next = max->next; max->next = split_node; } /* Make sure it didn't shrink too much when we aligned it */ if (max->length < size) continue; /* Now take it out of the list */ temp = *head; if (temp == max) { *head = max->next; } else { while (temp && temp->next != max) temp = temp->next; if (temp) temp->next = max->next; } max->next = NULL; break; } return max; } /** * get_resource - find resource of given size and split up larger ones. * @head: the list to search for resources * @size: the size limit to use * * Description: This function sorts the resource list by size and then * returns the first node of "size" length. If it finds a node * larger than "size" it will split it up. * * size must be a power of two. */ static struct pci_resource *get_resource(struct pci_resource **head, u32 size) { struct pci_resource *prevnode; struct pci_resource *node; struct pci_resource *split_node; u32 temp_dword; if (cpqhp_resource_sort_and_combine(head)) return NULL; if (sort_by_size(head)) return NULL; for (node = *head; node; node = node->next) { dbg("%s: req_size =%x node=%p, base=%x, length=%x\n", __func__, size, node, node->base, node->length); if (node->length < size) continue; if (node->base & (size - 1)) { dbg("%s: not aligned\n", __func__); /* this one isn't base aligned properly * so we'll make a new entry and split it up */ temp_dword = (node->base | (size-1)) + 1; /* Short circuit if adjusted size is too small */ if ((node->length - (temp_dword - node->base)) < size) continue; split_node = kmalloc(sizeof(*split_node), GFP_KERNEL); if (!split_node) return NULL; split_node->base = node->base; split_node->length = temp_dword - node->base; node->base = temp_dword; node->length -= split_node->length; split_node->next = node->next; node->next = split_node; } /* End of non-aligned base */ /* Don't need to check if too small since we already did */ if (node->length > size) { dbg("%s: too big\n", __func__); /* this one is longer than we need * so we'll make a new entry and split it up */ split_node = kmalloc(sizeof(*split_node), GFP_KERNEL); if (!split_node) return NULL; split_node->base = node->base + size; split_node->length = node->length - size; node->length = size; /* Put it in the list */ split_node->next = node->next; node->next = split_node; } /* End of too big on top end */ dbg("%s: got one!!!\n", __func__); /* If we got here, then it is the right size * Now take it out of the list */ if (*head == node) { *head = node->next; } else { prevnode = *head; while (prevnode->next != node) prevnode = prevnode->next; prevnode->next = node->next; } node->next = NULL; break; } return node; } /** * cpqhp_resource_sort_and_combine - sort nodes by base addresses and clean up * @head: the list to sort and clean up * * Description: Sorts all of the nodes in the list in ascending order by * their base addresses. Also does garbage collection by * combining adjacent nodes. * * Returns %0 if success. */ int cpqhp_resource_sort_and_combine(struct pci_resource **head) { struct pci_resource *node1; struct pci_resource *node2; int out_of_order = 1; dbg("%s: head = %p, *head = %p\n", __func__, head, *head); if (!(*head)) return 1; dbg("*head->next = %p\n", (*head)->next); if (!(*head)->next) return 0; /* only one item on the list, already sorted! */ dbg("*head->base = 0x%x\n", (*head)->base); dbg("*head->next->base = 0x%x\n", (*head)->next->base); while (out_of_order) { out_of_order = 0; /* Special case for swapping list head */ if (((*head)->next) && ((*head)->base > (*head)->next->base)) { node1 = *head; (*head) = (*head)->next; node1->next = (*head)->next; (*head)->next = node1; out_of_order++; } node1 = (*head); while (node1->next && node1->next->next) { if (node1->next->base > node1->next->next->base) { out_of_order++; node2 = node1->next; node1->next = node1->next->next; node1 = node1->next; node2->next = node1->next; node1->next = node2; } else node1 = node1->next; } } /* End of out_of_order loop */ node1 = *head; while (node1 && node1->next) { if ((node1->base + node1->length) == node1->next->base) { /* Combine */ dbg("8..\n"); node1->length += node1->next->length; node2 = node1->next; node1->next = node1->next->next; kfree(node2); } else node1 = node1->next; } return 0; } irqreturn_t cpqhp_ctrl_intr(int IRQ, void *data) { struct controller *ctrl = data; u8 schedule_flag = 0; u8 reset; u16 misc; u32 Diff; u32 temp_dword; misc = readw(ctrl->hpc_reg + MISC); /* * Check to see if it was our interrupt */ if (!(misc & 0x000C)) return IRQ_NONE; if (misc & 0x0004) { /* * Serial Output interrupt Pending */ /* Clear the interrupt */ misc |= 0x0004; writew(misc, ctrl->hpc_reg + MISC); /* Read to clear posted writes */ misc = readw(ctrl->hpc_reg + MISC); dbg("%s - waking up\n", __func__); wake_up_interruptible(&ctrl->queue); } if (misc & 0x0008) { /* General-interrupt-input interrupt Pending */ Diff = readl(ctrl->hpc_reg + INT_INPUT_CLEAR) ^ ctrl->ctrl_int_comp; ctrl->ctrl_int_comp = readl(ctrl->hpc_reg + INT_INPUT_CLEAR); /* Clear the interrupt */ writel(Diff, ctrl->hpc_reg + INT_INPUT_CLEAR); /* Read it back to clear any posted writes */ temp_dword = readl(ctrl->hpc_reg + INT_INPUT_CLEAR); if (!Diff) /* Clear all interrupts */ writel(0xFFFFFFFF, ctrl->hpc_reg + INT_INPUT_CLEAR); schedule_flag += handle_switch_change((u8)(Diff & 0xFFL), ctrl); schedule_flag += handle_presence_change((u16)((Diff & 0xFFFF0000L) >> 16), ctrl); schedule_flag += handle_power_fault((u8)((Diff & 0xFF00L) >> 8), ctrl); } reset = readb(ctrl->hpc_reg + RESET_FREQ_MODE); if (reset & 0x40) { /* Bus reset has completed */ reset &= 0xCF; writeb(reset, ctrl->hpc_reg + RESET_FREQ_MODE); reset = readb(ctrl->hpc_reg + RESET_FREQ_MODE); wake_up_interruptible(&ctrl->queue); } if (schedule_flag) { wake_up_process(cpqhp_event_thread); dbg("Waking even thread"); } return IRQ_HANDLED; } /** * cpqhp_slot_create - Creates a node and adds it to the proper bus. * @busnumber: bus where new node is to be located * * Returns pointer to the new node or %NULL if unsuccessful. */ struct pci_func *cpqhp_slot_create(u8 busnumber) { struct pci_func *new_slot; struct pci_func *next; new_slot = kzalloc(sizeof(*new_slot), GFP_KERNEL); if (new_slot == NULL) return new_slot; new_slot->next = NULL; new_slot->configured = 1; if (cpqhp_slot_list[busnumber] == NULL) { cpqhp_slot_list[busnumber] = new_slot; } else { next = cpqhp_slot_list[busnumber]; while (next->next != NULL) next = next->next; next->next = new_slot; } return new_slot; } /** * slot_remove - Removes a node from the linked list of slots. * @old_slot: slot to remove * * Returns %0 if successful, !0 otherwise. */ static int slot_remove(struct pci_func *old_slot) { struct pci_func *next; if (old_slot == NULL) return 1; next = cpqhp_slot_list[old_slot->bus]; if (next == NULL) return 1; if (next == old_slot) { cpqhp_slot_list[old_slot->bus] = old_slot->next; cpqhp_destroy_board_resources(old_slot); kfree(old_slot); return 0; } while ((next->next != old_slot) && (next->next != NULL)) next = next->next; if (next->next == old_slot) { next->next = old_slot->next; cpqhp_destroy_board_resources(old_slot); kfree(old_slot); return 0; } else return 2; } /** * bridge_slot_remove - Removes a node from the linked list of slots. * @bridge: bridge to remove * * Returns %0 if successful, !0 otherwise. */ static int bridge_slot_remove(struct pci_func *bridge) { u8 subordinateBus, secondaryBus; u8 tempBus; struct pci_func *next; secondaryBus = (bridge->config_space[0x06] >> 8) & 0xFF; subordinateBus = (bridge->config_space[0x06] >> 16) & 0xFF; for (tempBus = secondaryBus; tempBus <= subordinateBus; tempBus++) { next = cpqhp_slot_list[tempBus]; while (!slot_remove(next)) next = cpqhp_slot_list[tempBus]; } next = cpqhp_slot_list[bridge->bus]; if (next == NULL) return 1; if (next == bridge) { cpqhp_slot_list[bridge->bus] = bridge->next; goto out; } while ((next->next != bridge) && (next->next != NULL)) next = next->next; if (next->next != bridge) return 2; next->next = bridge->next; out: kfree(bridge); return 0; } /** * cpqhp_slot_find - Looks for a node by bus, and device, multiple functions accessed * @bus: bus to find * @device: device to find * @index: is %0 for first function found, %1 for the second... * * Returns pointer to the node if successful, %NULL otherwise. */ struct pci_func *cpqhp_slot_find(u8 bus, u8 device, u8 index) { int found = -1; struct pci_func *func; func = cpqhp_slot_list[bus]; if ((func == NULL) || ((func->device == device) && (index == 0))) return func; if (func->device == device) found++; while (func->next != NULL) { func = func->next; if (func->device == device) found++; if (found == index) return func; } return NULL; } /* DJZ: I don't think is_bridge will work as is. * FIXME */ static int is_bridge(struct pci_func *func) { /* Check the header type */ if (((func->config_space[0x03] >> 16) & 0xFF) == 0x01) return 1; else return 0; } /** * set_controller_speed - set the frequency and/or mode of a specific controller segment. * @ctrl: controller to change frequency/mode for. * @adapter_speed: the speed of the adapter we want to match. * @hp_slot: the slot number where the adapter is installed. * * Returns %0 if we successfully change frequency and/or mode to match the * adapter speed. */ static u8 set_controller_speed(struct controller *ctrl, u8 adapter_speed, u8 hp_slot) { struct slot *slot; struct pci_bus *bus = ctrl->pci_bus; u8 reg; u8 slot_power = readb(ctrl->hpc_reg + SLOT_POWER); u16 reg16; u32 leds = readl(ctrl->hpc_reg + LED_CONTROL); if (bus->cur_bus_speed == adapter_speed) return 0; /* We don't allow freq/mode changes if we find another adapter running * in another slot on this controller */ for (slot = ctrl->slot; slot; slot = slot->next) { if (slot->device == (hp_slot + ctrl->slot_device_offset)) continue; if (get_presence_status(ctrl, slot) == 0) continue; /* If another adapter is running on the same segment but at a * lower speed/mode, we allow the new adapter to function at * this rate if supported */ if (bus->cur_bus_speed < adapter_speed) return 0; return 1; } /* If the controller doesn't support freq/mode changes and the * controller is running at a higher mode, we bail */ if ((bus->cur_bus_speed > adapter_speed) && (!ctrl->pcix_speed_capability)) return 1; /* But we allow the adapter to run at a lower rate if possible */ if ((bus->cur_bus_speed < adapter_speed) && (!ctrl->pcix_speed_capability)) return 0; /* We try to set the max speed supported by both the adapter and * controller */ if (bus->max_bus_speed < adapter_speed) { if (bus->cur_bus_speed == bus->max_bus_speed) return 0; adapter_speed = bus->max_bus_speed; } writel(0x0L, ctrl->hpc_reg + LED_CONTROL); writeb(0x00, ctrl->hpc_reg + SLOT_ENABLE); set_SOGO(ctrl); wait_for_ctrl_irq(ctrl); if (adapter_speed != PCI_SPEED_133MHz_PCIX) reg = 0xF5; else reg = 0xF4; pci_write_config_byte(ctrl->pci_dev, 0x41, reg); reg16 = readw(ctrl->hpc_reg + NEXT_CURR_FREQ); reg16 &= ~0x000F; switch (adapter_speed) { case(PCI_SPEED_133MHz_PCIX): reg = 0x75; reg16 |= 0xB; break; case(PCI_SPEED_100MHz_PCIX): reg = 0x74; reg16 |= 0xA; break; case(PCI_SPEED_66MHz_PCIX): reg = 0x73; reg16 |= 0x9; break; case(PCI_SPEED_66MHz): reg = 0x73; reg16 |= 0x1; break; default: /* 33MHz PCI 2.2 */ reg = 0x71; break; } reg16 |= 0xB << 12; writew(reg16, ctrl->hpc_reg + NEXT_CURR_FREQ); mdelay(5); /* Reenable interrupts */ writel(0, ctrl->hpc_reg + INT_MASK); pci_write_config_byte(ctrl->pci_dev, 0x41, reg); /* Restart state machine */ reg = ~0xF; pci_read_config_byte(ctrl->pci_dev, 0x43, ®); pci_write_config_byte(ctrl->pci_dev, 0x43, reg); /* Only if mode change...*/ if (((bus->cur_bus_speed == PCI_SPEED_66MHz) && (adapter_speed == PCI_SPEED_66MHz_PCIX)) || ((bus->cur_bus_speed == PCI_SPEED_66MHz_PCIX) && (adapter_speed == PCI_SPEED_66MHz))) set_SOGO(ctrl); wait_for_ctrl_irq(ctrl); mdelay(1100); /* Restore LED/Slot state */ writel(leds, ctrl->hpc_reg + LED_CONTROL); writeb(slot_power, ctrl->hpc_reg + SLOT_ENABLE); set_SOGO(ctrl); wait_for_ctrl_irq(ctrl); bus->cur_bus_speed = adapter_speed; slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset); info("Successfully changed frequency/mode for adapter in slot %d\n", slot->number); return 0; } /* the following routines constitute the bulk of the * hotplug controller logic */ /** * board_replaced - Called after a board has been replaced in the system. * @func: PCI device/function information * @ctrl: hotplug controller * * This is only used if we don't have resources for hot add. * Turns power on for the board. * Checks to see if board is the same. * If board is same, reconfigures it. * If board isn't same, turns it back off. */ static u32 board_replaced(struct pci_func *func, struct controller *ctrl) { struct pci_bus *bus = ctrl->pci_bus; u8 hp_slot; u8 temp_byte; u8 adapter_speed; u32 rc = 0; hp_slot = func->device - ctrl->slot_device_offset; /* * The switch is open. */ if (readl(ctrl->hpc_reg + INT_INPUT_CLEAR) & (0x01L << hp_slot)) rc = INTERLOCK_OPEN; /* * The board is already on */ else if (is_slot_enabled(ctrl, hp_slot)) rc = CARD_FUNCTIONING; else { mutex_lock(&ctrl->crit_sect); /* turn on board without attaching to the bus */ enable_slot_power(ctrl, hp_slot); set_SOGO(ctrl); /* Wait for SOBS to be unset */ wait_for_ctrl_irq(ctrl); /* Change bits in slot power register to force another shift out * NOTE: this is to work around the timer bug */ temp_byte = readb(ctrl->hpc_reg + SLOT_POWER); writeb(0x00, ctrl->hpc_reg + SLOT_POWER); writeb(temp_byte, ctrl->hpc_reg + SLOT_POWER); set_SOGO(ctrl); /* Wait for SOBS to be unset */ wait_for_ctrl_irq(ctrl); adapter_speed = get_adapter_speed(ctrl, hp_slot); if (bus->cur_bus_speed != adapter_speed) if (set_controller_speed(ctrl, adapter_speed, hp_slot)) rc = WRONG_BUS_FREQUENCY; /* turn off board without attaching to the bus */ disable_slot_power(ctrl, hp_slot); set_SOGO(ctrl); /* Wait for SOBS to be unset */ wait_for_ctrl_irq(ctrl); mutex_unlock(&ctrl->crit_sect); if (rc) return rc; mutex_lock(&ctrl->crit_sect); slot_enable(ctrl, hp_slot); green_LED_blink(ctrl, hp_slot); amber_LED_off(ctrl, hp_slot); set_SOGO(ctrl); /* Wait for SOBS to be unset */ wait_for_ctrl_irq(ctrl); mutex_unlock(&ctrl->crit_sect); /* Wait for ~1 second because of hot plug spec */ long_delay(1*HZ); /* Check for a power fault */ if (func->status == 0xFF) { /* power fault occurred, but it was benign */ rc = POWER_FAILURE; func->status = 0; } else rc = cpqhp_valid_replace(ctrl, func); if (!rc) { /* It must be the same board */ rc = cpqhp_configure_board(ctrl, func); /* If configuration fails, turn it off * Get slot won't work for devices behind * bridges, but in this case it will always be * called for the "base" bus/dev/func of an * adapter. */ mutex_lock(&ctrl->crit_sect); amber_LED_on(ctrl, hp_slot); green_LED_off(ctrl, hp_slot); slot_disable(ctrl, hp_slot); set_SOGO(ctrl); /* Wait for SOBS to be unset */ wait_for_ctrl_irq(ctrl); mutex_unlock(&ctrl->crit_sect); if (rc) return rc; else return 1; } else { /* Something is wrong * Get slot won't work for devices behind bridges, but * in this case it will always be called for the "base" * bus/dev/func of an adapter. */ mutex_lock(&ctrl->crit_sect); amber_LED_on(ctrl, hp_slot); green_LED_off(ctrl, hp_slot); slot_disable(ctrl, hp_slot); set_SOGO(ctrl); /* Wait for SOBS to be unset */ wait_for_ctrl_irq(ctrl); mutex_unlock(&ctrl->crit_sect); } } return rc; } /** * board_added - Called after a board has been added to the system. * @func: PCI device/function info * @ctrl: hotplug controller * * Turns power on for the board. * Configures board. */ static u32 board_added(struct pci_func *func, struct controller *ctrl) { u8 hp_slot; u8 temp_byte; u8 adapter_speed; int index; u32 temp_register = 0xFFFFFFFF; u32 rc = 0; struct pci_func *new_slot = NULL; struct pci_bus *bus = ctrl->pci_bus; struct slot *p_slot; struct resource_lists res_lists; hp_slot = func->device - ctrl->slot_device_offset; dbg("%s: func->device, slot_offset, hp_slot = %d, %d ,%d\n", __func__, func->device, ctrl->slot_device_offset, hp_slot); mutex_lock(&ctrl->crit_sect); /* turn on board without attaching to the bus */ enable_slot_power(ctrl, hp_slot); set_SOGO(ctrl); /* Wait for SOBS to be unset */ wait_for_ctrl_irq(ctrl); /* Change bits in slot power register to force another shift out * NOTE: this is to work around the timer bug */ temp_byte = readb(ctrl->hpc_reg + SLOT_POWER); writeb(0x00, ctrl->hpc_reg + SLOT_POWER); writeb(temp_byte, ctrl->hpc_reg + SLOT_POWER); set_SOGO(ctrl); /* Wait for SOBS to be unset */ wait_for_ctrl_irq(ctrl); adapter_speed = get_adapter_speed(ctrl, hp_slot); if (bus->cur_bus_speed != adapter_speed) if (set_controller_speed(ctrl, adapter_speed, hp_slot)) rc = WRONG_BUS_FREQUENCY; /* turn off board without attaching to the bus */ disable_slot_power(ctrl, hp_slot); set_SOGO(ctrl); /* Wait for SOBS to be unset */ wait_for_ctrl_irq(ctrl); mutex_unlock(&ctrl->crit_sect); if (rc) return rc; p_slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset); /* turn on board and blink green LED */ dbg("%s: before down\n", __func__); mutex_lock(&ctrl->crit_sect); dbg("%s: after down\n", __func__); dbg("%s: before slot_enable\n", __func__); slot_enable(ctrl, hp_slot); dbg("%s: before green_LED_blink\n", __func__); green_LED_blink(ctrl, hp_slot); dbg("%s: before amber_LED_blink\n", __func__); amber_LED_off(ctrl, hp_slot); dbg("%s: before set_SOGO\n", __func__); set_SOGO(ctrl); /* Wait for SOBS to be unset */ dbg("%s: before wait_for_ctrl_irq\n", __func__); wait_for_ctrl_irq(ctrl); dbg("%s: after wait_for_ctrl_irq\n", __func__); dbg("%s: before up\n", __func__); mutex_unlock(&ctrl->crit_sect); dbg("%s: after up\n", __func__); /* Wait for ~1 second because of hot plug spec */ dbg("%s: before long_delay\n", __func__); long_delay(1*HZ); dbg("%s: after long_delay\n", __func__); dbg("%s: func status = %x\n", __func__, func->status); /* Check for a power fault */ if (func->status == 0xFF) { /* power fault occurred, but it was benign */ temp_register = 0xFFFFFFFF; dbg("%s: temp register set to %x by power fault\n", __func__, temp_register); rc = POWER_FAILURE; func->status = 0; } else { /* Get vendor/device ID u32 */ ctrl->pci_bus->number = func->bus; rc = pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(func->device, func->function), PCI_VENDOR_ID, &temp_register); dbg("%s: pci_read_config_dword returns %d\n", __func__, rc); dbg("%s: temp_register is %x\n", __func__, temp_register); if (rc != 0) { /* Something's wrong here */ temp_register = 0xFFFFFFFF; dbg("%s: temp register set to %x by error\n", __func__, temp_register); } /* Preset return code. It will be changed later if things go okay. */ rc = NO_ADAPTER_PRESENT; } /* All F's is an empty slot or an invalid board */ if (temp_register != 0xFFFFFFFF) { res_lists.io_head = ctrl->io_head; res_lists.mem_head = ctrl->mem_head; res_lists.p_mem_head = ctrl->p_mem_head; res_lists.bus_head = ctrl->bus_head; res_lists.irqs = NULL; rc = configure_new_device(ctrl, func, 0, &res_lists); dbg("%s: back from configure_new_device\n", __func__); ctrl->io_head = res_lists.io_head; ctrl->mem_head = res_lists.mem_head; ctrl->p_mem_head = res_lists.p_mem_head; ctrl->bus_head = res_lists.bus_head; cpqhp_resource_sort_and_combine(&(ctrl->mem_head)); cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head)); cpqhp_resource_sort_and_combine(&(ctrl->io_head)); cpqhp_resource_sort_and_combine(&(ctrl->bus_head)); if (rc) { mutex_lock(&ctrl->crit_sect); amber_LED_on(ctrl, hp_slot); green_LED_off(ctrl, hp_slot); slot_disable(ctrl, hp_slot); set_SOGO(ctrl); /* Wait for SOBS to be unset */ wait_for_ctrl_irq(ctrl); mutex_unlock(&ctrl->crit_sect); return rc; } else { cpqhp_save_slot_config(ctrl, func); } func->status = 0; func->switch_save = 0x10; func->is_a_board = 0x01; /* next, we will instantiate the linux pci_dev structures (with * appropriate driver notification, if already present) */ dbg("%s: configure linux pci_dev structure\n", __func__); index = 0; do { new_slot = cpqhp_slot_find(ctrl->bus, func->device, index++); if (new_slot && !new_slot->pci_dev) cpqhp_configure_device(ctrl, new_slot); } while (new_slot); mutex_lock(&ctrl->crit_sect); green_LED_on(ctrl, hp_slot); set_SOGO(ctrl); /* Wait for SOBS to be unset */ wait_for_ctrl_irq(ctrl); mutex_unlock(&ctrl->crit_sect); } else { mutex_lock(&ctrl->crit_sect); amber_LED_on(ctrl, hp_slot); green_LED_off(ctrl, hp_slot); slot_disable(ctrl, hp_slot); set_SOGO(ctrl); /* Wait for SOBS to be unset */ wait_for_ctrl_irq(ctrl); mutex_unlock(&ctrl->crit_sect); return rc; } return 0; } /** * remove_board - Turns off slot and LEDs * @func: PCI device/function info * @replace_flag: whether replacing or adding a new device * @ctrl: target controller */ static u32 remove_board(struct pci_func *func, u32 replace_flag, struct controller *ctrl) { int index; u8 skip = 0; u8 device; u8 hp_slot; u8 temp_byte; u32 rc; struct resource_lists res_lists; struct pci_func *temp_func; if (cpqhp_unconfigure_device(func)) return 1; device = func->device; hp_slot = func->device - ctrl->slot_device_offset; dbg("In %s, hp_slot = %d\n", __func__, hp_slot); /* When we get here, it is safe to change base address registers. * We will attempt to save the base address register lengths */ if (replace_flag || !ctrl->add_support) rc = cpqhp_save_base_addr_length(ctrl, func); else if (!func->bus_head && !func->mem_head && !func->p_mem_head && !func->io_head) { /* Here we check to see if we've saved any of the board's * resources already. If so, we'll skip the attempt to * determine what's being used. */ index = 0; temp_func = cpqhp_slot_find(func->bus, func->device, index++); while (temp_func) { if (temp_func->bus_head || temp_func->mem_head || temp_func->p_mem_head || temp_func->io_head) { skip = 1; break; } temp_func = cpqhp_slot_find(temp_func->bus, temp_func->device, index++); } if (!skip) rc = cpqhp_save_used_resources(ctrl, func); } /* Change status to shutdown */ if (func->is_a_board) func->status = 0x01; func->configured = 0; mutex_lock(&ctrl->crit_sect); green_LED_off(ctrl, hp_slot); slot_disable(ctrl, hp_slot); set_SOGO(ctrl); /* turn off SERR for slot */ temp_byte = readb(ctrl->hpc_reg + SLOT_SERR); temp_byte &= ~(0x01 << hp_slot); writeb(temp_byte, ctrl->hpc_reg + SLOT_SERR); /* Wait for SOBS to be unset */ wait_for_ctrl_irq(ctrl); mutex_unlock(&ctrl->crit_sect); if (!replace_flag && ctrl->add_support) { while (func) { res_lists.io_head = ctrl->io_head; res_lists.mem_head = ctrl->mem_head; res_lists.p_mem_head = ctrl->p_mem_head; res_lists.bus_head = ctrl->bus_head; cpqhp_return_board_resources(func, &res_lists); ctrl->io_head = res_lists.io_head; ctrl->mem_head = res_lists.mem_head; ctrl->p_mem_head = res_lists.p_mem_head; ctrl->bus_head = res_lists.bus_head; cpqhp_resource_sort_and_combine(&(ctrl->mem_head)); cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head)); cpqhp_resource_sort_and_combine(&(ctrl->io_head)); cpqhp_resource_sort_and_combine(&(ctrl->bus_head)); if (is_bridge(func)) { bridge_slot_remove(func); } else slot_remove(func); func = cpqhp_slot_find(ctrl->bus, device, 0); } /* Setup slot structure with entry for empty slot */ func = cpqhp_slot_create(ctrl->bus); if (func == NULL) return 1; func->bus = ctrl->bus; func->device = device; func->function = 0; func->configured = 0; func->switch_save = 0x10; func->is_a_board = 0; func->p_task_event = NULL; } return 0; } static void pushbutton_helper_thread(struct timer_list *t) { pushbutton_pending = t; wake_up_process(cpqhp_event_thread); } /* this is the main worker thread */ static int event_thread(void *data) { struct controller *ctrl; while (1) { dbg("!!!!event_thread sleeping\n"); set_current_state(TASK_INTERRUPTIBLE); schedule(); if (kthread_should_stop()) break; /* Do stuff here */ if (pushbutton_pending) cpqhp_pushbutton_thread(pushbutton_pending); else for (ctrl = cpqhp_ctrl_list; ctrl; ctrl = ctrl->next) interrupt_event_handler(ctrl); } dbg("event_thread signals exit\n"); return 0; } int cpqhp_event_start_thread(void) { cpqhp_event_thread = kthread_run(event_thread, NULL, "phpd_event"); if (IS_ERR(cpqhp_event_thread)) { err("Can't start up our event thread\n"); return PTR_ERR(cpqhp_event_thread); } return 0; } void cpqhp_event_stop_thread(void) { kthread_stop(cpqhp_event_thread); } static void interrupt_event_handler(struct controller *ctrl) { int loop = 0; int change = 1; struct pci_func *func; u8 hp_slot; struct slot *p_slot; while (change) { change = 0; for (loop = 0; loop < 10; loop++) { /* dbg("loop %d\n", loop); */ if (ctrl->event_queue[loop].event_type != 0) { hp_slot = ctrl->event_queue[loop].hp_slot; func = cpqhp_slot_find(ctrl->bus, (hp_slot + ctrl->slot_device_offset), 0); if (!func) return; p_slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset); if (!p_slot) return; dbg("hp_slot %d, func %p, p_slot %p\n", hp_slot, func, p_slot); if (ctrl->event_queue[loop].event_type == INT_BUTTON_PRESS) { dbg("button pressed\n"); } else if (ctrl->event_queue[loop].event_type == INT_BUTTON_CANCEL) { dbg("button cancel\n"); del_timer(&p_slot->task_event); mutex_lock(&ctrl->crit_sect); if (p_slot->state == BLINKINGOFF_STATE) { /* slot is on */ dbg("turn on green LED\n"); green_LED_on(ctrl, hp_slot); } else if (p_slot->state == BLINKINGON_STATE) { /* slot is off */ dbg("turn off green LED\n"); green_LED_off(ctrl, hp_slot); } info(msg_button_cancel, p_slot->number); p_slot->state = STATIC_STATE; amber_LED_off(ctrl, hp_slot); set_SOGO(ctrl); /* Wait for SOBS to be unset */ wait_for_ctrl_irq(ctrl); mutex_unlock(&ctrl->crit_sect); } /*** button Released (No action on press...) */ else if (ctrl->event_queue[loop].event_type == INT_BUTTON_RELEASE) { dbg("button release\n"); if (is_slot_enabled(ctrl, hp_slot)) { dbg("slot is on\n"); p_slot->state = BLINKINGOFF_STATE; info(msg_button_off, p_slot->number); } else { dbg("slot is off\n"); p_slot->state = BLINKINGON_STATE; info(msg_button_on, p_slot->number); } mutex_lock(&ctrl->crit_sect); dbg("blink green LED and turn off amber\n"); amber_LED_off(ctrl, hp_slot); green_LED_blink(ctrl, hp_slot); set_SOGO(ctrl); /* Wait for SOBS to be unset */ wait_for_ctrl_irq(ctrl); mutex_unlock(&ctrl->crit_sect); timer_setup(&p_slot->task_event, pushbutton_helper_thread, 0); p_slot->hp_slot = hp_slot; p_slot->ctrl = ctrl; /* p_slot->physical_slot = physical_slot; */ p_slot->task_event.expires = jiffies + 5 * HZ; /* 5 second delay */ dbg("add_timer p_slot = %p\n", p_slot); add_timer(&p_slot->task_event); } /***********POWER FAULT */ else if (ctrl->event_queue[loop].event_type == INT_POWER_FAULT) { dbg("power fault\n"); } ctrl->event_queue[loop].event_type = 0; change = 1; } } /* End of FOR loop */ } return; } /** * cpqhp_pushbutton_thread - handle pushbutton events * @slot: target slot (struct) * * Scheduled procedure to handle blocking stuff for the pushbuttons. * Handles all pending events and exits. */ void cpqhp_pushbutton_thread(struct timer_list *t) { u8 hp_slot; u8 device; struct pci_func *func; struct slot *p_slot = from_timer(p_slot, t, task_event); struct controller *ctrl = (struct controller *) p_slot->ctrl; pushbutton_pending = NULL; hp_slot = p_slot->hp_slot; device = p_slot->device; if (is_slot_enabled(ctrl, hp_slot)) { p_slot->state = POWEROFF_STATE; /* power Down board */ func = cpqhp_slot_find(p_slot->bus, p_slot->device, 0); dbg("In power_down_board, func = %p, ctrl = %p\n", func, ctrl); if (!func) { dbg("Error! func NULL in %s\n", __func__); return; } if (cpqhp_process_SS(ctrl, func) != 0) { amber_LED_on(ctrl, hp_slot); green_LED_on(ctrl, hp_slot); set_SOGO(ctrl); /* Wait for SOBS to be unset */ wait_for_ctrl_irq(ctrl); } p_slot->state = STATIC_STATE; } else { p_slot->state = POWERON_STATE; /* slot is off */ func = cpqhp_slot_find(p_slot->bus, p_slot->device, 0); dbg("In add_board, func = %p, ctrl = %p\n", func, ctrl); if (!func) { dbg("Error! func NULL in %s\n", __func__); return; } if (ctrl != NULL) { if (cpqhp_process_SI(ctrl, func) != 0) { amber_LED_on(ctrl, hp_slot); green_LED_off(ctrl, hp_slot); set_SOGO(ctrl); /* Wait for SOBS to be unset */ wait_for_ctrl_irq(ctrl); } } p_slot->state = STATIC_STATE; } return; } int cpqhp_process_SI(struct controller *ctrl, struct pci_func *func) { u8 device, hp_slot; u16 temp_word; u32 tempdword; int rc; struct slot *p_slot; int physical_slot = 0; tempdword = 0; device = func->device; hp_slot = device - ctrl->slot_device_offset; p_slot = cpqhp_find_slot(ctrl, device); if (p_slot) physical_slot = p_slot->number; /* Check to see if the interlock is closed */ tempdword = readl(ctrl->hpc_reg + INT_INPUT_CLEAR); if (tempdword & (0x01 << hp_slot)) return 1; if (func->is_a_board) { rc = board_replaced(func, ctrl); } else { /* add board */ slot_remove(func); func = cpqhp_slot_create(ctrl->bus); if (func == NULL) return 1; func->bus = ctrl->bus; func->device = device; func->function = 0; func->configured = 0; func->is_a_board = 1; /* We have to save the presence info for these slots */ temp_word = ctrl->ctrl_int_comp >> 16; func->presence_save = (temp_word >> hp_slot) & 0x01; func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02; if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) { func->switch_save = 0; } else { func->switch_save = 0x10; } rc = board_added(func, ctrl); if (rc) { if (is_bridge(func)) { bridge_slot_remove(func); } else slot_remove(func); /* Setup slot structure with entry for empty slot */ func = cpqhp_slot_create(ctrl->bus); if (func == NULL) return 1; func->bus = ctrl->bus; func->device = device; func->function = 0; func->configured = 0; func->is_a_board = 0; /* We have to save the presence info for these slots */ temp_word = ctrl->ctrl_int_comp >> 16; func->presence_save = (temp_word >> hp_slot) & 0x01; func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02; if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) { func->switch_save = 0; } else { func->switch_save = 0x10; } } } if (rc) dbg("%s: rc = %d\n", __func__, rc); return rc; } int cpqhp_process_SS(struct controller *ctrl, struct pci_func *func) { u8 device, class_code, header_type, BCR; u8 index = 0; u8 replace_flag; u32 rc = 0; unsigned int devfn; struct slot *p_slot; struct pci_bus *pci_bus = ctrl->pci_bus; int physical_slot = 0; device = func->device; func = cpqhp_slot_find(ctrl->bus, device, index++); p_slot = cpqhp_find_slot(ctrl, device); if (p_slot) physical_slot = p_slot->number; /* Make sure there are no video controllers here */ while (func && !rc) { pci_bus->number = func->bus; devfn = PCI_DEVFN(func->device, func->function); /* Check the Class Code */ rc = pci_bus_read_config_byte(pci_bus, devfn, 0x0B, &class_code); if (rc) return rc; if (class_code == PCI_BASE_CLASS_DISPLAY) { /* Display/Video adapter (not supported) */ rc = REMOVE_NOT_SUPPORTED; } else { /* See if it's a bridge */ rc = pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &header_type); if (rc) return rc; /* If it's a bridge, check the VGA Enable bit */ if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) { rc = pci_bus_read_config_byte(pci_bus, devfn, PCI_BRIDGE_CONTROL, &BCR); if (rc) return rc; /* If the VGA Enable bit is set, remove isn't * supported */ if (BCR & PCI_BRIDGE_CTL_VGA) rc = REMOVE_NOT_SUPPORTED; } } func = cpqhp_slot_find(ctrl->bus, device, index++); } func = cpqhp_slot_find(ctrl->bus, device, 0); if ((func != NULL) && !rc) { /* FIXME: Replace flag should be passed into process_SS */ replace_flag = !(ctrl->add_support); rc = remove_board(func, replace_flag, ctrl); } else if (!rc) { rc = 1; } return rc; } /** * switch_leds - switch the leds, go from one site to the other. * @ctrl: controller to use * @num_of_slots: number of slots to use * @work_LED: LED control value * @direction: 1 to start from the left side, 0 to start right. */ static void switch_leds(struct controller *ctrl, const int num_of_slots, u32 *work_LED, const int direction) { int loop; for (loop = 0; loop < num_of_slots; loop++) { if (direction) *work_LED = *work_LED >> 1; else *work_LED = *work_LED << 1; writel(*work_LED, ctrl->hpc_reg + LED_CONTROL); set_SOGO(ctrl); /* Wait for SOGO interrupt */ wait_for_ctrl_irq(ctrl); /* Get ready for next iteration */ long_delay((2*HZ)/10); } } /** * cpqhp_hardware_test - runs hardware tests * @ctrl: target controller * @test_num: the number written to the "test" file in sysfs. * * For hot plug ctrl folks to play with. */ int cpqhp_hardware_test(struct controller *ctrl, int test_num) { u32 save_LED; u32 work_LED; int loop; int num_of_slots; num_of_slots = readb(ctrl->hpc_reg + SLOT_MASK) & 0x0f; switch (test_num) { case 1: /* Do stuff here! */ /* Do that funky LED thing */ /* so we can restore them later */ save_LED = readl(ctrl->hpc_reg + LED_CONTROL); work_LED = 0x01010101; switch_leds(ctrl, num_of_slots, &work_LED, 0); switch_leds(ctrl, num_of_slots, &work_LED, 1); switch_leds(ctrl, num_of_slots, &work_LED, 0); switch_leds(ctrl, num_of_slots, &work_LED, 1); work_LED = 0x01010000; writel(work_LED, ctrl->hpc_reg + LED_CONTROL); switch_leds(ctrl, num_of_slots, &work_LED, 0); switch_leds(ctrl, num_of_slots, &work_LED, 1); work_LED = 0x00000101; writel(work_LED, ctrl->hpc_reg + LED_CONTROL); switch_leds(ctrl, num_of_slots, &work_LED, 0); switch_leds(ctrl, num_of_slots, &work_LED, 1); work_LED = 0x01010000; writel(work_LED, ctrl->hpc_reg + LED_CONTROL); for (loop = 0; loop < num_of_slots; loop++) { set_SOGO(ctrl); /* Wait for SOGO interrupt */ wait_for_ctrl_irq(ctrl); /* Get ready for next iteration */ long_delay((3*HZ)/10); work_LED = work_LED >> 16; writel(work_LED, ctrl->hpc_reg + LED_CONTROL); set_SOGO(ctrl); /* Wait for SOGO interrupt */ wait_for_ctrl_irq(ctrl); /* Get ready for next iteration */ long_delay((3*HZ)/10); work_LED = work_LED << 16; writel(work_LED, ctrl->hpc_reg + LED_CONTROL); work_LED = work_LED << 1; writel(work_LED, ctrl->hpc_reg + LED_CONTROL); } /* put it back the way it was */ writel(save_LED, ctrl->hpc_reg + LED_CONTROL); set_SOGO(ctrl); /* Wait for SOBS to be unset */ wait_for_ctrl_irq(ctrl); break; case 2: /* Do other stuff here! */ break; case 3: /* and more... */ break; } return 0; } /** * configure_new_device - Configures the PCI header information of one board. * @ctrl: pointer to controller structure * @func: pointer to function structure * @behind_bridge: 1 if this is a recursive call, 0 if not * @resources: pointer to set of resource lists * * Returns 0 if success. */ static u32 configure_new_device(struct controller *ctrl, struct pci_func *func, u8 behind_bridge, struct resource_lists *resources) { u8 temp_byte, function, max_functions, stop_it; int rc; u32 ID; struct pci_func *new_slot; int index; new_slot = func; dbg("%s\n", __func__); /* Check for Multi-function device */ ctrl->pci_bus->number = func->bus; rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(func->device, func->function), 0x0E, &temp_byte); if (rc) { dbg("%s: rc = %d\n", __func__, rc); return rc; } if (temp_byte & 0x80) /* Multi-function device */ max_functions = 8; else max_functions = 1; function = 0; do { rc = configure_new_function(ctrl, new_slot, behind_bridge, resources); if (rc) { dbg("configure_new_function failed %d\n", rc); index = 0; while (new_slot) { new_slot = cpqhp_slot_find(new_slot->bus, new_slot->device, index++); if (new_slot) cpqhp_return_board_resources(new_slot, resources); } return rc; } function++; stop_it = 0; /* The following loop skips to the next present function * and creates a board structure */ while ((function < max_functions) && (!stop_it)) { pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(func->device, function), 0x00, &ID); if (ID == 0xFFFFFFFF) { function++; } else { /* Setup slot structure. */ new_slot = cpqhp_slot_create(func->bus); if (new_slot == NULL) return 1; new_slot->bus = func->bus; new_slot->device = func->device; new_slot->function = function; new_slot->is_a_board = 1; new_slot->status = 0; stop_it++; } } } while (function < max_functions); dbg("returning from configure_new_device\n"); return 0; } /* * Configuration logic that involves the hotplug data structures and * their bookkeeping */ /** * configure_new_function - Configures the PCI header information of one device * @ctrl: pointer to controller structure * @func: pointer to function structure * @behind_bridge: 1 if this is a recursive call, 0 if not * @resources: pointer to set of resource lists * * Calls itself recursively for bridged devices. * Returns 0 if success. */ static int configure_new_function(struct controller *ctrl, struct pci_func *func, u8 behind_bridge, struct resource_lists *resources) { int cloop; u8 IRQ = 0; u8 temp_byte; u8 device; u8 class_code; u16 command; u16 temp_word; u32 temp_dword; u32 rc; u32 temp_register; u32 base; u32 ID; unsigned int devfn; struct pci_resource *mem_node; struct pci_resource *p_mem_node; struct pci_resource *io_node; struct pci_resource *bus_node; struct pci_resource *hold_mem_node; struct pci_resource *hold_p_mem_node; struct pci_resource *hold_IO_node; struct pci_resource *hold_bus_node; struct irq_mapping irqs; struct pci_func *new_slot; struct pci_bus *pci_bus; struct resource_lists temp_resources; pci_bus = ctrl->pci_bus; pci_bus->number = func->bus; devfn = PCI_DEVFN(func->device, func->function); /* Check for Bridge */ rc = pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &temp_byte); if (rc) return rc; if ((temp_byte & 0x7F) == PCI_HEADER_TYPE_BRIDGE) { /* set Primary bus */ dbg("set Primary bus = %d\n", func->bus); rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_PRIMARY_BUS, func->bus); if (rc) return rc; /* find range of buses to use */ dbg("find ranges of buses to use\n"); bus_node = get_max_resource(&(resources->bus_head), 1); /* If we don't have any buses to allocate, we can't continue */ if (!bus_node) return -ENOMEM; /* set Secondary bus */ temp_byte = bus_node->base; dbg("set Secondary bus = %d\n", bus_node->base); rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SECONDARY_BUS, temp_byte); if (rc) return rc; /* set subordinate bus */ temp_byte = bus_node->base + bus_node->length - 1; dbg("set subordinate bus = %d\n", bus_node->base + bus_node->length - 1); rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SUBORDINATE_BUS, temp_byte); if (rc) return rc; /* set subordinate Latency Timer and base Latency Timer */ temp_byte = 0x40; rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SEC_LATENCY_TIMER, temp_byte); if (rc) return rc; rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_LATENCY_TIMER, temp_byte); if (rc) return rc; /* set Cache Line size */ temp_byte = 0x08; rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_CACHE_LINE_SIZE, temp_byte); if (rc) return rc; /* Setup the IO, memory, and prefetchable windows */ io_node = get_max_resource(&(resources->io_head), 0x1000); if (!io_node) return -ENOMEM; mem_node = get_max_resource(&(resources->mem_head), 0x100000); if (!mem_node) return -ENOMEM; p_mem_node = get_max_resource(&(resources->p_mem_head), 0x100000); if (!p_mem_node) return -ENOMEM; dbg("Setup the IO, memory, and prefetchable windows\n"); dbg("io_node\n"); dbg("(base, len, next) (%x, %x, %p)\n", io_node->base, io_node->length, io_node->next); dbg("mem_node\n"); dbg("(base, len, next) (%x, %x, %p)\n", mem_node->base, mem_node->length, mem_node->next); dbg("p_mem_node\n"); dbg("(base, len, next) (%x, %x, %p)\n", p_mem_node->base, p_mem_node->length, p_mem_node->next); /* set up the IRQ info */ if (!resources->irqs) { irqs.barber_pole = 0; irqs.interrupt[0] = 0; irqs.interrupt[1] = 0; irqs.interrupt[2] = 0; irqs.interrupt[3] = 0; irqs.valid_INT = 0; } else { irqs.barber_pole = resources->irqs->barber_pole; irqs.interrupt[0] = resources->irqs->interrupt[0]; irqs.interrupt[1] = resources->irqs->interrupt[1]; irqs.interrupt[2] = resources->irqs->interrupt[2]; irqs.interrupt[3] = resources->irqs->interrupt[3]; irqs.valid_INT = resources->irqs->valid_INT; } /* set up resource lists that are now aligned on top and bottom * for anything behind the bridge. */ temp_resources.bus_head = bus_node; temp_resources.io_head = io_node; temp_resources.mem_head = mem_node; temp_resources.p_mem_head = p_mem_node; temp_resources.irqs = &irqs; /* Make copies of the nodes we are going to pass down so that * if there is a problem,we can just use these to free resources */ hold_bus_node = kmalloc(sizeof(*hold_bus_node), GFP_KERNEL); hold_IO_node = kmalloc(sizeof(*hold_IO_node), GFP_KERNEL); hold_mem_node = kmalloc(sizeof(*hold_mem_node), GFP_KERNEL); hold_p_mem_node = kmalloc(sizeof(*hold_p_mem_node), GFP_KERNEL); if (!hold_bus_node || !hold_IO_node || !hold_mem_node || !hold_p_mem_node) { kfree(hold_bus_node); kfree(hold_IO_node); kfree(hold_mem_node); kfree(hold_p_mem_node); return 1; } memcpy(hold_bus_node, bus_node, sizeof(struct pci_resource)); bus_node->base += 1; bus_node->length -= 1; bus_node->next = NULL; /* If we have IO resources copy them and fill in the bridge's * IO range registers */ memcpy(hold_IO_node, io_node, sizeof(struct pci_resource)); io_node->next = NULL; /* set IO base and Limit registers */ temp_byte = io_node->base >> 8; rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_BASE, temp_byte); temp_byte = (io_node->base + io_node->length - 1) >> 8; rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_LIMIT, temp_byte); /* Copy the memory resources and fill in the bridge's memory * range registers. */ memcpy(hold_mem_node, mem_node, sizeof(struct pci_resource)); mem_node->next = NULL; /* set Mem base and Limit registers */ temp_word = mem_node->base >> 16; rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_BASE, temp_word); temp_word = (mem_node->base + mem_node->length - 1) >> 16; rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word); memcpy(hold_p_mem_node, p_mem_node, sizeof(struct pci_resource)); p_mem_node->next = NULL; /* set Pre Mem base and Limit registers */ temp_word = p_mem_node->base >> 16; rc = pci_bus_write_config_word(pci_bus, devfn, PCI_PREF_MEMORY_BASE, temp_word); temp_word = (p_mem_node->base + p_mem_node->length - 1) >> 16; rc = pci_bus_write_config_word(pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word); /* Adjust this to compensate for extra adjustment in first loop */ irqs.barber_pole--; rc = 0; /* Here we actually find the devices and configure them */ for (device = 0; (device <= 0x1F) && !rc; device++) { irqs.barber_pole = (irqs.barber_pole + 1) & 0x03; ID = 0xFFFFFFFF; pci_bus->number = hold_bus_node->base; pci_bus_read_config_dword(pci_bus, PCI_DEVFN(device, 0), 0x00, &ID); pci_bus->number = func->bus; if (ID != 0xFFFFFFFF) { /* device present */ /* Setup slot structure. */ new_slot = cpqhp_slot_create(hold_bus_node->base); if (new_slot == NULL) { rc = -ENOMEM; continue; } new_slot->bus = hold_bus_node->base; new_slot->device = device; new_slot->function = 0; new_slot->is_a_board = 1; new_slot->status = 0; rc = configure_new_device(ctrl, new_slot, 1, &temp_resources); dbg("configure_new_device rc=0x%x\n", rc); } /* End of IF (device in slot?) */ } /* End of FOR loop */ if (rc) goto free_and_out; /* save the interrupt routing information */ if (resources->irqs) { resources->irqs->interrupt[0] = irqs.interrupt[0]; resources->irqs->interrupt[1] = irqs.interrupt[1]; resources->irqs->interrupt[2] = irqs.interrupt[2]; resources->irqs->interrupt[3] = irqs.interrupt[3]; resources->irqs->valid_INT = irqs.valid_INT; } else if (!behind_bridge) { /* We need to hook up the interrupts here */ for (cloop = 0; cloop < 4; cloop++) { if (irqs.valid_INT & (0x01 << cloop)) { rc = cpqhp_set_irq(func->bus, func->device, cloop + 1, irqs.interrupt[cloop]); if (rc) goto free_and_out; } } /* end of for loop */ } /* Return unused bus resources * First use the temporary node to store information for * the board */ if (bus_node && temp_resources.bus_head) { hold_bus_node->length = bus_node->base - hold_bus_node->base; hold_bus_node->next = func->bus_head; func->bus_head = hold_bus_node; temp_byte = temp_resources.bus_head->base - 1; /* set subordinate bus */ rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SUBORDINATE_BUS, temp_byte); if (temp_resources.bus_head->length == 0) { kfree(temp_resources.bus_head); temp_resources.bus_head = NULL; } else { return_resource(&(resources->bus_head), temp_resources.bus_head); } } /* If we have IO space available and there is some left, * return the unused portion */ if (hold_IO_node && temp_resources.io_head) { io_node = do_pre_bridge_resource_split(&(temp_resources.io_head), &hold_IO_node, 0x1000); /* Check if we were able to split something off */ if (io_node) { hold_IO_node->base = io_node->base + io_node->length; temp_byte = (hold_IO_node->base) >> 8; rc = pci_bus_write_config_word(pci_bus, devfn, PCI_IO_BASE, temp_byte); return_resource(&(resources->io_head), io_node); } io_node = do_bridge_resource_split(&(temp_resources.io_head), 0x1000); /* Check if we were able to split something off */ if (io_node) { /* First use the temporary node to store * information for the board */ hold_IO_node->length = io_node->base - hold_IO_node->base; /* If we used any, add it to the board's list */ if (hold_IO_node->length) { hold_IO_node->next = func->io_head; func->io_head = hold_IO_node; temp_byte = (io_node->base - 1) >> 8; rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_LIMIT, temp_byte); return_resource(&(resources->io_head), io_node); } else { /* it doesn't need any IO */ temp_word = 0x0000; rc = pci_bus_write_config_word(pci_bus, devfn, PCI_IO_LIMIT, temp_word); return_resource(&(resources->io_head), io_node); kfree(hold_IO_node); } } else { /* it used most of the range */ hold_IO_node->next = func->io_head; func->io_head = hold_IO_node; } } else if (hold_IO_node) { /* it used the whole range */ hold_IO_node->next = func->io_head; func->io_head = hold_IO_node; } /* If we have memory space available and there is some left, * return the unused portion */ if (hold_mem_node && temp_resources.mem_head) { mem_node = do_pre_bridge_resource_split(&(temp_resources. mem_head), &hold_mem_node, 0x100000); /* Check if we were able to split something off */ if (mem_node) { hold_mem_node->base = mem_node->base + mem_node->length; temp_word = (hold_mem_node->base) >> 16; rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_BASE, temp_word); return_resource(&(resources->mem_head), mem_node); } mem_node = do_bridge_resource_split(&(temp_resources.mem_head), 0x100000); /* Check if we were able to split something off */ if (mem_node) { /* First use the temporary node to store * information for the board */ hold_mem_node->length = mem_node->base - hold_mem_node->base; if (hold_mem_node->length) { hold_mem_node->next = func->mem_head; func->mem_head = hold_mem_node; /* configure end address */ temp_word = (mem_node->base - 1) >> 16; rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word); /* Return unused resources to the pool */ return_resource(&(resources->mem_head), mem_node); } else { /* it doesn't need any Mem */ temp_word = 0x0000; rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word); return_resource(&(resources->mem_head), mem_node); kfree(hold_mem_node); } } else { /* it used most of the range */ hold_mem_node->next = func->mem_head; func->mem_head = hold_mem_node; } } else if (hold_mem_node) { /* it used the whole range */ hold_mem_node->next = func->mem_head; func->mem_head = hold_mem_node; } /* If we have prefetchable memory space available and there * is some left at the end, return the unused portion */ if (temp_resources.p_mem_head) { p_mem_node = do_pre_bridge_resource_split(&(temp_resources.p_mem_head), &hold_p_mem_node, 0x100000); /* Check if we were able to split something off */ if (p_mem_node) { hold_p_mem_node->base = p_mem_node->base + p_mem_node->length; temp_word = (hold_p_mem_node->base) >> 16; rc = pci_bus_write_config_word(pci_bus, devfn, PCI_PREF_MEMORY_BASE, temp_word); return_resource(&(resources->p_mem_head), p_mem_node); } p_mem_node = do_bridge_resource_split(&(temp_resources.p_mem_head), 0x100000); /* Check if we were able to split something off */ if (p_mem_node) { /* First use the temporary node to store * information for the board */ hold_p_mem_node->length = p_mem_node->base - hold_p_mem_node->base; /* If we used any, add it to the board's list */ if (hold_p_mem_node->length) { hold_p_mem_node->next = func->p_mem_head; func->p_mem_head = hold_p_mem_node; temp_word = (p_mem_node->base - 1) >> 16; rc = pci_bus_write_config_word(pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word); return_resource(&(resources->p_mem_head), p_mem_node); } else { /* it doesn't need any PMem */ temp_word = 0x0000; rc = pci_bus_write_config_word(pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word); return_resource(&(resources->p_mem_head), p_mem_node); kfree(hold_p_mem_node); } } else { /* it used the most of the range */ hold_p_mem_node->next = func->p_mem_head; func->p_mem_head = hold_p_mem_node; } } else if (hold_p_mem_node) { /* it used the whole range */ hold_p_mem_node->next = func->p_mem_head; func->p_mem_head = hold_p_mem_node; } /* We should be configuring an IRQ and the bridge's base address * registers if it needs them. Although we have never seen such * a device */ /* enable card */ command = 0x0157; /* = PCI_COMMAND_IO | * PCI_COMMAND_MEMORY | * PCI_COMMAND_MASTER | * PCI_COMMAND_INVALIDATE | * PCI_COMMAND_PARITY | * PCI_COMMAND_SERR */ rc = pci_bus_write_config_word(pci_bus, devfn, PCI_COMMAND, command); /* set Bridge Control Register */ command = 0x07; /* = PCI_BRIDGE_CTL_PARITY | * PCI_BRIDGE_CTL_SERR | * PCI_BRIDGE_CTL_NO_ISA */ rc = pci_bus_write_config_word(pci_bus, devfn, PCI_BRIDGE_CONTROL, command); } else if ((temp_byte & 0x7F) == PCI_HEADER_TYPE_NORMAL) { /* Standard device */ rc = pci_bus_read_config_byte(pci_bus, devfn, 0x0B, &class_code); if (class_code == PCI_BASE_CLASS_DISPLAY) { /* Display (video) adapter (not supported) */ return DEVICE_TYPE_NOT_SUPPORTED; } /* Figure out IO and memory needs */ for (cloop = 0x10; cloop <= 0x24; cloop += 4) { temp_register = 0xFFFFFFFF; dbg("CND: bus=%d, devfn=%d, offset=%d\n", pci_bus->number, devfn, cloop); rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, temp_register); rc = pci_bus_read_config_dword(pci_bus, devfn, cloop, &temp_register); dbg("CND: base = 0x%x\n", temp_register); if (temp_register) { /* If this register is implemented */ if ((temp_register & 0x03L) == 0x01) { /* Map IO */ /* set base = amount of IO space */ base = temp_register & 0xFFFFFFFC; base = ~base + 1; dbg("CND: length = 0x%x\n", base); io_node = get_io_resource(&(resources->io_head), base); if (!io_node) return -ENOMEM; dbg("Got io_node start = %8.8x, length = %8.8x next (%p)\n", io_node->base, io_node->length, io_node->next); dbg("func (%p) io_head (%p)\n", func, func->io_head); /* allocate the resource to the board */ base = io_node->base; io_node->next = func->io_head; func->io_head = io_node; } else if ((temp_register & 0x0BL) == 0x08) { /* Map prefetchable memory */ base = temp_register & 0xFFFFFFF0; base = ~base + 1; dbg("CND: length = 0x%x\n", base); p_mem_node = get_resource(&(resources->p_mem_head), base); /* allocate the resource to the board */ if (p_mem_node) { base = p_mem_node->base; p_mem_node->next = func->p_mem_head; func->p_mem_head = p_mem_node; } else return -ENOMEM; } else if ((temp_register & 0x0BL) == 0x00) { /* Map memory */ base = temp_register & 0xFFFFFFF0; base = ~base + 1; dbg("CND: length = 0x%x\n", base); mem_node = get_resource(&(resources->mem_head), base); /* allocate the resource to the board */ if (mem_node) { base = mem_node->base; mem_node->next = func->mem_head; func->mem_head = mem_node; } else return -ENOMEM; } else { /* Reserved bits or requesting space below 1M */ return NOT_ENOUGH_RESOURCES; } rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, base); /* Check for 64-bit base */ if ((temp_register & 0x07L) == 0x04) { cloop += 4; /* Upper 32 bits of address always zero * on today's systems */ /* FIXME this is probably not true on * Alpha and ia64??? */ base = 0; rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, base); } } } /* End of base register loop */ if (cpqhp_legacy_mode) { /* Figure out which interrupt pin this function uses */ rc = pci_bus_read_config_byte(pci_bus, devfn, PCI_INTERRUPT_PIN, &temp_byte); /* If this function needs an interrupt and we are behind * a bridge and the pin is tied to something that's * already mapped, set this one the same */ if (temp_byte && resources->irqs && (resources->irqs->valid_INT & (0x01 << ((temp_byte + resources->irqs->barber_pole - 1) & 0x03)))) { /* We have to share with something already set up */ IRQ = resources->irqs->interrupt[(temp_byte + resources->irqs->barber_pole - 1) & 0x03]; } else { /* Program IRQ based on card type */ rc = pci_bus_read_config_byte(pci_bus, devfn, 0x0B, &class_code); if (class_code == PCI_BASE_CLASS_STORAGE) IRQ = cpqhp_disk_irq; else IRQ = cpqhp_nic_irq; } /* IRQ Line */ rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_INTERRUPT_LINE, IRQ); } if (!behind_bridge) { rc = cpqhp_set_irq(func->bus, func->device, temp_byte, IRQ); if (rc) return 1; } else { /* TBD - this code may also belong in the other clause * of this If statement */ resources->irqs->interrupt[(temp_byte + resources->irqs->barber_pole - 1) & 0x03] = IRQ; resources->irqs->valid_INT |= 0x01 << (temp_byte + resources->irqs->barber_pole - 1) & 0x03; } /* Latency Timer */ temp_byte = 0x40; rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_LATENCY_TIMER, temp_byte); /* Cache Line size */ temp_byte = 0x08; rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_CACHE_LINE_SIZE, temp_byte); /* disable ROM base Address */ temp_dword = 0x00L; rc = pci_bus_write_config_word(pci_bus, devfn, PCI_ROM_ADDRESS, temp_dword); /* enable card */ temp_word = 0x0157; /* = PCI_COMMAND_IO | * PCI_COMMAND_MEMORY | * PCI_COMMAND_MASTER | * PCI_COMMAND_INVALIDATE | * PCI_COMMAND_PARITY | * PCI_COMMAND_SERR */ rc = pci_bus_write_config_word(pci_bus, devfn, PCI_COMMAND, temp_word); } else { /* End of Not-A-Bridge else */ /* It's some strange type of PCI adapter (Cardbus?) */ return DEVICE_TYPE_NOT_SUPPORTED; } func->configured = 1; return 0; free_and_out: cpqhp_destroy_resource_list(&temp_resources); return_resource(&(resources->bus_head), hold_bus_node); return_resource(&(resources->io_head), hold_IO_node); return_resource(&(resources->mem_head), hold_mem_node); return_resource(&(resources->p_mem_head), hold_p_mem_node); return rc; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1