Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Dominik Brodowski | 1803 | 99.72% | 4 | 66.67% |
Tejun Heo | 3 | 0.17% | 1 | 16.67% |
Joe Perches | 2 | 0.11% | 1 | 16.67% |
Total | 1808 | 6 |
/* * PCMCIA high-level CIS access functions * * The initial developer of the original code is David A. Hinds * <dahinds@users.sourceforge.net>. Portions created by David A. Hinds * are Copyright (C) 1999 David A. Hinds. All Rights Reserved. * * Copyright (C) 1999 David A. Hinds * Copyright (C) 2004-2010 Dominik Brodowski * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * */ #include <linux/slab.h> #include <linux/module.h> #include <linux/kernel.h> #include <linux/netdevice.h> #include <pcmcia/cisreg.h> #include <pcmcia/cistpl.h> #include <pcmcia/ss.h> #include <pcmcia/ds.h> #include "cs_internal.h" /** * pccard_read_tuple() - internal CIS tuple access * @s: the struct pcmcia_socket where the card is inserted * @function: the device function we loop for * @code: which CIS code shall we look for? * @parse: buffer where the tuple shall be parsed (or NULL, if no parse) * * pccard_read_tuple() reads out one tuple and attempts to parse it */ int pccard_read_tuple(struct pcmcia_socket *s, unsigned int function, cisdata_t code, void *parse) { tuple_t tuple; cisdata_t *buf; int ret; buf = kmalloc(256, GFP_KERNEL); if (buf == NULL) { dev_warn(&s->dev, "no memory to read tuple\n"); return -ENOMEM; } tuple.DesiredTuple = code; tuple.Attributes = 0; if (function == BIND_FN_ALL) tuple.Attributes = TUPLE_RETURN_COMMON; ret = pccard_get_first_tuple(s, function, &tuple); if (ret != 0) goto done; tuple.TupleData = buf; tuple.TupleOffset = 0; tuple.TupleDataMax = 255; ret = pccard_get_tuple_data(s, &tuple); if (ret != 0) goto done; ret = pcmcia_parse_tuple(&tuple, parse); done: kfree(buf); return ret; } /** * pccard_loop_tuple() - loop over tuples in the CIS * @s: the struct pcmcia_socket where the card is inserted * @function: the device function we loop for * @code: which CIS code shall we look for? * @parse: buffer where the tuple shall be parsed (or NULL, if no parse) * @priv_data: private data to be passed to the loop_tuple function. * @loop_tuple: function to call for each CIS entry of type @function. IT * gets passed the raw tuple, the paresed tuple (if @parse is * set) and @priv_data. * * pccard_loop_tuple() loops over all CIS entries of type @function, and * calls the @loop_tuple function for each entry. If the call to @loop_tuple * returns 0, the loop exits. Returns 0 on success or errorcode otherwise. */ int pccard_loop_tuple(struct pcmcia_socket *s, unsigned int function, cisdata_t code, cisparse_t *parse, void *priv_data, int (*loop_tuple) (tuple_t *tuple, cisparse_t *parse, void *priv_data)) { tuple_t tuple; cisdata_t *buf; int ret; buf = kzalloc(256, GFP_KERNEL); if (buf == NULL) { dev_warn(&s->dev, "no memory to read tuple\n"); return -ENOMEM; } tuple.TupleData = buf; tuple.TupleDataMax = 255; tuple.TupleOffset = 0; tuple.DesiredTuple = code; tuple.Attributes = 0; ret = pccard_get_first_tuple(s, function, &tuple); while (!ret) { if (pccard_get_tuple_data(s, &tuple)) goto next_entry; if (parse) if (pcmcia_parse_tuple(&tuple, parse)) goto next_entry; ret = loop_tuple(&tuple, parse, priv_data); if (!ret) break; next_entry: ret = pccard_get_next_tuple(s, function, &tuple); } kfree(buf); return ret; } /** * pcmcia_io_cfg_data_width() - convert cfgtable to data path width parameter */ static int pcmcia_io_cfg_data_width(unsigned int flags) { if (!(flags & CISTPL_IO_8BIT)) return IO_DATA_PATH_WIDTH_16; if (!(flags & CISTPL_IO_16BIT)) return IO_DATA_PATH_WIDTH_8; return IO_DATA_PATH_WIDTH_AUTO; } struct pcmcia_cfg_mem { struct pcmcia_device *p_dev; int (*conf_check) (struct pcmcia_device *p_dev, void *priv_data); void *priv_data; cisparse_t parse; cistpl_cftable_entry_t dflt; }; /** * pcmcia_do_loop_config() - internal helper for pcmcia_loop_config() * * pcmcia_do_loop_config() is the internal callback for the call from * pcmcia_loop_config() to pccard_loop_tuple(). Data is transferred * by a struct pcmcia_cfg_mem. */ static int pcmcia_do_loop_config(tuple_t *tuple, cisparse_t *parse, void *priv) { struct pcmcia_cfg_mem *cfg_mem = priv; struct pcmcia_device *p_dev = cfg_mem->p_dev; cistpl_cftable_entry_t *cfg = &parse->cftable_entry; cistpl_cftable_entry_t *dflt = &cfg_mem->dflt; unsigned int flags = p_dev->config_flags; unsigned int vcc = p_dev->socket->socket.Vcc; dev_dbg(&p_dev->dev, "testing configuration %x, autoconf %x\n", cfg->index, flags); /* default values */ cfg_mem->p_dev->config_index = cfg->index; if (cfg->flags & CISTPL_CFTABLE_DEFAULT) cfg_mem->dflt = *cfg; /* check for matching Vcc? */ if (flags & CONF_AUTO_CHECK_VCC) { if (cfg->vcc.present & (1 << CISTPL_POWER_VNOM)) { if (vcc != cfg->vcc.param[CISTPL_POWER_VNOM] / 10000) return -ENODEV; } else if (dflt->vcc.present & (1 << CISTPL_POWER_VNOM)) { if (vcc != dflt->vcc.param[CISTPL_POWER_VNOM] / 10000) return -ENODEV; } } /* set Vpp? */ if (flags & CONF_AUTO_SET_VPP) { if (cfg->vpp1.present & (1 << CISTPL_POWER_VNOM)) p_dev->vpp = cfg->vpp1.param[CISTPL_POWER_VNOM] / 10000; else if (dflt->vpp1.present & (1 << CISTPL_POWER_VNOM)) p_dev->vpp = dflt->vpp1.param[CISTPL_POWER_VNOM] / 10000; } /* enable audio? */ if ((flags & CONF_AUTO_AUDIO) && (cfg->flags & CISTPL_CFTABLE_AUDIO)) p_dev->config_flags |= CONF_ENABLE_SPKR; /* IO window settings? */ if (flags & CONF_AUTO_SET_IO) { cistpl_io_t *io = (cfg->io.nwin) ? &cfg->io : &dflt->io; int i = 0; p_dev->resource[0]->start = p_dev->resource[0]->end = 0; p_dev->resource[1]->start = p_dev->resource[1]->end = 0; if (io->nwin == 0) return -ENODEV; p_dev->resource[0]->flags &= ~IO_DATA_PATH_WIDTH; p_dev->resource[0]->flags |= pcmcia_io_cfg_data_width(io->flags); if (io->nwin > 1) { /* For multifunction cards, by convention, we * configure the network function with window 0, * and serial with window 1 */ i = (io->win[1].len > io->win[0].len); p_dev->resource[1]->flags = p_dev->resource[0]->flags; p_dev->resource[1]->start = io->win[1-i].base; p_dev->resource[1]->end = io->win[1-i].len; } p_dev->resource[0]->start = io->win[i].base; p_dev->resource[0]->end = io->win[i].len; p_dev->io_lines = io->flags & CISTPL_IO_LINES_MASK; } /* MEM window settings? */ if (flags & CONF_AUTO_SET_IOMEM) { /* so far, we only set one memory window */ cistpl_mem_t *mem = (cfg->mem.nwin) ? &cfg->mem : &dflt->mem; p_dev->resource[2]->start = p_dev->resource[2]->end = 0; if (mem->nwin == 0) return -ENODEV; p_dev->resource[2]->start = mem->win[0].host_addr; p_dev->resource[2]->end = mem->win[0].len; if (p_dev->resource[2]->end < 0x1000) p_dev->resource[2]->end = 0x1000; p_dev->card_addr = mem->win[0].card_addr; } dev_dbg(&p_dev->dev, "checking configuration %x: %pr %pr %pr (%d lines)\n", p_dev->config_index, p_dev->resource[0], p_dev->resource[1], p_dev->resource[2], p_dev->io_lines); return cfg_mem->conf_check(p_dev, cfg_mem->priv_data); } /** * pcmcia_loop_config() - loop over configuration options * @p_dev: the struct pcmcia_device which we need to loop for. * @conf_check: function to call for each configuration option. * It gets passed the struct pcmcia_device and private data * being passed to pcmcia_loop_config() * @priv_data: private data to be passed to the conf_check function. * * pcmcia_loop_config() loops over all configuration options, and calls * the driver-specific conf_check() for each one, checking whether * it is a valid one. Returns 0 on success or errorcode otherwise. */ int pcmcia_loop_config(struct pcmcia_device *p_dev, int (*conf_check) (struct pcmcia_device *p_dev, void *priv_data), void *priv_data) { struct pcmcia_cfg_mem *cfg_mem; int ret; cfg_mem = kzalloc(sizeof(struct pcmcia_cfg_mem), GFP_KERNEL); if (cfg_mem == NULL) return -ENOMEM; cfg_mem->p_dev = p_dev; cfg_mem->conf_check = conf_check; cfg_mem->priv_data = priv_data; ret = pccard_loop_tuple(p_dev->socket, p_dev->func, CISTPL_CFTABLE_ENTRY, &cfg_mem->parse, cfg_mem, pcmcia_do_loop_config); kfree(cfg_mem); return ret; } EXPORT_SYMBOL(pcmcia_loop_config); struct pcmcia_loop_mem { struct pcmcia_device *p_dev; void *priv_data; int (*loop_tuple) (struct pcmcia_device *p_dev, tuple_t *tuple, void *priv_data); }; /** * pcmcia_do_loop_tuple() - internal helper for pcmcia_loop_config() * * pcmcia_do_loop_tuple() is the internal callback for the call from * pcmcia_loop_tuple() to pccard_loop_tuple(). Data is transferred * by a struct pcmcia_cfg_mem. */ static int pcmcia_do_loop_tuple(tuple_t *tuple, cisparse_t *parse, void *priv) { struct pcmcia_loop_mem *loop = priv; return loop->loop_tuple(loop->p_dev, tuple, loop->priv_data); }; /** * pcmcia_loop_tuple() - loop over tuples in the CIS * @p_dev: the struct pcmcia_device which we need to loop for. * @code: which CIS code shall we look for? * @priv_data: private data to be passed to the loop_tuple function. * @loop_tuple: function to call for each CIS entry of type @function. IT * gets passed the raw tuple and @priv_data. * * pcmcia_loop_tuple() loops over all CIS entries of type @function, and * calls the @loop_tuple function for each entry. If the call to @loop_tuple * returns 0, the loop exits. Returns 0 on success or errorcode otherwise. */ int pcmcia_loop_tuple(struct pcmcia_device *p_dev, cisdata_t code, int (*loop_tuple) (struct pcmcia_device *p_dev, tuple_t *tuple, void *priv_data), void *priv_data) { struct pcmcia_loop_mem loop = { .p_dev = p_dev, .loop_tuple = loop_tuple, .priv_data = priv_data}; return pccard_loop_tuple(p_dev->socket, p_dev->func, code, NULL, &loop, pcmcia_do_loop_tuple); } EXPORT_SYMBOL(pcmcia_loop_tuple); struct pcmcia_loop_get { size_t len; cisdata_t **buf; }; /** * pcmcia_do_get_tuple() - internal helper for pcmcia_get_tuple() * * pcmcia_do_get_tuple() is the internal callback for the call from * pcmcia_get_tuple() to pcmcia_loop_tuple(). As we're only interested in * the first tuple, return 0 unconditionally. Create a memory buffer large * enough to hold the content of the tuple, and fill it with the tuple data. * The caller is responsible to free the buffer. */ static int pcmcia_do_get_tuple(struct pcmcia_device *p_dev, tuple_t *tuple, void *priv) { struct pcmcia_loop_get *get = priv; *get->buf = kzalloc(tuple->TupleDataLen, GFP_KERNEL); if (*get->buf) { get->len = tuple->TupleDataLen; memcpy(*get->buf, tuple->TupleData, tuple->TupleDataLen); } else dev_dbg(&p_dev->dev, "do_get_tuple: out of memory\n"); return 0; } /** * pcmcia_get_tuple() - get first tuple from CIS * @p_dev: the struct pcmcia_device which we need to loop for. * @code: which CIS code shall we look for? * @buf: pointer to store the buffer to. * * pcmcia_get_tuple() gets the content of the first CIS entry of type @code. * It returns the buffer length (or zero). The caller is responsible to free * the buffer passed in @buf. */ size_t pcmcia_get_tuple(struct pcmcia_device *p_dev, cisdata_t code, unsigned char **buf) { struct pcmcia_loop_get get = { .len = 0, .buf = buf, }; *get.buf = NULL; pcmcia_loop_tuple(p_dev, code, pcmcia_do_get_tuple, &get); return get.len; } EXPORT_SYMBOL(pcmcia_get_tuple); /** * pcmcia_do_get_mac() - internal helper for pcmcia_get_mac_from_cis() * * pcmcia_do_get_mac() is the internal callback for the call from * pcmcia_get_mac_from_cis() to pcmcia_loop_tuple(). We check whether the * tuple contains a proper LAN_NODE_ID of length 6, and copy the data * to struct net_device->dev_addr[i]. */ static int pcmcia_do_get_mac(struct pcmcia_device *p_dev, tuple_t *tuple, void *priv) { struct net_device *dev = priv; int i; if (tuple->TupleData[0] != CISTPL_FUNCE_LAN_NODE_ID) return -EINVAL; if (tuple->TupleDataLen < ETH_ALEN + 2) { dev_warn(&p_dev->dev, "Invalid CIS tuple length for " "LAN_NODE_ID\n"); return -EINVAL; } if (tuple->TupleData[1] != ETH_ALEN) { dev_warn(&p_dev->dev, "Invalid header for LAN_NODE_ID\n"); return -EINVAL; } for (i = 0; i < 6; i++) dev->dev_addr[i] = tuple->TupleData[i+2]; return 0; } /** * pcmcia_get_mac_from_cis() - read out MAC address from CISTPL_FUNCE * @p_dev: the struct pcmcia_device for which we want the address. * @dev: a properly prepared struct net_device to store the info to. * * pcmcia_get_mac_from_cis() reads out the hardware MAC address from * CISTPL_FUNCE and stores it into struct net_device *dev->dev_addr which * must be set up properly by the driver (see examples!). */ int pcmcia_get_mac_from_cis(struct pcmcia_device *p_dev, struct net_device *dev) { return pcmcia_loop_tuple(p_dev, CISTPL_FUNCE, pcmcia_do_get_mac, dev); } EXPORT_SYMBOL(pcmcia_get_mac_from_cis);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1