Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Agustin Vega-Frias | 3369 | 99.94% | 1 | 50.00% |
Peter Zijlstra | 2 | 0.06% | 1 | 50.00% |
Total | 3371 | 2 |
/* * Driver for the L3 cache PMUs in Qualcomm Technologies chips. * * The driver supports a distributed cache architecture where the overall * cache for a socket is comprised of multiple slices each with its own PMU. * Access to each individual PMU is provided even though all CPUs share all * the slices. User space needs to aggregate to individual counts to provide * a global picture. * * See Documentation/perf/qcom_l3_pmu.txt for more details. * * Copyright (c) 2015-2017, The Linux Foundation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 and * only version 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include <linux/acpi.h> #include <linux/bitops.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/list.h> #include <linux/module.h> #include <linux/perf_event.h> #include <linux/platform_device.h> /* * General constants */ /* Number of counters on each PMU */ #define L3_NUM_COUNTERS 8 /* Mask for the event type field within perf_event_attr.config and EVTYPE reg */ #define L3_EVTYPE_MASK 0xFF /* * Bit position of the 'long counter' flag within perf_event_attr.config. * Reserve some space between the event type and this flag to allow expansion * in the event type field. */ #define L3_EVENT_LC_BIT 32 /* * Register offsets */ /* Perfmon registers */ #define L3_HML3_PM_CR 0x000 #define L3_HML3_PM_EVCNTR(__cntr) (0x420 + ((__cntr) & 0x7) * 8) #define L3_HML3_PM_CNTCTL(__cntr) (0x120 + ((__cntr) & 0x7) * 8) #define L3_HML3_PM_EVTYPE(__cntr) (0x220 + ((__cntr) & 0x7) * 8) #define L3_HML3_PM_FILTRA 0x300 #define L3_HML3_PM_FILTRB 0x308 #define L3_HML3_PM_FILTRC 0x310 #define L3_HML3_PM_FILTRAM 0x304 #define L3_HML3_PM_FILTRBM 0x30C #define L3_HML3_PM_FILTRCM 0x314 /* Basic counter registers */ #define L3_M_BC_CR 0x500 #define L3_M_BC_SATROLL_CR 0x504 #define L3_M_BC_CNTENSET 0x508 #define L3_M_BC_CNTENCLR 0x50C #define L3_M_BC_INTENSET 0x510 #define L3_M_BC_INTENCLR 0x514 #define L3_M_BC_GANG 0x718 #define L3_M_BC_OVSR 0x740 #define L3_M_BC_IRQCTL 0x96C /* * Bit field definitions */ /* L3_HML3_PM_CR */ #define PM_CR_RESET (0) /* L3_HML3_PM_XCNTCTL/L3_HML3_PM_CNTCTLx */ #define PMCNT_RESET (0) /* L3_HML3_PM_EVTYPEx */ #define EVSEL(__val) ((__val) & L3_EVTYPE_MASK) /* Reset value for all the filter registers */ #define PM_FLTR_RESET (0) /* L3_M_BC_CR */ #define BC_RESET (1UL << 1) #define BC_ENABLE (1UL << 0) /* L3_M_BC_SATROLL_CR */ #define BC_SATROLL_CR_RESET (0) /* L3_M_BC_CNTENSET */ #define PMCNTENSET(__cntr) (1UL << ((__cntr) & 0x7)) /* L3_M_BC_CNTENCLR */ #define PMCNTENCLR(__cntr) (1UL << ((__cntr) & 0x7)) #define BC_CNTENCLR_RESET (0xFF) /* L3_M_BC_INTENSET */ #define PMINTENSET(__cntr) (1UL << ((__cntr) & 0x7)) /* L3_M_BC_INTENCLR */ #define PMINTENCLR(__cntr) (1UL << ((__cntr) & 0x7)) #define BC_INTENCLR_RESET (0xFF) /* L3_M_BC_GANG */ #define GANG_EN(__cntr) (1UL << ((__cntr) & 0x7)) #define BC_GANG_RESET (0) /* L3_M_BC_OVSR */ #define PMOVSRCLR(__cntr) (1UL << ((__cntr) & 0x7)) #define PMOVSRCLR_RESET (0xFF) /* L3_M_BC_IRQCTL */ #define PMIRQONMSBEN(__cntr) (1UL << ((__cntr) & 0x7)) #define BC_IRQCTL_RESET (0x0) /* * Events */ #define L3_EVENT_CYCLES 0x01 #define L3_EVENT_READ_HIT 0x20 #define L3_EVENT_READ_MISS 0x21 #define L3_EVENT_READ_HIT_D 0x22 #define L3_EVENT_READ_MISS_D 0x23 #define L3_EVENT_WRITE_HIT 0x24 #define L3_EVENT_WRITE_MISS 0x25 /* * Decoding of settings from perf_event_attr * * The config format for perf events is: * - config: bits 0-7: event type * bit 32: HW counter size requested, 0: 32 bits, 1: 64 bits */ static inline u32 get_event_type(struct perf_event *event) { return (event->attr.config) & L3_EVTYPE_MASK; } static inline bool event_uses_long_counter(struct perf_event *event) { return !!(event->attr.config & BIT_ULL(L3_EVENT_LC_BIT)); } static inline int event_num_counters(struct perf_event *event) { return event_uses_long_counter(event) ? 2 : 1; } /* * Main PMU, inherits from the core perf PMU type */ struct l3cache_pmu { struct pmu pmu; struct hlist_node node; void __iomem *regs; struct perf_event *events[L3_NUM_COUNTERS]; unsigned long used_mask[BITS_TO_LONGS(L3_NUM_COUNTERS)]; cpumask_t cpumask; }; #define to_l3cache_pmu(p) (container_of(p, struct l3cache_pmu, pmu)) /* * Type used to group hardware counter operations * * Used to implement two types of hardware counters, standard (32bits) and * long (64bits). The hardware supports counter chaining which we use to * implement long counters. This support is exposed via the 'lc' flag field * in perf_event_attr.config. */ struct l3cache_event_ops { /* Called to start event monitoring */ void (*start)(struct perf_event *event); /* Called to stop event monitoring */ void (*stop)(struct perf_event *event, int flags); /* Called to update the perf_event */ void (*update)(struct perf_event *event); }; /* * Implementation of long counter operations * * 64bit counters are implemented by chaining two of the 32bit physical * counters. The PMU only supports chaining of adjacent even/odd pairs * and for simplicity the driver always configures the odd counter to * count the overflows of the lower-numbered even counter. Note that since * the resulting hardware counter is 64bits no IRQs are required to maintain * the software counter which is also 64bits. */ static void qcom_l3_cache__64bit_counter_start(struct perf_event *event) { struct l3cache_pmu *l3pmu = to_l3cache_pmu(event->pmu); int idx = event->hw.idx; u32 evsel = get_event_type(event); u32 gang; /* Set the odd counter to count the overflows of the even counter */ gang = readl_relaxed(l3pmu->regs + L3_M_BC_GANG); gang |= GANG_EN(idx + 1); writel_relaxed(gang, l3pmu->regs + L3_M_BC_GANG); /* Initialize the hardware counters and reset prev_count*/ local64_set(&event->hw.prev_count, 0); writel_relaxed(0, l3pmu->regs + L3_HML3_PM_EVCNTR(idx + 1)); writel_relaxed(0, l3pmu->regs + L3_HML3_PM_EVCNTR(idx)); /* * Set the event types, the upper half must use zero and the lower * half the actual event type */ writel_relaxed(EVSEL(0), l3pmu->regs + L3_HML3_PM_EVTYPE(idx + 1)); writel_relaxed(EVSEL(evsel), l3pmu->regs + L3_HML3_PM_EVTYPE(idx)); /* Finally, enable the counters */ writel_relaxed(PMCNT_RESET, l3pmu->regs + L3_HML3_PM_CNTCTL(idx + 1)); writel_relaxed(PMCNTENSET(idx + 1), l3pmu->regs + L3_M_BC_CNTENSET); writel_relaxed(PMCNT_RESET, l3pmu->regs + L3_HML3_PM_CNTCTL(idx)); writel_relaxed(PMCNTENSET(idx), l3pmu->regs + L3_M_BC_CNTENSET); } static void qcom_l3_cache__64bit_counter_stop(struct perf_event *event, int flags) { struct l3cache_pmu *l3pmu = to_l3cache_pmu(event->pmu); int idx = event->hw.idx; u32 gang = readl_relaxed(l3pmu->regs + L3_M_BC_GANG); /* Disable the counters */ writel_relaxed(PMCNTENCLR(idx), l3pmu->regs + L3_M_BC_CNTENCLR); writel_relaxed(PMCNTENCLR(idx + 1), l3pmu->regs + L3_M_BC_CNTENCLR); /* Disable chaining */ writel_relaxed(gang & ~GANG_EN(idx + 1), l3pmu->regs + L3_M_BC_GANG); } static void qcom_l3_cache__64bit_counter_update(struct perf_event *event) { struct l3cache_pmu *l3pmu = to_l3cache_pmu(event->pmu); int idx = event->hw.idx; u32 hi, lo; u64 prev, new; do { prev = local64_read(&event->hw.prev_count); do { hi = readl_relaxed(l3pmu->regs + L3_HML3_PM_EVCNTR(idx + 1)); lo = readl_relaxed(l3pmu->regs + L3_HML3_PM_EVCNTR(idx)); } while (hi != readl_relaxed(l3pmu->regs + L3_HML3_PM_EVCNTR(idx + 1))); new = ((u64)hi << 32) | lo; } while (local64_cmpxchg(&event->hw.prev_count, prev, new) != prev); local64_add(new - prev, &event->count); } static const struct l3cache_event_ops event_ops_long = { .start = qcom_l3_cache__64bit_counter_start, .stop = qcom_l3_cache__64bit_counter_stop, .update = qcom_l3_cache__64bit_counter_update, }; /* * Implementation of standard counter operations * * 32bit counters use a single physical counter and a hardware feature that * asserts the overflow IRQ on the toggling of the most significant bit in * the counter. This feature allows the counters to be left free-running * without needing the usual reprogramming required to properly handle races * during concurrent calls to update. */ static void qcom_l3_cache__32bit_counter_start(struct perf_event *event) { struct l3cache_pmu *l3pmu = to_l3cache_pmu(event->pmu); int idx = event->hw.idx; u32 evsel = get_event_type(event); u32 irqctl = readl_relaxed(l3pmu->regs + L3_M_BC_IRQCTL); /* Set the counter to assert the overflow IRQ on MSB toggling */ writel_relaxed(irqctl | PMIRQONMSBEN(idx), l3pmu->regs + L3_M_BC_IRQCTL); /* Initialize the hardware counter and reset prev_count*/ local64_set(&event->hw.prev_count, 0); writel_relaxed(0, l3pmu->regs + L3_HML3_PM_EVCNTR(idx)); /* Set the event type */ writel_relaxed(EVSEL(evsel), l3pmu->regs + L3_HML3_PM_EVTYPE(idx)); /* Enable interrupt generation by this counter */ writel_relaxed(PMINTENSET(idx), l3pmu->regs + L3_M_BC_INTENSET); /* Finally, enable the counter */ writel_relaxed(PMCNT_RESET, l3pmu->regs + L3_HML3_PM_CNTCTL(idx)); writel_relaxed(PMCNTENSET(idx), l3pmu->regs + L3_M_BC_CNTENSET); } static void qcom_l3_cache__32bit_counter_stop(struct perf_event *event, int flags) { struct l3cache_pmu *l3pmu = to_l3cache_pmu(event->pmu); int idx = event->hw.idx; u32 irqctl = readl_relaxed(l3pmu->regs + L3_M_BC_IRQCTL); /* Disable the counter */ writel_relaxed(PMCNTENCLR(idx), l3pmu->regs + L3_M_BC_CNTENCLR); /* Disable interrupt generation by this counter */ writel_relaxed(PMINTENCLR(idx), l3pmu->regs + L3_M_BC_INTENCLR); /* Set the counter to not assert the overflow IRQ on MSB toggling */ writel_relaxed(irqctl & ~PMIRQONMSBEN(idx), l3pmu->regs + L3_M_BC_IRQCTL); } static void qcom_l3_cache__32bit_counter_update(struct perf_event *event) { struct l3cache_pmu *l3pmu = to_l3cache_pmu(event->pmu); int idx = event->hw.idx; u32 prev, new; do { prev = local64_read(&event->hw.prev_count); new = readl_relaxed(l3pmu->regs + L3_HML3_PM_EVCNTR(idx)); } while (local64_cmpxchg(&event->hw.prev_count, prev, new) != prev); local64_add(new - prev, &event->count); } static const struct l3cache_event_ops event_ops_std = { .start = qcom_l3_cache__32bit_counter_start, .stop = qcom_l3_cache__32bit_counter_stop, .update = qcom_l3_cache__32bit_counter_update, }; /* Retrieve the appropriate operations for the given event */ static const struct l3cache_event_ops *l3cache_event_get_ops(struct perf_event *event) { if (event_uses_long_counter(event)) return &event_ops_long; else return &event_ops_std; } /* * Top level PMU functions. */ static inline void qcom_l3_cache__init(struct l3cache_pmu *l3pmu) { int i; writel_relaxed(BC_RESET, l3pmu->regs + L3_M_BC_CR); /* * Use writel for the first programming command to ensure the basic * counter unit is stopped before proceeding */ writel(BC_SATROLL_CR_RESET, l3pmu->regs + L3_M_BC_SATROLL_CR); writel_relaxed(BC_CNTENCLR_RESET, l3pmu->regs + L3_M_BC_CNTENCLR); writel_relaxed(BC_INTENCLR_RESET, l3pmu->regs + L3_M_BC_INTENCLR); writel_relaxed(PMOVSRCLR_RESET, l3pmu->regs + L3_M_BC_OVSR); writel_relaxed(BC_GANG_RESET, l3pmu->regs + L3_M_BC_GANG); writel_relaxed(BC_IRQCTL_RESET, l3pmu->regs + L3_M_BC_IRQCTL); writel_relaxed(PM_CR_RESET, l3pmu->regs + L3_HML3_PM_CR); for (i = 0; i < L3_NUM_COUNTERS; ++i) { writel_relaxed(PMCNT_RESET, l3pmu->regs + L3_HML3_PM_CNTCTL(i)); writel_relaxed(EVSEL(0), l3pmu->regs + L3_HML3_PM_EVTYPE(i)); } writel_relaxed(PM_FLTR_RESET, l3pmu->regs + L3_HML3_PM_FILTRA); writel_relaxed(PM_FLTR_RESET, l3pmu->regs + L3_HML3_PM_FILTRAM); writel_relaxed(PM_FLTR_RESET, l3pmu->regs + L3_HML3_PM_FILTRB); writel_relaxed(PM_FLTR_RESET, l3pmu->regs + L3_HML3_PM_FILTRBM); writel_relaxed(PM_FLTR_RESET, l3pmu->regs + L3_HML3_PM_FILTRC); writel_relaxed(PM_FLTR_RESET, l3pmu->regs + L3_HML3_PM_FILTRCM); /* * Use writel here to ensure all programming commands are done * before proceeding */ writel(BC_ENABLE, l3pmu->regs + L3_M_BC_CR); } static irqreturn_t qcom_l3_cache__handle_irq(int irq_num, void *data) { struct l3cache_pmu *l3pmu = data; /* Read the overflow status register */ long status = readl_relaxed(l3pmu->regs + L3_M_BC_OVSR); int idx; if (status == 0) return IRQ_NONE; /* Clear the bits we read on the overflow status register */ writel_relaxed(status, l3pmu->regs + L3_M_BC_OVSR); for_each_set_bit(idx, &status, L3_NUM_COUNTERS) { struct perf_event *event; const struct l3cache_event_ops *ops; event = l3pmu->events[idx]; if (!event) continue; /* * Since the IRQ is not enabled for events using long counters * we should never see one of those here, however, be consistent * and use the ops indirections like in the other operations. */ ops = l3cache_event_get_ops(event); ops->update(event); } return IRQ_HANDLED; } /* * Implementation of abstract pmu functionality required by * the core perf events code. */ static void qcom_l3_cache__pmu_enable(struct pmu *pmu) { struct l3cache_pmu *l3pmu = to_l3cache_pmu(pmu); /* Ensure the other programming commands are observed before enabling */ wmb(); writel_relaxed(BC_ENABLE, l3pmu->regs + L3_M_BC_CR); } static void qcom_l3_cache__pmu_disable(struct pmu *pmu) { struct l3cache_pmu *l3pmu = to_l3cache_pmu(pmu); writel_relaxed(0, l3pmu->regs + L3_M_BC_CR); /* Ensure the basic counter unit is stopped before proceeding */ wmb(); } /* * We must NOT create groups containing events from multiple hardware PMUs, * although mixing different software and hardware PMUs is allowed. */ static bool qcom_l3_cache__validate_event_group(struct perf_event *event) { struct perf_event *leader = event->group_leader; struct perf_event *sibling; int counters = 0; if (leader->pmu != event->pmu && !is_software_event(leader)) return false; counters = event_num_counters(event); counters += event_num_counters(leader); for_each_sibling_event(sibling, leader) { if (is_software_event(sibling)) continue; if (sibling->pmu != event->pmu) return false; counters += event_num_counters(sibling); } /* * If the group requires more counters than the HW has, it * cannot ever be scheduled. */ return counters <= L3_NUM_COUNTERS; } static int qcom_l3_cache__event_init(struct perf_event *event) { struct l3cache_pmu *l3pmu = to_l3cache_pmu(event->pmu); struct hw_perf_event *hwc = &event->hw; /* * Is the event for this PMU? */ if (event->attr.type != event->pmu->type) return -ENOENT; /* * There are no per-counter mode filters in the PMU. */ if (event->attr.exclude_user || event->attr.exclude_kernel || event->attr.exclude_hv || event->attr.exclude_idle) return -EINVAL; /* * Sampling not supported since these events are not core-attributable. */ if (hwc->sample_period) return -EINVAL; /* * Task mode not available, we run the counters as socket counters, * not attributable to any CPU and therefore cannot attribute per-task. */ if (event->cpu < 0) return -EINVAL; /* Validate the group */ if (!qcom_l3_cache__validate_event_group(event)) return -EINVAL; hwc->idx = -1; /* * Many perf core operations (eg. events rotation) operate on a * single CPU context. This is obvious for CPU PMUs, where one * expects the same sets of events being observed on all CPUs, * but can lead to issues for off-core PMUs, like this one, where * each event could be theoretically assigned to a different CPU. * To mitigate this, we enforce CPU assignment to one designated * processor (the one described in the "cpumask" attribute exported * by the PMU device). perf user space tools honor this and avoid * opening more than one copy of the events. */ event->cpu = cpumask_first(&l3pmu->cpumask); return 0; } static void qcom_l3_cache__event_start(struct perf_event *event, int flags) { struct hw_perf_event *hwc = &event->hw; const struct l3cache_event_ops *ops = l3cache_event_get_ops(event); hwc->state = 0; ops->start(event); } static void qcom_l3_cache__event_stop(struct perf_event *event, int flags) { struct hw_perf_event *hwc = &event->hw; const struct l3cache_event_ops *ops = l3cache_event_get_ops(event); if (hwc->state & PERF_HES_STOPPED) return; ops->stop(event, flags); if (flags & PERF_EF_UPDATE) ops->update(event); hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE; } static int qcom_l3_cache__event_add(struct perf_event *event, int flags) { struct l3cache_pmu *l3pmu = to_l3cache_pmu(event->pmu); struct hw_perf_event *hwc = &event->hw; int order = event_uses_long_counter(event) ? 1 : 0; int idx; /* * Try to allocate a counter. */ idx = bitmap_find_free_region(l3pmu->used_mask, L3_NUM_COUNTERS, order); if (idx < 0) /* The counters are all in use. */ return -EAGAIN; hwc->idx = idx; hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE; l3pmu->events[idx] = event; if (flags & PERF_EF_START) qcom_l3_cache__event_start(event, 0); /* Propagate changes to the userspace mapping. */ perf_event_update_userpage(event); return 0; } static void qcom_l3_cache__event_del(struct perf_event *event, int flags) { struct l3cache_pmu *l3pmu = to_l3cache_pmu(event->pmu); struct hw_perf_event *hwc = &event->hw; int order = event_uses_long_counter(event) ? 1 : 0; /* Stop and clean up */ qcom_l3_cache__event_stop(event, flags | PERF_EF_UPDATE); l3pmu->events[hwc->idx] = NULL; bitmap_release_region(l3pmu->used_mask, hwc->idx, order); /* Propagate changes to the userspace mapping. */ perf_event_update_userpage(event); } static void qcom_l3_cache__event_read(struct perf_event *event) { const struct l3cache_event_ops *ops = l3cache_event_get_ops(event); ops->update(event); } /* * Add sysfs attributes * * We export: * - formats, used by perf user space and other tools to configure events * - events, used by perf user space and other tools to create events * symbolically, e.g.: * perf stat -a -e l3cache_0_0/event=read-miss/ ls * perf stat -a -e l3cache_0_0/event=0x21/ ls * - cpumask, used by perf user space and other tools to know on which CPUs * to open the events */ /* formats */ static ssize_t l3cache_pmu_format_show(struct device *dev, struct device_attribute *attr, char *buf) { struct dev_ext_attribute *eattr; eattr = container_of(attr, struct dev_ext_attribute, attr); return sprintf(buf, "%s\n", (char *) eattr->var); } #define L3CACHE_PMU_FORMAT_ATTR(_name, _config) \ (&((struct dev_ext_attribute[]) { \ { .attr = __ATTR(_name, 0444, l3cache_pmu_format_show, NULL), \ .var = (void *) _config, } \ })[0].attr.attr) static struct attribute *qcom_l3_cache_pmu_formats[] = { L3CACHE_PMU_FORMAT_ATTR(event, "config:0-7"), L3CACHE_PMU_FORMAT_ATTR(lc, "config:" __stringify(L3_EVENT_LC_BIT)), NULL, }; static struct attribute_group qcom_l3_cache_pmu_format_group = { .name = "format", .attrs = qcom_l3_cache_pmu_formats, }; /* events */ static ssize_t l3cache_pmu_event_show(struct device *dev, struct device_attribute *attr, char *page) { struct perf_pmu_events_attr *pmu_attr; pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr); return sprintf(page, "event=0x%02llx\n", pmu_attr->id); } #define L3CACHE_EVENT_ATTR(_name, _id) \ (&((struct perf_pmu_events_attr[]) { \ { .attr = __ATTR(_name, 0444, l3cache_pmu_event_show, NULL), \ .id = _id, } \ })[0].attr.attr) static struct attribute *qcom_l3_cache_pmu_events[] = { L3CACHE_EVENT_ATTR(cycles, L3_EVENT_CYCLES), L3CACHE_EVENT_ATTR(read-hit, L3_EVENT_READ_HIT), L3CACHE_EVENT_ATTR(read-miss, L3_EVENT_READ_MISS), L3CACHE_EVENT_ATTR(read-hit-d-side, L3_EVENT_READ_HIT_D), L3CACHE_EVENT_ATTR(read-miss-d-side, L3_EVENT_READ_MISS_D), L3CACHE_EVENT_ATTR(write-hit, L3_EVENT_WRITE_HIT), L3CACHE_EVENT_ATTR(write-miss, L3_EVENT_WRITE_MISS), NULL }; static struct attribute_group qcom_l3_cache_pmu_events_group = { .name = "events", .attrs = qcom_l3_cache_pmu_events, }; /* cpumask */ static ssize_t qcom_l3_cache_pmu_cpumask_show(struct device *dev, struct device_attribute *attr, char *buf) { struct l3cache_pmu *l3pmu = to_l3cache_pmu(dev_get_drvdata(dev)); return cpumap_print_to_pagebuf(true, buf, &l3pmu->cpumask); } static DEVICE_ATTR(cpumask, 0444, qcom_l3_cache_pmu_cpumask_show, NULL); static struct attribute *qcom_l3_cache_pmu_cpumask_attrs[] = { &dev_attr_cpumask.attr, NULL, }; static struct attribute_group qcom_l3_cache_pmu_cpumask_attr_group = { .attrs = qcom_l3_cache_pmu_cpumask_attrs, }; /* * Per PMU device attribute groups */ static const struct attribute_group *qcom_l3_cache_pmu_attr_grps[] = { &qcom_l3_cache_pmu_format_group, &qcom_l3_cache_pmu_events_group, &qcom_l3_cache_pmu_cpumask_attr_group, NULL, }; /* * Probing functions and data. */ static int qcom_l3_cache_pmu_online_cpu(unsigned int cpu, struct hlist_node *node) { struct l3cache_pmu *l3pmu = hlist_entry_safe(node, struct l3cache_pmu, node); /* If there is not a CPU/PMU association pick this CPU */ if (cpumask_empty(&l3pmu->cpumask)) cpumask_set_cpu(cpu, &l3pmu->cpumask); return 0; } static int qcom_l3_cache_pmu_offline_cpu(unsigned int cpu, struct hlist_node *node) { struct l3cache_pmu *l3pmu = hlist_entry_safe(node, struct l3cache_pmu, node); unsigned int target; if (!cpumask_test_and_clear_cpu(cpu, &l3pmu->cpumask)) return 0; target = cpumask_any_but(cpu_online_mask, cpu); if (target >= nr_cpu_ids) return 0; perf_pmu_migrate_context(&l3pmu->pmu, cpu, target); cpumask_set_cpu(target, &l3pmu->cpumask); return 0; } static int qcom_l3_cache_pmu_probe(struct platform_device *pdev) { struct l3cache_pmu *l3pmu; struct acpi_device *acpi_dev; struct resource *memrc; int ret; char *name; /* Initialize the PMU data structures */ acpi_dev = ACPI_COMPANION(&pdev->dev); if (!acpi_dev) return -ENODEV; l3pmu = devm_kzalloc(&pdev->dev, sizeof(*l3pmu), GFP_KERNEL); name = devm_kasprintf(&pdev->dev, GFP_KERNEL, "l3cache_%s_%s", acpi_dev->parent->pnp.unique_id, acpi_dev->pnp.unique_id); if (!l3pmu || !name) return -ENOMEM; l3pmu->pmu = (struct pmu) { .task_ctx_nr = perf_invalid_context, .pmu_enable = qcom_l3_cache__pmu_enable, .pmu_disable = qcom_l3_cache__pmu_disable, .event_init = qcom_l3_cache__event_init, .add = qcom_l3_cache__event_add, .del = qcom_l3_cache__event_del, .start = qcom_l3_cache__event_start, .stop = qcom_l3_cache__event_stop, .read = qcom_l3_cache__event_read, .attr_groups = qcom_l3_cache_pmu_attr_grps, }; memrc = platform_get_resource(pdev, IORESOURCE_MEM, 0); l3pmu->regs = devm_ioremap_resource(&pdev->dev, memrc); if (IS_ERR(l3pmu->regs)) { dev_err(&pdev->dev, "Can't map PMU @%pa\n", &memrc->start); return PTR_ERR(l3pmu->regs); } qcom_l3_cache__init(l3pmu); ret = platform_get_irq(pdev, 0); if (ret <= 0) return ret; ret = devm_request_irq(&pdev->dev, ret, qcom_l3_cache__handle_irq, 0, name, l3pmu); if (ret) { dev_err(&pdev->dev, "Request for IRQ failed for slice @%pa\n", &memrc->start); return ret; } /* Add this instance to the list used by the offline callback */ ret = cpuhp_state_add_instance(CPUHP_AP_PERF_ARM_QCOM_L3_ONLINE, &l3pmu->node); if (ret) { dev_err(&pdev->dev, "Error %d registering hotplug", ret); return ret; } ret = perf_pmu_register(&l3pmu->pmu, name, -1); if (ret < 0) { dev_err(&pdev->dev, "Failed to register L3 cache PMU (%d)\n", ret); return ret; } dev_info(&pdev->dev, "Registered %s, type: %d\n", name, l3pmu->pmu.type); return 0; } static const struct acpi_device_id qcom_l3_cache_pmu_acpi_match[] = { { "QCOM8081", }, { } }; MODULE_DEVICE_TABLE(acpi, qcom_l3_cache_pmu_acpi_match); static struct platform_driver qcom_l3_cache_pmu_driver = { .driver = { .name = "qcom-l3cache-pmu", .acpi_match_table = ACPI_PTR(qcom_l3_cache_pmu_acpi_match), }, .probe = qcom_l3_cache_pmu_probe, }; static int __init register_qcom_l3_cache_pmu_driver(void) { int ret; /* Install a hook to update the reader CPU in case it goes offline */ ret = cpuhp_setup_state_multi(CPUHP_AP_PERF_ARM_QCOM_L3_ONLINE, "perf/qcom/l3cache:online", qcom_l3_cache_pmu_online_cpu, qcom_l3_cache_pmu_offline_cpu); if (ret) return ret; return platform_driver_register(&qcom_l3_cache_pmu_driver); } device_initcall(register_qcom_l3_cache_pmu_driver);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1