Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Amelie Delaunay | 2039 | 100.00% | 2 | 100.00% |
Total | 2039 | 2 |
// SPDX-Licence-Identifier: GPL-2.0 /* * STMicroelectronics STM32 USB PHY Controller driver * * Copyright (C) 2018 STMicroelectronics * Author(s): Amelie Delaunay <amelie.delaunay@st.com>. */ #include <linux/bitfield.h> #include <linux/clk.h> #include <linux/delay.h> #include <linux/io.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/of_platform.h> #include <linux/phy/phy.h> #include <linux/reset.h> #define STM32_USBPHYC_PLL 0x0 #define STM32_USBPHYC_MISC 0x8 #define STM32_USBPHYC_VERSION 0x3F4 /* STM32_USBPHYC_PLL bit fields */ #define PLLNDIV GENMASK(6, 0) #define PLLFRACIN GENMASK(25, 10) #define PLLEN BIT(26) #define PLLSTRB BIT(27) #define PLLSTRBYP BIT(28) #define PLLFRACCTL BIT(29) #define PLLDITHEN0 BIT(30) #define PLLDITHEN1 BIT(31) /* STM32_USBPHYC_MISC bit fields */ #define SWITHOST BIT(0) /* STM32_USBPHYC_VERSION bit fields */ #define MINREV GENMASK(3, 0) #define MAJREV GENMASK(7, 4) static const char * const supplies_names[] = { "vdda1v1", /* 1V1 */ "vdda1v8", /* 1V8 */ }; #define NUM_SUPPLIES ARRAY_SIZE(supplies_names) #define PLL_LOCK_TIME_US 100 #define PLL_PWR_DOWN_TIME_US 5 #define PLL_FVCO_MHZ 2880 #define PLL_INFF_MIN_RATE_HZ 19200000 #define PLL_INFF_MAX_RATE_HZ 38400000 #define HZ_PER_MHZ 1000000L struct pll_params { u8 ndiv; u16 frac; }; struct stm32_usbphyc_phy { struct phy *phy; struct stm32_usbphyc *usbphyc; struct regulator_bulk_data supplies[NUM_SUPPLIES]; u32 index; bool active; }; struct stm32_usbphyc { struct device *dev; void __iomem *base; struct clk *clk; struct reset_control *rst; struct stm32_usbphyc_phy **phys; int nphys; int switch_setup; }; static inline void stm32_usbphyc_set_bits(void __iomem *reg, u32 bits) { writel_relaxed(readl_relaxed(reg) | bits, reg); } static inline void stm32_usbphyc_clr_bits(void __iomem *reg, u32 bits) { writel_relaxed(readl_relaxed(reg) & ~bits, reg); } static void stm32_usbphyc_get_pll_params(u32 clk_rate, struct pll_params *pll_params) { unsigned long long fvco, ndiv, frac; /* _ * | FVCO = INFF*2*(NDIV + FRACT/2^16) when DITHER_DISABLE[1] = 1 * | FVCO = 2880MHz * < * | NDIV = integer part of input bits to set the LDF * |_FRACT = fractional part of input bits to set the LDF * => PLLNDIV = integer part of (FVCO / (INFF*2)) * => PLLFRACIN = fractional part of(FVCO / INFF*2) * 2^16 * <=> PLLFRACIN = ((FVCO / (INFF*2)) - PLLNDIV) * 2^16 */ fvco = (unsigned long long)PLL_FVCO_MHZ * HZ_PER_MHZ; ndiv = fvco; do_div(ndiv, (clk_rate * 2)); pll_params->ndiv = (u8)ndiv; frac = fvco * (1 << 16); do_div(frac, (clk_rate * 2)); frac = frac - (ndiv * (1 << 16)); pll_params->frac = (u16)frac; } static int stm32_usbphyc_pll_init(struct stm32_usbphyc *usbphyc) { struct pll_params pll_params; u32 clk_rate = clk_get_rate(usbphyc->clk); u32 ndiv, frac; u32 usbphyc_pll; if ((clk_rate < PLL_INFF_MIN_RATE_HZ) || (clk_rate > PLL_INFF_MAX_RATE_HZ)) { dev_err(usbphyc->dev, "input clk freq (%dHz) out of range\n", clk_rate); return -EINVAL; } stm32_usbphyc_get_pll_params(clk_rate, &pll_params); ndiv = FIELD_PREP(PLLNDIV, pll_params.ndiv); frac = FIELD_PREP(PLLFRACIN, pll_params.frac); usbphyc_pll = PLLDITHEN1 | PLLDITHEN0 | PLLSTRBYP | ndiv; if (pll_params.frac) usbphyc_pll |= PLLFRACCTL | frac; writel_relaxed(usbphyc_pll, usbphyc->base + STM32_USBPHYC_PLL); dev_dbg(usbphyc->dev, "input clk freq=%dHz, ndiv=%lu, frac=%lu\n", clk_rate, FIELD_GET(PLLNDIV, usbphyc_pll), FIELD_GET(PLLFRACIN, usbphyc_pll)); return 0; } static bool stm32_usbphyc_has_one_phy_active(struct stm32_usbphyc *usbphyc) { int i; for (i = 0; i < usbphyc->nphys; i++) if (usbphyc->phys[i]->active) return true; return false; } static int stm32_usbphyc_pll_enable(struct stm32_usbphyc *usbphyc) { void __iomem *pll_reg = usbphyc->base + STM32_USBPHYC_PLL; bool pllen = (readl_relaxed(pll_reg) & PLLEN); int ret; /* Check if one phy port has already configured the pll */ if (pllen && stm32_usbphyc_has_one_phy_active(usbphyc)) return 0; if (pllen) { stm32_usbphyc_clr_bits(pll_reg, PLLEN); /* Wait for minimum width of powerdown pulse (ENABLE = Low) */ udelay(PLL_PWR_DOWN_TIME_US); } ret = stm32_usbphyc_pll_init(usbphyc); if (ret) return ret; stm32_usbphyc_set_bits(pll_reg, PLLEN); /* Wait for maximum lock time */ udelay(PLL_LOCK_TIME_US); if (!(readl_relaxed(pll_reg) & PLLEN)) { dev_err(usbphyc->dev, "PLLEN not set\n"); return -EIO; } return 0; } static int stm32_usbphyc_pll_disable(struct stm32_usbphyc *usbphyc) { void __iomem *pll_reg = usbphyc->base + STM32_USBPHYC_PLL; /* Check if other phy port active */ if (stm32_usbphyc_has_one_phy_active(usbphyc)) return 0; stm32_usbphyc_clr_bits(pll_reg, PLLEN); /* Wait for minimum width of powerdown pulse (ENABLE = Low) */ udelay(PLL_PWR_DOWN_TIME_US); if (readl_relaxed(pll_reg) & PLLEN) { dev_err(usbphyc->dev, "PLL not reset\n"); return -EIO; } return 0; } static int stm32_usbphyc_phy_init(struct phy *phy) { struct stm32_usbphyc_phy *usbphyc_phy = phy_get_drvdata(phy); struct stm32_usbphyc *usbphyc = usbphyc_phy->usbphyc; int ret; ret = stm32_usbphyc_pll_enable(usbphyc); if (ret) return ret; usbphyc_phy->active = true; return 0; } static int stm32_usbphyc_phy_exit(struct phy *phy) { struct stm32_usbphyc_phy *usbphyc_phy = phy_get_drvdata(phy); struct stm32_usbphyc *usbphyc = usbphyc_phy->usbphyc; usbphyc_phy->active = false; return stm32_usbphyc_pll_disable(usbphyc); } static int stm32_usbphyc_phy_power_on(struct phy *phy) { struct stm32_usbphyc_phy *usbphyc_phy = phy_get_drvdata(phy); return regulator_bulk_enable(NUM_SUPPLIES, usbphyc_phy->supplies); } static int stm32_usbphyc_phy_power_off(struct phy *phy) { struct stm32_usbphyc_phy *usbphyc_phy = phy_get_drvdata(phy); return regulator_bulk_disable(NUM_SUPPLIES, usbphyc_phy->supplies); } static const struct phy_ops stm32_usbphyc_phy_ops = { .init = stm32_usbphyc_phy_init, .exit = stm32_usbphyc_phy_exit, .power_on = stm32_usbphyc_phy_power_on, .power_off = stm32_usbphyc_phy_power_off, .owner = THIS_MODULE, }; static void stm32_usbphyc_switch_setup(struct stm32_usbphyc *usbphyc, u32 utmi_switch) { if (!utmi_switch) stm32_usbphyc_clr_bits(usbphyc->base + STM32_USBPHYC_MISC, SWITHOST); else stm32_usbphyc_set_bits(usbphyc->base + STM32_USBPHYC_MISC, SWITHOST); usbphyc->switch_setup = utmi_switch; } static struct phy *stm32_usbphyc_of_xlate(struct device *dev, struct of_phandle_args *args) { struct stm32_usbphyc *usbphyc = dev_get_drvdata(dev); struct stm32_usbphyc_phy *usbphyc_phy = NULL; struct device_node *phynode = args->np; int port = 0; for (port = 0; port < usbphyc->nphys; port++) { if (phynode == usbphyc->phys[port]->phy->dev.of_node) { usbphyc_phy = usbphyc->phys[port]; break; } } if (!usbphyc_phy) { dev_err(dev, "failed to find phy\n"); return ERR_PTR(-EINVAL); } if (((usbphyc_phy->index == 0) && (args->args_count != 0)) || ((usbphyc_phy->index == 1) && (args->args_count != 1))) { dev_err(dev, "invalid number of cells for phy port%d\n", usbphyc_phy->index); return ERR_PTR(-EINVAL); } /* Configure the UTMI switch for PHY port#2 */ if (usbphyc_phy->index == 1) { if (usbphyc->switch_setup < 0) { stm32_usbphyc_switch_setup(usbphyc, args->args[0]); } else { if (args->args[0] != usbphyc->switch_setup) { dev_err(dev, "phy port1 already used\n"); return ERR_PTR(-EBUSY); } } } return usbphyc_phy->phy; } static int stm32_usbphyc_probe(struct platform_device *pdev) { struct stm32_usbphyc *usbphyc; struct device *dev = &pdev->dev; struct device_node *child, *np = dev->of_node; struct resource *res; struct phy_provider *phy_provider; u32 version; int ret, port = 0; usbphyc = devm_kzalloc(dev, sizeof(*usbphyc), GFP_KERNEL); if (!usbphyc) return -ENOMEM; usbphyc->dev = dev; dev_set_drvdata(dev, usbphyc); res = platform_get_resource(pdev, IORESOURCE_MEM, 0); usbphyc->base = devm_ioremap_resource(dev, res); if (IS_ERR(usbphyc->base)) return PTR_ERR(usbphyc->base); usbphyc->clk = devm_clk_get(dev, 0); if (IS_ERR(usbphyc->clk)) { ret = PTR_ERR(usbphyc->clk); dev_err(dev, "clk get failed: %d\n", ret); return ret; } ret = clk_prepare_enable(usbphyc->clk); if (ret) { dev_err(dev, "clk enable failed: %d\n", ret); return ret; } usbphyc->rst = devm_reset_control_get(dev, 0); if (!IS_ERR(usbphyc->rst)) { reset_control_assert(usbphyc->rst); udelay(2); reset_control_deassert(usbphyc->rst); } usbphyc->switch_setup = -EINVAL; usbphyc->nphys = of_get_child_count(np); usbphyc->phys = devm_kcalloc(dev, usbphyc->nphys, sizeof(*usbphyc->phys), GFP_KERNEL); if (!usbphyc->phys) { ret = -ENOMEM; goto clk_disable; } for_each_child_of_node(np, child) { struct stm32_usbphyc_phy *usbphyc_phy; struct phy *phy; u32 index; int i; phy = devm_phy_create(dev, child, &stm32_usbphyc_phy_ops); if (IS_ERR(phy)) { ret = PTR_ERR(phy); if (ret != -EPROBE_DEFER) dev_err(dev, "failed to create phy%d: %d\n", port, ret); goto put_child; } usbphyc_phy = devm_kzalloc(dev, sizeof(*usbphyc_phy), GFP_KERNEL); if (!usbphyc_phy) { ret = -ENOMEM; goto put_child; } for (i = 0; i < NUM_SUPPLIES; i++) usbphyc_phy->supplies[i].supply = supplies_names[i]; ret = devm_regulator_bulk_get(&phy->dev, NUM_SUPPLIES, usbphyc_phy->supplies); if (ret) { if (ret != -EPROBE_DEFER) dev_err(&phy->dev, "failed to get regulators: %d\n", ret); goto put_child; } ret = of_property_read_u32(child, "reg", &index); if (ret || index > usbphyc->nphys) { dev_err(&phy->dev, "invalid reg property: %d\n", ret); goto put_child; } usbphyc->phys[port] = usbphyc_phy; phy_set_bus_width(phy, 8); phy_set_drvdata(phy, usbphyc_phy); usbphyc->phys[port]->phy = phy; usbphyc->phys[port]->usbphyc = usbphyc; usbphyc->phys[port]->index = index; usbphyc->phys[port]->active = false; port++; } phy_provider = devm_of_phy_provider_register(dev, stm32_usbphyc_of_xlate); if (IS_ERR(phy_provider)) { ret = PTR_ERR(phy_provider); dev_err(dev, "failed to register phy provider: %d\n", ret); goto clk_disable; } version = readl_relaxed(usbphyc->base + STM32_USBPHYC_VERSION); dev_info(dev, "registered rev:%lu.%lu\n", FIELD_GET(MAJREV, version), FIELD_GET(MINREV, version)); return 0; put_child: of_node_put(child); clk_disable: clk_disable_unprepare(usbphyc->clk); return ret; } static int stm32_usbphyc_remove(struct platform_device *pdev) { struct stm32_usbphyc *usbphyc = dev_get_drvdata(&pdev->dev); clk_disable_unprepare(usbphyc->clk); return 0; } static const struct of_device_id stm32_usbphyc_of_match[] = { { .compatible = "st,stm32mp1-usbphyc", }, { }, }; MODULE_DEVICE_TABLE(of, stm32_usbphyc_of_match); static struct platform_driver stm32_usbphyc_driver = { .probe = stm32_usbphyc_probe, .remove = stm32_usbphyc_remove, .driver = { .of_match_table = stm32_usbphyc_of_match, .name = "stm32-usbphyc", } }; module_platform_driver(stm32_usbphyc_driver); MODULE_DESCRIPTION("STMicroelectronics STM32 USBPHYC driver"); MODULE_AUTHOR("Amelie Delaunay <amelie.delaunay@st.com>"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1