Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Harald Freudenberger | 5685 | 72.15% | 6 | 30.00% |
Ingo Franzki | 2184 | 27.72% | 7 | 35.00% |
Kees Cook | 4 | 0.05% | 2 | 10.00% |
Heiko Carstens | 3 | 0.04% | 2 | 10.00% |
Greg Kroah-Hartman | 2 | 0.03% | 2 | 10.00% |
Vasily Gorbik | 1 | 0.01% | 1 | 5.00% |
Total | 7879 | 20 |
// SPDX-License-Identifier: GPL-2.0 /* * pkey device driver * * Copyright IBM Corp. 2017 * Author(s): Harald Freudenberger */ #define KMSG_COMPONENT "pkey" #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt #include <linux/fs.h> #include <linux/init.h> #include <linux/miscdevice.h> #include <linux/module.h> #include <linux/slab.h> #include <linux/kallsyms.h> #include <linux/debugfs.h> #include <linux/random.h> #include <linux/cpufeature.h> #include <asm/zcrypt.h> #include <asm/cpacf.h> #include <asm/pkey.h> #include <crypto/aes.h> #include "zcrypt_api.h" MODULE_LICENSE("GPL"); MODULE_AUTHOR("IBM Corporation"); MODULE_DESCRIPTION("s390 protected key interface"); /* Size of parameter block used for all cca requests/replies */ #define PARMBSIZE 512 /* Size of vardata block used for some of the cca requests/replies */ #define VARDATASIZE 4096 /* mask of available pckmo subfunctions, fetched once at module init */ static cpacf_mask_t pckmo_functions; /* * debug feature data and functions */ static debug_info_t *debug_info; #define DEBUG_DBG(...) debug_sprintf_event(debug_info, 6, ##__VA_ARGS__) #define DEBUG_INFO(...) debug_sprintf_event(debug_info, 5, ##__VA_ARGS__) #define DEBUG_WARN(...) debug_sprintf_event(debug_info, 4, ##__VA_ARGS__) #define DEBUG_ERR(...) debug_sprintf_event(debug_info, 3, ##__VA_ARGS__) static void __init pkey_debug_init(void) { debug_info = debug_register("pkey", 1, 1, 4 * sizeof(long)); debug_register_view(debug_info, &debug_sprintf_view); debug_set_level(debug_info, 3); } static void __exit pkey_debug_exit(void) { debug_unregister(debug_info); } /* Key token types */ #define TOKTYPE_NON_CCA 0x00 /* Non-CCA key token */ #define TOKTYPE_CCA_INTERNAL 0x01 /* CCA internal key token */ /* For TOKTYPE_NON_CCA: */ #define TOKVER_PROTECTED_KEY 0x01 /* Protected key token */ /* For TOKTYPE_CCA_INTERNAL: */ #define TOKVER_CCA_AES 0x04 /* CCA AES key token */ /* header part of a key token */ struct keytoken_header { u8 type; /* one of the TOKTYPE values */ u8 res0[3]; u8 version; /* one of the TOKVER values */ u8 res1[3]; } __packed; /* inside view of a secure key token (only type 0x01 version 0x04) */ struct secaeskeytoken { u8 type; /* 0x01 for internal key token */ u8 res0[3]; u8 version; /* should be 0x04 */ u8 res1[1]; u8 flag; /* key flags */ u8 res2[1]; u64 mkvp; /* master key verification pattern */ u8 key[32]; /* key value (encrypted) */ u8 cv[8]; /* control vector */ u16 bitsize; /* key bit size */ u16 keysize; /* key byte size */ u8 tvv[4]; /* token validation value */ } __packed; /* inside view of a protected key token (only type 0x00 version 0x01) */ struct protaeskeytoken { u8 type; /* 0x00 for PAES specific key tokens */ u8 res0[3]; u8 version; /* should be 0x01 for protected AES key token */ u8 res1[3]; u32 keytype; /* key type, one of the PKEY_KEYTYPE values */ u32 len; /* bytes actually stored in protkey[] */ u8 protkey[MAXPROTKEYSIZE]; /* the protected key blob */ } __packed; /* * Simple check if the token is a valid CCA secure AES key * token. If keybitsize is given, the bitsize of the key is * also checked. Returns 0 on success or errno value on failure. */ static int check_secaeskeytoken(const u8 *token, int keybitsize) { struct secaeskeytoken *t = (struct secaeskeytoken *) token; if (t->type != TOKTYPE_CCA_INTERNAL) { DEBUG_ERR( "%s secure token check failed, type mismatch 0x%02x != 0x%02x\n", __func__, (int) t->type, TOKTYPE_CCA_INTERNAL); return -EINVAL; } if (t->version != TOKVER_CCA_AES) { DEBUG_ERR( "%s secure token check failed, version mismatch 0x%02x != 0x%02x\n", __func__, (int) t->version, TOKVER_CCA_AES); return -EINVAL; } if (keybitsize > 0 && t->bitsize != keybitsize) { DEBUG_ERR( "%s secure token check failed, bitsize mismatch %d != %d\n", __func__, (int) t->bitsize, keybitsize); return -EINVAL; } return 0; } /* * Allocate consecutive memory for request CPRB, request param * block, reply CPRB and reply param block and fill in values * for the common fields. Returns 0 on success or errno value * on failure. */ static int alloc_and_prep_cprbmem(size_t paramblen, u8 **pcprbmem, struct CPRBX **preqCPRB, struct CPRBX **prepCPRB) { u8 *cprbmem; size_t cprbplusparamblen = sizeof(struct CPRBX) + paramblen; struct CPRBX *preqcblk, *prepcblk; /* * allocate consecutive memory for request CPRB, request param * block, reply CPRB and reply param block */ cprbmem = kcalloc(2, cprbplusparamblen, GFP_KERNEL); if (!cprbmem) return -ENOMEM; preqcblk = (struct CPRBX *) cprbmem; prepcblk = (struct CPRBX *) (cprbmem + cprbplusparamblen); /* fill request cprb struct */ preqcblk->cprb_len = sizeof(struct CPRBX); preqcblk->cprb_ver_id = 0x02; memcpy(preqcblk->func_id, "T2", 2); preqcblk->rpl_msgbl = cprbplusparamblen; if (paramblen) { preqcblk->req_parmb = ((u8 *) preqcblk) + sizeof(struct CPRBX); preqcblk->rpl_parmb = ((u8 *) prepcblk) + sizeof(struct CPRBX); } *pcprbmem = cprbmem; *preqCPRB = preqcblk; *prepCPRB = prepcblk; return 0; } /* * Free the cprb memory allocated with the function above. * If the scrub value is not zero, the memory is filled * with zeros before freeing (useful if there was some * clear key material in there). */ static void free_cprbmem(void *mem, size_t paramblen, int scrub) { if (scrub) memzero_explicit(mem, 2 * (sizeof(struct CPRBX) + paramblen)); kfree(mem); } /* * Helper function to prepare the xcrb struct */ static inline void prep_xcrb(struct ica_xcRB *pxcrb, u16 cardnr, struct CPRBX *preqcblk, struct CPRBX *prepcblk) { memset(pxcrb, 0, sizeof(*pxcrb)); pxcrb->agent_ID = 0x4341; /* 'CA' */ pxcrb->user_defined = (cardnr == 0xFFFF ? AUTOSELECT : cardnr); pxcrb->request_control_blk_length = preqcblk->cprb_len + preqcblk->req_parml; pxcrb->request_control_blk_addr = (void __user *) preqcblk; pxcrb->reply_control_blk_length = preqcblk->rpl_msgbl; pxcrb->reply_control_blk_addr = (void __user *) prepcblk; } /* * Helper function which calls zcrypt_send_cprb with * memory management segment adjusted to kernel space * so that the copy_from_user called within this * function do in fact copy from kernel space. */ static inline int _zcrypt_send_cprb(struct ica_xcRB *xcrb) { int rc; mm_segment_t old_fs = get_fs(); set_fs(KERNEL_DS); rc = zcrypt_send_cprb(xcrb); set_fs(old_fs); return rc; } /* * Generate (random) AES secure key. */ int pkey_genseckey(u16 cardnr, u16 domain, u32 keytype, struct pkey_seckey *seckey) { int i, rc, keysize; int seckeysize; u8 *mem; struct CPRBX *preqcblk, *prepcblk; struct ica_xcRB xcrb; struct kgreqparm { u8 subfunc_code[2]; u16 rule_array_len; struct lv1 { u16 len; char key_form[8]; char key_length[8]; char key_type1[8]; char key_type2[8]; } lv1; struct lv2 { u16 len; struct keyid { u16 len; u16 attr; u8 data[SECKEYBLOBSIZE]; } keyid[6]; } lv2; } *preqparm; struct kgrepparm { u8 subfunc_code[2]; u16 rule_array_len; struct lv3 { u16 len; u16 keyblocklen; struct { u16 toklen; u16 tokattr; u8 tok[0]; /* ... some more data ... */ } keyblock; } lv3; } *prepparm; /* get already prepared memory for 2 cprbs with param block each */ rc = alloc_and_prep_cprbmem(PARMBSIZE, &mem, &preqcblk, &prepcblk); if (rc) return rc; /* fill request cprb struct */ preqcblk->domain = domain; /* fill request cprb param block with KG request */ preqparm = (struct kgreqparm *) preqcblk->req_parmb; memcpy(preqparm->subfunc_code, "KG", 2); preqparm->rule_array_len = sizeof(preqparm->rule_array_len); preqparm->lv1.len = sizeof(struct lv1); memcpy(preqparm->lv1.key_form, "OP ", 8); switch (keytype) { case PKEY_KEYTYPE_AES_128: keysize = 16; memcpy(preqparm->lv1.key_length, "KEYLN16 ", 8); break; case PKEY_KEYTYPE_AES_192: keysize = 24; memcpy(preqparm->lv1.key_length, "KEYLN24 ", 8); break; case PKEY_KEYTYPE_AES_256: keysize = 32; memcpy(preqparm->lv1.key_length, "KEYLN32 ", 8); break; default: DEBUG_ERR( "%s unknown/unsupported keytype %d\n", __func__, keytype); rc = -EINVAL; goto out; } memcpy(preqparm->lv1.key_type1, "AESDATA ", 8); preqparm->lv2.len = sizeof(struct lv2); for (i = 0; i < 6; i++) { preqparm->lv2.keyid[i].len = sizeof(struct keyid); preqparm->lv2.keyid[i].attr = (i == 2 ? 0x30 : 0x10); } preqcblk->req_parml = sizeof(struct kgreqparm); /* fill xcrb struct */ prep_xcrb(&xcrb, cardnr, preqcblk, prepcblk); /* forward xcrb with request CPRB and reply CPRB to zcrypt dd */ rc = _zcrypt_send_cprb(&xcrb); if (rc) { DEBUG_ERR( "%s zcrypt_send_cprb (cardnr=%d domain=%d) failed with errno %d\n", __func__, (int) cardnr, (int) domain, rc); goto out; } /* check response returncode and reasoncode */ if (prepcblk->ccp_rtcode != 0) { DEBUG_ERR( "%s secure key generate failure, card response %d/%d\n", __func__, (int) prepcblk->ccp_rtcode, (int) prepcblk->ccp_rscode); rc = -EIO; goto out; } /* process response cprb param block */ prepcblk->rpl_parmb = ((u8 *) prepcblk) + sizeof(struct CPRBX); prepparm = (struct kgrepparm *) prepcblk->rpl_parmb; /* check length of the returned secure key token */ seckeysize = prepparm->lv3.keyblock.toklen - sizeof(prepparm->lv3.keyblock.toklen) - sizeof(prepparm->lv3.keyblock.tokattr); if (seckeysize != SECKEYBLOBSIZE) { DEBUG_ERR( "%s secure token size mismatch %d != %d bytes\n", __func__, seckeysize, SECKEYBLOBSIZE); rc = -EIO; goto out; } /* check secure key token */ rc = check_secaeskeytoken(prepparm->lv3.keyblock.tok, 8*keysize); if (rc) { rc = -EIO; goto out; } /* copy the generated secure key token */ memcpy(seckey->seckey, prepparm->lv3.keyblock.tok, SECKEYBLOBSIZE); out: free_cprbmem(mem, PARMBSIZE, 0); return rc; } EXPORT_SYMBOL(pkey_genseckey); /* * Generate an AES secure key with given key value. */ int pkey_clr2seckey(u16 cardnr, u16 domain, u32 keytype, const struct pkey_clrkey *clrkey, struct pkey_seckey *seckey) { int rc, keysize, seckeysize; u8 *mem; struct CPRBX *preqcblk, *prepcblk; struct ica_xcRB xcrb; struct cmreqparm { u8 subfunc_code[2]; u16 rule_array_len; char rule_array[8]; struct lv1 { u16 len; u8 clrkey[0]; } lv1; struct lv2 { u16 len; struct keyid { u16 len; u16 attr; u8 data[SECKEYBLOBSIZE]; } keyid; } lv2; } *preqparm; struct lv2 *plv2; struct cmrepparm { u8 subfunc_code[2]; u16 rule_array_len; struct lv3 { u16 len; u16 keyblocklen; struct { u16 toklen; u16 tokattr; u8 tok[0]; /* ... some more data ... */ } keyblock; } lv3; } *prepparm; /* get already prepared memory for 2 cprbs with param block each */ rc = alloc_and_prep_cprbmem(PARMBSIZE, &mem, &preqcblk, &prepcblk); if (rc) return rc; /* fill request cprb struct */ preqcblk->domain = domain; /* fill request cprb param block with CM request */ preqparm = (struct cmreqparm *) preqcblk->req_parmb; memcpy(preqparm->subfunc_code, "CM", 2); memcpy(preqparm->rule_array, "AES ", 8); preqparm->rule_array_len = sizeof(preqparm->rule_array_len) + sizeof(preqparm->rule_array); switch (keytype) { case PKEY_KEYTYPE_AES_128: keysize = 16; break; case PKEY_KEYTYPE_AES_192: keysize = 24; break; case PKEY_KEYTYPE_AES_256: keysize = 32; break; default: DEBUG_ERR( "%s unknown/unsupported keytype %d\n", __func__, keytype); rc = -EINVAL; goto out; } preqparm->lv1.len = sizeof(struct lv1) + keysize; memcpy(preqparm->lv1.clrkey, clrkey->clrkey, keysize); plv2 = (struct lv2 *) (((u8 *) &preqparm->lv2) + keysize); plv2->len = sizeof(struct lv2); plv2->keyid.len = sizeof(struct keyid); plv2->keyid.attr = 0x30; preqcblk->req_parml = sizeof(struct cmreqparm) + keysize; /* fill xcrb struct */ prep_xcrb(&xcrb, cardnr, preqcblk, prepcblk); /* forward xcrb with request CPRB and reply CPRB to zcrypt dd */ rc = _zcrypt_send_cprb(&xcrb); if (rc) { DEBUG_ERR( "%s zcrypt_send_cprb (cardnr=%d domain=%d) failed with errno %d\n", __func__, (int) cardnr, (int) domain, rc); goto out; } /* check response returncode and reasoncode */ if (prepcblk->ccp_rtcode != 0) { DEBUG_ERR( "%s clear key import failure, card response %d/%d\n", __func__, (int) prepcblk->ccp_rtcode, (int) prepcblk->ccp_rscode); rc = -EIO; goto out; } /* process response cprb param block */ prepcblk->rpl_parmb = ((u8 *) prepcblk) + sizeof(struct CPRBX); prepparm = (struct cmrepparm *) prepcblk->rpl_parmb; /* check length of the returned secure key token */ seckeysize = prepparm->lv3.keyblock.toklen - sizeof(prepparm->lv3.keyblock.toklen) - sizeof(prepparm->lv3.keyblock.tokattr); if (seckeysize != SECKEYBLOBSIZE) { DEBUG_ERR( "%s secure token size mismatch %d != %d bytes\n", __func__, seckeysize, SECKEYBLOBSIZE); rc = -EIO; goto out; } /* check secure key token */ rc = check_secaeskeytoken(prepparm->lv3.keyblock.tok, 8*keysize); if (rc) { rc = -EIO; goto out; } /* copy the generated secure key token */ memcpy(seckey->seckey, prepparm->lv3.keyblock.tok, SECKEYBLOBSIZE); out: free_cprbmem(mem, PARMBSIZE, 1); return rc; } EXPORT_SYMBOL(pkey_clr2seckey); /* * Derive a proteced key from the secure key blob. */ int pkey_sec2protkey(u16 cardnr, u16 domain, const struct pkey_seckey *seckey, struct pkey_protkey *protkey) { int rc; u8 *mem; struct CPRBX *preqcblk, *prepcblk; struct ica_xcRB xcrb; struct uskreqparm { u8 subfunc_code[2]; u16 rule_array_len; struct lv1 { u16 len; u16 attr_len; u16 attr_flags; } lv1; struct lv2 { u16 len; u16 attr_len; u16 attr_flags; u8 token[0]; /* cca secure key token */ } lv2 __packed; } *preqparm; struct uskrepparm { u8 subfunc_code[2]; u16 rule_array_len; struct lv3 { u16 len; u16 attr_len; u16 attr_flags; struct cpacfkeyblock { u8 version; /* version of this struct */ u8 flags[2]; u8 algo; u8 form; u8 pad1[3]; u16 keylen; u8 key[64]; /* the key (keylen bytes) */ u16 keyattrlen; u8 keyattr[32]; u8 pad2[1]; u8 vptype; u8 vp[32]; /* verification pattern */ } keyblock; } lv3 __packed; } *prepparm; /* get already prepared memory for 2 cprbs with param block each */ rc = alloc_and_prep_cprbmem(PARMBSIZE, &mem, &preqcblk, &prepcblk); if (rc) return rc; /* fill request cprb struct */ preqcblk->domain = domain; /* fill request cprb param block with USK request */ preqparm = (struct uskreqparm *) preqcblk->req_parmb; memcpy(preqparm->subfunc_code, "US", 2); preqparm->rule_array_len = sizeof(preqparm->rule_array_len); preqparm->lv1.len = sizeof(struct lv1); preqparm->lv1.attr_len = sizeof(struct lv1) - sizeof(preqparm->lv1.len); preqparm->lv1.attr_flags = 0x0001; preqparm->lv2.len = sizeof(struct lv2) + SECKEYBLOBSIZE; preqparm->lv2.attr_len = sizeof(struct lv2) - sizeof(preqparm->lv2.len) + SECKEYBLOBSIZE; preqparm->lv2.attr_flags = 0x0000; memcpy(preqparm->lv2.token, seckey->seckey, SECKEYBLOBSIZE); preqcblk->req_parml = sizeof(struct uskreqparm) + SECKEYBLOBSIZE; /* fill xcrb struct */ prep_xcrb(&xcrb, cardnr, preqcblk, prepcblk); /* forward xcrb with request CPRB and reply CPRB to zcrypt dd */ rc = _zcrypt_send_cprb(&xcrb); if (rc) { DEBUG_ERR( "%s zcrypt_send_cprb (cardnr=%d domain=%d) failed with errno %d\n", __func__, (int) cardnr, (int) domain, rc); goto out; } /* check response returncode and reasoncode */ if (prepcblk->ccp_rtcode != 0) { DEBUG_ERR( "%s unwrap secure key failure, card response %d/%d\n", __func__, (int) prepcblk->ccp_rtcode, (int) prepcblk->ccp_rscode); rc = -EIO; goto out; } if (prepcblk->ccp_rscode != 0) { DEBUG_WARN( "%s unwrap secure key warning, card response %d/%d\n", __func__, (int) prepcblk->ccp_rtcode, (int) prepcblk->ccp_rscode); } /* process response cprb param block */ prepcblk->rpl_parmb = ((u8 *) prepcblk) + sizeof(struct CPRBX); prepparm = (struct uskrepparm *) prepcblk->rpl_parmb; /* check the returned keyblock */ if (prepparm->lv3.keyblock.version != 0x01) { DEBUG_ERR( "%s reply param keyblock version mismatch 0x%02x != 0x01\n", __func__, (int) prepparm->lv3.keyblock.version); rc = -EIO; goto out; } /* copy the tanslated protected key */ switch (prepparm->lv3.keyblock.keylen) { case 16+32: protkey->type = PKEY_KEYTYPE_AES_128; break; case 24+32: protkey->type = PKEY_KEYTYPE_AES_192; break; case 32+32: protkey->type = PKEY_KEYTYPE_AES_256; break; default: DEBUG_ERR("%s unknown/unsupported keytype %d\n", __func__, prepparm->lv3.keyblock.keylen); rc = -EIO; goto out; } protkey->len = prepparm->lv3.keyblock.keylen; memcpy(protkey->protkey, prepparm->lv3.keyblock.key, protkey->len); out: free_cprbmem(mem, PARMBSIZE, 0); return rc; } EXPORT_SYMBOL(pkey_sec2protkey); /* * Create a protected key from a clear key value. */ int pkey_clr2protkey(u32 keytype, const struct pkey_clrkey *clrkey, struct pkey_protkey *protkey) { long fc; int keysize; u8 paramblock[64]; switch (keytype) { case PKEY_KEYTYPE_AES_128: keysize = 16; fc = CPACF_PCKMO_ENC_AES_128_KEY; break; case PKEY_KEYTYPE_AES_192: keysize = 24; fc = CPACF_PCKMO_ENC_AES_192_KEY; break; case PKEY_KEYTYPE_AES_256: keysize = 32; fc = CPACF_PCKMO_ENC_AES_256_KEY; break; default: DEBUG_ERR("%s unknown/unsupported keytype %d\n", __func__, keytype); return -EINVAL; } /* * Check if the needed pckmo subfunction is available. * These subfunctions can be enabled/disabled by customers * in the LPAR profile or may even change on the fly. */ if (!cpacf_test_func(&pckmo_functions, fc)) { DEBUG_ERR("%s pckmo functions not available\n", __func__); return -EOPNOTSUPP; } /* prepare param block */ memset(paramblock, 0, sizeof(paramblock)); memcpy(paramblock, clrkey->clrkey, keysize); /* call the pckmo instruction */ cpacf_pckmo(fc, paramblock); /* copy created protected key */ protkey->type = keytype; protkey->len = keysize + 32; memcpy(protkey->protkey, paramblock, keysize + 32); return 0; } EXPORT_SYMBOL(pkey_clr2protkey); /* * query cryptographic facility from adapter */ static int query_crypto_facility(u16 cardnr, u16 domain, const char *keyword, u8 *rarray, size_t *rarraylen, u8 *varray, size_t *varraylen) { int rc; u16 len; u8 *mem, *ptr; struct CPRBX *preqcblk, *prepcblk; struct ica_xcRB xcrb; struct fqreqparm { u8 subfunc_code[2]; u16 rule_array_len; char rule_array[8]; struct lv1 { u16 len; u8 data[VARDATASIZE]; } lv1; u16 dummylen; } *preqparm; size_t parmbsize = sizeof(struct fqreqparm); struct fqrepparm { u8 subfunc_code[2]; u8 lvdata[0]; } *prepparm; /* get already prepared memory for 2 cprbs with param block each */ rc = alloc_and_prep_cprbmem(parmbsize, &mem, &preqcblk, &prepcblk); if (rc) return rc; /* fill request cprb struct */ preqcblk->domain = domain; /* fill request cprb param block with FQ request */ preqparm = (struct fqreqparm *) preqcblk->req_parmb; memcpy(preqparm->subfunc_code, "FQ", 2); memcpy(preqparm->rule_array, keyword, sizeof(preqparm->rule_array)); preqparm->rule_array_len = sizeof(preqparm->rule_array_len) + sizeof(preqparm->rule_array); preqparm->lv1.len = sizeof(preqparm->lv1); preqparm->dummylen = sizeof(preqparm->dummylen); preqcblk->req_parml = parmbsize; /* fill xcrb struct */ prep_xcrb(&xcrb, cardnr, preqcblk, prepcblk); /* forward xcrb with request CPRB and reply CPRB to zcrypt dd */ rc = _zcrypt_send_cprb(&xcrb); if (rc) { DEBUG_ERR( "%s zcrypt_send_cprb (cardnr=%d domain=%d) failed with errno %d\n", __func__, (int) cardnr, (int) domain, rc); goto out; } /* check response returncode and reasoncode */ if (prepcblk->ccp_rtcode != 0) { DEBUG_ERR( "%s unwrap secure key failure, card response %d/%d\n", __func__, (int) prepcblk->ccp_rtcode, (int) prepcblk->ccp_rscode); rc = -EIO; goto out; } /* process response cprb param block */ prepcblk->rpl_parmb = ((u8 *) prepcblk) + sizeof(struct CPRBX); prepparm = (struct fqrepparm *) prepcblk->rpl_parmb; ptr = prepparm->lvdata; /* check and possibly copy reply rule array */ len = *((u16 *) ptr); if (len > sizeof(u16)) { ptr += sizeof(u16); len -= sizeof(u16); if (rarray && rarraylen && *rarraylen > 0) { *rarraylen = (len > *rarraylen ? *rarraylen : len); memcpy(rarray, ptr, *rarraylen); } ptr += len; } /* check and possible copy reply var array */ len = *((u16 *) ptr); if (len > sizeof(u16)) { ptr += sizeof(u16); len -= sizeof(u16); if (varray && varraylen && *varraylen > 0) { *varraylen = (len > *varraylen ? *varraylen : len); memcpy(varray, ptr, *varraylen); } ptr += len; } out: free_cprbmem(mem, parmbsize, 0); return rc; } /* * Fetch the current and old mkvp values via * query_crypto_facility from adapter. */ static int fetch_mkvp(u16 cardnr, u16 domain, u64 mkvp[2]) { int rc, found = 0; size_t rlen, vlen; u8 *rarray, *varray, *pg; pg = (u8 *) __get_free_page(GFP_KERNEL); if (!pg) return -ENOMEM; rarray = pg; varray = pg + PAGE_SIZE/2; rlen = vlen = PAGE_SIZE/2; rc = query_crypto_facility(cardnr, domain, "STATICSA", rarray, &rlen, varray, &vlen); if (rc == 0 && rlen > 8*8 && vlen > 184+8) { if (rarray[8*8] == '2') { /* current master key state is valid */ mkvp[0] = *((u64 *)(varray + 184)); mkvp[1] = *((u64 *)(varray + 172)); found = 1; } } free_page((unsigned long) pg); return found ? 0 : -ENOENT; } /* struct to hold cached mkvp info for each card/domain */ struct mkvp_info { struct list_head list; u16 cardnr; u16 domain; u64 mkvp[2]; }; /* a list with mkvp_info entries */ static LIST_HEAD(mkvp_list); static DEFINE_SPINLOCK(mkvp_list_lock); static int mkvp_cache_fetch(u16 cardnr, u16 domain, u64 mkvp[2]) { int rc = -ENOENT; struct mkvp_info *ptr; spin_lock_bh(&mkvp_list_lock); list_for_each_entry(ptr, &mkvp_list, list) { if (ptr->cardnr == cardnr && ptr->domain == domain) { memcpy(mkvp, ptr->mkvp, 2 * sizeof(u64)); rc = 0; break; } } spin_unlock_bh(&mkvp_list_lock); return rc; } static void mkvp_cache_update(u16 cardnr, u16 domain, u64 mkvp[2]) { int found = 0; struct mkvp_info *ptr; spin_lock_bh(&mkvp_list_lock); list_for_each_entry(ptr, &mkvp_list, list) { if (ptr->cardnr == cardnr && ptr->domain == domain) { memcpy(ptr->mkvp, mkvp, 2 * sizeof(u64)); found = 1; break; } } if (!found) { ptr = kmalloc(sizeof(*ptr), GFP_ATOMIC); if (!ptr) { spin_unlock_bh(&mkvp_list_lock); return; } ptr->cardnr = cardnr; ptr->domain = domain; memcpy(ptr->mkvp, mkvp, 2 * sizeof(u64)); list_add(&ptr->list, &mkvp_list); } spin_unlock_bh(&mkvp_list_lock); } static void mkvp_cache_scrub(u16 cardnr, u16 domain) { struct mkvp_info *ptr; spin_lock_bh(&mkvp_list_lock); list_for_each_entry(ptr, &mkvp_list, list) { if (ptr->cardnr == cardnr && ptr->domain == domain) { list_del(&ptr->list); kfree(ptr); break; } } spin_unlock_bh(&mkvp_list_lock); } static void __exit mkvp_cache_free(void) { struct mkvp_info *ptr, *pnext; spin_lock_bh(&mkvp_list_lock); list_for_each_entry_safe(ptr, pnext, &mkvp_list, list) { list_del(&ptr->list); kfree(ptr); } spin_unlock_bh(&mkvp_list_lock); } /* * Search for a matching crypto card based on the Master Key * Verification Pattern provided inside a secure key. */ int pkey_findcard(const struct pkey_seckey *seckey, u16 *pcardnr, u16 *pdomain, int verify) { struct secaeskeytoken *t = (struct secaeskeytoken *) seckey; struct zcrypt_device_status_ext *device_status; u16 card, dom; u64 mkvp[2]; int i, rc, oi = -1; /* mkvp must not be zero */ if (t->mkvp == 0) return -EINVAL; /* fetch status of all crypto cards */ device_status = kmalloc_array(MAX_ZDEV_ENTRIES_EXT, sizeof(struct zcrypt_device_status_ext), GFP_KERNEL); if (!device_status) return -ENOMEM; zcrypt_device_status_mask_ext(device_status); /* walk through all crypto cards */ for (i = 0; i < MAX_ZDEV_ENTRIES_EXT; i++) { card = AP_QID_CARD(device_status[i].qid); dom = AP_QID_QUEUE(device_status[i].qid); if (device_status[i].online && device_status[i].functions & 0x04) { /* an enabled CCA Coprocessor card */ /* try cached mkvp */ if (mkvp_cache_fetch(card, dom, mkvp) == 0 && t->mkvp == mkvp[0]) { if (!verify) break; /* verify: fetch mkvp from adapter */ if (fetch_mkvp(card, dom, mkvp) == 0) { mkvp_cache_update(card, dom, mkvp); if (t->mkvp == mkvp[0]) break; } } } else { /* Card is offline and/or not a CCA card. */ /* del mkvp entry from cache if it exists */ mkvp_cache_scrub(card, dom); } } if (i >= MAX_ZDEV_ENTRIES_EXT) { /* nothing found, so this time without cache */ for (i = 0; i < MAX_ZDEV_ENTRIES_EXT; i++) { if (!(device_status[i].online && device_status[i].functions & 0x04)) continue; card = AP_QID_CARD(device_status[i].qid); dom = AP_QID_QUEUE(device_status[i].qid); /* fresh fetch mkvp from adapter */ if (fetch_mkvp(card, dom, mkvp) == 0) { mkvp_cache_update(card, dom, mkvp); if (t->mkvp == mkvp[0]) break; if (t->mkvp == mkvp[1] && oi < 0) oi = i; } } if (i >= MAX_ZDEV_ENTRIES_EXT && oi >= 0) { /* old mkvp matched, use this card then */ card = AP_QID_CARD(device_status[oi].qid); dom = AP_QID_QUEUE(device_status[oi].qid); } } if (i < MAX_ZDEV_ENTRIES_EXT || oi >= 0) { if (pcardnr) *pcardnr = card; if (pdomain) *pdomain = dom; rc = 0; } else rc = -ENODEV; kfree(device_status); return rc; } EXPORT_SYMBOL(pkey_findcard); /* * Find card and transform secure key into protected key. */ int pkey_skey2pkey(const struct pkey_seckey *seckey, struct pkey_protkey *protkey) { u16 cardnr, domain; int rc, verify; /* * The pkey_sec2protkey call may fail when a card has been * addressed where the master key was changed after last fetch * of the mkvp into the cache. So first try without verify then * with verify enabled (thus refreshing the mkvp for each card). */ for (verify = 0; verify < 2; verify++) { rc = pkey_findcard(seckey, &cardnr, &domain, verify); if (rc) continue; rc = pkey_sec2protkey(cardnr, domain, seckey, protkey); if (rc == 0) break; } if (rc) DEBUG_DBG("%s failed rc=%d\n", __func__, rc); return rc; } EXPORT_SYMBOL(pkey_skey2pkey); /* * Verify key and give back some info about the key. */ int pkey_verifykey(const struct pkey_seckey *seckey, u16 *pcardnr, u16 *pdomain, u16 *pkeysize, u32 *pattributes) { struct secaeskeytoken *t = (struct secaeskeytoken *) seckey; u16 cardnr, domain; u64 mkvp[2]; int rc; /* check the secure key for valid AES secure key */ rc = check_secaeskeytoken((u8 *) seckey, 0); if (rc) goto out; if (pattributes) *pattributes = PKEY_VERIFY_ATTR_AES; if (pkeysize) *pkeysize = t->bitsize; /* try to find a card which can handle this key */ rc = pkey_findcard(seckey, &cardnr, &domain, 1); if (rc) goto out; /* check mkvp for old mkvp match */ rc = mkvp_cache_fetch(cardnr, domain, mkvp); if (rc) goto out; if (t->mkvp == mkvp[1]) { DEBUG_DBG("%s secure key has old mkvp\n", __func__); if (pattributes) *pattributes |= PKEY_VERIFY_ATTR_OLD_MKVP; } if (pcardnr) *pcardnr = cardnr; if (pdomain) *pdomain = domain; out: DEBUG_DBG("%s rc=%d\n", __func__, rc); return rc; } EXPORT_SYMBOL(pkey_verifykey); /* * Generate a random protected key */ int pkey_genprotkey(__u32 keytype, struct pkey_protkey *protkey) { struct pkey_clrkey clrkey; int keysize; int rc; switch (keytype) { case PKEY_KEYTYPE_AES_128: keysize = 16; break; case PKEY_KEYTYPE_AES_192: keysize = 24; break; case PKEY_KEYTYPE_AES_256: keysize = 32; break; default: DEBUG_ERR("%s unknown/unsupported keytype %d\n", __func__, keytype); return -EINVAL; } /* generate a dummy random clear key */ get_random_bytes(clrkey.clrkey, keysize); /* convert it to a dummy protected key */ rc = pkey_clr2protkey(keytype, &clrkey, protkey); if (rc) return rc; /* replace the key part of the protected key with random bytes */ get_random_bytes(protkey->protkey, keysize); return 0; } EXPORT_SYMBOL(pkey_genprotkey); /* * Verify if a protected key is still valid */ int pkey_verifyprotkey(const struct pkey_protkey *protkey) { unsigned long fc; struct { u8 iv[AES_BLOCK_SIZE]; u8 key[MAXPROTKEYSIZE]; } param; u8 null_msg[AES_BLOCK_SIZE]; u8 dest_buf[AES_BLOCK_SIZE]; unsigned int k; switch (protkey->type) { case PKEY_KEYTYPE_AES_128: fc = CPACF_KMC_PAES_128; break; case PKEY_KEYTYPE_AES_192: fc = CPACF_KMC_PAES_192; break; case PKEY_KEYTYPE_AES_256: fc = CPACF_KMC_PAES_256; break; default: DEBUG_ERR("%s unknown/unsupported keytype %d\n", __func__, protkey->type); return -EINVAL; } memset(null_msg, 0, sizeof(null_msg)); memset(param.iv, 0, sizeof(param.iv)); memcpy(param.key, protkey->protkey, sizeof(param.key)); k = cpacf_kmc(fc | CPACF_ENCRYPT, ¶m, null_msg, dest_buf, sizeof(null_msg)); if (k != sizeof(null_msg)) { DEBUG_ERR("%s protected key is not valid\n", __func__); return -EKEYREJECTED; } return 0; } EXPORT_SYMBOL(pkey_verifyprotkey); /* * Transform a non-CCA key token into a protected key */ static int pkey_nonccatok2pkey(const __u8 *key, __u32 keylen, struct pkey_protkey *protkey) { struct keytoken_header *hdr = (struct keytoken_header *)key; struct protaeskeytoken *t; switch (hdr->version) { case TOKVER_PROTECTED_KEY: if (keylen != sizeof(struct protaeskeytoken)) return -EINVAL; t = (struct protaeskeytoken *)key; protkey->len = t->len; protkey->type = t->keytype; memcpy(protkey->protkey, t->protkey, sizeof(protkey->protkey)); return pkey_verifyprotkey(protkey); default: DEBUG_ERR("%s unknown/unsupported non-CCA token version %d\n", __func__, hdr->version); return -EINVAL; } } /* * Transform a CCA internal key token into a protected key */ static int pkey_ccainttok2pkey(const __u8 *key, __u32 keylen, struct pkey_protkey *protkey) { struct keytoken_header *hdr = (struct keytoken_header *)key; switch (hdr->version) { case TOKVER_CCA_AES: if (keylen != sizeof(struct secaeskeytoken)) return -EINVAL; return pkey_skey2pkey((struct pkey_seckey *)key, protkey); default: DEBUG_ERR("%s unknown/unsupported CCA internal token version %d\n", __func__, hdr->version); return -EINVAL; } } /* * Transform a key blob (of any type) into a protected key */ int pkey_keyblob2pkey(const __u8 *key, __u32 keylen, struct pkey_protkey *protkey) { struct keytoken_header *hdr = (struct keytoken_header *)key; if (keylen < sizeof(struct keytoken_header)) return -EINVAL; switch (hdr->type) { case TOKTYPE_NON_CCA: return pkey_nonccatok2pkey(key, keylen, protkey); case TOKTYPE_CCA_INTERNAL: return pkey_ccainttok2pkey(key, keylen, protkey); default: DEBUG_ERR("%s unknown/unsupported blob type %d\n", __func__, hdr->type); return -EINVAL; } } EXPORT_SYMBOL(pkey_keyblob2pkey); /* * File io functions */ static long pkey_unlocked_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) { int rc; switch (cmd) { case PKEY_GENSECK: { struct pkey_genseck __user *ugs = (void __user *) arg; struct pkey_genseck kgs; if (copy_from_user(&kgs, ugs, sizeof(kgs))) return -EFAULT; rc = pkey_genseckey(kgs.cardnr, kgs.domain, kgs.keytype, &kgs.seckey); DEBUG_DBG("%s pkey_genseckey()=%d\n", __func__, rc); if (rc) break; if (copy_to_user(ugs, &kgs, sizeof(kgs))) return -EFAULT; break; } case PKEY_CLR2SECK: { struct pkey_clr2seck __user *ucs = (void __user *) arg; struct pkey_clr2seck kcs; if (copy_from_user(&kcs, ucs, sizeof(kcs))) return -EFAULT; rc = pkey_clr2seckey(kcs.cardnr, kcs.domain, kcs.keytype, &kcs.clrkey, &kcs.seckey); DEBUG_DBG("%s pkey_clr2seckey()=%d\n", __func__, rc); if (rc) break; if (copy_to_user(ucs, &kcs, sizeof(kcs))) return -EFAULT; memzero_explicit(&kcs, sizeof(kcs)); break; } case PKEY_SEC2PROTK: { struct pkey_sec2protk __user *usp = (void __user *) arg; struct pkey_sec2protk ksp; if (copy_from_user(&ksp, usp, sizeof(ksp))) return -EFAULT; rc = pkey_sec2protkey(ksp.cardnr, ksp.domain, &ksp.seckey, &ksp.protkey); DEBUG_DBG("%s pkey_sec2protkey()=%d\n", __func__, rc); if (rc) break; if (copy_to_user(usp, &ksp, sizeof(ksp))) return -EFAULT; break; } case PKEY_CLR2PROTK: { struct pkey_clr2protk __user *ucp = (void __user *) arg; struct pkey_clr2protk kcp; if (copy_from_user(&kcp, ucp, sizeof(kcp))) return -EFAULT; rc = pkey_clr2protkey(kcp.keytype, &kcp.clrkey, &kcp.protkey); DEBUG_DBG("%s pkey_clr2protkey()=%d\n", __func__, rc); if (rc) break; if (copy_to_user(ucp, &kcp, sizeof(kcp))) return -EFAULT; memzero_explicit(&kcp, sizeof(kcp)); break; } case PKEY_FINDCARD: { struct pkey_findcard __user *ufc = (void __user *) arg; struct pkey_findcard kfc; if (copy_from_user(&kfc, ufc, sizeof(kfc))) return -EFAULT; rc = pkey_findcard(&kfc.seckey, &kfc.cardnr, &kfc.domain, 1); DEBUG_DBG("%s pkey_findcard()=%d\n", __func__, rc); if (rc) break; if (copy_to_user(ufc, &kfc, sizeof(kfc))) return -EFAULT; break; } case PKEY_SKEY2PKEY: { struct pkey_skey2pkey __user *usp = (void __user *) arg; struct pkey_skey2pkey ksp; if (copy_from_user(&ksp, usp, sizeof(ksp))) return -EFAULT; rc = pkey_skey2pkey(&ksp.seckey, &ksp.protkey); DEBUG_DBG("%s pkey_skey2pkey()=%d\n", __func__, rc); if (rc) break; if (copy_to_user(usp, &ksp, sizeof(ksp))) return -EFAULT; break; } case PKEY_VERIFYKEY: { struct pkey_verifykey __user *uvk = (void __user *) arg; struct pkey_verifykey kvk; if (copy_from_user(&kvk, uvk, sizeof(kvk))) return -EFAULT; rc = pkey_verifykey(&kvk.seckey, &kvk.cardnr, &kvk.domain, &kvk.keysize, &kvk.attributes); DEBUG_DBG("%s pkey_verifykey()=%d\n", __func__, rc); if (rc) break; if (copy_to_user(uvk, &kvk, sizeof(kvk))) return -EFAULT; break; } case PKEY_GENPROTK: { struct pkey_genprotk __user *ugp = (void __user *) arg; struct pkey_genprotk kgp; if (copy_from_user(&kgp, ugp, sizeof(kgp))) return -EFAULT; rc = pkey_genprotkey(kgp.keytype, &kgp.protkey); DEBUG_DBG("%s pkey_genprotkey()=%d\n", __func__, rc); if (rc) break; if (copy_to_user(ugp, &kgp, sizeof(kgp))) return -EFAULT; break; } case PKEY_VERIFYPROTK: { struct pkey_verifyprotk __user *uvp = (void __user *) arg; struct pkey_verifyprotk kvp; if (copy_from_user(&kvp, uvp, sizeof(kvp))) return -EFAULT; rc = pkey_verifyprotkey(&kvp.protkey); DEBUG_DBG("%s pkey_verifyprotkey()=%d\n", __func__, rc); break; } case PKEY_KBLOB2PROTK: { struct pkey_kblob2pkey __user *utp = (void __user *) arg; struct pkey_kblob2pkey ktp; __u8 __user *ukey; __u8 *kkey; if (copy_from_user(&ktp, utp, sizeof(ktp))) return -EFAULT; if (ktp.keylen < MINKEYBLOBSIZE || ktp.keylen > MAXKEYBLOBSIZE) return -EINVAL; ukey = ktp.key; kkey = kmalloc(ktp.keylen, GFP_KERNEL); if (kkey == NULL) return -ENOMEM; if (copy_from_user(kkey, ukey, ktp.keylen)) { kfree(kkey); return -EFAULT; } rc = pkey_keyblob2pkey(kkey, ktp.keylen, &ktp.protkey); DEBUG_DBG("%s pkey_keyblob2pkey()=%d\n", __func__, rc); kfree(kkey); if (rc) break; if (copy_to_user(utp, &ktp, sizeof(ktp))) return -EFAULT; break; } default: /* unknown/unsupported ioctl cmd */ return -ENOTTY; } return rc; } /* * Sysfs and file io operations */ /* * Sysfs attribute read function for all protected key binary attributes. * The implementation can not deal with partial reads, because a new random * protected key blob is generated with each read. In case of partial reads * (i.e. off != 0 or count < key blob size) -EINVAL is returned. */ static ssize_t pkey_protkey_aes_attr_read(u32 keytype, bool is_xts, char *buf, loff_t off, size_t count) { struct protaeskeytoken protkeytoken; struct pkey_protkey protkey; int rc; if (off != 0 || count < sizeof(protkeytoken)) return -EINVAL; if (is_xts) if (count < 2 * sizeof(protkeytoken)) return -EINVAL; memset(&protkeytoken, 0, sizeof(protkeytoken)); protkeytoken.type = TOKTYPE_NON_CCA; protkeytoken.version = TOKVER_PROTECTED_KEY; protkeytoken.keytype = keytype; rc = pkey_genprotkey(protkeytoken.keytype, &protkey); if (rc) return rc; protkeytoken.len = protkey.len; memcpy(&protkeytoken.protkey, &protkey.protkey, protkey.len); memcpy(buf, &protkeytoken, sizeof(protkeytoken)); if (is_xts) { rc = pkey_genprotkey(protkeytoken.keytype, &protkey); if (rc) return rc; protkeytoken.len = protkey.len; memcpy(&protkeytoken.protkey, &protkey.protkey, protkey.len); memcpy(buf + sizeof(protkeytoken), &protkeytoken, sizeof(protkeytoken)); return 2 * sizeof(protkeytoken); } return sizeof(protkeytoken); } static ssize_t protkey_aes_128_read(struct file *filp, struct kobject *kobj, struct bin_attribute *attr, char *buf, loff_t off, size_t count) { return pkey_protkey_aes_attr_read(PKEY_KEYTYPE_AES_128, false, buf, off, count); } static ssize_t protkey_aes_192_read(struct file *filp, struct kobject *kobj, struct bin_attribute *attr, char *buf, loff_t off, size_t count) { return pkey_protkey_aes_attr_read(PKEY_KEYTYPE_AES_192, false, buf, off, count); } static ssize_t protkey_aes_256_read(struct file *filp, struct kobject *kobj, struct bin_attribute *attr, char *buf, loff_t off, size_t count) { return pkey_protkey_aes_attr_read(PKEY_KEYTYPE_AES_256, false, buf, off, count); } static ssize_t protkey_aes_128_xts_read(struct file *filp, struct kobject *kobj, struct bin_attribute *attr, char *buf, loff_t off, size_t count) { return pkey_protkey_aes_attr_read(PKEY_KEYTYPE_AES_128, true, buf, off, count); } static ssize_t protkey_aes_256_xts_read(struct file *filp, struct kobject *kobj, struct bin_attribute *attr, char *buf, loff_t off, size_t count) { return pkey_protkey_aes_attr_read(PKEY_KEYTYPE_AES_256, true, buf, off, count); } static BIN_ATTR_RO(protkey_aes_128, sizeof(struct protaeskeytoken)); static BIN_ATTR_RO(protkey_aes_192, sizeof(struct protaeskeytoken)); static BIN_ATTR_RO(protkey_aes_256, sizeof(struct protaeskeytoken)); static BIN_ATTR_RO(protkey_aes_128_xts, 2 * sizeof(struct protaeskeytoken)); static BIN_ATTR_RO(protkey_aes_256_xts, 2 * sizeof(struct protaeskeytoken)); static struct bin_attribute *protkey_attrs[] = { &bin_attr_protkey_aes_128, &bin_attr_protkey_aes_192, &bin_attr_protkey_aes_256, &bin_attr_protkey_aes_128_xts, &bin_attr_protkey_aes_256_xts, NULL }; static struct attribute_group protkey_attr_group = { .name = "protkey", .bin_attrs = protkey_attrs, }; /* * Sysfs attribute read function for all secure key ccadata binary attributes. * The implementation can not deal with partial reads, because a new random * protected key blob is generated with each read. In case of partial reads * (i.e. off != 0 or count < key blob size) -EINVAL is returned. */ static ssize_t pkey_ccadata_aes_attr_read(u32 keytype, bool is_xts, char *buf, loff_t off, size_t count) { int rc; if (off != 0 || count < sizeof(struct secaeskeytoken)) return -EINVAL; if (is_xts) if (count < 2 * sizeof(struct secaeskeytoken)) return -EINVAL; rc = pkey_genseckey(-1, -1, keytype, (struct pkey_seckey *)buf); if (rc) return rc; if (is_xts) { buf += sizeof(struct pkey_seckey); rc = pkey_genseckey(-1, -1, keytype, (struct pkey_seckey *)buf); if (rc) return rc; return 2 * sizeof(struct secaeskeytoken); } return sizeof(struct secaeskeytoken); } static ssize_t ccadata_aes_128_read(struct file *filp, struct kobject *kobj, struct bin_attribute *attr, char *buf, loff_t off, size_t count) { return pkey_ccadata_aes_attr_read(PKEY_KEYTYPE_AES_128, false, buf, off, count); } static ssize_t ccadata_aes_192_read(struct file *filp, struct kobject *kobj, struct bin_attribute *attr, char *buf, loff_t off, size_t count) { return pkey_ccadata_aes_attr_read(PKEY_KEYTYPE_AES_192, false, buf, off, count); } static ssize_t ccadata_aes_256_read(struct file *filp, struct kobject *kobj, struct bin_attribute *attr, char *buf, loff_t off, size_t count) { return pkey_ccadata_aes_attr_read(PKEY_KEYTYPE_AES_256, false, buf, off, count); } static ssize_t ccadata_aes_128_xts_read(struct file *filp, struct kobject *kobj, struct bin_attribute *attr, char *buf, loff_t off, size_t count) { return pkey_ccadata_aes_attr_read(PKEY_KEYTYPE_AES_128, true, buf, off, count); } static ssize_t ccadata_aes_256_xts_read(struct file *filp, struct kobject *kobj, struct bin_attribute *attr, char *buf, loff_t off, size_t count) { return pkey_ccadata_aes_attr_read(PKEY_KEYTYPE_AES_256, true, buf, off, count); } static BIN_ATTR_RO(ccadata_aes_128, sizeof(struct secaeskeytoken)); static BIN_ATTR_RO(ccadata_aes_192, sizeof(struct secaeskeytoken)); static BIN_ATTR_RO(ccadata_aes_256, sizeof(struct secaeskeytoken)); static BIN_ATTR_RO(ccadata_aes_128_xts, 2 * sizeof(struct secaeskeytoken)); static BIN_ATTR_RO(ccadata_aes_256_xts, 2 * sizeof(struct secaeskeytoken)); static struct bin_attribute *ccadata_attrs[] = { &bin_attr_ccadata_aes_128, &bin_attr_ccadata_aes_192, &bin_attr_ccadata_aes_256, &bin_attr_ccadata_aes_128_xts, &bin_attr_ccadata_aes_256_xts, NULL }; static struct attribute_group ccadata_attr_group = { .name = "ccadata", .bin_attrs = ccadata_attrs, }; static const struct attribute_group *pkey_attr_groups[] = { &protkey_attr_group, &ccadata_attr_group, NULL, }; static const struct file_operations pkey_fops = { .owner = THIS_MODULE, .open = nonseekable_open, .llseek = no_llseek, .unlocked_ioctl = pkey_unlocked_ioctl, }; static struct miscdevice pkey_dev = { .name = "pkey", .minor = MISC_DYNAMIC_MINOR, .mode = 0666, .fops = &pkey_fops, .groups = pkey_attr_groups, }; /* * Module init */ static int __init pkey_init(void) { cpacf_mask_t kmc_functions; /* * The pckmo instruction should be available - even if we don't * actually invoke it. This instruction comes with MSA 3 which * is also the minimum level for the kmc instructions which * are able to work with protected keys. */ if (!cpacf_query(CPACF_PCKMO, &pckmo_functions)) return -EOPNOTSUPP; /* check for kmc instructions available */ if (!cpacf_query(CPACF_KMC, &kmc_functions)) return -EOPNOTSUPP; if (!cpacf_test_func(&kmc_functions, CPACF_KMC_PAES_128) || !cpacf_test_func(&kmc_functions, CPACF_KMC_PAES_192) || !cpacf_test_func(&kmc_functions, CPACF_KMC_PAES_256)) return -EOPNOTSUPP; pkey_debug_init(); return misc_register(&pkey_dev); } /* * Module exit */ static void __exit pkey_exit(void) { misc_deregister(&pkey_dev); mkvp_cache_free(); pkey_debug_exit(); } module_cpu_feature_match(MSA, pkey_init); module_exit(pkey_exit);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1