Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Mark Haverkamp | 3005 | 27.18% | 45 | 26.95% |
Raghava Aditya Renukunta | 2657 | 24.03% | 35 | 20.96% |
Christoph Hellwig | 1328 | 12.01% | 5 | 2.99% |
Mark Salyzyn | 1126 | 10.18% | 24 | 14.37% |
Hannes Reinecke | 871 | 7.88% | 7 | 4.19% |
Mahesh Rajashekhara | 633 | 5.72% | 8 | 4.79% |
Alan Cox | 581 | 5.25% | 5 | 2.99% |
Andi Kleen | 272 | 2.46% | 1 | 0.60% |
James Bottomley | 151 | 1.37% | 3 | 1.80% |
Tony Jones | 124 | 1.12% | 1 | 0.60% |
Benjamin Collins | 101 | 0.91% | 2 | 1.20% |
Nikola Pajkovsky | 28 | 0.25% | 1 | 0.60% |
Arnd Bergmann | 25 | 0.23% | 4 | 2.40% |
Rolf Eike Beer | 19 | 0.17% | 1 | 0.60% |
Greg Kroah-Hartman | 19 | 0.17% | 1 | 0.60% |
Dan Carpenter | 19 | 0.17% | 2 | 1.20% |
Vasily Averin | 14 | 0.13% | 1 | 0.60% |
Guilherme G. Piccoli | 12 | 0.11% | 1 | 0.60% |
Dave Jones | 11 | 0.10% | 1 | 0.60% |
Kees Cook | 7 | 0.06% | 1 | 0.60% |
Meelis Roos | 7 | 0.06% | 1 | 0.60% |
Dave Carroll | 6 | 0.05% | 1 | 0.60% |
Kashyap Desai | 6 | 0.05% | 1 | 0.60% |
Achim Leubner | 6 | 0.05% | 1 | 0.60% |
Martin K. Petersen | 5 | 0.05% | 1 | 0.60% |
Jonathan Corbet | 5 | 0.05% | 1 | 0.60% |
Matt Domsch | 4 | 0.04% | 1 | 0.60% |
Jeff Garzik | 3 | 0.03% | 1 | 0.60% |
Al Viro | 2 | 0.02% | 1 | 0.60% |
Andrew Morton | 2 | 0.02% | 1 | 0.60% |
Harvey Harrison | 1 | 0.01% | 1 | 0.60% |
Masahiro Yamada | 1 | 0.01% | 1 | 0.60% |
Gustavo A. R. Silva | 1 | 0.01% | 1 | 0.60% |
Fengguang Wu | 1 | 0.01% | 1 | 0.60% |
Prasad B Munirathnam | 1 | 0.01% | 1 | 0.60% |
Adrian Bunk | 1 | 0.01% | 1 | 0.60% |
Michal Marek | 1 | 0.01% | 1 | 0.60% |
Arjan van de Ven | 1 | 0.01% | 1 | 0.60% |
Total | 11057 | 167 |
/* * Adaptec AAC series RAID controller driver * (c) Copyright 2001 Red Hat Inc. * * based on the old aacraid driver that is.. * Adaptec aacraid device driver for Linux. * * Copyright (c) 2000-2010 Adaptec, Inc. * 2010-2015 PMC-Sierra, Inc. (aacraid@pmc-sierra.com) * 2016-2017 Microsemi Corp. (aacraid@microsemi.com) * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; see the file COPYING. If not, write to * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. * * Module Name: * linit.c * * Abstract: Linux Driver entry module for Adaptec RAID Array Controller */ #include <linux/compat.h> #include <linux/blkdev.h> #include <linux/completion.h> #include <linux/init.h> #include <linux/interrupt.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/moduleparam.h> #include <linux/pci.h> #include <linux/aer.h> #include <linux/pci-aspm.h> #include <linux/slab.h> #include <linux/mutex.h> #include <linux/spinlock.h> #include <linux/syscalls.h> #include <linux/delay.h> #include <linux/kthread.h> #include <scsi/scsi.h> #include <scsi/scsi_cmnd.h> #include <scsi/scsi_device.h> #include <scsi/scsi_host.h> #include <scsi/scsi_tcq.h> #include <scsi/scsicam.h> #include <scsi/scsi_eh.h> #include "aacraid.h" #define AAC_DRIVER_VERSION "1.2.1" #ifndef AAC_DRIVER_BRANCH #define AAC_DRIVER_BRANCH "" #endif #define AAC_DRIVERNAME "aacraid" #ifdef AAC_DRIVER_BUILD #define _str(x) #x #define str(x) _str(x) #define AAC_DRIVER_FULL_VERSION AAC_DRIVER_VERSION "[" str(AAC_DRIVER_BUILD) "]" AAC_DRIVER_BRANCH #else #define AAC_DRIVER_FULL_VERSION AAC_DRIVER_VERSION AAC_DRIVER_BRANCH #endif MODULE_AUTHOR("Red Hat Inc and Adaptec"); MODULE_DESCRIPTION("Dell PERC2, 2/Si, 3/Si, 3/Di, " "Adaptec Advanced Raid Products, " "HP NetRAID-4M, IBM ServeRAID & ICP SCSI driver"); MODULE_LICENSE("GPL"); MODULE_VERSION(AAC_DRIVER_FULL_VERSION); static DEFINE_MUTEX(aac_mutex); static LIST_HEAD(aac_devices); static int aac_cfg_major = AAC_CHARDEV_UNREGISTERED; char aac_driver_version[] = AAC_DRIVER_FULL_VERSION; /* * Because of the way Linux names scsi devices, the order in this table has * become important. Check for on-board Raid first, add-in cards second. * * Note: The last field is used to index into aac_drivers below. */ static const struct pci_device_id aac_pci_tbl[] = { { 0x1028, 0x0001, 0x1028, 0x0001, 0, 0, 0 }, /* PERC 2/Si (Iguana/PERC2Si) */ { 0x1028, 0x0002, 0x1028, 0x0002, 0, 0, 1 }, /* PERC 3/Di (Opal/PERC3Di) */ { 0x1028, 0x0003, 0x1028, 0x0003, 0, 0, 2 }, /* PERC 3/Si (SlimFast/PERC3Si */ { 0x1028, 0x0004, 0x1028, 0x00d0, 0, 0, 3 }, /* PERC 3/Di (Iguana FlipChip/PERC3DiF */ { 0x1028, 0x0002, 0x1028, 0x00d1, 0, 0, 4 }, /* PERC 3/Di (Viper/PERC3DiV) */ { 0x1028, 0x0002, 0x1028, 0x00d9, 0, 0, 5 }, /* PERC 3/Di (Lexus/PERC3DiL) */ { 0x1028, 0x000a, 0x1028, 0x0106, 0, 0, 6 }, /* PERC 3/Di (Jaguar/PERC3DiJ) */ { 0x1028, 0x000a, 0x1028, 0x011b, 0, 0, 7 }, /* PERC 3/Di (Dagger/PERC3DiD) */ { 0x1028, 0x000a, 0x1028, 0x0121, 0, 0, 8 }, /* PERC 3/Di (Boxster/PERC3DiB) */ { 0x9005, 0x0283, 0x9005, 0x0283, 0, 0, 9 }, /* catapult */ { 0x9005, 0x0284, 0x9005, 0x0284, 0, 0, 10 }, /* tomcat */ { 0x9005, 0x0285, 0x9005, 0x0286, 0, 0, 11 }, /* Adaptec 2120S (Crusader) */ { 0x9005, 0x0285, 0x9005, 0x0285, 0, 0, 12 }, /* Adaptec 2200S (Vulcan) */ { 0x9005, 0x0285, 0x9005, 0x0287, 0, 0, 13 }, /* Adaptec 2200S (Vulcan-2m) */ { 0x9005, 0x0285, 0x17aa, 0x0286, 0, 0, 14 }, /* Legend S220 (Legend Crusader) */ { 0x9005, 0x0285, 0x17aa, 0x0287, 0, 0, 15 }, /* Legend S230 (Legend Vulcan) */ { 0x9005, 0x0285, 0x9005, 0x0288, 0, 0, 16 }, /* Adaptec 3230S (Harrier) */ { 0x9005, 0x0285, 0x9005, 0x0289, 0, 0, 17 }, /* Adaptec 3240S (Tornado) */ { 0x9005, 0x0285, 0x9005, 0x028a, 0, 0, 18 }, /* ASR-2020ZCR SCSI PCI-X ZCR (Skyhawk) */ { 0x9005, 0x0285, 0x9005, 0x028b, 0, 0, 19 }, /* ASR-2025ZCR SCSI SO-DIMM PCI-X ZCR (Terminator) */ { 0x9005, 0x0286, 0x9005, 0x028c, 0, 0, 20 }, /* ASR-2230S + ASR-2230SLP PCI-X (Lancer) */ { 0x9005, 0x0286, 0x9005, 0x028d, 0, 0, 21 }, /* ASR-2130S (Lancer) */ { 0x9005, 0x0286, 0x9005, 0x029b, 0, 0, 22 }, /* AAR-2820SA (Intruder) */ { 0x9005, 0x0286, 0x9005, 0x029c, 0, 0, 23 }, /* AAR-2620SA (Intruder) */ { 0x9005, 0x0286, 0x9005, 0x029d, 0, 0, 24 }, /* AAR-2420SA (Intruder) */ { 0x9005, 0x0286, 0x9005, 0x029e, 0, 0, 25 }, /* ICP9024RO (Lancer) */ { 0x9005, 0x0286, 0x9005, 0x029f, 0, 0, 26 }, /* ICP9014RO (Lancer) */ { 0x9005, 0x0286, 0x9005, 0x02a0, 0, 0, 27 }, /* ICP9047MA (Lancer) */ { 0x9005, 0x0286, 0x9005, 0x02a1, 0, 0, 28 }, /* ICP9087MA (Lancer) */ { 0x9005, 0x0286, 0x9005, 0x02a3, 0, 0, 29 }, /* ICP5445AU (Hurricane44) */ { 0x9005, 0x0285, 0x9005, 0x02a4, 0, 0, 30 }, /* ICP9085LI (Marauder-X) */ { 0x9005, 0x0285, 0x9005, 0x02a5, 0, 0, 31 }, /* ICP5085BR (Marauder-E) */ { 0x9005, 0x0286, 0x9005, 0x02a6, 0, 0, 32 }, /* ICP9067MA (Intruder-6) */ { 0x9005, 0x0287, 0x9005, 0x0800, 0, 0, 33 }, /* Themisto Jupiter Platform */ { 0x9005, 0x0200, 0x9005, 0x0200, 0, 0, 33 }, /* Themisto Jupiter Platform */ { 0x9005, 0x0286, 0x9005, 0x0800, 0, 0, 34 }, /* Callisto Jupiter Platform */ { 0x9005, 0x0285, 0x9005, 0x028e, 0, 0, 35 }, /* ASR-2020SA SATA PCI-X ZCR (Skyhawk) */ { 0x9005, 0x0285, 0x9005, 0x028f, 0, 0, 36 }, /* ASR-2025SA SATA SO-DIMM PCI-X ZCR (Terminator) */ { 0x9005, 0x0285, 0x9005, 0x0290, 0, 0, 37 }, /* AAR-2410SA PCI SATA 4ch (Jaguar II) */ { 0x9005, 0x0285, 0x1028, 0x0291, 0, 0, 38 }, /* CERC SATA RAID 2 PCI SATA 6ch (DellCorsair) */ { 0x9005, 0x0285, 0x9005, 0x0292, 0, 0, 39 }, /* AAR-2810SA PCI SATA 8ch (Corsair-8) */ { 0x9005, 0x0285, 0x9005, 0x0293, 0, 0, 40 }, /* AAR-21610SA PCI SATA 16ch (Corsair-16) */ { 0x9005, 0x0285, 0x9005, 0x0294, 0, 0, 41 }, /* ESD SO-DIMM PCI-X SATA ZCR (Prowler) */ { 0x9005, 0x0285, 0x103C, 0x3227, 0, 0, 42 }, /* AAR-2610SA PCI SATA 6ch */ { 0x9005, 0x0285, 0x9005, 0x0296, 0, 0, 43 }, /* ASR-2240S (SabreExpress) */ { 0x9005, 0x0285, 0x9005, 0x0297, 0, 0, 44 }, /* ASR-4005 */ { 0x9005, 0x0285, 0x1014, 0x02F2, 0, 0, 45 }, /* IBM 8i (AvonPark) */ { 0x9005, 0x0285, 0x1014, 0x0312, 0, 0, 45 }, /* IBM 8i (AvonPark Lite) */ { 0x9005, 0x0286, 0x1014, 0x9580, 0, 0, 46 }, /* IBM 8k/8k-l8 (Aurora) */ { 0x9005, 0x0286, 0x1014, 0x9540, 0, 0, 47 }, /* IBM 8k/8k-l4 (Aurora Lite) */ { 0x9005, 0x0285, 0x9005, 0x0298, 0, 0, 48 }, /* ASR-4000 (BlackBird) */ { 0x9005, 0x0285, 0x9005, 0x0299, 0, 0, 49 }, /* ASR-4800SAS (Marauder-X) */ { 0x9005, 0x0285, 0x9005, 0x029a, 0, 0, 50 }, /* ASR-4805SAS (Marauder-E) */ { 0x9005, 0x0286, 0x9005, 0x02a2, 0, 0, 51 }, /* ASR-3800 (Hurricane44) */ { 0x9005, 0x0285, 0x1028, 0x0287, 0, 0, 52 }, /* Perc 320/DC*/ { 0x1011, 0x0046, 0x9005, 0x0365, 0, 0, 53 }, /* Adaptec 5400S (Mustang)*/ { 0x1011, 0x0046, 0x9005, 0x0364, 0, 0, 54 }, /* Adaptec 5400S (Mustang)*/ { 0x1011, 0x0046, 0x9005, 0x1364, 0, 0, 55 }, /* Dell PERC2/QC */ { 0x1011, 0x0046, 0x103c, 0x10c2, 0, 0, 56 }, /* HP NetRAID-4M */ { 0x9005, 0x0285, 0x1028, PCI_ANY_ID, 0, 0, 57 }, /* Dell Catchall */ { 0x9005, 0x0285, 0x17aa, PCI_ANY_ID, 0, 0, 58 }, /* Legend Catchall */ { 0x9005, 0x0285, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 59 }, /* Adaptec Catch All */ { 0x9005, 0x0286, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 60 }, /* Adaptec Rocket Catch All */ { 0x9005, 0x0288, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 61 }, /* Adaptec NEMER/ARK Catch All */ { 0x9005, 0x028b, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 62 }, /* Adaptec PMC Series 6 (Tupelo) */ { 0x9005, 0x028c, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 63 }, /* Adaptec PMC Series 7 (Denali) */ { 0x9005, 0x028d, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 64 }, /* Adaptec PMC Series 8 */ { 0,} }; MODULE_DEVICE_TABLE(pci, aac_pci_tbl); /* * dmb - For now we add the number of channels to this structure. * In the future we should add a fib that reports the number of channels * for the card. At that time we can remove the channels from here */ static struct aac_driver_ident aac_drivers[] = { { aac_rx_init, "percraid", "DELL ", "PERCRAID ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 2/Si (Iguana/PERC2Si) */ { aac_rx_init, "percraid", "DELL ", "PERCRAID ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Di (Opal/PERC3Di) */ { aac_rx_init, "percraid", "DELL ", "PERCRAID ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Si (SlimFast/PERC3Si */ { aac_rx_init, "percraid", "DELL ", "PERCRAID ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Di (Iguana FlipChip/PERC3DiF */ { aac_rx_init, "percraid", "DELL ", "PERCRAID ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Di (Viper/PERC3DiV) */ { aac_rx_init, "percraid", "DELL ", "PERCRAID ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Di (Lexus/PERC3DiL) */ { aac_rx_init, "percraid", "DELL ", "PERCRAID ", 1, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Di (Jaguar/PERC3DiJ) */ { aac_rx_init, "percraid", "DELL ", "PERCRAID ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Di (Dagger/PERC3DiD) */ { aac_rx_init, "percraid", "DELL ", "PERCRAID ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Di (Boxster/PERC3DiB) */ { aac_rx_init, "aacraid", "ADAPTEC ", "catapult ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* catapult */ { aac_rx_init, "aacraid", "ADAPTEC ", "tomcat ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* tomcat */ { aac_rx_init, "aacraid", "ADAPTEC ", "Adaptec 2120S ", 1, AAC_QUIRK_31BIT | AAC_QUIRK_34SG }, /* Adaptec 2120S (Crusader) */ { aac_rx_init, "aacraid", "ADAPTEC ", "Adaptec 2200S ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG }, /* Adaptec 2200S (Vulcan) */ { aac_rx_init, "aacraid", "ADAPTEC ", "Adaptec 2200S ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* Adaptec 2200S (Vulcan-2m) */ { aac_rx_init, "aacraid", "Legend ", "Legend S220 ", 1, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* Legend S220 (Legend Crusader) */ { aac_rx_init, "aacraid", "Legend ", "Legend S230 ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* Legend S230 (Legend Vulcan) */ { aac_rx_init, "aacraid", "ADAPTEC ", "Adaptec 3230S ", 2 }, /* Adaptec 3230S (Harrier) */ { aac_rx_init, "aacraid", "ADAPTEC ", "Adaptec 3240S ", 2 }, /* Adaptec 3240S (Tornado) */ { aac_rx_init, "aacraid", "ADAPTEC ", "ASR-2020ZCR ", 2 }, /* ASR-2020ZCR SCSI PCI-X ZCR (Skyhawk) */ { aac_rx_init, "aacraid", "ADAPTEC ", "ASR-2025ZCR ", 2 }, /* ASR-2025ZCR SCSI SO-DIMM PCI-X ZCR (Terminator) */ { aac_rkt_init, "aacraid", "ADAPTEC ", "ASR-2230S PCI-X ", 2 }, /* ASR-2230S + ASR-2230SLP PCI-X (Lancer) */ { aac_rkt_init, "aacraid", "ADAPTEC ", "ASR-2130S PCI-X ", 1 }, /* ASR-2130S (Lancer) */ { aac_rkt_init, "aacraid", "ADAPTEC ", "AAR-2820SA ", 1 }, /* AAR-2820SA (Intruder) */ { aac_rkt_init, "aacraid", "ADAPTEC ", "AAR-2620SA ", 1 }, /* AAR-2620SA (Intruder) */ { aac_rkt_init, "aacraid", "ADAPTEC ", "AAR-2420SA ", 1 }, /* AAR-2420SA (Intruder) */ { aac_rkt_init, "aacraid", "ICP ", "ICP9024RO ", 2 }, /* ICP9024RO (Lancer) */ { aac_rkt_init, "aacraid", "ICP ", "ICP9014RO ", 1 }, /* ICP9014RO (Lancer) */ { aac_rkt_init, "aacraid", "ICP ", "ICP9047MA ", 1 }, /* ICP9047MA (Lancer) */ { aac_rkt_init, "aacraid", "ICP ", "ICP9087MA ", 1 }, /* ICP9087MA (Lancer) */ { aac_rkt_init, "aacraid", "ICP ", "ICP5445AU ", 1 }, /* ICP5445AU (Hurricane44) */ { aac_rx_init, "aacraid", "ICP ", "ICP9085LI ", 1 }, /* ICP9085LI (Marauder-X) */ { aac_rx_init, "aacraid", "ICP ", "ICP5085BR ", 1 }, /* ICP5085BR (Marauder-E) */ { aac_rkt_init, "aacraid", "ICP ", "ICP9067MA ", 1 }, /* ICP9067MA (Intruder-6) */ { NULL , "aacraid", "ADAPTEC ", "Themisto ", 0, AAC_QUIRK_SLAVE }, /* Jupiter Platform */ { aac_rkt_init, "aacraid", "ADAPTEC ", "Callisto ", 2, AAC_QUIRK_MASTER }, /* Jupiter Platform */ { aac_rx_init, "aacraid", "ADAPTEC ", "ASR-2020SA ", 1 }, /* ASR-2020SA SATA PCI-X ZCR (Skyhawk) */ { aac_rx_init, "aacraid", "ADAPTEC ", "ASR-2025SA ", 1 }, /* ASR-2025SA SATA SO-DIMM PCI-X ZCR (Terminator) */ { aac_rx_init, "aacraid", "ADAPTEC ", "AAR-2410SA SATA ", 1, AAC_QUIRK_17SG }, /* AAR-2410SA PCI SATA 4ch (Jaguar II) */ { aac_rx_init, "aacraid", "DELL ", "CERC SR2 ", 1, AAC_QUIRK_17SG }, /* CERC SATA RAID 2 PCI SATA 6ch (DellCorsair) */ { aac_rx_init, "aacraid", "ADAPTEC ", "AAR-2810SA SATA ", 1, AAC_QUIRK_17SG }, /* AAR-2810SA PCI SATA 8ch (Corsair-8) */ { aac_rx_init, "aacraid", "ADAPTEC ", "AAR-21610SA SATA", 1, AAC_QUIRK_17SG }, /* AAR-21610SA PCI SATA 16ch (Corsair-16) */ { aac_rx_init, "aacraid", "ADAPTEC ", "ASR-2026ZCR ", 1 }, /* ESD SO-DIMM PCI-X SATA ZCR (Prowler) */ { aac_rx_init, "aacraid", "ADAPTEC ", "AAR-2610SA ", 1 }, /* SATA 6Ch (Bearcat) */ { aac_rx_init, "aacraid", "ADAPTEC ", "ASR-2240S ", 1 }, /* ASR-2240S (SabreExpress) */ { aac_rx_init, "aacraid", "ADAPTEC ", "ASR-4005 ", 1 }, /* ASR-4005 */ { aac_rx_init, "ServeRAID","IBM ", "ServeRAID 8i ", 1 }, /* IBM 8i (AvonPark) */ { aac_rkt_init, "ServeRAID","IBM ", "ServeRAID 8k-l8 ", 1 }, /* IBM 8k/8k-l8 (Aurora) */ { aac_rkt_init, "ServeRAID","IBM ", "ServeRAID 8k-l4 ", 1 }, /* IBM 8k/8k-l4 (Aurora Lite) */ { aac_rx_init, "aacraid", "ADAPTEC ", "ASR-4000 ", 1 }, /* ASR-4000 (BlackBird & AvonPark) */ { aac_rx_init, "aacraid", "ADAPTEC ", "ASR-4800SAS ", 1 }, /* ASR-4800SAS (Marauder-X) */ { aac_rx_init, "aacraid", "ADAPTEC ", "ASR-4805SAS ", 1 }, /* ASR-4805SAS (Marauder-E) */ { aac_rkt_init, "aacraid", "ADAPTEC ", "ASR-3800 ", 1 }, /* ASR-3800 (Hurricane44) */ { aac_rx_init, "percraid", "DELL ", "PERC 320/DC ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG }, /* Perc 320/DC*/ { aac_sa_init, "aacraid", "ADAPTEC ", "Adaptec 5400S ", 4, AAC_QUIRK_34SG }, /* Adaptec 5400S (Mustang)*/ { aac_sa_init, "aacraid", "ADAPTEC ", "AAC-364 ", 4, AAC_QUIRK_34SG }, /* Adaptec 5400S (Mustang)*/ { aac_sa_init, "percraid", "DELL ", "PERCRAID ", 4, AAC_QUIRK_34SG }, /* Dell PERC2/QC */ { aac_sa_init, "hpnraid", "HP ", "NetRAID ", 4, AAC_QUIRK_34SG }, /* HP NetRAID-4M */ { aac_rx_init, "aacraid", "DELL ", "RAID ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* Dell Catchall */ { aac_rx_init, "aacraid", "Legend ", "RAID ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* Legend Catchall */ { aac_rx_init, "aacraid", "ADAPTEC ", "RAID ", 2 }, /* Adaptec Catch All */ { aac_rkt_init, "aacraid", "ADAPTEC ", "RAID ", 2 }, /* Adaptec Rocket Catch All */ { aac_nark_init, "aacraid", "ADAPTEC ", "RAID ", 2 }, /* Adaptec NEMER/ARK Catch All */ { aac_src_init, "aacraid", "ADAPTEC ", "RAID ", 2, AAC_QUIRK_SRC }, /* Adaptec PMC Series 6 (Tupelo) */ { aac_srcv_init, "aacraid", "ADAPTEC ", "RAID ", 2, AAC_QUIRK_SRC }, /* Adaptec PMC Series 7 (Denali) */ { aac_srcv_init, "aacraid", "ADAPTEC ", "RAID ", 2, AAC_QUIRK_SRC }, /* Adaptec PMC Series 8 */ }; /** * aac_queuecommand - queue a SCSI command * @cmd: SCSI command to queue * @done: Function to call on command completion * * Queues a command for execution by the associated Host Adapter. * * TODO: unify with aac_scsi_cmd(). */ static int aac_queuecommand(struct Scsi_Host *shost, struct scsi_cmnd *cmd) { int r = 0; cmd->SCp.phase = AAC_OWNER_LOWLEVEL; r = (aac_scsi_cmd(cmd) ? FAILED : 0); return r; } /** * aac_info - Returns the host adapter name * @shost: Scsi host to report on * * Returns a static string describing the device in question */ static const char *aac_info(struct Scsi_Host *shost) { struct aac_dev *dev = (struct aac_dev *)shost->hostdata; return aac_drivers[dev->cardtype].name; } /** * aac_get_driver_ident * @devtype: index into lookup table * * Returns a pointer to the entry in the driver lookup table. */ struct aac_driver_ident* aac_get_driver_ident(int devtype) { return &aac_drivers[devtype]; } /** * aac_biosparm - return BIOS parameters for disk * @sdev: The scsi device corresponding to the disk * @bdev: the block device corresponding to the disk * @capacity: the sector capacity of the disk * @geom: geometry block to fill in * * Return the Heads/Sectors/Cylinders BIOS Disk Parameters for Disk. * The default disk geometry is 64 heads, 32 sectors, and the appropriate * number of cylinders so as not to exceed drive capacity. In order for * disks equal to or larger than 1 GB to be addressable by the BIOS * without exceeding the BIOS limitation of 1024 cylinders, Extended * Translation should be enabled. With Extended Translation enabled, * drives between 1 GB inclusive and 2 GB exclusive are given a disk * geometry of 128 heads and 32 sectors, and drives above 2 GB inclusive * are given a disk geometry of 255 heads and 63 sectors. However, if * the BIOS detects that the Extended Translation setting does not match * the geometry in the partition table, then the translation inferred * from the partition table will be used by the BIOS, and a warning may * be displayed. */ static int aac_biosparm(struct scsi_device *sdev, struct block_device *bdev, sector_t capacity, int *geom) { struct diskparm *param = (struct diskparm *)geom; unsigned char *buf; dprintk((KERN_DEBUG "aac_biosparm.\n")); /* * Assuming extended translation is enabled - #REVISIT# */ if (capacity >= 2 * 1024 * 1024) { /* 1 GB in 512 byte sectors */ if(capacity >= 4 * 1024 * 1024) { /* 2 GB in 512 byte sectors */ param->heads = 255; param->sectors = 63; } else { param->heads = 128; param->sectors = 32; } } else { param->heads = 64; param->sectors = 32; } param->cylinders = cap_to_cyls(capacity, param->heads * param->sectors); /* * Read the first 1024 bytes from the disk device, if the boot * sector partition table is valid, search for a partition table * entry whose end_head matches one of the standard geometry * translations ( 64/32, 128/32, 255/63 ). */ buf = scsi_bios_ptable(bdev); if (!buf) return 0; if(*(__le16 *)(buf + 0x40) == cpu_to_le16(0xaa55)) { struct partition *first = (struct partition * )buf; struct partition *entry = first; int saved_cylinders = param->cylinders; int num; unsigned char end_head, end_sec; for(num = 0; num < 4; num++) { end_head = entry->end_head; end_sec = entry->end_sector & 0x3f; if(end_head == 63) { param->heads = 64; param->sectors = 32; break; } else if(end_head == 127) { param->heads = 128; param->sectors = 32; break; } else if(end_head == 254) { param->heads = 255; param->sectors = 63; break; } entry++; } if (num == 4) { end_head = first->end_head; end_sec = first->end_sector & 0x3f; } param->cylinders = cap_to_cyls(capacity, param->heads * param->sectors); if (num < 4 && end_sec == param->sectors) { if (param->cylinders != saved_cylinders) dprintk((KERN_DEBUG "Adopting geometry: heads=%d, sectors=%d from partition table %d.\n", param->heads, param->sectors, num)); } else if (end_head > 0 || end_sec > 0) { dprintk((KERN_DEBUG "Strange geometry: heads=%d, sectors=%d in partition table %d.\n", end_head + 1, end_sec, num)); dprintk((KERN_DEBUG "Using geometry: heads=%d, sectors=%d.\n", param->heads, param->sectors)); } } kfree(buf); return 0; } /** * aac_slave_configure - compute queue depths * @sdev: SCSI device we are considering * * Selects queue depths for each target device based on the host adapter's * total capacity and the queue depth supported by the target device. * A queue depth of one automatically disables tagged queueing. */ static int aac_slave_configure(struct scsi_device *sdev) { struct aac_dev *aac = (struct aac_dev *)sdev->host->hostdata; int chn, tid; unsigned int depth = 0; unsigned int set_timeout = 0; bool set_qd_dev_type = false; u8 devtype = 0; chn = aac_logical_to_phys(sdev_channel(sdev)); tid = sdev_id(sdev); if (chn < AAC_MAX_BUSES && tid < AAC_MAX_TARGETS && aac->sa_firmware) { devtype = aac->hba_map[chn][tid].devtype; if (devtype == AAC_DEVTYPE_NATIVE_RAW) depth = aac->hba_map[chn][tid].qd_limit; else if (devtype == AAC_DEVTYPE_ARC_RAW) set_qd_dev_type = true; set_timeout = 1; goto common_config; } if (aac->jbod && (sdev->type == TYPE_DISK)) sdev->removable = 1; if (sdev->type == TYPE_DISK && sdev_channel(sdev) != CONTAINER_CHANNEL && (!aac->jbod || sdev->inq_periph_qual) && (!aac->raid_scsi_mode || (sdev_channel(sdev) != 2))) { if (expose_physicals == 0) return -ENXIO; if (expose_physicals < 0) sdev->no_uld_attach = 1; } if (sdev->tagged_supported && sdev->type == TYPE_DISK && (!aac->raid_scsi_mode || (sdev_channel(sdev) != 2)) && !sdev->no_uld_attach) { struct scsi_device * dev; struct Scsi_Host *host = sdev->host; unsigned num_lsu = 0; unsigned num_one = 0; unsigned cid; set_timeout = 1; for (cid = 0; cid < aac->maximum_num_containers; ++cid) if (aac->fsa_dev[cid].valid) ++num_lsu; __shost_for_each_device(dev, host) { if (dev->tagged_supported && dev->type == TYPE_DISK && (!aac->raid_scsi_mode || (sdev_channel(sdev) != 2)) && !dev->no_uld_attach) { if ((sdev_channel(dev) != CONTAINER_CHANNEL) || !aac->fsa_dev[sdev_id(dev)].valid) { ++num_lsu; } } else { ++num_one; } } if (num_lsu == 0) ++num_lsu; depth = (host->can_queue - num_one) / num_lsu; if (sdev_channel(sdev) != NATIVE_CHANNEL) goto common_config; set_qd_dev_type = true; } common_config: /* * Check if SATA drive */ if (set_qd_dev_type) { if (strncmp(sdev->vendor, "ATA", 3) == 0) depth = 32; else depth = 64; } /* * Firmware has an individual device recovery time typically * of 35 seconds, give us a margin. */ if (set_timeout && sdev->request_queue->rq_timeout < (45 * HZ)) blk_queue_rq_timeout(sdev->request_queue, 45*HZ); if (depth > 256) depth = 256; else if (depth < 1) depth = 1; scsi_change_queue_depth(sdev, depth); sdev->tagged_supported = 1; return 0; } /** * aac_change_queue_depth - alter queue depths * @sdev: SCSI device we are considering * @depth: desired queue depth * * Alters queue depths for target device based on the host adapter's * total capacity and the queue depth supported by the target device. */ static int aac_change_queue_depth(struct scsi_device *sdev, int depth) { struct aac_dev *aac = (struct aac_dev *)(sdev->host->hostdata); int chn, tid, is_native_device = 0; chn = aac_logical_to_phys(sdev_channel(sdev)); tid = sdev_id(sdev); if (chn < AAC_MAX_BUSES && tid < AAC_MAX_TARGETS && aac->hba_map[chn][tid].devtype == AAC_DEVTYPE_NATIVE_RAW) is_native_device = 1; if (sdev->tagged_supported && (sdev->type == TYPE_DISK) && (sdev_channel(sdev) == CONTAINER_CHANNEL)) { struct scsi_device * dev; struct Scsi_Host *host = sdev->host; unsigned num = 0; __shost_for_each_device(dev, host) { if (dev->tagged_supported && (dev->type == TYPE_DISK) && (sdev_channel(dev) == CONTAINER_CHANNEL)) ++num; ++num; } if (num >= host->can_queue) num = host->can_queue - 1; if (depth > (host->can_queue - num)) depth = host->can_queue - num; if (depth > 256) depth = 256; else if (depth < 2) depth = 2; return scsi_change_queue_depth(sdev, depth); } else if (is_native_device) { scsi_change_queue_depth(sdev, aac->hba_map[chn][tid].qd_limit); } else { scsi_change_queue_depth(sdev, 1); } return sdev->queue_depth; } static ssize_t aac_show_raid_level(struct device *dev, struct device_attribute *attr, char *buf) { struct scsi_device *sdev = to_scsi_device(dev); struct aac_dev *aac = (struct aac_dev *)(sdev->host->hostdata); if (sdev_channel(sdev) != CONTAINER_CHANNEL) return snprintf(buf, PAGE_SIZE, sdev->no_uld_attach ? "Hidden\n" : ((aac->jbod && (sdev->type == TYPE_DISK)) ? "JBOD\n" : "")); return snprintf(buf, PAGE_SIZE, "%s\n", get_container_type(aac->fsa_dev[sdev_id(sdev)].type)); } static struct device_attribute aac_raid_level_attr = { .attr = { .name = "level", .mode = S_IRUGO, }, .show = aac_show_raid_level }; static ssize_t aac_show_unique_id(struct device *dev, struct device_attribute *attr, char *buf) { struct scsi_device *sdev = to_scsi_device(dev); struct aac_dev *aac = (struct aac_dev *)(sdev->host->hostdata); unsigned char sn[16]; memset(sn, 0, sizeof(sn)); if (sdev_channel(sdev) == CONTAINER_CHANNEL) memcpy(sn, aac->fsa_dev[sdev_id(sdev)].identifier, sizeof(sn)); return snprintf(buf, 16 * 2 + 2, "%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X\n", sn[0], sn[1], sn[2], sn[3], sn[4], sn[5], sn[6], sn[7], sn[8], sn[9], sn[10], sn[11], sn[12], sn[13], sn[14], sn[15]); } static struct device_attribute aac_unique_id_attr = { .attr = { .name = "unique_id", .mode = 0444, }, .show = aac_show_unique_id }; static struct device_attribute *aac_dev_attrs[] = { &aac_raid_level_attr, &aac_unique_id_attr, NULL, }; static int aac_ioctl(struct scsi_device *sdev, int cmd, void __user * arg) { struct aac_dev *dev = (struct aac_dev *)sdev->host->hostdata; if (!capable(CAP_SYS_RAWIO)) return -EPERM; return aac_do_ioctl(dev, cmd, arg); } static int get_num_of_incomplete_fibs(struct aac_dev *aac) { unsigned long flags; struct scsi_device *sdev = NULL; struct Scsi_Host *shost = aac->scsi_host_ptr; struct scsi_cmnd *scmnd = NULL; struct device *ctrl_dev; int mlcnt = 0; int llcnt = 0; int ehcnt = 0; int fwcnt = 0; int krlcnt = 0; __shost_for_each_device(sdev, shost) { spin_lock_irqsave(&sdev->list_lock, flags); list_for_each_entry(scmnd, &sdev->cmd_list, list) { switch (scmnd->SCp.phase) { case AAC_OWNER_FIRMWARE: fwcnt++; break; case AAC_OWNER_ERROR_HANDLER: ehcnt++; break; case AAC_OWNER_LOWLEVEL: llcnt++; break; case AAC_OWNER_MIDLEVEL: mlcnt++; break; default: krlcnt++; break; } } spin_unlock_irqrestore(&sdev->list_lock, flags); } ctrl_dev = &aac->pdev->dev; dev_info(ctrl_dev, "outstanding cmd: midlevel-%d\n", mlcnt); dev_info(ctrl_dev, "outstanding cmd: lowlevel-%d\n", llcnt); dev_info(ctrl_dev, "outstanding cmd: error handler-%d\n", ehcnt); dev_info(ctrl_dev, "outstanding cmd: firmware-%d\n", fwcnt); dev_info(ctrl_dev, "outstanding cmd: kernel-%d\n", krlcnt); return mlcnt + llcnt + ehcnt + fwcnt; } static int aac_eh_abort(struct scsi_cmnd* cmd) { struct scsi_device * dev = cmd->device; struct Scsi_Host * host = dev->host; struct aac_dev * aac = (struct aac_dev *)host->hostdata; int count, found; u32 bus, cid; int ret = FAILED; if (aac_adapter_check_health(aac)) return ret; bus = aac_logical_to_phys(scmd_channel(cmd)); cid = scmd_id(cmd); if (aac->hba_map[bus][cid].devtype == AAC_DEVTYPE_NATIVE_RAW) { struct fib *fib; struct aac_hba_tm_req *tmf; int status; u64 address; pr_err("%s: Host adapter abort request (%d,%d,%d,%d)\n", AAC_DRIVERNAME, host->host_no, sdev_channel(dev), sdev_id(dev), (int)dev->lun); found = 0; for (count = 0; count < (host->can_queue + AAC_NUM_MGT_FIB); ++count) { fib = &aac->fibs[count]; if (*(u8 *)fib->hw_fib_va != 0 && (fib->flags & FIB_CONTEXT_FLAG_NATIVE_HBA) && (fib->callback_data == cmd)) { found = 1; break; } } if (!found) return ret; /* start a HBA_TMF_ABORT_TASK TMF request */ fib = aac_fib_alloc(aac); if (!fib) return ret; tmf = (struct aac_hba_tm_req *)fib->hw_fib_va; memset(tmf, 0, sizeof(*tmf)); tmf->tmf = HBA_TMF_ABORT_TASK; tmf->it_nexus = aac->hba_map[bus][cid].rmw_nexus; tmf->lun[1] = cmd->device->lun; address = (u64)fib->hw_error_pa; tmf->error_ptr_hi = cpu_to_le32((u32)(address >> 32)); tmf->error_ptr_lo = cpu_to_le32((u32)(address & 0xffffffff)); tmf->error_length = cpu_to_le32(FW_ERROR_BUFFER_SIZE); fib->hbacmd_size = sizeof(*tmf); cmd->SCp.sent_command = 0; status = aac_hba_send(HBA_IU_TYPE_SCSI_TM_REQ, fib, (fib_callback) aac_hba_callback, (void *) cmd); /* Wait up to 15 secs for completion */ for (count = 0; count < 15; ++count) { if (cmd->SCp.sent_command) { ret = SUCCESS; break; } msleep(1000); } if (ret != SUCCESS) pr_err("%s: Host adapter abort request timed out\n", AAC_DRIVERNAME); } else { pr_err( "%s: Host adapter abort request.\n" "%s: Outstanding commands on (%d,%d,%d,%d):\n", AAC_DRIVERNAME, AAC_DRIVERNAME, host->host_no, sdev_channel(dev), sdev_id(dev), (int)dev->lun); switch (cmd->cmnd[0]) { case SERVICE_ACTION_IN_16: if (!(aac->raw_io_interface) || !(aac->raw_io_64) || ((cmd->cmnd[1] & 0x1f) != SAI_READ_CAPACITY_16)) break; /* fall through */ case INQUIRY: case READ_CAPACITY: /* * Mark associated FIB to not complete, * eh handler does this */ for (count = 0; count < (host->can_queue + AAC_NUM_MGT_FIB); ++count) { struct fib *fib = &aac->fibs[count]; if (fib->hw_fib_va->header.XferState && (fib->flags & FIB_CONTEXT_FLAG) && (fib->callback_data == cmd)) { fib->flags |= FIB_CONTEXT_FLAG_TIMED_OUT; cmd->SCp.phase = AAC_OWNER_ERROR_HANDLER; ret = SUCCESS; } } break; case TEST_UNIT_READY: /* * Mark associated FIB to not complete, * eh handler does this */ for (count = 0; count < (host->can_queue + AAC_NUM_MGT_FIB); ++count) { struct scsi_cmnd *command; struct fib *fib = &aac->fibs[count]; command = fib->callback_data; if ((fib->hw_fib_va->header.XferState & cpu_to_le32 (Async | NoResponseExpected)) && (fib->flags & FIB_CONTEXT_FLAG) && ((command)) && (command->device == cmd->device)) { fib->flags |= FIB_CONTEXT_FLAG_TIMED_OUT; command->SCp.phase = AAC_OWNER_ERROR_HANDLER; if (command == cmd) ret = SUCCESS; } } break; } } return ret; } static u8 aac_eh_tmf_lun_reset_fib(struct aac_hba_map_info *info, struct fib *fib, u64 tmf_lun) { struct aac_hba_tm_req *tmf; u64 address; /* start a HBA_TMF_LUN_RESET TMF request */ tmf = (struct aac_hba_tm_req *)fib->hw_fib_va; memset(tmf, 0, sizeof(*tmf)); tmf->tmf = HBA_TMF_LUN_RESET; tmf->it_nexus = info->rmw_nexus; int_to_scsilun(tmf_lun, (struct scsi_lun *)tmf->lun); address = (u64)fib->hw_error_pa; tmf->error_ptr_hi = cpu_to_le32 ((u32)(address >> 32)); tmf->error_ptr_lo = cpu_to_le32 ((u32)(address & 0xffffffff)); tmf->error_length = cpu_to_le32(FW_ERROR_BUFFER_SIZE); fib->hbacmd_size = sizeof(*tmf); return HBA_IU_TYPE_SCSI_TM_REQ; } static u8 aac_eh_tmf_hard_reset_fib(struct aac_hba_map_info *info, struct fib *fib) { struct aac_hba_reset_req *rst; u64 address; /* already tried, start a hard reset now */ rst = (struct aac_hba_reset_req *)fib->hw_fib_va; memset(rst, 0, sizeof(*rst)); rst->it_nexus = info->rmw_nexus; address = (u64)fib->hw_error_pa; rst->error_ptr_hi = cpu_to_le32((u32)(address >> 32)); rst->error_ptr_lo = cpu_to_le32 ((u32)(address & 0xffffffff)); rst->error_length = cpu_to_le32(FW_ERROR_BUFFER_SIZE); fib->hbacmd_size = sizeof(*rst); return HBA_IU_TYPE_SATA_REQ; } void aac_tmf_callback(void *context, struct fib *fibptr) { struct aac_hba_resp *err = &((struct aac_native_hba *)fibptr->hw_fib_va)->resp.err; struct aac_hba_map_info *info = context; int res; switch (err->service_response) { case HBA_RESP_SVCRES_TMF_REJECTED: res = -1; break; case HBA_RESP_SVCRES_TMF_LUN_INVALID: res = 0; break; case HBA_RESP_SVCRES_TMF_COMPLETE: case HBA_RESP_SVCRES_TMF_SUCCEEDED: res = 0; break; default: res = -2; break; } aac_fib_complete(fibptr); info->reset_state = res; } /* * aac_eh_dev_reset - Device reset command handling * @scsi_cmd: SCSI command block causing the reset * */ static int aac_eh_dev_reset(struct scsi_cmnd *cmd) { struct scsi_device * dev = cmd->device; struct Scsi_Host * host = dev->host; struct aac_dev * aac = (struct aac_dev *)host->hostdata; struct aac_hba_map_info *info; int count; u32 bus, cid; struct fib *fib; int ret = FAILED; int status; u8 command; bus = aac_logical_to_phys(scmd_channel(cmd)); cid = scmd_id(cmd); if (bus >= AAC_MAX_BUSES || cid >= AAC_MAX_TARGETS) return FAILED; info = &aac->hba_map[bus][cid]; if (info->devtype != AAC_DEVTYPE_NATIVE_RAW && info->reset_state > 0) return FAILED; pr_err("%s: Host adapter reset request. SCSI hang ?\n", AAC_DRIVERNAME); fib = aac_fib_alloc(aac); if (!fib) return ret; /* start a HBA_TMF_LUN_RESET TMF request */ command = aac_eh_tmf_lun_reset_fib(info, fib, dev->lun); info->reset_state = 1; status = aac_hba_send(command, fib, (fib_callback) aac_tmf_callback, (void *) info); /* Wait up to 15 seconds for completion */ for (count = 0; count < 15; ++count) { if (info->reset_state == 0) { ret = info->reset_state == 0 ? SUCCESS : FAILED; break; } msleep(1000); } return ret; } /* * aac_eh_target_reset - Target reset command handling * @scsi_cmd: SCSI command block causing the reset * */ static int aac_eh_target_reset(struct scsi_cmnd *cmd) { struct scsi_device * dev = cmd->device; struct Scsi_Host * host = dev->host; struct aac_dev * aac = (struct aac_dev *)host->hostdata; struct aac_hba_map_info *info; int count; u32 bus, cid; int ret = FAILED; struct fib *fib; int status; u8 command; bus = aac_logical_to_phys(scmd_channel(cmd)); cid = scmd_id(cmd); if (bus >= AAC_MAX_BUSES || cid >= AAC_MAX_TARGETS) return FAILED; info = &aac->hba_map[bus][cid]; if (info->devtype != AAC_DEVTYPE_NATIVE_RAW && info->reset_state > 0) return FAILED; pr_err("%s: Host adapter reset request. SCSI hang ?\n", AAC_DRIVERNAME); fib = aac_fib_alloc(aac); if (!fib) return ret; /* already tried, start a hard reset now */ command = aac_eh_tmf_hard_reset_fib(info, fib); info->reset_state = 2; status = aac_hba_send(command, fib, (fib_callback) aac_tmf_callback, (void *) info); /* Wait up to 15 seconds for completion */ for (count = 0; count < 15; ++count) { if (info->reset_state <= 0) { ret = info->reset_state == 0 ? SUCCESS : FAILED; break; } msleep(1000); } return ret; } /* * aac_eh_bus_reset - Bus reset command handling * @scsi_cmd: SCSI command block causing the reset * */ static int aac_eh_bus_reset(struct scsi_cmnd* cmd) { struct scsi_device * dev = cmd->device; struct Scsi_Host * host = dev->host; struct aac_dev * aac = (struct aac_dev *)host->hostdata; int count; u32 cmd_bus; int status = 0; cmd_bus = aac_logical_to_phys(scmd_channel(cmd)); /* Mark the assoc. FIB to not complete, eh handler does this */ for (count = 0; count < (host->can_queue + AAC_NUM_MGT_FIB); ++count) { struct fib *fib = &aac->fibs[count]; if (fib->hw_fib_va->header.XferState && (fib->flags & FIB_CONTEXT_FLAG) && (fib->flags & FIB_CONTEXT_FLAG_SCSI_CMD)) { struct aac_hba_map_info *info; u32 bus, cid; cmd = (struct scsi_cmnd *)fib->callback_data; bus = aac_logical_to_phys(scmd_channel(cmd)); if (bus != cmd_bus) continue; cid = scmd_id(cmd); info = &aac->hba_map[bus][cid]; if (bus >= AAC_MAX_BUSES || cid >= AAC_MAX_TARGETS || info->devtype != AAC_DEVTYPE_NATIVE_RAW) { fib->flags |= FIB_CONTEXT_FLAG_EH_RESET; cmd->SCp.phase = AAC_OWNER_ERROR_HANDLER; } } } pr_err("%s: Host adapter reset request. SCSI hang ?\n", AAC_DRIVERNAME); /* * Check the health of the controller */ status = aac_adapter_check_health(aac); if (status) dev_err(&aac->pdev->dev, "Adapter health - %d\n", status); count = get_num_of_incomplete_fibs(aac); return (count == 0) ? SUCCESS : FAILED; } /* * aac_eh_host_reset - Host reset command handling * @scsi_cmd: SCSI command block causing the reset * */ int aac_eh_host_reset(struct scsi_cmnd *cmd) { struct scsi_device * dev = cmd->device; struct Scsi_Host * host = dev->host; struct aac_dev * aac = (struct aac_dev *)host->hostdata; int ret = FAILED; __le32 supported_options2 = 0; bool is_mu_reset; bool is_ignore_reset; bool is_doorbell_reset; /* * Check if reset is supported by the firmware */ supported_options2 = aac->supplement_adapter_info.supported_options2; is_mu_reset = supported_options2 & AAC_OPTION_MU_RESET; is_doorbell_reset = supported_options2 & AAC_OPTION_DOORBELL_RESET; is_ignore_reset = supported_options2 & AAC_OPTION_IGNORE_RESET; /* * This adapter needs a blind reset, only do so for * Adapters that support a register, instead of a commanded, * reset. */ if ((is_mu_reset || is_doorbell_reset) && aac_check_reset && (aac_check_reset != -1 || !is_ignore_reset)) { /* Bypass wait for command quiesce */ if (aac_reset_adapter(aac, 2, IOP_HWSOFT_RESET) == 0) ret = SUCCESS; } /* * Reset EH state */ if (ret == SUCCESS) { int bus, cid; struct aac_hba_map_info *info; for (bus = 0; bus < AAC_MAX_BUSES; bus++) { for (cid = 0; cid < AAC_MAX_TARGETS; cid++) { info = &aac->hba_map[bus][cid]; if (info->devtype == AAC_DEVTYPE_NATIVE_RAW) info->reset_state = 0; } } } return ret; } /** * aac_cfg_open - open a configuration file * @inode: inode being opened * @file: file handle attached * * Called when the configuration device is opened. Does the needed * set up on the handle and then returns * * Bugs: This needs extending to check a given adapter is present * so we can support hot plugging, and to ref count adapters. */ static int aac_cfg_open(struct inode *inode, struct file *file) { struct aac_dev *aac; unsigned minor_number = iminor(inode); int err = -ENODEV; mutex_lock(&aac_mutex); /* BKL pushdown: nothing else protects this list */ list_for_each_entry(aac, &aac_devices, entry) { if (aac->id == minor_number) { file->private_data = aac; err = 0; break; } } mutex_unlock(&aac_mutex); return err; } /** * aac_cfg_ioctl - AAC configuration request * @inode: inode of device * @file: file handle * @cmd: ioctl command code * @arg: argument * * Handles a configuration ioctl. Currently this involves wrapping it * up and feeding it into the nasty windowsalike glue layer. * * Bugs: Needs locking against parallel ioctls lower down * Bugs: Needs to handle hot plugging */ static long aac_cfg_ioctl(struct file *file, unsigned int cmd, unsigned long arg) { struct aac_dev *aac = (struct aac_dev *)file->private_data; if (!capable(CAP_SYS_RAWIO)) return -EPERM; return aac_do_ioctl(aac, cmd, (void __user *)arg); } #ifdef CONFIG_COMPAT static long aac_compat_do_ioctl(struct aac_dev *dev, unsigned cmd, unsigned long arg) { long ret; switch (cmd) { case FSACTL_MINIPORT_REV_CHECK: case FSACTL_SENDFIB: case FSACTL_OPEN_GET_ADAPTER_FIB: case FSACTL_CLOSE_GET_ADAPTER_FIB: case FSACTL_SEND_RAW_SRB: case FSACTL_GET_PCI_INFO: case FSACTL_QUERY_DISK: case FSACTL_DELETE_DISK: case FSACTL_FORCE_DELETE_DISK: case FSACTL_GET_CONTAINERS: case FSACTL_SEND_LARGE_FIB: ret = aac_do_ioctl(dev, cmd, (void __user *)arg); break; case FSACTL_GET_NEXT_ADAPTER_FIB: { struct fib_ioctl __user *f; f = compat_alloc_user_space(sizeof(*f)); ret = 0; if (clear_user(f, sizeof(*f))) ret = -EFAULT; if (copy_in_user(f, (void __user *)arg, sizeof(struct fib_ioctl) - sizeof(u32))) ret = -EFAULT; if (!ret) ret = aac_do_ioctl(dev, cmd, f); break; } default: ret = -ENOIOCTLCMD; break; } return ret; } static int aac_compat_ioctl(struct scsi_device *sdev, int cmd, void __user *arg) { struct aac_dev *dev = (struct aac_dev *)sdev->host->hostdata; if (!capable(CAP_SYS_RAWIO)) return -EPERM; return aac_compat_do_ioctl(dev, cmd, (unsigned long)arg); } static long aac_compat_cfg_ioctl(struct file *file, unsigned cmd, unsigned long arg) { if (!capable(CAP_SYS_RAWIO)) return -EPERM; return aac_compat_do_ioctl(file->private_data, cmd, arg); } #endif static ssize_t aac_show_model(struct device *device, struct device_attribute *attr, char *buf) { struct aac_dev *dev = (struct aac_dev*)class_to_shost(device)->hostdata; int len; if (dev->supplement_adapter_info.adapter_type_text[0]) { char *cp = dev->supplement_adapter_info.adapter_type_text; while (*cp && *cp != ' ') ++cp; while (*cp == ' ') ++cp; len = snprintf(buf, PAGE_SIZE, "%s\n", cp); } else len = snprintf(buf, PAGE_SIZE, "%s\n", aac_drivers[dev->cardtype].model); return len; } static ssize_t aac_show_vendor(struct device *device, struct device_attribute *attr, char *buf) { struct aac_dev *dev = (struct aac_dev*)class_to_shost(device)->hostdata; struct aac_supplement_adapter_info *sup_adap_info; int len; sup_adap_info = &dev->supplement_adapter_info; if (sup_adap_info->adapter_type_text[0]) { char *cp = sup_adap_info->adapter_type_text; while (*cp && *cp != ' ') ++cp; len = snprintf(buf, PAGE_SIZE, "%.*s\n", (int)(cp - (char *)sup_adap_info->adapter_type_text), sup_adap_info->adapter_type_text); } else len = snprintf(buf, PAGE_SIZE, "%s\n", aac_drivers[dev->cardtype].vname); return len; } static ssize_t aac_show_flags(struct device *cdev, struct device_attribute *attr, char *buf) { int len = 0; struct aac_dev *dev = (struct aac_dev*)class_to_shost(cdev)->hostdata; if (nblank(dprintk(x))) len = snprintf(buf, PAGE_SIZE, "dprintk\n"); #ifdef AAC_DETAILED_STATUS_INFO len += snprintf(buf + len, PAGE_SIZE - len, "AAC_DETAILED_STATUS_INFO\n"); #endif if (dev->raw_io_interface && dev->raw_io_64) len += snprintf(buf + len, PAGE_SIZE - len, "SAI_READ_CAPACITY_16\n"); if (dev->jbod) len += snprintf(buf + len, PAGE_SIZE - len, "SUPPORTED_JBOD\n"); if (dev->supplement_adapter_info.supported_options2 & AAC_OPTION_POWER_MANAGEMENT) len += snprintf(buf + len, PAGE_SIZE - len, "SUPPORTED_POWER_MANAGEMENT\n"); if (dev->msi) len += snprintf(buf + len, PAGE_SIZE - len, "PCI_HAS_MSI\n"); return len; } static ssize_t aac_show_kernel_version(struct device *device, struct device_attribute *attr, char *buf) { struct aac_dev *dev = (struct aac_dev*)class_to_shost(device)->hostdata; int len, tmp; tmp = le32_to_cpu(dev->adapter_info.kernelrev); len = snprintf(buf, PAGE_SIZE, "%d.%d-%d[%d]\n", tmp >> 24, (tmp >> 16) & 0xff, tmp & 0xff, le32_to_cpu(dev->adapter_info.kernelbuild)); return len; } static ssize_t aac_show_monitor_version(struct device *device, struct device_attribute *attr, char *buf) { struct aac_dev *dev = (struct aac_dev*)class_to_shost(device)->hostdata; int len, tmp; tmp = le32_to_cpu(dev->adapter_info.monitorrev); len = snprintf(buf, PAGE_SIZE, "%d.%d-%d[%d]\n", tmp >> 24, (tmp >> 16) & 0xff, tmp & 0xff, le32_to_cpu(dev->adapter_info.monitorbuild)); return len; } static ssize_t aac_show_bios_version(struct device *device, struct device_attribute *attr, char *buf) { struct aac_dev *dev = (struct aac_dev*)class_to_shost(device)->hostdata; int len, tmp; tmp = le32_to_cpu(dev->adapter_info.biosrev); len = snprintf(buf, PAGE_SIZE, "%d.%d-%d[%d]\n", tmp >> 24, (tmp >> 16) & 0xff, tmp & 0xff, le32_to_cpu(dev->adapter_info.biosbuild)); return len; } static ssize_t aac_show_driver_version(struct device *device, struct device_attribute *attr, char *buf) { return snprintf(buf, PAGE_SIZE, "%s\n", aac_driver_version); } static ssize_t aac_show_serial_number(struct device *device, struct device_attribute *attr, char *buf) { struct aac_dev *dev = (struct aac_dev*)class_to_shost(device)->hostdata; int len = 0; if (le32_to_cpu(dev->adapter_info.serial[0]) != 0xBAD0) len = snprintf(buf, 16, "%06X\n", le32_to_cpu(dev->adapter_info.serial[0])); if (len && !memcmp(&dev->supplement_adapter_info.mfg_pcba_serial_no[ sizeof(dev->supplement_adapter_info.mfg_pcba_serial_no)-len], buf, len-1)) len = snprintf(buf, 16, "%.*s\n", (int)sizeof(dev->supplement_adapter_info.mfg_pcba_serial_no), dev->supplement_adapter_info.mfg_pcba_serial_no); return min(len, 16); } static ssize_t aac_show_max_channel(struct device *device, struct device_attribute *attr, char *buf) { return snprintf(buf, PAGE_SIZE, "%d\n", class_to_shost(device)->max_channel); } static ssize_t aac_show_max_id(struct device *device, struct device_attribute *attr, char *buf) { return snprintf(buf, PAGE_SIZE, "%d\n", class_to_shost(device)->max_id); } static ssize_t aac_store_reset_adapter(struct device *device, struct device_attribute *attr, const char *buf, size_t count) { int retval = -EACCES; if (!capable(CAP_SYS_ADMIN)) return retval; retval = aac_reset_adapter(shost_priv(class_to_shost(device)), buf[0] == '!', IOP_HWSOFT_RESET); if (retval >= 0) retval = count; return retval; } static ssize_t aac_show_reset_adapter(struct device *device, struct device_attribute *attr, char *buf) { struct aac_dev *dev = (struct aac_dev*)class_to_shost(device)->hostdata; int len, tmp; tmp = aac_adapter_check_health(dev); if ((tmp == 0) && dev->in_reset) tmp = -EBUSY; len = snprintf(buf, PAGE_SIZE, "0x%x\n", tmp); return len; } static struct device_attribute aac_model = { .attr = { .name = "model", .mode = S_IRUGO, }, .show = aac_show_model, }; static struct device_attribute aac_vendor = { .attr = { .name = "vendor", .mode = S_IRUGO, }, .show = aac_show_vendor, }; static struct device_attribute aac_flags = { .attr = { .name = "flags", .mode = S_IRUGO, }, .show = aac_show_flags, }; static struct device_attribute aac_kernel_version = { .attr = { .name = "hba_kernel_version", .mode = S_IRUGO, }, .show = aac_show_kernel_version, }; static struct device_attribute aac_monitor_version = { .attr = { .name = "hba_monitor_version", .mode = S_IRUGO, }, .show = aac_show_monitor_version, }; static struct device_attribute aac_bios_version = { .attr = { .name = "hba_bios_version", .mode = S_IRUGO, }, .show = aac_show_bios_version, }; static struct device_attribute aac_lld_version = { .attr = { .name = "driver_version", .mode = 0444, }, .show = aac_show_driver_version, }; static struct device_attribute aac_serial_number = { .attr = { .name = "serial_number", .mode = S_IRUGO, }, .show = aac_show_serial_number, }; static struct device_attribute aac_max_channel = { .attr = { .name = "max_channel", .mode = S_IRUGO, }, .show = aac_show_max_channel, }; static struct device_attribute aac_max_id = { .attr = { .name = "max_id", .mode = S_IRUGO, }, .show = aac_show_max_id, }; static struct device_attribute aac_reset = { .attr = { .name = "reset_host", .mode = S_IWUSR|S_IRUGO, }, .store = aac_store_reset_adapter, .show = aac_show_reset_adapter, }; static struct device_attribute *aac_attrs[] = { &aac_model, &aac_vendor, &aac_flags, &aac_kernel_version, &aac_monitor_version, &aac_bios_version, &aac_lld_version, &aac_serial_number, &aac_max_channel, &aac_max_id, &aac_reset, NULL }; ssize_t aac_get_serial_number(struct device *device, char *buf) { return aac_show_serial_number(device, &aac_serial_number, buf); } static const struct file_operations aac_cfg_fops = { .owner = THIS_MODULE, .unlocked_ioctl = aac_cfg_ioctl, #ifdef CONFIG_COMPAT .compat_ioctl = aac_compat_cfg_ioctl, #endif .open = aac_cfg_open, .llseek = noop_llseek, }; static struct scsi_host_template aac_driver_template = { .module = THIS_MODULE, .name = "AAC", .proc_name = AAC_DRIVERNAME, .info = aac_info, .ioctl = aac_ioctl, #ifdef CONFIG_COMPAT .compat_ioctl = aac_compat_ioctl, #endif .queuecommand = aac_queuecommand, .bios_param = aac_biosparm, .shost_attrs = aac_attrs, .slave_configure = aac_slave_configure, .change_queue_depth = aac_change_queue_depth, .sdev_attrs = aac_dev_attrs, .eh_abort_handler = aac_eh_abort, .eh_device_reset_handler = aac_eh_dev_reset, .eh_target_reset_handler = aac_eh_target_reset, .eh_bus_reset_handler = aac_eh_bus_reset, .eh_host_reset_handler = aac_eh_host_reset, .can_queue = AAC_NUM_IO_FIB, .this_id = MAXIMUM_NUM_CONTAINERS, .sg_tablesize = 16, .max_sectors = 128, #if (AAC_NUM_IO_FIB > 256) .cmd_per_lun = 256, #else .cmd_per_lun = AAC_NUM_IO_FIB, #endif .emulated = 1, .no_write_same = 1, }; static void __aac_shutdown(struct aac_dev * aac) { int i; mutex_lock(&aac->ioctl_mutex); aac->adapter_shutdown = 1; mutex_unlock(&aac->ioctl_mutex); if (aac->aif_thread) { int i; /* Clear out events first */ for (i = 0; i < (aac->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); i++) { struct fib *fib = &aac->fibs[i]; if (!(fib->hw_fib_va->header.XferState & cpu_to_le32(NoResponseExpected | Async)) && (fib->hw_fib_va->header.XferState & cpu_to_le32(ResponseExpected))) complete(&fib->event_wait); } kthread_stop(aac->thread); aac->thread = NULL; } aac_send_shutdown(aac); aac_adapter_disable_int(aac); if (aac_is_src(aac)) { if (aac->max_msix > 1) { for (i = 0; i < aac->max_msix; i++) { free_irq(pci_irq_vector(aac->pdev, i), &(aac->aac_msix[i])); } } else { free_irq(aac->pdev->irq, &(aac->aac_msix[0])); } } else { free_irq(aac->pdev->irq, aac); } if (aac->msi) pci_disable_msi(aac->pdev); else if (aac->max_msix > 1) pci_disable_msix(aac->pdev); } static void aac_init_char(void) { aac_cfg_major = register_chrdev(0, "aac", &aac_cfg_fops); if (aac_cfg_major < 0) { pr_err("aacraid: unable to register \"aac\" device.\n"); } } static int aac_probe_one(struct pci_dev *pdev, const struct pci_device_id *id) { unsigned index = id->driver_data; struct Scsi_Host *shost; struct aac_dev *aac; struct list_head *insert = &aac_devices; int error = -ENODEV; int unique_id = 0; u64 dmamask; int mask_bits = 0; extern int aac_sync_mode; /* * Only series 7 needs freset. */ if (pdev->device == PMC_DEVICE_S7) pdev->needs_freset = 1; list_for_each_entry(aac, &aac_devices, entry) { if (aac->id > unique_id) break; insert = &aac->entry; unique_id++; } pci_disable_link_state(pdev, PCIE_LINK_STATE_L0S | PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM); error = pci_enable_device(pdev); if (error) goto out; error = -ENODEV; if (!(aac_drivers[index].quirks & AAC_QUIRK_SRC)) { error = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); if (error) { dev_err(&pdev->dev, "PCI 32 BIT dma mask set failed"); goto out_disable_pdev; } } /* * If the quirk31 bit is set, the adapter needs adapter * to driver communication memory to be allocated below 2gig */ if (aac_drivers[index].quirks & AAC_QUIRK_31BIT) { dmamask = DMA_BIT_MASK(31); mask_bits = 31; } else { dmamask = DMA_BIT_MASK(32); mask_bits = 32; } error = pci_set_consistent_dma_mask(pdev, dmamask); if (error) { dev_err(&pdev->dev, "PCI %d B consistent dma mask set failed\n" , mask_bits); goto out_disable_pdev; } pci_set_master(pdev); shost = scsi_host_alloc(&aac_driver_template, sizeof(struct aac_dev)); if (!shost) goto out_disable_pdev; shost->irq = pdev->irq; shost->unique_id = unique_id; shost->max_cmd_len = 16; shost->use_cmd_list = 1; if (aac_cfg_major == AAC_CHARDEV_NEEDS_REINIT) aac_init_char(); aac = (struct aac_dev *)shost->hostdata; aac->base_start = pci_resource_start(pdev, 0); aac->scsi_host_ptr = shost; aac->pdev = pdev; aac->name = aac_driver_template.name; aac->id = shost->unique_id; aac->cardtype = index; INIT_LIST_HEAD(&aac->entry); if (aac_reset_devices || reset_devices) aac->init_reset = true; aac->fibs = kcalloc(shost->can_queue + AAC_NUM_MGT_FIB, sizeof(struct fib), GFP_KERNEL); if (!aac->fibs) goto out_free_host; spin_lock_init(&aac->fib_lock); mutex_init(&aac->ioctl_mutex); mutex_init(&aac->scan_mutex); INIT_DELAYED_WORK(&aac->safw_rescan_work, aac_safw_rescan_worker); /* * Map in the registers from the adapter. */ aac->base_size = AAC_MIN_FOOTPRINT_SIZE; if ((*aac_drivers[index].init)(aac)) { error = -ENODEV; goto out_unmap; } if (aac->sync_mode) { if (aac_sync_mode) printk(KERN_INFO "%s%d: Sync. mode enforced " "by driver parameter. This will cause " "a significant performance decrease!\n", aac->name, aac->id); else printk(KERN_INFO "%s%d: Async. mode not supported " "by current driver, sync. mode enforced." "\nPlease update driver to get full performance.\n", aac->name, aac->id); } /* * Start any kernel threads needed */ aac->thread = kthread_run(aac_command_thread, aac, AAC_DRIVERNAME); if (IS_ERR(aac->thread)) { printk(KERN_ERR "aacraid: Unable to create command thread.\n"); error = PTR_ERR(aac->thread); aac->thread = NULL; goto out_deinit; } aac->maximum_num_channels = aac_drivers[index].channels; error = aac_get_adapter_info(aac); if (error < 0) goto out_deinit; /* * Lets override negotiations and drop the maximum SG limit to 34 */ if ((aac_drivers[index].quirks & AAC_QUIRK_34SG) && (shost->sg_tablesize > 34)) { shost->sg_tablesize = 34; shost->max_sectors = (shost->sg_tablesize * 8) + 112; } if ((aac_drivers[index].quirks & AAC_QUIRK_17SG) && (shost->sg_tablesize > 17)) { shost->sg_tablesize = 17; shost->max_sectors = (shost->sg_tablesize * 8) + 112; } if (aac->adapter_info.options & AAC_OPT_NEW_COMM) shost->max_segment_size = shost->max_sectors << 9; else shost->max_segment_size = 65536; /* * Firmware printf works only with older firmware. */ if (aac_drivers[index].quirks & AAC_QUIRK_34SG) aac->printf_enabled = 1; else aac->printf_enabled = 0; /* * max channel will be the physical channels plus 1 virtual channel * all containers are on the virtual channel 0 (CONTAINER_CHANNEL) * physical channels are address by their actual physical number+1 */ if (aac->nondasd_support || expose_physicals || aac->jbod) shost->max_channel = aac->maximum_num_channels; else shost->max_channel = 0; aac_get_config_status(aac, 0); aac_get_containers(aac); list_add(&aac->entry, insert); shost->max_id = aac->maximum_num_containers; if (shost->max_id < aac->maximum_num_physicals) shost->max_id = aac->maximum_num_physicals; if (shost->max_id < MAXIMUM_NUM_CONTAINERS) shost->max_id = MAXIMUM_NUM_CONTAINERS; else shost->this_id = shost->max_id; if (!aac->sa_firmware && aac_drivers[index].quirks & AAC_QUIRK_SRC) aac_intr_normal(aac, 0, 2, 0, NULL); /* * dmb - we may need to move the setting of these parms somewhere else once * we get a fib that can report the actual numbers */ shost->max_lun = AAC_MAX_LUN; pci_set_drvdata(pdev, shost); error = scsi_add_host(shost, &pdev->dev); if (error) goto out_deinit; aac_scan_host(aac); pci_enable_pcie_error_reporting(pdev); pci_save_state(pdev); return 0; out_deinit: __aac_shutdown(aac); out_unmap: aac_fib_map_free(aac); if (aac->comm_addr) dma_free_coherent(&aac->pdev->dev, aac->comm_size, aac->comm_addr, aac->comm_phys); kfree(aac->queues); aac_adapter_ioremap(aac, 0); kfree(aac->fibs); kfree(aac->fsa_dev); out_free_host: scsi_host_put(shost); out_disable_pdev: pci_disable_device(pdev); out: return error; } static void aac_release_resources(struct aac_dev *aac) { aac_adapter_disable_int(aac); aac_free_irq(aac); } static int aac_acquire_resources(struct aac_dev *dev) { unsigned long status; /* * First clear out all interrupts. Then enable the one's that we * can handle. */ while (!((status = src_readl(dev, MUnit.OMR)) & KERNEL_UP_AND_RUNNING) || status == 0xffffffff) msleep(20); aac_adapter_disable_int(dev); aac_adapter_enable_int(dev); if (aac_is_src(dev)) aac_define_int_mode(dev); if (dev->msi_enabled) aac_src_access_devreg(dev, AAC_ENABLE_MSIX); if (aac_acquire_irq(dev)) goto error_iounmap; aac_adapter_enable_int(dev); /*max msix may change after EEH * Re-assign vectors to fibs */ aac_fib_vector_assign(dev); if (!dev->sync_mode) { /* After EEH recovery or suspend resume, max_msix count * may change, therefore updating in init as well. */ dev->init->r7.no_of_msix_vectors = cpu_to_le32(dev->max_msix); aac_adapter_start(dev); } return 0; error_iounmap: return -1; } #if (defined(CONFIG_PM)) static int aac_suspend(struct pci_dev *pdev, pm_message_t state) { struct Scsi_Host *shost = pci_get_drvdata(pdev); struct aac_dev *aac = (struct aac_dev *)shost->hostdata; scsi_block_requests(shost); aac_cancel_safw_rescan_worker(aac); aac_send_shutdown(aac); aac_release_resources(aac); pci_set_drvdata(pdev, shost); pci_save_state(pdev); pci_disable_device(pdev); pci_set_power_state(pdev, pci_choose_state(pdev, state)); return 0; } static int aac_resume(struct pci_dev *pdev) { struct Scsi_Host *shost = pci_get_drvdata(pdev); struct aac_dev *aac = (struct aac_dev *)shost->hostdata; int r; pci_set_power_state(pdev, PCI_D0); pci_enable_wake(pdev, PCI_D0, 0); pci_restore_state(pdev); r = pci_enable_device(pdev); if (r) goto fail_device; pci_set_master(pdev); if (aac_acquire_resources(aac)) goto fail_device; /* * reset this flag to unblock ioctl() as it was set at * aac_send_shutdown() to block ioctls from upperlayer */ aac->adapter_shutdown = 0; scsi_unblock_requests(shost); return 0; fail_device: printk(KERN_INFO "%s%d: resume failed.\n", aac->name, aac->id); scsi_host_put(shost); pci_disable_device(pdev); return -ENODEV; } #endif static void aac_shutdown(struct pci_dev *dev) { struct Scsi_Host *shost = pci_get_drvdata(dev); scsi_block_requests(shost); __aac_shutdown((struct aac_dev *)shost->hostdata); } static void aac_remove_one(struct pci_dev *pdev) { struct Scsi_Host *shost = pci_get_drvdata(pdev); struct aac_dev *aac = (struct aac_dev *)shost->hostdata; aac_cancel_safw_rescan_worker(aac); scsi_remove_host(shost); __aac_shutdown(aac); aac_fib_map_free(aac); dma_free_coherent(&aac->pdev->dev, aac->comm_size, aac->comm_addr, aac->comm_phys); kfree(aac->queues); aac_adapter_ioremap(aac, 0); kfree(aac->fibs); kfree(aac->fsa_dev); list_del(&aac->entry); scsi_host_put(shost); pci_disable_device(pdev); if (list_empty(&aac_devices)) { unregister_chrdev(aac_cfg_major, "aac"); aac_cfg_major = AAC_CHARDEV_NEEDS_REINIT; } } static void aac_flush_ios(struct aac_dev *aac) { int i; struct scsi_cmnd *cmd; for (i = 0; i < aac->scsi_host_ptr->can_queue; i++) { cmd = (struct scsi_cmnd *)aac->fibs[i].callback_data; if (cmd && (cmd->SCp.phase == AAC_OWNER_FIRMWARE)) { scsi_dma_unmap(cmd); if (aac->handle_pci_error) cmd->result = DID_NO_CONNECT << 16; else cmd->result = DID_RESET << 16; cmd->scsi_done(cmd); } } } static pci_ers_result_t aac_pci_error_detected(struct pci_dev *pdev, enum pci_channel_state error) { struct Scsi_Host *shost = pci_get_drvdata(pdev); struct aac_dev *aac = shost_priv(shost); dev_err(&pdev->dev, "aacraid: PCI error detected %x\n", error); switch (error) { case pci_channel_io_normal: return PCI_ERS_RESULT_CAN_RECOVER; case pci_channel_io_frozen: aac->handle_pci_error = 1; scsi_block_requests(aac->scsi_host_ptr); aac_cancel_safw_rescan_worker(aac); aac_flush_ios(aac); aac_release_resources(aac); pci_disable_pcie_error_reporting(pdev); aac_adapter_ioremap(aac, 0); return PCI_ERS_RESULT_NEED_RESET; case pci_channel_io_perm_failure: aac->handle_pci_error = 1; aac_flush_ios(aac); return PCI_ERS_RESULT_DISCONNECT; } return PCI_ERS_RESULT_NEED_RESET; } static pci_ers_result_t aac_pci_mmio_enabled(struct pci_dev *pdev) { dev_err(&pdev->dev, "aacraid: PCI error - mmio enabled\n"); return PCI_ERS_RESULT_NEED_RESET; } static pci_ers_result_t aac_pci_slot_reset(struct pci_dev *pdev) { dev_err(&pdev->dev, "aacraid: PCI error - slot reset\n"); pci_restore_state(pdev); if (pci_enable_device(pdev)) { dev_warn(&pdev->dev, "aacraid: failed to enable slave\n"); goto fail_device; } pci_set_master(pdev); if (pci_enable_device_mem(pdev)) { dev_err(&pdev->dev, "pci_enable_device_mem failed\n"); goto fail_device; } return PCI_ERS_RESULT_RECOVERED; fail_device: dev_err(&pdev->dev, "aacraid: PCI error - slot reset failed\n"); return PCI_ERS_RESULT_DISCONNECT; } static void aac_pci_resume(struct pci_dev *pdev) { struct Scsi_Host *shost = pci_get_drvdata(pdev); struct scsi_device *sdev = NULL; struct aac_dev *aac = (struct aac_dev *)shost_priv(shost); if (aac_adapter_ioremap(aac, aac->base_size)) { dev_err(&pdev->dev, "aacraid: ioremap failed\n"); /* remap failed, go back ... */ aac->comm_interface = AAC_COMM_PRODUCER; if (aac_adapter_ioremap(aac, AAC_MIN_FOOTPRINT_SIZE)) { dev_warn(&pdev->dev, "aacraid: unable to map adapter.\n"); return; } } msleep(10000); aac_acquire_resources(aac); /* * reset this flag to unblock ioctl() as it was set * at aac_send_shutdown() to block ioctls from upperlayer */ aac->adapter_shutdown = 0; aac->handle_pci_error = 0; shost_for_each_device(sdev, shost) if (sdev->sdev_state == SDEV_OFFLINE) sdev->sdev_state = SDEV_RUNNING; scsi_unblock_requests(aac->scsi_host_ptr); aac_scan_host(aac); pci_save_state(pdev); dev_err(&pdev->dev, "aacraid: PCI error - resume\n"); } static struct pci_error_handlers aac_pci_err_handler = { .error_detected = aac_pci_error_detected, .mmio_enabled = aac_pci_mmio_enabled, .slot_reset = aac_pci_slot_reset, .resume = aac_pci_resume, }; static struct pci_driver aac_pci_driver = { .name = AAC_DRIVERNAME, .id_table = aac_pci_tbl, .probe = aac_probe_one, .remove = aac_remove_one, #if (defined(CONFIG_PM)) .suspend = aac_suspend, .resume = aac_resume, #endif .shutdown = aac_shutdown, .err_handler = &aac_pci_err_handler, }; static int __init aac_init(void) { int error; printk(KERN_INFO "Adaptec %s driver %s\n", AAC_DRIVERNAME, aac_driver_version); error = pci_register_driver(&aac_pci_driver); if (error < 0) return error; aac_init_char(); return 0; } static void __exit aac_exit(void) { if (aac_cfg_major > -1) unregister_chrdev(aac_cfg_major, "aac"); pci_unregister_driver(&aac_pci_driver); } module_init(aac_init); module_exit(aac_exit);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1