Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
David S. Miller | 880 | 51.07% | 4 | 19.05% |
Linus Torvalds (pre-git) | 703 | 40.80% | 4 | 19.05% |
Hannes Reinecke | 68 | 3.95% | 5 | 23.81% |
Finn Thain | 64 | 3.71% | 4 | 19.05% |
Christoph Hellwig | 7 | 0.41% | 3 | 14.29% |
Greg Kroah-Hartman | 1 | 0.06% | 1 | 4.76% |
Total | 1723 | 21 |
/* SPDX-License-Identifier: GPL-2.0 */ /* esp_scsi.h: Defines and structures for the ESP driver. * * Copyright (C) 2007 David S. Miller (davem@davemloft.net) */ #ifndef _ESP_SCSI_H #define _ESP_SCSI_H /* Access Description Offset */ #define ESP_TCLOW 0x00UL /* rw Low bits transfer count 0x00 */ #define ESP_TCMED 0x01UL /* rw Mid bits transfer count 0x04 */ #define ESP_FDATA 0x02UL /* rw FIFO data bits 0x08 */ #define ESP_CMD 0x03UL /* rw SCSI command bits 0x0c */ #define ESP_STATUS 0x04UL /* ro ESP status register 0x10 */ #define ESP_BUSID ESP_STATUS /* wo BusID for sel/resel 0x10 */ #define ESP_INTRPT 0x05UL /* ro Kind of interrupt 0x14 */ #define ESP_TIMEO ESP_INTRPT /* wo Timeout for sel/resel 0x14 */ #define ESP_SSTEP 0x06UL /* ro Sequence step register 0x18 */ #define ESP_STP ESP_SSTEP /* wo Transfer period/sync 0x18 */ #define ESP_FFLAGS 0x07UL /* ro Bits current FIFO info 0x1c */ #define ESP_SOFF ESP_FFLAGS /* wo Sync offset 0x1c */ #define ESP_CFG1 0x08UL /* rw First cfg register 0x20 */ #define ESP_CFACT 0x09UL /* wo Clock conv factor 0x24 */ #define ESP_STATUS2 ESP_CFACT /* ro HME status2 register 0x24 */ #define ESP_CTEST 0x0aUL /* wo Chip test register 0x28 */ #define ESP_CFG2 0x0bUL /* rw Second cfg register 0x2c */ #define ESP_CFG3 0x0cUL /* rw Third cfg register 0x30 */ #define ESP_CFG4 0x0dUL /* rw Fourth cfg register 0x34 */ #define ESP_TCHI 0x0eUL /* rw High bits transf count 0x38 */ #define ESP_UID ESP_TCHI /* ro Unique ID code 0x38 */ #define FAS_RLO ESP_TCHI /* rw HME extended counter 0x38 */ #define ESP_FGRND 0x0fUL /* rw Data base for fifo 0x3c */ #define FAS_RHI ESP_FGRND /* rw HME extended counter 0x3c */ #define SBUS_ESP_REG_SIZE 0x40UL /* Bitfield meanings for the above registers. */ /* ESP config reg 1, read-write, found on all ESP chips */ #define ESP_CONFIG1_ID 0x07 /* My BUS ID bits */ #define ESP_CONFIG1_CHTEST 0x08 /* Enable ESP chip tests */ #define ESP_CONFIG1_PENABLE 0x10 /* Enable parity checks */ #define ESP_CONFIG1_PARTEST 0x20 /* Parity test mode enabled? */ #define ESP_CONFIG1_SRRDISAB 0x40 /* Disable SCSI reset reports */ #define ESP_CONFIG1_SLCABLE 0x80 /* Enable slow cable mode */ /* ESP config reg 2, read-write, found only on esp100a+esp200+esp236 chips */ #define ESP_CONFIG2_DMAPARITY 0x01 /* enable DMA Parity (200,236) */ #define ESP_CONFIG2_REGPARITY 0x02 /* enable reg Parity (200,236) */ #define ESP_CONFIG2_BADPARITY 0x04 /* Bad parity target abort */ #define ESP_CONFIG2_SCSI2ENAB 0x08 /* Enable SCSI-2 features (tgtmode) */ #define ESP_CONFIG2_HI 0x10 /* High Impedance DREQ ??? */ #define ESP_CONFIG2_HMEFENAB 0x10 /* HME features enable */ #define ESP_CONFIG2_BCM 0x20 /* Enable byte-ctrl (236) */ #define ESP_CONFIG2_DISPINT 0x20 /* Disable pause irq (hme) */ #define ESP_CONFIG2_FENAB 0x40 /* Enable features (fas100,216) */ #define ESP_CONFIG2_SPL 0x40 /* Enable status-phase latch (236) */ #define ESP_CONFIG2_MKDONE 0x40 /* HME magic feature */ #define ESP_CONFIG2_HME32 0x80 /* HME 32 extended */ #define ESP_CONFIG2_MAGIC 0xe0 /* Invalid bits... */ /* ESP config register 3 read-write, found only esp236+fas236+fas100a+hme chips */ #define ESP_CONFIG3_FCLOCK 0x01 /* FAST SCSI clock rate (esp100a/hme) */ #define ESP_CONFIG3_TEM 0x01 /* Enable thresh-8 mode (esp/fas236) */ #define ESP_CONFIG3_FAST 0x02 /* Enable FAST SCSI (esp100a/hme) */ #define ESP_CONFIG3_ADMA 0x02 /* Enable alternate-dma (esp/fas236) */ #define ESP_CONFIG3_TENB 0x04 /* group2 SCSI2 support (esp100a/hme) */ #define ESP_CONFIG3_SRB 0x04 /* Save residual byte (esp/fas236) */ #define ESP_CONFIG3_TMS 0x08 /* Three-byte msg's ok (esp100a/hme) */ #define ESP_CONFIG3_FCLK 0x08 /* Fast SCSI clock rate (esp/fas236) */ #define ESP_CONFIG3_IDMSG 0x10 /* ID message checking (esp100a/hme) */ #define ESP_CONFIG3_FSCSI 0x10 /* Enable FAST SCSI (esp/fas236) */ #define ESP_CONFIG3_GTM 0x20 /* group2 SCSI2 support (esp/fas236) */ #define ESP_CONFIG3_IDBIT3 0x20 /* Bit 3 of HME SCSI-ID (hme) */ #define ESP_CONFIG3_TBMS 0x40 /* Three-byte msg's ok (esp/fas236) */ #define ESP_CONFIG3_EWIDE 0x40 /* Enable Wide-SCSI (hme) */ #define ESP_CONFIG3_IMS 0x80 /* ID msg chk'ng (esp/fas236) */ #define ESP_CONFIG3_OBPUSH 0x80 /* Push odd-byte to dma (hme) */ /* ESP config register 4 read-write, found only on am53c974 chips */ #define ESP_CONFIG4_RADE 0x04 /* Active negation */ #define ESP_CONFIG4_RAE 0x08 /* Active negation on REQ and ACK */ #define ESP_CONFIG4_PWD 0x20 /* Reduced power feature */ #define ESP_CONFIG4_GE0 0x40 /* Glitch eater bit 0 */ #define ESP_CONFIG4_GE1 0x80 /* Glitch eater bit 1 */ #define ESP_CONFIG_GE_12NS (0) #define ESP_CONFIG_GE_25NS (ESP_CONFIG_GE1) #define ESP_CONFIG_GE_35NS (ESP_CONFIG_GE0) #define ESP_CONFIG_GE_0NS (ESP_CONFIG_GE0 | ESP_CONFIG_GE1) /* ESP command register read-write */ /* Group 1 commands: These may be sent at any point in time to the ESP * chip. None of them can generate interrupts 'cept * the "SCSI bus reset" command if you have not disabled * SCSI reset interrupts in the config1 ESP register. */ #define ESP_CMD_NULL 0x00 /* Null command, ie. a nop */ #define ESP_CMD_FLUSH 0x01 /* FIFO Flush */ #define ESP_CMD_RC 0x02 /* Chip reset */ #define ESP_CMD_RS 0x03 /* SCSI bus reset */ /* Group 2 commands: ESP must be an initiator and connected to a target * for these commands to work. */ #define ESP_CMD_TI 0x10 /* Transfer Information */ #define ESP_CMD_ICCSEQ 0x11 /* Initiator cmd complete sequence */ #define ESP_CMD_MOK 0x12 /* Message okie-dokie */ #define ESP_CMD_TPAD 0x18 /* Transfer Pad */ #define ESP_CMD_SATN 0x1a /* Set ATN */ #define ESP_CMD_RATN 0x1b /* De-assert ATN */ /* Group 3 commands: ESP must be in the MSGOUT or MSGIN state and be connected * to a target as the initiator for these commands to work. */ #define ESP_CMD_SMSG 0x20 /* Send message */ #define ESP_CMD_SSTAT 0x21 /* Send status */ #define ESP_CMD_SDATA 0x22 /* Send data */ #define ESP_CMD_DSEQ 0x23 /* Discontinue Sequence */ #define ESP_CMD_TSEQ 0x24 /* Terminate Sequence */ #define ESP_CMD_TCCSEQ 0x25 /* Target cmd cmplt sequence */ #define ESP_CMD_DCNCT 0x27 /* Disconnect */ #define ESP_CMD_RMSG 0x28 /* Receive Message */ #define ESP_CMD_RCMD 0x29 /* Receive Command */ #define ESP_CMD_RDATA 0x2a /* Receive Data */ #define ESP_CMD_RCSEQ 0x2b /* Receive cmd sequence */ /* Group 4 commands: The ESP must be in the disconnected state and must * not be connected to any targets as initiator for * these commands to work. */ #define ESP_CMD_RSEL 0x40 /* Reselect */ #define ESP_CMD_SEL 0x41 /* Select w/o ATN */ #define ESP_CMD_SELA 0x42 /* Select w/ATN */ #define ESP_CMD_SELAS 0x43 /* Select w/ATN & STOP */ #define ESP_CMD_ESEL 0x44 /* Enable selection */ #define ESP_CMD_DSEL 0x45 /* Disable selections */ #define ESP_CMD_SA3 0x46 /* Select w/ATN3 */ #define ESP_CMD_RSEL3 0x47 /* Reselect3 */ /* This bit enables the ESP's DMA on the SBus */ #define ESP_CMD_DMA 0x80 /* Do DMA? */ /* ESP status register read-only */ #define ESP_STAT_PIO 0x01 /* IO phase bit */ #define ESP_STAT_PCD 0x02 /* CD phase bit */ #define ESP_STAT_PMSG 0x04 /* MSG phase bit */ #define ESP_STAT_PMASK 0x07 /* Mask of phase bits */ #define ESP_STAT_TDONE 0x08 /* Transfer Completed */ #define ESP_STAT_TCNT 0x10 /* Transfer Counter Is Zero */ #define ESP_STAT_PERR 0x20 /* Parity error */ #define ESP_STAT_SPAM 0x40 /* Real bad error */ /* This indicates the 'interrupt pending' condition on esp236, it is a reserved * bit on other revs of the ESP. */ #define ESP_STAT_INTR 0x80 /* Interrupt */ /* The status register can be masked with ESP_STAT_PMASK and compared * with the following values to determine the current phase the ESP * (at least thinks it) is in. For our purposes we also add our own * software 'done' bit for our phase management engine. */ #define ESP_DOP (0) /* Data Out */ #define ESP_DIP (ESP_STAT_PIO) /* Data In */ #define ESP_CMDP (ESP_STAT_PCD) /* Command */ #define ESP_STATP (ESP_STAT_PCD|ESP_STAT_PIO) /* Status */ #define ESP_MOP (ESP_STAT_PMSG|ESP_STAT_PCD) /* Message Out */ #define ESP_MIP (ESP_STAT_PMSG|ESP_STAT_PCD|ESP_STAT_PIO) /* Message In */ /* HME only: status 2 register */ #define ESP_STAT2_SCHBIT 0x01 /* Upper bits 3-7 of sstep enabled */ #define ESP_STAT2_FFLAGS 0x02 /* The fifo flags are now latched */ #define ESP_STAT2_XCNT 0x04 /* The transfer counter is latched */ #define ESP_STAT2_CREGA 0x08 /* The command reg is active now */ #define ESP_STAT2_WIDE 0x10 /* Interface on this adapter is wide */ #define ESP_STAT2_F1BYTE 0x20 /* There is one byte at top of fifo */ #define ESP_STAT2_FMSB 0x40 /* Next byte in fifo is most significant */ #define ESP_STAT2_FEMPTY 0x80 /* FIFO is empty */ /* ESP interrupt register read-only */ #define ESP_INTR_S 0x01 /* Select w/o ATN */ #define ESP_INTR_SATN 0x02 /* Select w/ATN */ #define ESP_INTR_RSEL 0x04 /* Reselected */ #define ESP_INTR_FDONE 0x08 /* Function done */ #define ESP_INTR_BSERV 0x10 /* Bus service */ #define ESP_INTR_DC 0x20 /* Disconnect */ #define ESP_INTR_IC 0x40 /* Illegal command given */ #define ESP_INTR_SR 0x80 /* SCSI bus reset detected */ /* ESP sequence step register read-only */ #define ESP_STEP_VBITS 0x07 /* Valid bits */ #define ESP_STEP_ASEL 0x00 /* Selection&Arbitrate cmplt */ #define ESP_STEP_SID 0x01 /* One msg byte sent */ #define ESP_STEP_NCMD 0x02 /* Was not in command phase */ #define ESP_STEP_PPC 0x03 /* Early phase chg caused cmnd * bytes to be lost */ #define ESP_STEP_FINI4 0x04 /* Command was sent ok */ /* Ho hum, some ESP's set the step register to this as well... */ #define ESP_STEP_FINI5 0x05 #define ESP_STEP_FINI6 0x06 #define ESP_STEP_FINI7 0x07 /* ESP chip-test register read-write */ #define ESP_TEST_TARG 0x01 /* Target test mode */ #define ESP_TEST_INI 0x02 /* Initiator test mode */ #define ESP_TEST_TS 0x04 /* Tristate test mode */ /* ESP unique ID register read-only, found on fas236+fas100a only */ #define ESP_UID_F100A 0x00 /* ESP FAS100A */ #define ESP_UID_F236 0x02 /* ESP FAS236 */ #define ESP_UID_REV 0x07 /* ESP revision */ #define ESP_UID_FAM 0xf8 /* ESP family */ /* ESP fifo flags register read-only */ /* Note that the following implies a 16 byte FIFO on the ESP. */ #define ESP_FF_FBYTES 0x1f /* Num bytes in FIFO */ #define ESP_FF_ONOTZERO 0x20 /* offset ctr not zero (esp100) */ #define ESP_FF_SSTEP 0xe0 /* Sequence step */ /* ESP clock conversion factor register write-only */ #define ESP_CCF_F0 0x00 /* 35.01MHz - 40MHz */ #define ESP_CCF_NEVER 0x01 /* Set it to this and die */ #define ESP_CCF_F2 0x02 /* 10MHz */ #define ESP_CCF_F3 0x03 /* 10.01MHz - 15MHz */ #define ESP_CCF_F4 0x04 /* 15.01MHz - 20MHz */ #define ESP_CCF_F5 0x05 /* 20.01MHz - 25MHz */ #define ESP_CCF_F6 0x06 /* 25.01MHz - 30MHz */ #define ESP_CCF_F7 0x07 /* 30.01MHz - 35MHz */ /* HME only... */ #define ESP_BUSID_RESELID 0x10 #define ESP_BUSID_CTR32BIT 0x40 #define ESP_BUS_TIMEOUT 250 /* In milli-seconds */ #define ESP_TIMEO_CONST 8192 #define ESP_NEG_DEFP(mhz, cfact) \ ((ESP_BUS_TIMEOUT * ((mhz) / 1000)) / (8192 * (cfact))) #define ESP_HZ_TO_CYCLE(hertz) ((1000000000) / ((hertz) / 1000)) #define ESP_TICK(ccf, cycle) ((7682 * (ccf) * (cycle) / 1000)) /* For slow to medium speed input clock rates we shoot for 5mb/s, but for high * input clock rates we try to do 10mb/s although I don't think a transfer can * even run that fast with an ESP even with DMA2 scatter gather pipelining. */ #define SYNC_DEFP_SLOW 0x32 /* 5mb/s */ #define SYNC_DEFP_FAST 0x19 /* 10mb/s */ struct esp_cmd_priv { int num_sg; int cur_residue; struct scatterlist *cur_sg; int tot_residue; }; #define ESP_CMD_PRIV(CMD) ((struct esp_cmd_priv *)(&(CMD)->SCp)) enum esp_rev { ESP100 = 0x00, /* NCR53C90 - very broken */ ESP100A = 0x01, /* NCR53C90A */ ESP236 = 0x02, FAS236 = 0x03, FAS100A = 0x04, FAST = 0x05, FASHME = 0x06, PCSCSI = 0x07, /* AM53c974 */ }; struct esp_cmd_entry { struct list_head list; struct scsi_cmnd *cmd; unsigned int saved_cur_residue; struct scatterlist *saved_cur_sg; unsigned int saved_tot_residue; u8 flags; #define ESP_CMD_FLAG_WRITE 0x01 /* DMA is a write */ #define ESP_CMD_FLAG_AUTOSENSE 0x04 /* Doing automatic REQUEST_SENSE */ #define ESP_CMD_FLAG_RESIDUAL 0x08 /* AM53c974 BLAST residual */ u8 tag[2]; u8 orig_tag[2]; u8 status; u8 message; unsigned char *sense_ptr; unsigned char *saved_sense_ptr; dma_addr_t sense_dma; struct completion *eh_done; }; #define ESP_DEFAULT_TAGS 16 #define ESP_MAX_TARGET 16 #define ESP_MAX_LUN 8 #define ESP_MAX_TAG 256 struct esp_lun_data { struct esp_cmd_entry *non_tagged_cmd; int num_tagged; int hold; struct esp_cmd_entry *tagged_cmds[ESP_MAX_TAG]; }; struct esp_target_data { /* These are the ESP_STP, ESP_SOFF, and ESP_CFG3 register values which * match the currently negotiated settings for this target. The SCSI * protocol values are maintained in spi_{offset,period,wide}(starget). */ u8 esp_period; u8 esp_offset; u8 esp_config3; u8 flags; #define ESP_TGT_WIDE 0x01 #define ESP_TGT_DISCONNECT 0x02 #define ESP_TGT_NEGO_WIDE 0x04 #define ESP_TGT_NEGO_SYNC 0x08 #define ESP_TGT_CHECK_NEGO 0x40 #define ESP_TGT_BROKEN 0x80 /* When ESP_TGT_CHECK_NEGO is set, on the next scsi command to this * device we will try to negotiate the following parameters. */ u8 nego_goal_period; u8 nego_goal_offset; u8 nego_goal_width; u8 nego_goal_tags; struct scsi_target *starget; }; struct esp_event_ent { u8 type; #define ESP_EVENT_TYPE_EVENT 0x01 #define ESP_EVENT_TYPE_CMD 0x02 u8 val; u8 sreg; u8 seqreg; u8 sreg2; u8 ireg; u8 select_state; u8 event; u8 __pad; }; struct esp; struct esp_driver_ops { /* Read and write the ESP 8-bit registers. On some * applications of the ESP chip the registers are at 4-byte * instead of 1-byte intervals. */ void (*esp_write8)(struct esp *esp, u8 val, unsigned long reg); u8 (*esp_read8)(struct esp *esp, unsigned long reg); /* Return non-zero if there is an IRQ pending. Usually this * status bit lives in the DMA controller sitting in front of * the ESP. This has to be accurate or else the ESP interrupt * handler will not run. */ int (*irq_pending)(struct esp *esp); /* Return the maximum allowable size of a DMA transfer for a * given buffer. */ u32 (*dma_length_limit)(struct esp *esp, u32 dma_addr, u32 dma_len); /* Reset the DMA engine entirely. On return, ESP interrupts * should be enabled. Often the interrupt enabling is * controlled in the DMA engine. */ void (*reset_dma)(struct esp *esp); /* Drain any pending DMA in the DMA engine after a transfer. * This is for writes to memory. */ void (*dma_drain)(struct esp *esp); /* Invalidate the DMA engine after a DMA transfer. */ void (*dma_invalidate)(struct esp *esp); /* Setup an ESP command that will use a DMA transfer. * The 'esp_count' specifies what transfer length should be * programmed into the ESP transfer counter registers, whereas * the 'dma_count' is the length that should be programmed into * the DMA controller. Usually they are the same. If 'write' * is non-zero, this transfer is a write into memory. 'cmd' * holds the ESP command that should be issued by calling * scsi_esp_cmd() at the appropriate time while programming * the DMA hardware. */ void (*send_dma_cmd)(struct esp *esp, u32 dma_addr, u32 esp_count, u32 dma_count, int write, u8 cmd); /* Return non-zero if the DMA engine is reporting an error * currently. */ int (*dma_error)(struct esp *esp); }; #define ESP_MAX_MSG_SZ 8 #define ESP_EVENT_LOG_SZ 32 #define ESP_QUICKIRQ_LIMIT 100 #define ESP_RESELECT_TAG_LIMIT 2500 struct esp { void __iomem *regs; void __iomem *dma_regs; const struct esp_driver_ops *ops; struct Scsi_Host *host; struct device *dev; struct esp_cmd_entry *active_cmd; struct list_head queued_cmds; struct list_head active_cmds; u8 *command_block; dma_addr_t command_block_dma; unsigned int data_dma_len; /* The following are used to determine the cause of an IRQ. Upon every * IRQ entry we synchronize these with the hardware registers. */ u8 sreg; u8 seqreg; u8 sreg2; u8 ireg; u32 prev_hme_dmacsr; u8 prev_soff; u8 prev_stp; u8 prev_cfg3; u8 num_tags; struct list_head esp_cmd_pool; struct esp_target_data target[ESP_MAX_TARGET]; int fifo_cnt; u8 fifo[16]; struct esp_event_ent esp_event_log[ESP_EVENT_LOG_SZ]; int esp_event_cur; u8 msg_out[ESP_MAX_MSG_SZ]; int msg_out_len; u8 msg_in[ESP_MAX_MSG_SZ]; int msg_in_len; u8 bursts; u8 config1; u8 config2; u8 config4; u8 scsi_id; u32 scsi_id_mask; enum esp_rev rev; u32 flags; #define ESP_FLAG_DIFFERENTIAL 0x00000001 #define ESP_FLAG_RESETTING 0x00000002 #define ESP_FLAG_WIDE_CAPABLE 0x00000008 #define ESP_FLAG_QUICKIRQ_CHECK 0x00000010 #define ESP_FLAG_DISABLE_SYNC 0x00000020 #define ESP_FLAG_USE_FIFO 0x00000040 #define ESP_FLAG_NO_DMA_MAP 0x00000080 u8 select_state; #define ESP_SELECT_NONE 0x00 /* Not selecting */ #define ESP_SELECT_BASIC 0x01 /* Select w/o MSGOUT phase */ #define ESP_SELECT_MSGOUT 0x02 /* Select with MSGOUT */ /* When we are not selecting, we are expecting an event. */ u8 event; #define ESP_EVENT_NONE 0x00 #define ESP_EVENT_CMD_START 0x01 #define ESP_EVENT_CMD_DONE 0x02 #define ESP_EVENT_DATA_IN 0x03 #define ESP_EVENT_DATA_OUT 0x04 #define ESP_EVENT_DATA_DONE 0x05 #define ESP_EVENT_MSGIN 0x06 #define ESP_EVENT_MSGIN_MORE 0x07 #define ESP_EVENT_MSGIN_DONE 0x08 #define ESP_EVENT_MSGOUT 0x09 #define ESP_EVENT_MSGOUT_DONE 0x0a #define ESP_EVENT_STATUS 0x0b #define ESP_EVENT_FREE_BUS 0x0c #define ESP_EVENT_CHECK_PHASE 0x0d #define ESP_EVENT_RESET 0x10 /* Probed in esp_get_clock_params() */ u32 cfact; u32 cfreq; u32 ccycle; u32 ctick; u32 neg_defp; u32 sync_defp; /* Computed in esp_reset_esp() */ u32 max_period; u32 min_period; u32 radelay; /* ESP_CMD_SELAS command state */ u8 *cmd_bytes_ptr; int cmd_bytes_left; struct completion *eh_reset; void *dma; int dmarev; /* These are used by esp_send_pio_cmd() */ u8 __iomem *fifo_reg; int send_cmd_error; u32 send_cmd_residual; }; /* A front-end driver for the ESP chip should do the following in * it's device probe routine: * 1) Allocate the host and private area using scsi_host_alloc() * with size 'sizeof(struct esp)'. The first argument to * scsi_host_alloc() should be &scsi_esp_template. * 2) Set host->max_id as appropriate. * 3) Set esp->host to the scsi_host itself, and esp->dev * to the device object pointer. * 4) Hook up esp->ops to the front-end implementation. * 5) If the ESP chip supports wide transfers, set ESP_FLAG_WIDE_CAPABLE * in esp->flags. * 6) Map the DMA and ESP chip registers. * 7) DMA map the ESP command block, store the DMA address * in esp->command_block_dma. * 8) Register the scsi_esp_intr() interrupt handler. * 9) Probe for and provide the following chip properties: * esp->scsi_id (assign to esp->host->this_id too) * esp->scsi_id_mask * If ESP bus is differential, set ESP_FLAG_DIFFERENTIAL * esp->cfreq * DMA burst bit mask in esp->bursts, if necessary * 10) Perform any actions necessary before the ESP device can * be programmed for the first time. On some configs, for * example, the DMA engine has to be reset before ESP can * be programmed. * 11) If necessary, call dev_set_drvdata() as needed. * 12) Call scsi_esp_register() with prepared 'esp' structure. * 13) Check scsi_esp_register() return value, release all resources * if an error was returned. */ extern struct scsi_host_template scsi_esp_template; extern int scsi_esp_register(struct esp *); extern void scsi_esp_unregister(struct esp *); extern irqreturn_t scsi_esp_intr(int, void *); extern void scsi_esp_cmd(struct esp *, u8); extern void esp_send_pio_cmd(struct esp *esp, u32 dma_addr, u32 esp_count, u32 dma_count, int write, u8 cmd); #endif /* !(_ESP_SCSI_H) */
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1