Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Dan J Williams | 1540 | 48.90% | 17 | 50.00% |
James Bottomley | 867 | 27.53% | 2 | 5.88% |
Jason Yan | 513 | 16.29% | 4 | 11.76% |
Darrick J. Wong | 203 | 6.45% | 4 | 11.76% |
Kees Cook | 11 | 0.35% | 1 | 2.94% |
FUJITA Tomonori | 5 | 0.16% | 1 | 2.94% |
John Garry | 4 | 0.13% | 2 | 5.88% |
Tejun Heo | 3 | 0.10% | 1 | 2.94% |
Christoph Lameter | 2 | 0.06% | 1 | 2.94% |
Bart Van Assche | 1 | 0.03% | 1 | 2.94% |
Total | 3149 | 34 |
/* * Serial Attached SCSI (SAS) Transport Layer initialization * * Copyright (C) 2005 Adaptec, Inc. All rights reserved. * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com> * * This file is licensed under GPLv2. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of the * License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 * USA * */ #include <linux/module.h> #include <linux/slab.h> #include <linux/init.h> #include <linux/device.h> #include <linux/spinlock.h> #include <scsi/sas_ata.h> #include <scsi/scsi_host.h> #include <scsi/scsi_device.h> #include <scsi/scsi_transport.h> #include <scsi/scsi_transport_sas.h> #include "sas_internal.h" #include "../scsi_sas_internal.h" static struct kmem_cache *sas_task_cache; static struct kmem_cache *sas_event_cache; struct sas_task *sas_alloc_task(gfp_t flags) { struct sas_task *task = kmem_cache_zalloc(sas_task_cache, flags); if (task) { spin_lock_init(&task->task_state_lock); task->task_state_flags = SAS_TASK_STATE_PENDING; } return task; } EXPORT_SYMBOL_GPL(sas_alloc_task); struct sas_task *sas_alloc_slow_task(gfp_t flags) { struct sas_task *task = sas_alloc_task(flags); struct sas_task_slow *slow = kmalloc(sizeof(*slow), flags); if (!task || !slow) { if (task) kmem_cache_free(sas_task_cache, task); kfree(slow); return NULL; } task->slow_task = slow; slow->task = task; timer_setup(&slow->timer, NULL, 0); init_completion(&slow->completion); return task; } EXPORT_SYMBOL_GPL(sas_alloc_slow_task); void sas_free_task(struct sas_task *task) { if (task) { kfree(task->slow_task); kmem_cache_free(sas_task_cache, task); } } EXPORT_SYMBOL_GPL(sas_free_task); /*------------ SAS addr hash -----------*/ void sas_hash_addr(u8 *hashed, const u8 *sas_addr) { const u32 poly = 0x00DB2777; u32 r = 0; int i; for (i = 0; i < 8; i++) { int b; for (b = 7; b >= 0; b--) { r <<= 1; if ((1 << b) & sas_addr[i]) { if (!(r & 0x01000000)) r ^= poly; } else if (r & 0x01000000) r ^= poly; } } hashed[0] = (r >> 16) & 0xFF; hashed[1] = (r >> 8) & 0xFF ; hashed[2] = r & 0xFF; } int sas_register_ha(struct sas_ha_struct *sas_ha) { char name[64]; int error = 0; mutex_init(&sas_ha->disco_mutex); spin_lock_init(&sas_ha->phy_port_lock); sas_hash_addr(sas_ha->hashed_sas_addr, sas_ha->sas_addr); set_bit(SAS_HA_REGISTERED, &sas_ha->state); spin_lock_init(&sas_ha->lock); mutex_init(&sas_ha->drain_mutex); init_waitqueue_head(&sas_ha->eh_wait_q); INIT_LIST_HEAD(&sas_ha->defer_q); INIT_LIST_HEAD(&sas_ha->eh_dev_q); sas_ha->event_thres = SAS_PHY_SHUTDOWN_THRES; error = sas_register_phys(sas_ha); if (error) { pr_notice("couldn't register sas phys:%d\n", error); return error; } error = sas_register_ports(sas_ha); if (error) { pr_notice("couldn't register sas ports:%d\n", error); goto Undo_phys; } error = sas_init_events(sas_ha); if (error) { pr_notice("couldn't start event thread:%d\n", error); goto Undo_ports; } error = -ENOMEM; snprintf(name, sizeof(name), "%s_event_q", dev_name(sas_ha->dev)); sas_ha->event_q = create_singlethread_workqueue(name); if (!sas_ha->event_q) goto Undo_ports; snprintf(name, sizeof(name), "%s_disco_q", dev_name(sas_ha->dev)); sas_ha->disco_q = create_singlethread_workqueue(name); if (!sas_ha->disco_q) goto Undo_event_q; INIT_LIST_HEAD(&sas_ha->eh_done_q); INIT_LIST_HEAD(&sas_ha->eh_ata_q); return 0; Undo_event_q: destroy_workqueue(sas_ha->event_q); Undo_ports: sas_unregister_ports(sas_ha); Undo_phys: return error; } static void sas_disable_events(struct sas_ha_struct *sas_ha) { /* Set the state to unregistered to avoid further unchained * events to be queued, and flush any in-progress drainers */ mutex_lock(&sas_ha->drain_mutex); spin_lock_irq(&sas_ha->lock); clear_bit(SAS_HA_REGISTERED, &sas_ha->state); spin_unlock_irq(&sas_ha->lock); __sas_drain_work(sas_ha); mutex_unlock(&sas_ha->drain_mutex); } int sas_unregister_ha(struct sas_ha_struct *sas_ha) { sas_disable_events(sas_ha); sas_unregister_ports(sas_ha); /* flush unregistration work */ mutex_lock(&sas_ha->drain_mutex); __sas_drain_work(sas_ha); mutex_unlock(&sas_ha->drain_mutex); destroy_workqueue(sas_ha->disco_q); destroy_workqueue(sas_ha->event_q); return 0; } static int sas_get_linkerrors(struct sas_phy *phy) { if (scsi_is_sas_phy_local(phy)) { struct Scsi_Host *shost = dev_to_shost(phy->dev.parent); struct sas_ha_struct *sas_ha = SHOST_TO_SAS_HA(shost); struct asd_sas_phy *asd_phy = sas_ha->sas_phy[phy->number]; struct sas_internal *i = to_sas_internal(sas_ha->core.shost->transportt); return i->dft->lldd_control_phy(asd_phy, PHY_FUNC_GET_EVENTS, NULL); } return sas_smp_get_phy_events(phy); } int sas_try_ata_reset(struct asd_sas_phy *asd_phy) { struct domain_device *dev = NULL; /* try to route user requested link resets through libata */ if (asd_phy->port) dev = asd_phy->port->port_dev; /* validate that dev has been probed */ if (dev) dev = sas_find_dev_by_rphy(dev->rphy); if (dev && dev_is_sata(dev)) { sas_ata_schedule_reset(dev); sas_ata_wait_eh(dev); return 0; } return -ENODEV; } /* * transport_sas_phy_reset - reset a phy and permit libata to manage the link * * phy reset request via sysfs in host workqueue context so we know we * can block on eh and safely traverse the domain_device topology */ static int transport_sas_phy_reset(struct sas_phy *phy, int hard_reset) { enum phy_func reset_type; if (hard_reset) reset_type = PHY_FUNC_HARD_RESET; else reset_type = PHY_FUNC_LINK_RESET; if (scsi_is_sas_phy_local(phy)) { struct Scsi_Host *shost = dev_to_shost(phy->dev.parent); struct sas_ha_struct *sas_ha = SHOST_TO_SAS_HA(shost); struct asd_sas_phy *asd_phy = sas_ha->sas_phy[phy->number]; struct sas_internal *i = to_sas_internal(sas_ha->core.shost->transportt); if (!hard_reset && sas_try_ata_reset(asd_phy) == 0) return 0; return i->dft->lldd_control_phy(asd_phy, reset_type, NULL); } else { struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent); struct domain_device *ddev = sas_find_dev_by_rphy(rphy); struct domain_device *ata_dev = sas_ex_to_ata(ddev, phy->number); if (ata_dev && !hard_reset) { sas_ata_schedule_reset(ata_dev); sas_ata_wait_eh(ata_dev); return 0; } else return sas_smp_phy_control(ddev, phy->number, reset_type, NULL); } } static int sas_phy_enable(struct sas_phy *phy, int enable) { int ret; enum phy_func cmd; if (enable) cmd = PHY_FUNC_LINK_RESET; else cmd = PHY_FUNC_DISABLE; if (scsi_is_sas_phy_local(phy)) { struct Scsi_Host *shost = dev_to_shost(phy->dev.parent); struct sas_ha_struct *sas_ha = SHOST_TO_SAS_HA(shost); struct asd_sas_phy *asd_phy = sas_ha->sas_phy[phy->number]; struct sas_internal *i = to_sas_internal(sas_ha->core.shost->transportt); if (enable) ret = transport_sas_phy_reset(phy, 0); else ret = i->dft->lldd_control_phy(asd_phy, cmd, NULL); } else { struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent); struct domain_device *ddev = sas_find_dev_by_rphy(rphy); if (enable) ret = transport_sas_phy_reset(phy, 0); else ret = sas_smp_phy_control(ddev, phy->number, cmd, NULL); } return ret; } int sas_phy_reset(struct sas_phy *phy, int hard_reset) { int ret; enum phy_func reset_type; if (!phy->enabled) return -ENODEV; if (hard_reset) reset_type = PHY_FUNC_HARD_RESET; else reset_type = PHY_FUNC_LINK_RESET; if (scsi_is_sas_phy_local(phy)) { struct Scsi_Host *shost = dev_to_shost(phy->dev.parent); struct sas_ha_struct *sas_ha = SHOST_TO_SAS_HA(shost); struct asd_sas_phy *asd_phy = sas_ha->sas_phy[phy->number]; struct sas_internal *i = to_sas_internal(sas_ha->core.shost->transportt); ret = i->dft->lldd_control_phy(asd_phy, reset_type, NULL); } else { struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent); struct domain_device *ddev = sas_find_dev_by_rphy(rphy); ret = sas_smp_phy_control(ddev, phy->number, reset_type, NULL); } return ret; } int sas_set_phy_speed(struct sas_phy *phy, struct sas_phy_linkrates *rates) { int ret; if ((rates->minimum_linkrate && rates->minimum_linkrate > phy->maximum_linkrate) || (rates->maximum_linkrate && rates->maximum_linkrate < phy->minimum_linkrate)) return -EINVAL; if (rates->minimum_linkrate && rates->minimum_linkrate < phy->minimum_linkrate_hw) rates->minimum_linkrate = phy->minimum_linkrate_hw; if (rates->maximum_linkrate && rates->maximum_linkrate > phy->maximum_linkrate_hw) rates->maximum_linkrate = phy->maximum_linkrate_hw; if (scsi_is_sas_phy_local(phy)) { struct Scsi_Host *shost = dev_to_shost(phy->dev.parent); struct sas_ha_struct *sas_ha = SHOST_TO_SAS_HA(shost); struct asd_sas_phy *asd_phy = sas_ha->sas_phy[phy->number]; struct sas_internal *i = to_sas_internal(sas_ha->core.shost->transportt); ret = i->dft->lldd_control_phy(asd_phy, PHY_FUNC_SET_LINK_RATE, rates); } else { struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent); struct domain_device *ddev = sas_find_dev_by_rphy(rphy); ret = sas_smp_phy_control(ddev, phy->number, PHY_FUNC_LINK_RESET, rates); } return ret; } void sas_prep_resume_ha(struct sas_ha_struct *ha) { int i; set_bit(SAS_HA_REGISTERED, &ha->state); /* clear out any stale link events/data from the suspension path */ for (i = 0; i < ha->num_phys; i++) { struct asd_sas_phy *phy = ha->sas_phy[i]; memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE); phy->frame_rcvd_size = 0; } } EXPORT_SYMBOL(sas_prep_resume_ha); static int phys_suspended(struct sas_ha_struct *ha) { int i, rc = 0; for (i = 0; i < ha->num_phys; i++) { struct asd_sas_phy *phy = ha->sas_phy[i]; if (phy->suspended) rc++; } return rc; } void sas_resume_ha(struct sas_ha_struct *ha) { const unsigned long tmo = msecs_to_jiffies(25000); int i; /* deform ports on phys that did not resume * at this point we may be racing the phy coming back (as posted * by the lldd). So we post the event and once we are in the * libsas context check that the phy remains suspended before * tearing it down. */ i = phys_suspended(ha); if (i) dev_info(ha->dev, "waiting up to 25 seconds for %d phy%s to resume\n", i, i > 1 ? "s" : ""); wait_event_timeout(ha->eh_wait_q, phys_suspended(ha) == 0, tmo); for (i = 0; i < ha->num_phys; i++) { struct asd_sas_phy *phy = ha->sas_phy[i]; if (phy->suspended) { dev_warn(&phy->phy->dev, "resume timeout\n"); sas_notify_phy_event(phy, PHYE_RESUME_TIMEOUT); } } /* all phys are back up or timed out, turn on i/o so we can * flush out disks that did not return */ scsi_unblock_requests(ha->core.shost); sas_drain_work(ha); } EXPORT_SYMBOL(sas_resume_ha); void sas_suspend_ha(struct sas_ha_struct *ha) { int i; sas_disable_events(ha); scsi_block_requests(ha->core.shost); for (i = 0; i < ha->num_phys; i++) { struct asd_sas_port *port = ha->sas_port[i]; sas_discover_event(port, DISCE_SUSPEND); } /* flush suspend events while unregistered */ mutex_lock(&ha->drain_mutex); __sas_drain_work(ha); mutex_unlock(&ha->drain_mutex); } EXPORT_SYMBOL(sas_suspend_ha); static void sas_phy_release(struct sas_phy *phy) { kfree(phy->hostdata); phy->hostdata = NULL; } static void phy_reset_work(struct work_struct *work) { struct sas_phy_data *d = container_of(work, typeof(*d), reset_work.work); d->reset_result = transport_sas_phy_reset(d->phy, d->hard_reset); } static void phy_enable_work(struct work_struct *work) { struct sas_phy_data *d = container_of(work, typeof(*d), enable_work.work); d->enable_result = sas_phy_enable(d->phy, d->enable); } static int sas_phy_setup(struct sas_phy *phy) { struct sas_phy_data *d = kzalloc(sizeof(*d), GFP_KERNEL); if (!d) return -ENOMEM; mutex_init(&d->event_lock); INIT_SAS_WORK(&d->reset_work, phy_reset_work); INIT_SAS_WORK(&d->enable_work, phy_enable_work); d->phy = phy; phy->hostdata = d; return 0; } static int queue_phy_reset(struct sas_phy *phy, int hard_reset) { struct Scsi_Host *shost = dev_to_shost(phy->dev.parent); struct sas_ha_struct *ha = SHOST_TO_SAS_HA(shost); struct sas_phy_data *d = phy->hostdata; int rc; if (!d) return -ENOMEM; /* libsas workqueue coordinates ata-eh reset with discovery */ mutex_lock(&d->event_lock); d->reset_result = 0; d->hard_reset = hard_reset; spin_lock_irq(&ha->lock); sas_queue_work(ha, &d->reset_work); spin_unlock_irq(&ha->lock); rc = sas_drain_work(ha); if (rc == 0) rc = d->reset_result; mutex_unlock(&d->event_lock); return rc; } static int queue_phy_enable(struct sas_phy *phy, int enable) { struct Scsi_Host *shost = dev_to_shost(phy->dev.parent); struct sas_ha_struct *ha = SHOST_TO_SAS_HA(shost); struct sas_phy_data *d = phy->hostdata; int rc; if (!d) return -ENOMEM; /* libsas workqueue coordinates ata-eh reset with discovery */ mutex_lock(&d->event_lock); d->enable_result = 0; d->enable = enable; spin_lock_irq(&ha->lock); sas_queue_work(ha, &d->enable_work); spin_unlock_irq(&ha->lock); rc = sas_drain_work(ha); if (rc == 0) rc = d->enable_result; mutex_unlock(&d->event_lock); return rc; } static struct sas_function_template sft = { .phy_enable = queue_phy_enable, .phy_reset = queue_phy_reset, .phy_setup = sas_phy_setup, .phy_release = sas_phy_release, .set_phy_speed = sas_set_phy_speed, .get_linkerrors = sas_get_linkerrors, .smp_handler = sas_smp_handler, }; static inline ssize_t phy_event_threshold_show(struct device *dev, struct device_attribute *attr, char *buf) { struct Scsi_Host *shost = class_to_shost(dev); struct sas_ha_struct *sha = SHOST_TO_SAS_HA(shost); return scnprintf(buf, PAGE_SIZE, "%u\n", sha->event_thres); } static inline ssize_t phy_event_threshold_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct Scsi_Host *shost = class_to_shost(dev); struct sas_ha_struct *sha = SHOST_TO_SAS_HA(shost); sha->event_thres = simple_strtol(buf, NULL, 10); /* threshold cannot be set too small */ if (sha->event_thres < 32) sha->event_thres = 32; return count; } DEVICE_ATTR(phy_event_threshold, S_IRUGO|S_IWUSR, phy_event_threshold_show, phy_event_threshold_store); EXPORT_SYMBOL_GPL(dev_attr_phy_event_threshold); struct scsi_transport_template * sas_domain_attach_transport(struct sas_domain_function_template *dft) { struct scsi_transport_template *stt = sas_attach_transport(&sft); struct sas_internal *i; if (!stt) return stt; i = to_sas_internal(stt); i->dft = dft; stt->create_work_queue = 1; stt->eh_strategy_handler = sas_scsi_recover_host; return stt; } EXPORT_SYMBOL_GPL(sas_domain_attach_transport); struct asd_sas_event *sas_alloc_event(struct asd_sas_phy *phy) { struct asd_sas_event *event; gfp_t flags = in_interrupt() ? GFP_ATOMIC : GFP_KERNEL; struct sas_ha_struct *sas_ha = phy->ha; struct sas_internal *i = to_sas_internal(sas_ha->core.shost->transportt); event = kmem_cache_zalloc(sas_event_cache, flags); if (!event) return NULL; atomic_inc(&phy->event_nr); if (atomic_read(&phy->event_nr) > phy->ha->event_thres) { if (i->dft->lldd_control_phy) { if (cmpxchg(&phy->in_shutdown, 0, 1) == 0) { pr_notice("The phy%02d bursting events, shut it down.\n", phy->id); sas_notify_phy_event(phy, PHYE_SHUTDOWN); } } else { /* Do not support PHY control, stop allocating events */ WARN_ONCE(1, "PHY control not supported.\n"); kmem_cache_free(sas_event_cache, event); atomic_dec(&phy->event_nr); event = NULL; } } return event; } void sas_free_event(struct asd_sas_event *event) { struct asd_sas_phy *phy = event->phy; kmem_cache_free(sas_event_cache, event); atomic_dec(&phy->event_nr); } /* ---------- SAS Class register/unregister ---------- */ static int __init sas_class_init(void) { sas_task_cache = KMEM_CACHE(sas_task, SLAB_HWCACHE_ALIGN); if (!sas_task_cache) goto out; sas_event_cache = KMEM_CACHE(asd_sas_event, SLAB_HWCACHE_ALIGN); if (!sas_event_cache) goto free_task_kmem; return 0; free_task_kmem: kmem_cache_destroy(sas_task_cache); out: return -ENOMEM; } static void __exit sas_class_exit(void) { kmem_cache_destroy(sas_task_cache); kmem_cache_destroy(sas_event_cache); } MODULE_AUTHOR("Luben Tuikov <luben_tuikov@adaptec.com>"); MODULE_DESCRIPTION("SAS Transport Layer"); MODULE_LICENSE("GPL v2"); module_init(sas_class_init); module_exit(sas_class_exit); EXPORT_SYMBOL_GPL(sas_register_ha); EXPORT_SYMBOL_GPL(sas_unregister_ha);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1