Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
James Smart | 14369 | 93.73% | 45 | 75.00% |
Dick Kennedy | 912 | 5.95% | 6 | 10.00% |
Ewan D. Milne | 19 | 0.12% | 1 | 1.67% |
Arnd Bergmann | 14 | 0.09% | 3 | 5.00% |
Colin Ian King | 8 | 0.05% | 2 | 3.33% |
Dan Carpenter | 4 | 0.03% | 1 | 1.67% |
Romain Perier | 2 | 0.01% | 1 | 1.67% |
Jens Axboe | 2 | 0.01% | 1 | 1.67% |
Total | 15330 | 60 |
/******************************************************************* * This file is part of the Emulex Linux Device Driver for * * Fibre Channsel Host Bus Adapters. * * Copyright (C) 2017-2018 Broadcom. All Rights Reserved. The term * * “Broadcom” refers to Broadcom Inc. and/or its subsidiaries. * * Copyright (C) 2004-2016 Emulex. All rights reserved. * * EMULEX and SLI are trademarks of Emulex. * * www.broadcom.com * * Portions Copyright (C) 2004-2005 Christoph Hellwig * * * * This program is free software; you can redistribute it and/or * * modify it under the terms of version 2 of the GNU General * * Public License as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful. * * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND * * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, * * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE * * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD * * TO BE LEGALLY INVALID. See the GNU General Public License for * * more details, a copy of which can be found in the file COPYING * * included with this package. * ********************************************************************/ #include <linux/pci.h> #include <linux/slab.h> #include <linux/interrupt.h> #include <linux/delay.h> #include <asm/unaligned.h> #include <linux/crc-t10dif.h> #include <net/checksum.h> #include <scsi/scsi.h> #include <scsi/scsi_device.h> #include <scsi/scsi_eh.h> #include <scsi/scsi_host.h> #include <scsi/scsi_tcq.h> #include <scsi/scsi_transport_fc.h> #include <scsi/fc/fc_fs.h> #include <linux/nvme.h> #include <linux/nvme-fc-driver.h> #include <linux/nvme-fc.h> #include "lpfc_version.h" #include "lpfc_hw4.h" #include "lpfc_hw.h" #include "lpfc_sli.h" #include "lpfc_sli4.h" #include "lpfc_nl.h" #include "lpfc_disc.h" #include "lpfc.h" #include "lpfc_scsi.h" #include "lpfc_nvme.h" #include "lpfc_nvmet.h" #include "lpfc_logmsg.h" #include "lpfc_crtn.h" #include "lpfc_vport.h" #include "lpfc_debugfs.h" static struct lpfc_iocbq *lpfc_nvmet_prep_ls_wqe(struct lpfc_hba *, struct lpfc_nvmet_rcv_ctx *, dma_addr_t rspbuf, uint16_t rspsize); static struct lpfc_iocbq *lpfc_nvmet_prep_fcp_wqe(struct lpfc_hba *, struct lpfc_nvmet_rcv_ctx *); static int lpfc_nvmet_sol_fcp_issue_abort(struct lpfc_hba *, struct lpfc_nvmet_rcv_ctx *, uint32_t, uint16_t); static int lpfc_nvmet_unsol_fcp_issue_abort(struct lpfc_hba *, struct lpfc_nvmet_rcv_ctx *, uint32_t, uint16_t); static int lpfc_nvmet_unsol_ls_issue_abort(struct lpfc_hba *, struct lpfc_nvmet_rcv_ctx *, uint32_t, uint16_t); static void lpfc_nvmet_wqfull_flush(struct lpfc_hba *, struct lpfc_queue *, struct lpfc_nvmet_rcv_ctx *); static union lpfc_wqe128 lpfc_tsend_cmd_template; static union lpfc_wqe128 lpfc_treceive_cmd_template; static union lpfc_wqe128 lpfc_trsp_cmd_template; /* Setup WQE templates for NVME IOs */ void lpfc_nvmet_cmd_template(void) { union lpfc_wqe128 *wqe; /* TSEND template */ wqe = &lpfc_tsend_cmd_template; memset(wqe, 0, sizeof(union lpfc_wqe128)); /* Word 0, 1, 2 - BDE is variable */ /* Word 3 - payload_offset_len is zero */ /* Word 4 - relative_offset is variable */ /* Word 5 - is zero */ /* Word 6 - ctxt_tag, xri_tag is variable */ /* Word 7 - wqe_ar is variable */ bf_set(wqe_cmnd, &wqe->fcp_tsend.wqe_com, CMD_FCP_TSEND64_WQE); bf_set(wqe_pu, &wqe->fcp_tsend.wqe_com, PARM_REL_OFF); bf_set(wqe_class, &wqe->fcp_tsend.wqe_com, CLASS3); bf_set(wqe_ct, &wqe->fcp_tsend.wqe_com, SLI4_CT_RPI); bf_set(wqe_ar, &wqe->fcp_tsend.wqe_com, 1); /* Word 8 - abort_tag is variable */ /* Word 9 - reqtag, rcvoxid is variable */ /* Word 10 - wqes, xc is variable */ bf_set(wqe_nvme, &wqe->fcp_tsend.wqe_com, 1); bf_set(wqe_dbde, &wqe->fcp_tsend.wqe_com, 1); bf_set(wqe_wqes, &wqe->fcp_tsend.wqe_com, 0); bf_set(wqe_xc, &wqe->fcp_tsend.wqe_com, 1); bf_set(wqe_iod, &wqe->fcp_tsend.wqe_com, LPFC_WQE_IOD_WRITE); bf_set(wqe_lenloc, &wqe->fcp_tsend.wqe_com, LPFC_WQE_LENLOC_WORD12); /* Word 11 - sup, irsp, irsplen is variable */ bf_set(wqe_cmd_type, &wqe->fcp_tsend.wqe_com, FCP_COMMAND_TSEND); bf_set(wqe_cqid, &wqe->fcp_tsend.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); bf_set(wqe_sup, &wqe->fcp_tsend.wqe_com, 0); bf_set(wqe_irsp, &wqe->fcp_tsend.wqe_com, 0); bf_set(wqe_irsplen, &wqe->fcp_tsend.wqe_com, 0); bf_set(wqe_pbde, &wqe->fcp_tsend.wqe_com, 0); /* Word 12 - fcp_data_len is variable */ /* Word 13, 14, 15 - PBDE is zero */ /* TRECEIVE template */ wqe = &lpfc_treceive_cmd_template; memset(wqe, 0, sizeof(union lpfc_wqe128)); /* Word 0, 1, 2 - BDE is variable */ /* Word 3 */ wqe->fcp_treceive.payload_offset_len = TXRDY_PAYLOAD_LEN; /* Word 4 - relative_offset is variable */ /* Word 5 - is zero */ /* Word 6 - ctxt_tag, xri_tag is variable */ /* Word 7 */ bf_set(wqe_cmnd, &wqe->fcp_treceive.wqe_com, CMD_FCP_TRECEIVE64_WQE); bf_set(wqe_pu, &wqe->fcp_treceive.wqe_com, PARM_REL_OFF); bf_set(wqe_class, &wqe->fcp_treceive.wqe_com, CLASS3); bf_set(wqe_ct, &wqe->fcp_treceive.wqe_com, SLI4_CT_RPI); bf_set(wqe_ar, &wqe->fcp_treceive.wqe_com, 0); /* Word 8 - abort_tag is variable */ /* Word 9 - reqtag, rcvoxid is variable */ /* Word 10 - xc is variable */ bf_set(wqe_dbde, &wqe->fcp_treceive.wqe_com, 1); bf_set(wqe_wqes, &wqe->fcp_treceive.wqe_com, 0); bf_set(wqe_nvme, &wqe->fcp_treceive.wqe_com, 1); bf_set(wqe_iod, &wqe->fcp_treceive.wqe_com, LPFC_WQE_IOD_READ); bf_set(wqe_lenloc, &wqe->fcp_treceive.wqe_com, LPFC_WQE_LENLOC_WORD12); bf_set(wqe_xc, &wqe->fcp_tsend.wqe_com, 1); /* Word 11 - pbde is variable */ bf_set(wqe_cmd_type, &wqe->fcp_treceive.wqe_com, FCP_COMMAND_TRECEIVE); bf_set(wqe_cqid, &wqe->fcp_treceive.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); bf_set(wqe_sup, &wqe->fcp_treceive.wqe_com, 0); bf_set(wqe_irsp, &wqe->fcp_treceive.wqe_com, 0); bf_set(wqe_irsplen, &wqe->fcp_treceive.wqe_com, 0); bf_set(wqe_pbde, &wqe->fcp_treceive.wqe_com, 1); /* Word 12 - fcp_data_len is variable */ /* Word 13, 14, 15 - PBDE is variable */ /* TRSP template */ wqe = &lpfc_trsp_cmd_template; memset(wqe, 0, sizeof(union lpfc_wqe128)); /* Word 0, 1, 2 - BDE is variable */ /* Word 3 - response_len is variable */ /* Word 4, 5 - is zero */ /* Word 6 - ctxt_tag, xri_tag is variable */ /* Word 7 */ bf_set(wqe_cmnd, &wqe->fcp_trsp.wqe_com, CMD_FCP_TRSP64_WQE); bf_set(wqe_pu, &wqe->fcp_trsp.wqe_com, PARM_UNUSED); bf_set(wqe_class, &wqe->fcp_trsp.wqe_com, CLASS3); bf_set(wqe_ct, &wqe->fcp_trsp.wqe_com, SLI4_CT_RPI); bf_set(wqe_ag, &wqe->fcp_trsp.wqe_com, 1); /* wqe_ar */ /* Word 8 - abort_tag is variable */ /* Word 9 - reqtag is variable */ /* Word 10 wqes, xc is variable */ bf_set(wqe_dbde, &wqe->fcp_trsp.wqe_com, 1); bf_set(wqe_nvme, &wqe->fcp_trsp.wqe_com, 1); bf_set(wqe_wqes, &wqe->fcp_trsp.wqe_com, 0); bf_set(wqe_xc, &wqe->fcp_trsp.wqe_com, 0); bf_set(wqe_iod, &wqe->fcp_trsp.wqe_com, LPFC_WQE_IOD_NONE); bf_set(wqe_lenloc, &wqe->fcp_trsp.wqe_com, LPFC_WQE_LENLOC_WORD3); /* Word 11 irsp, irsplen is variable */ bf_set(wqe_cmd_type, &wqe->fcp_trsp.wqe_com, FCP_COMMAND_TRSP); bf_set(wqe_cqid, &wqe->fcp_trsp.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); bf_set(wqe_sup, &wqe->fcp_trsp.wqe_com, 0); bf_set(wqe_irsp, &wqe->fcp_trsp.wqe_com, 0); bf_set(wqe_irsplen, &wqe->fcp_trsp.wqe_com, 0); bf_set(wqe_pbde, &wqe->fcp_trsp.wqe_com, 0); /* Word 12, 13, 14, 15 - is zero */ } void lpfc_nvmet_defer_release(struct lpfc_hba *phba, struct lpfc_nvmet_rcv_ctx *ctxp) { unsigned long iflag; lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, "6313 NVMET Defer ctx release xri x%x flg x%x\n", ctxp->oxid, ctxp->flag); spin_lock_irqsave(&phba->sli4_hba.abts_nvme_buf_list_lock, iflag); if (ctxp->flag & LPFC_NVMET_CTX_RLS) { spin_unlock_irqrestore(&phba->sli4_hba.abts_nvme_buf_list_lock, iflag); return; } ctxp->flag |= LPFC_NVMET_CTX_RLS; list_add_tail(&ctxp->list, &phba->sli4_hba.lpfc_abts_nvmet_ctx_list); spin_unlock_irqrestore(&phba->sli4_hba.abts_nvme_buf_list_lock, iflag); } /** * lpfc_nvmet_xmt_ls_rsp_cmp - Completion handler for LS Response * @phba: Pointer to HBA context object. * @cmdwqe: Pointer to driver command WQE object. * @wcqe: Pointer to driver response CQE object. * * The function is called from SLI ring event handler with no * lock held. This function is the completion handler for NVME LS commands * The function frees memory resources used for the NVME commands. **/ static void lpfc_nvmet_xmt_ls_rsp_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe, struct lpfc_wcqe_complete *wcqe) { struct lpfc_nvmet_tgtport *tgtp; struct nvmefc_tgt_ls_req *rsp; struct lpfc_nvmet_rcv_ctx *ctxp; uint32_t status, result; status = bf_get(lpfc_wcqe_c_status, wcqe); result = wcqe->parameter; ctxp = cmdwqe->context2; if (ctxp->state != LPFC_NVMET_STE_LS_RSP || ctxp->entry_cnt != 2) { lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, "6410 NVMET LS cmpl state mismatch IO x%x: " "%d %d\n", ctxp->oxid, ctxp->state, ctxp->entry_cnt); } if (!phba->targetport) goto out; tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; if (tgtp) { if (status) { atomic_inc(&tgtp->xmt_ls_rsp_error); if (result == IOERR_ABORT_REQUESTED) atomic_inc(&tgtp->xmt_ls_rsp_aborted); if (bf_get(lpfc_wcqe_c_xb, wcqe)) atomic_inc(&tgtp->xmt_ls_rsp_xb_set); } else { atomic_inc(&tgtp->xmt_ls_rsp_cmpl); } } out: rsp = &ctxp->ctx.ls_req; lpfc_nvmeio_data(phba, "NVMET LS CMPL: xri x%x stat x%x result x%x\n", ctxp->oxid, status, result); lpfc_printf_log(phba, KERN_INFO, LOG_NVME_DISC, "6038 NVMET LS rsp cmpl: %d %d oxid x%x\n", status, result, ctxp->oxid); lpfc_nlp_put(cmdwqe->context1); cmdwqe->context2 = NULL; cmdwqe->context3 = NULL; lpfc_sli_release_iocbq(phba, cmdwqe); rsp->done(rsp); kfree(ctxp); } /** * lpfc_nvmet_ctxbuf_post - Repost a NVMET RQ DMA buffer and clean up context * @phba: HBA buffer is associated with * @ctxp: context to clean up * @mp: Buffer to free * * Description: Frees the given DMA buffer in the appropriate way given by * reposting it to its associated RQ so it can be reused. * * Notes: Takes phba->hbalock. Can be called with or without other locks held. * * Returns: None **/ void lpfc_nvmet_ctxbuf_post(struct lpfc_hba *phba, struct lpfc_nvmet_ctxbuf *ctx_buf) { #if (IS_ENABLED(CONFIG_NVME_TARGET_FC)) struct lpfc_nvmet_rcv_ctx *ctxp = ctx_buf->context; struct lpfc_nvmet_tgtport *tgtp; struct fc_frame_header *fc_hdr; struct rqb_dmabuf *nvmebuf; struct lpfc_nvmet_ctx_info *infop; uint32_t *payload; uint32_t size, oxid, sid, rc; int cpu; unsigned long iflag; if (ctxp->txrdy) { dma_pool_free(phba->txrdy_payload_pool, ctxp->txrdy, ctxp->txrdy_phys); ctxp->txrdy = NULL; ctxp->txrdy_phys = 0; } if (ctxp->state == LPFC_NVMET_STE_FREE) { lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, "6411 NVMET free, already free IO x%x: %d %d\n", ctxp->oxid, ctxp->state, ctxp->entry_cnt); } ctxp->state = LPFC_NVMET_STE_FREE; spin_lock_irqsave(&phba->sli4_hba.nvmet_io_wait_lock, iflag); if (phba->sli4_hba.nvmet_io_wait_cnt) { list_remove_head(&phba->sli4_hba.lpfc_nvmet_io_wait_list, nvmebuf, struct rqb_dmabuf, hbuf.list); phba->sli4_hba.nvmet_io_wait_cnt--; spin_unlock_irqrestore(&phba->sli4_hba.nvmet_io_wait_lock, iflag); fc_hdr = (struct fc_frame_header *)(nvmebuf->hbuf.virt); oxid = be16_to_cpu(fc_hdr->fh_ox_id); tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; payload = (uint32_t *)(nvmebuf->dbuf.virt); size = nvmebuf->bytes_recv; sid = sli4_sid_from_fc_hdr(fc_hdr); ctxp = (struct lpfc_nvmet_rcv_ctx *)ctx_buf->context; ctxp->wqeq = NULL; ctxp->txrdy = NULL; ctxp->offset = 0; ctxp->phba = phba; ctxp->size = size; ctxp->oxid = oxid; ctxp->sid = sid; ctxp->state = LPFC_NVMET_STE_RCV; ctxp->entry_cnt = 1; ctxp->flag = 0; ctxp->ctxbuf = ctx_buf; ctxp->rqb_buffer = (void *)nvmebuf; spin_lock_init(&ctxp->ctxlock); #ifdef CONFIG_SCSI_LPFC_DEBUG_FS if (ctxp->ts_cmd_nvme) { ctxp->ts_cmd_nvme = ktime_get_ns(); ctxp->ts_nvme_data = 0; ctxp->ts_data_wqput = 0; ctxp->ts_isr_data = 0; ctxp->ts_data_nvme = 0; ctxp->ts_nvme_status = 0; ctxp->ts_status_wqput = 0; ctxp->ts_isr_status = 0; ctxp->ts_status_nvme = 0; } #endif atomic_inc(&tgtp->rcv_fcp_cmd_in); /* * The calling sequence should be: * nvmet_fc_rcv_fcp_req->lpfc_nvmet_xmt_fcp_op/cmp- req->done * lpfc_nvmet_xmt_fcp_op_cmp should free the allocated ctxp. * When we return from nvmet_fc_rcv_fcp_req, all relevant info * the NVME command / FC header is stored. * A buffer has already been reposted for this IO, so just free * the nvmebuf. */ rc = nvmet_fc_rcv_fcp_req(phba->targetport, &ctxp->ctx.fcp_req, payload, size); /* Process FCP command */ if (rc == 0) { ctxp->rqb_buffer = NULL; atomic_inc(&tgtp->rcv_fcp_cmd_out); nvmebuf->hrq->rqbp->rqb_free_buffer(phba, nvmebuf); return; } /* Processing of FCP command is deferred */ if (rc == -EOVERFLOW) { lpfc_nvmeio_data(phba, "NVMET RCV BUSY: xri x%x sz %d " "from %06x\n", oxid, size, sid); atomic_inc(&tgtp->rcv_fcp_cmd_out); return; } atomic_inc(&tgtp->rcv_fcp_cmd_drop); lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, "2582 FCP Drop IO x%x: err x%x: x%x x%x x%x\n", ctxp->oxid, rc, atomic_read(&tgtp->rcv_fcp_cmd_in), atomic_read(&tgtp->rcv_fcp_cmd_out), atomic_read(&tgtp->xmt_fcp_release)); lpfc_nvmet_defer_release(phba, ctxp); lpfc_nvmet_unsol_fcp_issue_abort(phba, ctxp, sid, oxid); nvmebuf->hrq->rqbp->rqb_free_buffer(phba, nvmebuf); return; } spin_unlock_irqrestore(&phba->sli4_hba.nvmet_io_wait_lock, iflag); /* * Use the CPU context list, from the MRQ the IO was received on * (ctxp->idx), to save context structure. */ cpu = smp_processor_id(); infop = lpfc_get_ctx_list(phba, cpu, ctxp->idx); spin_lock_irqsave(&infop->nvmet_ctx_list_lock, iflag); list_add_tail(&ctx_buf->list, &infop->nvmet_ctx_list); infop->nvmet_ctx_list_cnt++; spin_unlock_irqrestore(&infop->nvmet_ctx_list_lock, iflag); #endif } #ifdef CONFIG_SCSI_LPFC_DEBUG_FS static void lpfc_nvmet_ktime(struct lpfc_hba *phba, struct lpfc_nvmet_rcv_ctx *ctxp) { uint64_t seg1, seg2, seg3, seg4, seg5; uint64_t seg6, seg7, seg8, seg9, seg10; uint64_t segsum; if (!ctxp->ts_isr_cmd || !ctxp->ts_cmd_nvme || !ctxp->ts_nvme_data || !ctxp->ts_data_wqput || !ctxp->ts_isr_data || !ctxp->ts_data_nvme || !ctxp->ts_nvme_status || !ctxp->ts_status_wqput || !ctxp->ts_isr_status || !ctxp->ts_status_nvme) return; if (ctxp->ts_status_nvme < ctxp->ts_isr_cmd) return; if (ctxp->ts_isr_cmd > ctxp->ts_cmd_nvme) return; if (ctxp->ts_cmd_nvme > ctxp->ts_nvme_data) return; if (ctxp->ts_nvme_data > ctxp->ts_data_wqput) return; if (ctxp->ts_data_wqput > ctxp->ts_isr_data) return; if (ctxp->ts_isr_data > ctxp->ts_data_nvme) return; if (ctxp->ts_data_nvme > ctxp->ts_nvme_status) return; if (ctxp->ts_nvme_status > ctxp->ts_status_wqput) return; if (ctxp->ts_status_wqput > ctxp->ts_isr_status) return; if (ctxp->ts_isr_status > ctxp->ts_status_nvme) return; /* * Segment 1 - Time from FCP command received by MSI-X ISR * to FCP command is passed to NVME Layer. * Segment 2 - Time from FCP command payload handed * off to NVME Layer to Driver receives a Command op * from NVME Layer. * Segment 3 - Time from Driver receives a Command op * from NVME Layer to Command is put on WQ. * Segment 4 - Time from Driver WQ put is done * to MSI-X ISR for Command cmpl. * Segment 5 - Time from MSI-X ISR for Command cmpl to * Command cmpl is passed to NVME Layer. * Segment 6 - Time from Command cmpl is passed to NVME * Layer to Driver receives a RSP op from NVME Layer. * Segment 7 - Time from Driver receives a RSP op from * NVME Layer to WQ put is done on TRSP FCP Status. * Segment 8 - Time from Driver WQ put is done on TRSP * FCP Status to MSI-X ISR for TRSP cmpl. * Segment 9 - Time from MSI-X ISR for TRSP cmpl to * TRSP cmpl is passed to NVME Layer. * Segment 10 - Time from FCP command received by * MSI-X ISR to command is completed on wire. * (Segments 1 thru 8) for READDATA / WRITEDATA * (Segments 1 thru 4) for READDATA_RSP */ seg1 = ctxp->ts_cmd_nvme - ctxp->ts_isr_cmd; segsum = seg1; seg2 = ctxp->ts_nvme_data - ctxp->ts_isr_cmd; if (segsum > seg2) return; seg2 -= segsum; segsum += seg2; seg3 = ctxp->ts_data_wqput - ctxp->ts_isr_cmd; if (segsum > seg3) return; seg3 -= segsum; segsum += seg3; seg4 = ctxp->ts_isr_data - ctxp->ts_isr_cmd; if (segsum > seg4) return; seg4 -= segsum; segsum += seg4; seg5 = ctxp->ts_data_nvme - ctxp->ts_isr_cmd; if (segsum > seg5) return; seg5 -= segsum; segsum += seg5; /* For auto rsp commands seg6 thru seg10 will be 0 */ if (ctxp->ts_nvme_status > ctxp->ts_data_nvme) { seg6 = ctxp->ts_nvme_status - ctxp->ts_isr_cmd; if (segsum > seg6) return; seg6 -= segsum; segsum += seg6; seg7 = ctxp->ts_status_wqput - ctxp->ts_isr_cmd; if (segsum > seg7) return; seg7 -= segsum; segsum += seg7; seg8 = ctxp->ts_isr_status - ctxp->ts_isr_cmd; if (segsum > seg8) return; seg8 -= segsum; segsum += seg8; seg9 = ctxp->ts_status_nvme - ctxp->ts_isr_cmd; if (segsum > seg9) return; seg9 -= segsum; segsum += seg9; if (ctxp->ts_isr_status < ctxp->ts_isr_cmd) return; seg10 = (ctxp->ts_isr_status - ctxp->ts_isr_cmd); } else { if (ctxp->ts_isr_data < ctxp->ts_isr_cmd) return; seg6 = 0; seg7 = 0; seg8 = 0; seg9 = 0; seg10 = (ctxp->ts_isr_data - ctxp->ts_isr_cmd); } phba->ktime_seg1_total += seg1; if (seg1 < phba->ktime_seg1_min) phba->ktime_seg1_min = seg1; else if (seg1 > phba->ktime_seg1_max) phba->ktime_seg1_max = seg1; phba->ktime_seg2_total += seg2; if (seg2 < phba->ktime_seg2_min) phba->ktime_seg2_min = seg2; else if (seg2 > phba->ktime_seg2_max) phba->ktime_seg2_max = seg2; phba->ktime_seg3_total += seg3; if (seg3 < phba->ktime_seg3_min) phba->ktime_seg3_min = seg3; else if (seg3 > phba->ktime_seg3_max) phba->ktime_seg3_max = seg3; phba->ktime_seg4_total += seg4; if (seg4 < phba->ktime_seg4_min) phba->ktime_seg4_min = seg4; else if (seg4 > phba->ktime_seg4_max) phba->ktime_seg4_max = seg4; phba->ktime_seg5_total += seg5; if (seg5 < phba->ktime_seg5_min) phba->ktime_seg5_min = seg5; else if (seg5 > phba->ktime_seg5_max) phba->ktime_seg5_max = seg5; phba->ktime_data_samples++; if (!seg6) goto out; phba->ktime_seg6_total += seg6; if (seg6 < phba->ktime_seg6_min) phba->ktime_seg6_min = seg6; else if (seg6 > phba->ktime_seg6_max) phba->ktime_seg6_max = seg6; phba->ktime_seg7_total += seg7; if (seg7 < phba->ktime_seg7_min) phba->ktime_seg7_min = seg7; else if (seg7 > phba->ktime_seg7_max) phba->ktime_seg7_max = seg7; phba->ktime_seg8_total += seg8; if (seg8 < phba->ktime_seg8_min) phba->ktime_seg8_min = seg8; else if (seg8 > phba->ktime_seg8_max) phba->ktime_seg8_max = seg8; phba->ktime_seg9_total += seg9; if (seg9 < phba->ktime_seg9_min) phba->ktime_seg9_min = seg9; else if (seg9 > phba->ktime_seg9_max) phba->ktime_seg9_max = seg9; out: phba->ktime_seg10_total += seg10; if (seg10 < phba->ktime_seg10_min) phba->ktime_seg10_min = seg10; else if (seg10 > phba->ktime_seg10_max) phba->ktime_seg10_max = seg10; phba->ktime_status_samples++; } #endif /** * lpfc_nvmet_xmt_fcp_op_cmp - Completion handler for FCP Response * @phba: Pointer to HBA context object. * @cmdwqe: Pointer to driver command WQE object. * @wcqe: Pointer to driver response CQE object. * * The function is called from SLI ring event handler with no * lock held. This function is the completion handler for NVME FCP commands * The function frees memory resources used for the NVME commands. **/ static void lpfc_nvmet_xmt_fcp_op_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe, struct lpfc_wcqe_complete *wcqe) { struct lpfc_nvmet_tgtport *tgtp; struct nvmefc_tgt_fcp_req *rsp; struct lpfc_nvmet_rcv_ctx *ctxp; uint32_t status, result, op, start_clean, logerr; #ifdef CONFIG_SCSI_LPFC_DEBUG_FS uint32_t id; #endif ctxp = cmdwqe->context2; ctxp->flag &= ~LPFC_NVMET_IO_INP; rsp = &ctxp->ctx.fcp_req; op = rsp->op; status = bf_get(lpfc_wcqe_c_status, wcqe); result = wcqe->parameter; if (phba->targetport) tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; else tgtp = NULL; lpfc_nvmeio_data(phba, "NVMET FCP CMPL: xri x%x op x%x status x%x\n", ctxp->oxid, op, status); if (status) { rsp->fcp_error = NVME_SC_DATA_XFER_ERROR; rsp->transferred_length = 0; if (tgtp) { atomic_inc(&tgtp->xmt_fcp_rsp_error); if (result == IOERR_ABORT_REQUESTED) atomic_inc(&tgtp->xmt_fcp_rsp_aborted); } logerr = LOG_NVME_IOERR; /* pick up SLI4 exhange busy condition */ if (bf_get(lpfc_wcqe_c_xb, wcqe)) { ctxp->flag |= LPFC_NVMET_XBUSY; logerr |= LOG_NVME_ABTS; if (tgtp) atomic_inc(&tgtp->xmt_fcp_rsp_xb_set); } else { ctxp->flag &= ~LPFC_NVMET_XBUSY; } lpfc_printf_log(phba, KERN_INFO, logerr, "6315 IO Error Cmpl xri x%x: %x/%x XBUSY:x%x\n", ctxp->oxid, status, result, ctxp->flag); } else { rsp->fcp_error = NVME_SC_SUCCESS; if (op == NVMET_FCOP_RSP) rsp->transferred_length = rsp->rsplen; else rsp->transferred_length = rsp->transfer_length; if (tgtp) atomic_inc(&tgtp->xmt_fcp_rsp_cmpl); } if ((op == NVMET_FCOP_READDATA_RSP) || (op == NVMET_FCOP_RSP)) { /* Sanity check */ ctxp->state = LPFC_NVMET_STE_DONE; ctxp->entry_cnt++; #ifdef CONFIG_SCSI_LPFC_DEBUG_FS if (ctxp->ts_cmd_nvme) { if (rsp->op == NVMET_FCOP_READDATA_RSP) { ctxp->ts_isr_data = cmdwqe->isr_timestamp; ctxp->ts_data_nvme = ktime_get_ns(); ctxp->ts_nvme_status = ctxp->ts_data_nvme; ctxp->ts_status_wqput = ctxp->ts_data_nvme; ctxp->ts_isr_status = ctxp->ts_data_nvme; ctxp->ts_status_nvme = ctxp->ts_data_nvme; } else { ctxp->ts_isr_status = cmdwqe->isr_timestamp; ctxp->ts_status_nvme = ktime_get_ns(); } } if (phba->cpucheck_on & LPFC_CHECK_NVMET_IO) { id = smp_processor_id(); if (ctxp->cpu != id) lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, "6703 CPU Check cmpl: " "cpu %d expect %d\n", id, ctxp->cpu); if (ctxp->cpu < LPFC_CHECK_CPU_CNT) phba->cpucheck_cmpl_io[id]++; } #endif rsp->done(rsp); #ifdef CONFIG_SCSI_LPFC_DEBUG_FS if (ctxp->ts_cmd_nvme) lpfc_nvmet_ktime(phba, ctxp); #endif /* lpfc_nvmet_xmt_fcp_release() will recycle the context */ } else { ctxp->entry_cnt++; start_clean = offsetof(struct lpfc_iocbq, iocb_flag); memset(((char *)cmdwqe) + start_clean, 0, (sizeof(struct lpfc_iocbq) - start_clean)); #ifdef CONFIG_SCSI_LPFC_DEBUG_FS if (ctxp->ts_cmd_nvme) { ctxp->ts_isr_data = cmdwqe->isr_timestamp; ctxp->ts_data_nvme = ktime_get_ns(); } if (phba->cpucheck_on & LPFC_CHECK_NVMET_IO) { id = smp_processor_id(); if (ctxp->cpu != id) lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, "6704 CPU Check cmdcmpl: " "cpu %d expect %d\n", id, ctxp->cpu); if (ctxp->cpu < LPFC_CHECK_CPU_CNT) phba->cpucheck_ccmpl_io[id]++; } #endif rsp->done(rsp); } } static int lpfc_nvmet_xmt_ls_rsp(struct nvmet_fc_target_port *tgtport, struct nvmefc_tgt_ls_req *rsp) { struct lpfc_nvmet_rcv_ctx *ctxp = container_of(rsp, struct lpfc_nvmet_rcv_ctx, ctx.ls_req); struct lpfc_hba *phba = ctxp->phba; struct hbq_dmabuf *nvmebuf = (struct hbq_dmabuf *)ctxp->rqb_buffer; struct lpfc_iocbq *nvmewqeq; struct lpfc_nvmet_tgtport *nvmep = tgtport->private; struct lpfc_dmabuf dmabuf; struct ulp_bde64 bpl; int rc; if (phba->pport->load_flag & FC_UNLOADING) return -ENODEV; if (phba->pport->load_flag & FC_UNLOADING) return -ENODEV; lpfc_printf_log(phba, KERN_INFO, LOG_NVME_DISC, "6023 NVMET LS rsp oxid x%x\n", ctxp->oxid); if ((ctxp->state != LPFC_NVMET_STE_LS_RCV) || (ctxp->entry_cnt != 1)) { lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, "6412 NVMET LS rsp state mismatch " "oxid x%x: %d %d\n", ctxp->oxid, ctxp->state, ctxp->entry_cnt); } ctxp->state = LPFC_NVMET_STE_LS_RSP; ctxp->entry_cnt++; nvmewqeq = lpfc_nvmet_prep_ls_wqe(phba, ctxp, rsp->rspdma, rsp->rsplen); if (nvmewqeq == NULL) { atomic_inc(&nvmep->xmt_ls_drop); lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, "6150 LS Drop IO x%x: Prep\n", ctxp->oxid); lpfc_in_buf_free(phba, &nvmebuf->dbuf); atomic_inc(&nvmep->xmt_ls_abort); lpfc_nvmet_unsol_ls_issue_abort(phba, ctxp, ctxp->sid, ctxp->oxid); return -ENOMEM; } /* Save numBdes for bpl2sgl */ nvmewqeq->rsvd2 = 1; nvmewqeq->hba_wqidx = 0; nvmewqeq->context3 = &dmabuf; dmabuf.virt = &bpl; bpl.addrLow = nvmewqeq->wqe.xmit_sequence.bde.addrLow; bpl.addrHigh = nvmewqeq->wqe.xmit_sequence.bde.addrHigh; bpl.tus.f.bdeSize = rsp->rsplen; bpl.tus.f.bdeFlags = 0; bpl.tus.w = le32_to_cpu(bpl.tus.w); nvmewqeq->wqe_cmpl = lpfc_nvmet_xmt_ls_rsp_cmp; nvmewqeq->iocb_cmpl = NULL; nvmewqeq->context2 = ctxp; lpfc_nvmeio_data(phba, "NVMET LS RESP: xri x%x wqidx x%x len x%x\n", ctxp->oxid, nvmewqeq->hba_wqidx, rsp->rsplen); rc = lpfc_sli4_issue_wqe(phba, LPFC_ELS_RING, nvmewqeq); if (rc == WQE_SUCCESS) { /* * Okay to repost buffer here, but wait till cmpl * before freeing ctxp and iocbq. */ lpfc_in_buf_free(phba, &nvmebuf->dbuf); ctxp->rqb_buffer = 0; atomic_inc(&nvmep->xmt_ls_rsp); return 0; } /* Give back resources */ atomic_inc(&nvmep->xmt_ls_drop); lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, "6151 LS Drop IO x%x: Issue %d\n", ctxp->oxid, rc); lpfc_nlp_put(nvmewqeq->context1); lpfc_in_buf_free(phba, &nvmebuf->dbuf); atomic_inc(&nvmep->xmt_ls_abort); lpfc_nvmet_unsol_ls_issue_abort(phba, ctxp, ctxp->sid, ctxp->oxid); return -ENXIO; } static int lpfc_nvmet_xmt_fcp_op(struct nvmet_fc_target_port *tgtport, struct nvmefc_tgt_fcp_req *rsp) { struct lpfc_nvmet_tgtport *lpfc_nvmep = tgtport->private; struct lpfc_nvmet_rcv_ctx *ctxp = container_of(rsp, struct lpfc_nvmet_rcv_ctx, ctx.fcp_req); struct lpfc_hba *phba = ctxp->phba; struct lpfc_queue *wq; struct lpfc_iocbq *nvmewqeq; struct lpfc_sli_ring *pring; unsigned long iflags; int rc; if (phba->pport->load_flag & FC_UNLOADING) { rc = -ENODEV; goto aerr; } if (phba->pport->load_flag & FC_UNLOADING) { rc = -ENODEV; goto aerr; } #ifdef CONFIG_SCSI_LPFC_DEBUG_FS if (ctxp->ts_cmd_nvme) { if (rsp->op == NVMET_FCOP_RSP) ctxp->ts_nvme_status = ktime_get_ns(); else ctxp->ts_nvme_data = ktime_get_ns(); } if (phba->cpucheck_on & LPFC_CHECK_NVMET_IO) { int id = smp_processor_id(); ctxp->cpu = id; if (id < LPFC_CHECK_CPU_CNT) phba->cpucheck_xmt_io[id]++; if (rsp->hwqid != id) { lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, "6705 CPU Check OP: " "cpu %d expect %d\n", id, rsp->hwqid); ctxp->cpu = rsp->hwqid; } } #endif /* Sanity check */ if ((ctxp->flag & LPFC_NVMET_ABTS_RCV) || (ctxp->state == LPFC_NVMET_STE_ABORT)) { atomic_inc(&lpfc_nvmep->xmt_fcp_drop); lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, "6102 IO xri x%x aborted\n", ctxp->oxid); rc = -ENXIO; goto aerr; } nvmewqeq = lpfc_nvmet_prep_fcp_wqe(phba, ctxp); if (nvmewqeq == NULL) { atomic_inc(&lpfc_nvmep->xmt_fcp_drop); lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, "6152 FCP Drop IO x%x: Prep\n", ctxp->oxid); rc = -ENXIO; goto aerr; } nvmewqeq->wqe_cmpl = lpfc_nvmet_xmt_fcp_op_cmp; nvmewqeq->iocb_cmpl = NULL; nvmewqeq->context2 = ctxp; nvmewqeq->iocb_flag |= LPFC_IO_NVMET; ctxp->wqeq->hba_wqidx = rsp->hwqid; lpfc_nvmeio_data(phba, "NVMET FCP CMND: xri x%x op x%x len x%x\n", ctxp->oxid, rsp->op, rsp->rsplen); ctxp->flag |= LPFC_NVMET_IO_INP; rc = lpfc_sli4_issue_wqe(phba, LPFC_FCP_RING, nvmewqeq); if (rc == WQE_SUCCESS) { #ifdef CONFIG_SCSI_LPFC_DEBUG_FS if (!ctxp->ts_cmd_nvme) return 0; if (rsp->op == NVMET_FCOP_RSP) ctxp->ts_status_wqput = ktime_get_ns(); else ctxp->ts_data_wqput = ktime_get_ns(); #endif return 0; } if (rc == -EBUSY) { /* * WQ was full, so queue nvmewqeq to be sent after * WQE release CQE */ ctxp->flag |= LPFC_NVMET_DEFER_WQFULL; wq = phba->sli4_hba.nvme_wq[rsp->hwqid]; pring = wq->pring; spin_lock_irqsave(&pring->ring_lock, iflags); list_add_tail(&nvmewqeq->list, &wq->wqfull_list); wq->q_flag |= HBA_NVMET_WQFULL; spin_unlock_irqrestore(&pring->ring_lock, iflags); atomic_inc(&lpfc_nvmep->defer_wqfull); return 0; } /* Give back resources */ atomic_inc(&lpfc_nvmep->xmt_fcp_drop); lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, "6153 FCP Drop IO x%x: Issue: %d\n", ctxp->oxid, rc); ctxp->wqeq->hba_wqidx = 0; nvmewqeq->context2 = NULL; nvmewqeq->context3 = NULL; rc = -EBUSY; aerr: return rc; } static void lpfc_nvmet_targetport_delete(struct nvmet_fc_target_port *targetport) { struct lpfc_nvmet_tgtport *tport = targetport->private; /* release any threads waiting for the unreg to complete */ if (tport->phba->targetport) complete(tport->tport_unreg_cmp); } static void lpfc_nvmet_xmt_fcp_abort(struct nvmet_fc_target_port *tgtport, struct nvmefc_tgt_fcp_req *req) { struct lpfc_nvmet_tgtport *lpfc_nvmep = tgtport->private; struct lpfc_nvmet_rcv_ctx *ctxp = container_of(req, struct lpfc_nvmet_rcv_ctx, ctx.fcp_req); struct lpfc_hba *phba = ctxp->phba; struct lpfc_queue *wq; unsigned long flags; if (phba->pport->load_flag & FC_UNLOADING) return; if (phba->pport->load_flag & FC_UNLOADING) return; lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, "6103 NVMET Abort op: oxri x%x flg x%x ste %d\n", ctxp->oxid, ctxp->flag, ctxp->state); lpfc_nvmeio_data(phba, "NVMET FCP ABRT: xri x%x flg x%x ste x%x\n", ctxp->oxid, ctxp->flag, ctxp->state); atomic_inc(&lpfc_nvmep->xmt_fcp_abort); spin_lock_irqsave(&ctxp->ctxlock, flags); ctxp->state = LPFC_NVMET_STE_ABORT; /* Since iaab/iaar are NOT set, we need to check * if the firmware is in process of aborting IO */ if (ctxp->flag & LPFC_NVMET_XBUSY) { spin_unlock_irqrestore(&ctxp->ctxlock, flags); return; } ctxp->flag |= LPFC_NVMET_ABORT_OP; if (ctxp->flag & LPFC_NVMET_DEFER_WQFULL) { lpfc_nvmet_unsol_fcp_issue_abort(phba, ctxp, ctxp->sid, ctxp->oxid); wq = phba->sli4_hba.nvme_wq[ctxp->wqeq->hba_wqidx]; spin_unlock_irqrestore(&ctxp->ctxlock, flags); lpfc_nvmet_wqfull_flush(phba, wq, ctxp); return; } /* An state of LPFC_NVMET_STE_RCV means we have just received * the NVME command and have not started processing it. * (by issuing any IO WQEs on this exchange yet) */ if (ctxp->state == LPFC_NVMET_STE_RCV) lpfc_nvmet_unsol_fcp_issue_abort(phba, ctxp, ctxp->sid, ctxp->oxid); else lpfc_nvmet_sol_fcp_issue_abort(phba, ctxp, ctxp->sid, ctxp->oxid); spin_unlock_irqrestore(&ctxp->ctxlock, flags); } static void lpfc_nvmet_xmt_fcp_release(struct nvmet_fc_target_port *tgtport, struct nvmefc_tgt_fcp_req *rsp) { struct lpfc_nvmet_tgtport *lpfc_nvmep = tgtport->private; struct lpfc_nvmet_rcv_ctx *ctxp = container_of(rsp, struct lpfc_nvmet_rcv_ctx, ctx.fcp_req); struct lpfc_hba *phba = ctxp->phba; unsigned long flags; bool aborting = false; if (ctxp->state != LPFC_NVMET_STE_DONE && ctxp->state != LPFC_NVMET_STE_ABORT) { lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, "6413 NVMET release bad state %d %d oxid x%x\n", ctxp->state, ctxp->entry_cnt, ctxp->oxid); } spin_lock_irqsave(&ctxp->ctxlock, flags); if ((ctxp->flag & LPFC_NVMET_ABORT_OP) || (ctxp->flag & LPFC_NVMET_XBUSY)) { aborting = true; /* let the abort path do the real release */ lpfc_nvmet_defer_release(phba, ctxp); } spin_unlock_irqrestore(&ctxp->ctxlock, flags); lpfc_nvmeio_data(phba, "NVMET FCP FREE: xri x%x ste %d abt %d\n", ctxp->oxid, ctxp->state, aborting); atomic_inc(&lpfc_nvmep->xmt_fcp_release); if (aborting) return; lpfc_nvmet_ctxbuf_post(phba, ctxp->ctxbuf); } static void lpfc_nvmet_defer_rcv(struct nvmet_fc_target_port *tgtport, struct nvmefc_tgt_fcp_req *rsp) { struct lpfc_nvmet_tgtport *tgtp; struct lpfc_nvmet_rcv_ctx *ctxp = container_of(rsp, struct lpfc_nvmet_rcv_ctx, ctx.fcp_req); struct rqb_dmabuf *nvmebuf = ctxp->rqb_buffer; struct lpfc_hba *phba = ctxp->phba; lpfc_nvmeio_data(phba, "NVMET DEFERRCV: xri x%x sz %d CPU %02x\n", ctxp->oxid, ctxp->size, smp_processor_id()); if (!nvmebuf) { lpfc_printf_log(phba, KERN_INFO, LOG_NVME_IOERR, "6425 Defer rcv: no buffer xri x%x: " "flg %x ste %x\n", ctxp->oxid, ctxp->flag, ctxp->state); return; } tgtp = phba->targetport->private; if (tgtp) atomic_inc(&tgtp->rcv_fcp_cmd_defer); /* Free the nvmebuf since a new buffer already replaced it */ nvmebuf->hrq->rqbp->rqb_free_buffer(phba, nvmebuf); } static struct nvmet_fc_target_template lpfc_tgttemplate = { .targetport_delete = lpfc_nvmet_targetport_delete, .xmt_ls_rsp = lpfc_nvmet_xmt_ls_rsp, .fcp_op = lpfc_nvmet_xmt_fcp_op, .fcp_abort = lpfc_nvmet_xmt_fcp_abort, .fcp_req_release = lpfc_nvmet_xmt_fcp_release, .defer_rcv = lpfc_nvmet_defer_rcv, .max_hw_queues = 1, .max_sgl_segments = LPFC_NVMET_DEFAULT_SEGS, .max_dif_sgl_segments = LPFC_NVMET_DEFAULT_SEGS, .dma_boundary = 0xFFFFFFFF, /* optional features */ .target_features = 0, /* sizes of additional private data for data structures */ .target_priv_sz = sizeof(struct lpfc_nvmet_tgtport), }; static void __lpfc_nvmet_clean_io_for_cpu(struct lpfc_hba *phba, struct lpfc_nvmet_ctx_info *infop) { struct lpfc_nvmet_ctxbuf *ctx_buf, *next_ctx_buf; unsigned long flags; spin_lock_irqsave(&infop->nvmet_ctx_list_lock, flags); list_for_each_entry_safe(ctx_buf, next_ctx_buf, &infop->nvmet_ctx_list, list) { spin_lock(&phba->sli4_hba.abts_nvme_buf_list_lock); list_del_init(&ctx_buf->list); spin_unlock(&phba->sli4_hba.abts_nvme_buf_list_lock); __lpfc_clear_active_sglq(phba, ctx_buf->sglq->sli4_lxritag); ctx_buf->sglq->state = SGL_FREED; ctx_buf->sglq->ndlp = NULL; spin_lock(&phba->sli4_hba.sgl_list_lock); list_add_tail(&ctx_buf->sglq->list, &phba->sli4_hba.lpfc_nvmet_sgl_list); spin_unlock(&phba->sli4_hba.sgl_list_lock); lpfc_sli_release_iocbq(phba, ctx_buf->iocbq); kfree(ctx_buf->context); } spin_unlock_irqrestore(&infop->nvmet_ctx_list_lock, flags); } static void lpfc_nvmet_cleanup_io_context(struct lpfc_hba *phba) { struct lpfc_nvmet_ctx_info *infop; int i, j; /* The first context list, MRQ 0 CPU 0 */ infop = phba->sli4_hba.nvmet_ctx_info; if (!infop) return; /* Cycle the the entire CPU context list for every MRQ */ for (i = 0; i < phba->cfg_nvmet_mrq; i++) { for (j = 0; j < phba->sli4_hba.num_present_cpu; j++) { __lpfc_nvmet_clean_io_for_cpu(phba, infop); infop++; /* next */ } } kfree(phba->sli4_hba.nvmet_ctx_info); phba->sli4_hba.nvmet_ctx_info = NULL; } static int lpfc_nvmet_setup_io_context(struct lpfc_hba *phba) { struct lpfc_nvmet_ctxbuf *ctx_buf; struct lpfc_iocbq *nvmewqe; union lpfc_wqe128 *wqe; struct lpfc_nvmet_ctx_info *last_infop; struct lpfc_nvmet_ctx_info *infop; int i, j, idx; lpfc_printf_log(phba, KERN_INFO, LOG_NVME, "6403 Allocate NVMET resources for %d XRIs\n", phba->sli4_hba.nvmet_xri_cnt); phba->sli4_hba.nvmet_ctx_info = kcalloc( phba->sli4_hba.num_present_cpu * phba->cfg_nvmet_mrq, sizeof(struct lpfc_nvmet_ctx_info), GFP_KERNEL); if (!phba->sli4_hba.nvmet_ctx_info) { lpfc_printf_log(phba, KERN_ERR, LOG_INIT, "6419 Failed allocate memory for " "nvmet context lists\n"); return -ENOMEM; } /* * Assuming X CPUs in the system, and Y MRQs, allocate some * lpfc_nvmet_ctx_info structures as follows: * * cpu0/mrq0 cpu1/mrq0 ... cpuX/mrq0 * cpu0/mrq1 cpu1/mrq1 ... cpuX/mrq1 * ... * cpuX/mrqY cpuX/mrqY ... cpuX/mrqY * * Each line represents a MRQ "silo" containing an entry for * every CPU. * * MRQ X is initially assumed to be associated with CPU X, thus * contexts are initially distributed across all MRQs using * the MRQ index (N) as follows cpuN/mrqN. When contexts are * freed, the are freed to the MRQ silo based on the CPU number * of the IO completion. Thus a context that was allocated for MRQ A * whose IO completed on CPU B will be freed to cpuB/mrqA. */ infop = phba->sli4_hba.nvmet_ctx_info; for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) { for (j = 0; j < phba->cfg_nvmet_mrq; j++) { INIT_LIST_HEAD(&infop->nvmet_ctx_list); spin_lock_init(&infop->nvmet_ctx_list_lock); infop->nvmet_ctx_list_cnt = 0; infop++; } } /* * Setup the next CPU context info ptr for each MRQ. * MRQ 0 will cycle thru CPUs 0 - X separately from * MRQ 1 cycling thru CPUs 0 - X, and so on. */ for (j = 0; j < phba->cfg_nvmet_mrq; j++) { last_infop = lpfc_get_ctx_list(phba, 0, j); for (i = phba->sli4_hba.num_present_cpu - 1; i >= 0; i--) { infop = lpfc_get_ctx_list(phba, i, j); infop->nvmet_ctx_next_cpu = last_infop; last_infop = infop; } } /* For all nvmet xris, allocate resources needed to process a * received command on a per xri basis. */ idx = 0; for (i = 0; i < phba->sli4_hba.nvmet_xri_cnt; i++) { ctx_buf = kzalloc(sizeof(*ctx_buf), GFP_KERNEL); if (!ctx_buf) { lpfc_printf_log(phba, KERN_ERR, LOG_NVME, "6404 Ran out of memory for NVMET\n"); return -ENOMEM; } ctx_buf->context = kzalloc(sizeof(*ctx_buf->context), GFP_KERNEL); if (!ctx_buf->context) { kfree(ctx_buf); lpfc_printf_log(phba, KERN_ERR, LOG_NVME, "6405 Ran out of NVMET " "context memory\n"); return -ENOMEM; } ctx_buf->context->ctxbuf = ctx_buf; ctx_buf->context->state = LPFC_NVMET_STE_FREE; ctx_buf->iocbq = lpfc_sli_get_iocbq(phba); if (!ctx_buf->iocbq) { kfree(ctx_buf->context); kfree(ctx_buf); lpfc_printf_log(phba, KERN_ERR, LOG_NVME, "6406 Ran out of NVMET iocb/WQEs\n"); return -ENOMEM; } ctx_buf->iocbq->iocb_flag = LPFC_IO_NVMET; nvmewqe = ctx_buf->iocbq; wqe = &nvmewqe->wqe; /* Initialize WQE */ memset(wqe, 0, sizeof(union lpfc_wqe)); ctx_buf->iocbq->context1 = NULL; spin_lock(&phba->sli4_hba.sgl_list_lock); ctx_buf->sglq = __lpfc_sli_get_nvmet_sglq(phba, ctx_buf->iocbq); spin_unlock(&phba->sli4_hba.sgl_list_lock); if (!ctx_buf->sglq) { lpfc_sli_release_iocbq(phba, ctx_buf->iocbq); kfree(ctx_buf->context); kfree(ctx_buf); lpfc_printf_log(phba, KERN_ERR, LOG_NVME, "6407 Ran out of NVMET XRIs\n"); return -ENOMEM; } /* * Add ctx to MRQidx context list. Our initial assumption * is MRQidx will be associated with CPUidx. This association * can change on the fly. */ infop = lpfc_get_ctx_list(phba, idx, idx); spin_lock(&infop->nvmet_ctx_list_lock); list_add_tail(&ctx_buf->list, &infop->nvmet_ctx_list); infop->nvmet_ctx_list_cnt++; spin_unlock(&infop->nvmet_ctx_list_lock); /* Spread ctx structures evenly across all MRQs */ idx++; if (idx >= phba->cfg_nvmet_mrq) idx = 0; } for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) { for (j = 0; j < phba->cfg_nvmet_mrq; j++) { infop = lpfc_get_ctx_list(phba, i, j); lpfc_printf_log(phba, KERN_INFO, LOG_NVME | LOG_INIT, "6408 TOTAL NVMET ctx for CPU %d " "MRQ %d: cnt %d nextcpu %p\n", i, j, infop->nvmet_ctx_list_cnt, infop->nvmet_ctx_next_cpu); } } return 0; } int lpfc_nvmet_create_targetport(struct lpfc_hba *phba) { struct lpfc_vport *vport = phba->pport; struct lpfc_nvmet_tgtport *tgtp; struct nvmet_fc_port_info pinfo; int error; if (phba->targetport) return 0; error = lpfc_nvmet_setup_io_context(phba); if (error) return error; memset(&pinfo, 0, sizeof(struct nvmet_fc_port_info)); pinfo.node_name = wwn_to_u64(vport->fc_nodename.u.wwn); pinfo.port_name = wwn_to_u64(vport->fc_portname.u.wwn); pinfo.port_id = vport->fc_myDID; /* We need to tell the transport layer + 1 because it takes page * alignment into account. When space for the SGL is allocated we * allocate + 3, one for cmd, one for rsp and one for this alignment */ lpfc_tgttemplate.max_sgl_segments = phba->cfg_nvme_seg_cnt + 1; lpfc_tgttemplate.max_hw_queues = phba->cfg_nvme_io_channel; lpfc_tgttemplate.target_features = NVMET_FCTGTFEAT_READDATA_RSP; #if (IS_ENABLED(CONFIG_NVME_TARGET_FC)) error = nvmet_fc_register_targetport(&pinfo, &lpfc_tgttemplate, &phba->pcidev->dev, &phba->targetport); #else error = -ENOENT; #endif if (error) { lpfc_printf_log(phba, KERN_ERR, LOG_NVME_DISC, "6025 Cannot register NVME targetport x%x: " "portnm %llx nodenm %llx segs %d qs %d\n", error, pinfo.port_name, pinfo.node_name, lpfc_tgttemplate.max_sgl_segments, lpfc_tgttemplate.max_hw_queues); phba->targetport = NULL; phba->nvmet_support = 0; lpfc_nvmet_cleanup_io_context(phba); } else { tgtp = (struct lpfc_nvmet_tgtport *) phba->targetport->private; tgtp->phba = phba; lpfc_printf_log(phba, KERN_INFO, LOG_NVME_DISC, "6026 Registered NVME " "targetport: %p, private %p " "portnm %llx nodenm %llx segs %d qs %d\n", phba->targetport, tgtp, pinfo.port_name, pinfo.node_name, lpfc_tgttemplate.max_sgl_segments, lpfc_tgttemplate.max_hw_queues); atomic_set(&tgtp->rcv_ls_req_in, 0); atomic_set(&tgtp->rcv_ls_req_out, 0); atomic_set(&tgtp->rcv_ls_req_drop, 0); atomic_set(&tgtp->xmt_ls_abort, 0); atomic_set(&tgtp->xmt_ls_abort_cmpl, 0); atomic_set(&tgtp->xmt_ls_rsp, 0); atomic_set(&tgtp->xmt_ls_drop, 0); atomic_set(&tgtp->xmt_ls_rsp_error, 0); atomic_set(&tgtp->xmt_ls_rsp_xb_set, 0); atomic_set(&tgtp->xmt_ls_rsp_aborted, 0); atomic_set(&tgtp->xmt_ls_rsp_cmpl, 0); atomic_set(&tgtp->rcv_fcp_cmd_in, 0); atomic_set(&tgtp->rcv_fcp_cmd_out, 0); atomic_set(&tgtp->rcv_fcp_cmd_drop, 0); atomic_set(&tgtp->xmt_fcp_drop, 0); atomic_set(&tgtp->xmt_fcp_read_rsp, 0); atomic_set(&tgtp->xmt_fcp_read, 0); atomic_set(&tgtp->xmt_fcp_write, 0); atomic_set(&tgtp->xmt_fcp_rsp, 0); atomic_set(&tgtp->xmt_fcp_release, 0); atomic_set(&tgtp->xmt_fcp_rsp_cmpl, 0); atomic_set(&tgtp->xmt_fcp_rsp_error, 0); atomic_set(&tgtp->xmt_fcp_rsp_xb_set, 0); atomic_set(&tgtp->xmt_fcp_rsp_aborted, 0); atomic_set(&tgtp->xmt_fcp_rsp_drop, 0); atomic_set(&tgtp->xmt_fcp_xri_abort_cqe, 0); atomic_set(&tgtp->xmt_fcp_abort, 0); atomic_set(&tgtp->xmt_fcp_abort_cmpl, 0); atomic_set(&tgtp->xmt_abort_unsol, 0); atomic_set(&tgtp->xmt_abort_sol, 0); atomic_set(&tgtp->xmt_abort_rsp, 0); atomic_set(&tgtp->xmt_abort_rsp_error, 0); atomic_set(&tgtp->defer_ctx, 0); atomic_set(&tgtp->defer_fod, 0); atomic_set(&tgtp->defer_wqfull, 0); } return error; } int lpfc_nvmet_update_targetport(struct lpfc_hba *phba) { struct lpfc_vport *vport = phba->pport; if (!phba->targetport) return 0; lpfc_printf_vlog(vport, KERN_INFO, LOG_NVME, "6007 Update NVMET port %p did x%x\n", phba->targetport, vport->fc_myDID); phba->targetport->port_id = vport->fc_myDID; return 0; } /** * lpfc_sli4_nvmet_xri_aborted - Fast-path process of nvmet xri abort * @phba: pointer to lpfc hba data structure. * @axri: pointer to the nvmet xri abort wcqe structure. * * This routine is invoked by the worker thread to process a SLI4 fast-path * NVMET aborted xri. **/ void lpfc_sli4_nvmet_xri_aborted(struct lpfc_hba *phba, struct sli4_wcqe_xri_aborted *axri) { uint16_t xri = bf_get(lpfc_wcqe_xa_xri, axri); uint16_t rxid = bf_get(lpfc_wcqe_xa_remote_xid, axri); struct lpfc_nvmet_rcv_ctx *ctxp, *next_ctxp; struct lpfc_nvmet_tgtport *tgtp; struct lpfc_nodelist *ndlp; unsigned long iflag = 0; int rrq_empty = 0; bool released = false; lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, "6317 XB aborted xri x%x rxid x%x\n", xri, rxid); if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)) return; if (phba->targetport) { tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; atomic_inc(&tgtp->xmt_fcp_xri_abort_cqe); } spin_lock_irqsave(&phba->hbalock, iflag); spin_lock(&phba->sli4_hba.abts_nvme_buf_list_lock); list_for_each_entry_safe(ctxp, next_ctxp, &phba->sli4_hba.lpfc_abts_nvmet_ctx_list, list) { if (ctxp->ctxbuf->sglq->sli4_xritag != xri) continue; /* Check if we already received a free context call * and we have completed processing an abort situation. */ if (ctxp->flag & LPFC_NVMET_CTX_RLS && !(ctxp->flag & LPFC_NVMET_ABORT_OP)) { list_del(&ctxp->list); released = true; } ctxp->flag &= ~LPFC_NVMET_XBUSY; spin_unlock(&phba->sli4_hba.abts_nvme_buf_list_lock); rrq_empty = list_empty(&phba->active_rrq_list); spin_unlock_irqrestore(&phba->hbalock, iflag); ndlp = lpfc_findnode_did(phba->pport, ctxp->sid); if (ndlp && NLP_CHK_NODE_ACT(ndlp) && (ndlp->nlp_state == NLP_STE_UNMAPPED_NODE || ndlp->nlp_state == NLP_STE_MAPPED_NODE)) { lpfc_set_rrq_active(phba, ndlp, ctxp->ctxbuf->sglq->sli4_lxritag, rxid, 1); lpfc_sli4_abts_err_handler(phba, ndlp, axri); } lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, "6318 XB aborted oxid %x flg x%x (%x)\n", ctxp->oxid, ctxp->flag, released); if (released) lpfc_nvmet_ctxbuf_post(phba, ctxp->ctxbuf); if (rrq_empty) lpfc_worker_wake_up(phba); return; } spin_unlock(&phba->sli4_hba.abts_nvme_buf_list_lock); spin_unlock_irqrestore(&phba->hbalock, iflag); } int lpfc_nvmet_rcv_unsol_abort(struct lpfc_vport *vport, struct fc_frame_header *fc_hdr) { #if (IS_ENABLED(CONFIG_NVME_TARGET_FC)) struct lpfc_hba *phba = vport->phba; struct lpfc_nvmet_rcv_ctx *ctxp, *next_ctxp; struct nvmefc_tgt_fcp_req *rsp; uint16_t xri; unsigned long iflag = 0; xri = be16_to_cpu(fc_hdr->fh_ox_id); spin_lock_irqsave(&phba->hbalock, iflag); spin_lock(&phba->sli4_hba.abts_nvme_buf_list_lock); list_for_each_entry_safe(ctxp, next_ctxp, &phba->sli4_hba.lpfc_abts_nvmet_ctx_list, list) { if (ctxp->ctxbuf->sglq->sli4_xritag != xri) continue; spin_unlock(&phba->sli4_hba.abts_nvme_buf_list_lock); spin_unlock_irqrestore(&phba->hbalock, iflag); spin_lock_irqsave(&ctxp->ctxlock, iflag); ctxp->flag |= LPFC_NVMET_ABTS_RCV; spin_unlock_irqrestore(&ctxp->ctxlock, iflag); lpfc_nvmeio_data(phba, "NVMET ABTS RCV: xri x%x CPU %02x rjt %d\n", xri, smp_processor_id(), 0); lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, "6319 NVMET Rcv ABTS:acc xri x%x\n", xri); rsp = &ctxp->ctx.fcp_req; nvmet_fc_rcv_fcp_abort(phba->targetport, rsp); /* Respond with BA_ACC accordingly */ lpfc_sli4_seq_abort_rsp(vport, fc_hdr, 1); return 0; } spin_unlock(&phba->sli4_hba.abts_nvme_buf_list_lock); spin_unlock_irqrestore(&phba->hbalock, iflag); lpfc_nvmeio_data(phba, "NVMET ABTS RCV: xri x%x CPU %02x rjt %d\n", xri, smp_processor_id(), 1); lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, "6320 NVMET Rcv ABTS:rjt xri x%x\n", xri); /* Respond with BA_RJT accordingly */ lpfc_sli4_seq_abort_rsp(vport, fc_hdr, 0); #endif return 0; } static void lpfc_nvmet_wqfull_flush(struct lpfc_hba *phba, struct lpfc_queue *wq, struct lpfc_nvmet_rcv_ctx *ctxp) { struct lpfc_sli_ring *pring; struct lpfc_iocbq *nvmewqeq; struct lpfc_iocbq *next_nvmewqeq; unsigned long iflags; struct lpfc_wcqe_complete wcqe; struct lpfc_wcqe_complete *wcqep; pring = wq->pring; wcqep = &wcqe; /* Fake an ABORT error code back to cmpl routine */ memset(wcqep, 0, sizeof(struct lpfc_wcqe_complete)); bf_set(lpfc_wcqe_c_status, wcqep, IOSTAT_LOCAL_REJECT); wcqep->parameter = IOERR_ABORT_REQUESTED; spin_lock_irqsave(&pring->ring_lock, iflags); list_for_each_entry_safe(nvmewqeq, next_nvmewqeq, &wq->wqfull_list, list) { if (ctxp) { /* Checking for a specific IO to flush */ if (nvmewqeq->context2 == ctxp) { list_del(&nvmewqeq->list); spin_unlock_irqrestore(&pring->ring_lock, iflags); lpfc_nvmet_xmt_fcp_op_cmp(phba, nvmewqeq, wcqep); return; } continue; } else { /* Flush all IOs */ list_del(&nvmewqeq->list); spin_unlock_irqrestore(&pring->ring_lock, iflags); lpfc_nvmet_xmt_fcp_op_cmp(phba, nvmewqeq, wcqep); spin_lock_irqsave(&pring->ring_lock, iflags); } } if (!ctxp) wq->q_flag &= ~HBA_NVMET_WQFULL; spin_unlock_irqrestore(&pring->ring_lock, iflags); } void lpfc_nvmet_wqfull_process(struct lpfc_hba *phba, struct lpfc_queue *wq) { #if (IS_ENABLED(CONFIG_NVME_TARGET_FC)) struct lpfc_sli_ring *pring; struct lpfc_iocbq *nvmewqeq; unsigned long iflags; int rc; /* * Some WQE slots are available, so try to re-issue anything * on the WQ wqfull_list. */ pring = wq->pring; spin_lock_irqsave(&pring->ring_lock, iflags); while (!list_empty(&wq->wqfull_list)) { list_remove_head(&wq->wqfull_list, nvmewqeq, struct lpfc_iocbq, list); spin_unlock_irqrestore(&pring->ring_lock, iflags); rc = lpfc_sli4_issue_wqe(phba, LPFC_FCP_RING, nvmewqeq); spin_lock_irqsave(&pring->ring_lock, iflags); if (rc == -EBUSY) { /* WQ was full again, so put it back on the list */ list_add(&nvmewqeq->list, &wq->wqfull_list); spin_unlock_irqrestore(&pring->ring_lock, iflags); return; } } wq->q_flag &= ~HBA_NVMET_WQFULL; spin_unlock_irqrestore(&pring->ring_lock, iflags); #endif } void lpfc_nvmet_destroy_targetport(struct lpfc_hba *phba) { #if (IS_ENABLED(CONFIG_NVME_TARGET_FC)) struct lpfc_nvmet_tgtport *tgtp; struct lpfc_queue *wq; uint32_t qidx; DECLARE_COMPLETION_ONSTACK(tport_unreg_cmp); if (phba->nvmet_support == 0) return; if (phba->targetport) { tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; for (qidx = 0; qidx < phba->cfg_nvme_io_channel; qidx++) { wq = phba->sli4_hba.nvme_wq[qidx]; lpfc_nvmet_wqfull_flush(phba, wq, NULL); } tgtp->tport_unreg_cmp = &tport_unreg_cmp; nvmet_fc_unregister_targetport(phba->targetport); wait_for_completion_timeout(&tport_unreg_cmp, 5); lpfc_nvmet_cleanup_io_context(phba); } phba->targetport = NULL; #endif } /** * lpfc_nvmet_unsol_ls_buffer - Process an unsolicited event data buffer * @phba: pointer to lpfc hba data structure. * @pring: pointer to a SLI ring. * @nvmebuf: pointer to lpfc nvme command HBQ data structure. * * This routine is used for processing the WQE associated with a unsolicited * event. It first determines whether there is an existing ndlp that matches * the DID from the unsolicited WQE. If not, it will create a new one with * the DID from the unsolicited WQE. The ELS command from the unsolicited * WQE is then used to invoke the proper routine and to set up proper state * of the discovery state machine. **/ static void lpfc_nvmet_unsol_ls_buffer(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, struct hbq_dmabuf *nvmebuf) { #if (IS_ENABLED(CONFIG_NVME_TARGET_FC)) struct lpfc_nvmet_tgtport *tgtp; struct fc_frame_header *fc_hdr; struct lpfc_nvmet_rcv_ctx *ctxp; uint32_t *payload; uint32_t size, oxid, sid, rc; fc_hdr = (struct fc_frame_header *)(nvmebuf->hbuf.virt); oxid = be16_to_cpu(fc_hdr->fh_ox_id); if (!phba->targetport) { lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, "6154 LS Drop IO x%x\n", oxid); oxid = 0; size = 0; sid = 0; ctxp = NULL; goto dropit; } tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; payload = (uint32_t *)(nvmebuf->dbuf.virt); size = bf_get(lpfc_rcqe_length, &nvmebuf->cq_event.cqe.rcqe_cmpl); sid = sli4_sid_from_fc_hdr(fc_hdr); ctxp = kzalloc(sizeof(struct lpfc_nvmet_rcv_ctx), GFP_ATOMIC); if (ctxp == NULL) { atomic_inc(&tgtp->rcv_ls_req_drop); lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, "6155 LS Drop IO x%x: Alloc\n", oxid); dropit: lpfc_nvmeio_data(phba, "NVMET LS DROP: " "xri x%x sz %d from %06x\n", oxid, size, sid); lpfc_in_buf_free(phba, &nvmebuf->dbuf); return; } ctxp->phba = phba; ctxp->size = size; ctxp->oxid = oxid; ctxp->sid = sid; ctxp->wqeq = NULL; ctxp->state = LPFC_NVMET_STE_LS_RCV; ctxp->entry_cnt = 1; ctxp->rqb_buffer = (void *)nvmebuf; lpfc_nvmeio_data(phba, "NVMET LS RCV: xri x%x sz %d from %06x\n", oxid, size, sid); /* * The calling sequence should be: * nvmet_fc_rcv_ls_req -> lpfc_nvmet_xmt_ls_rsp/cmp ->_req->done * lpfc_nvmet_xmt_ls_rsp_cmp should free the allocated ctxp. */ atomic_inc(&tgtp->rcv_ls_req_in); rc = nvmet_fc_rcv_ls_req(phba->targetport, &ctxp->ctx.ls_req, payload, size); lpfc_printf_log(phba, KERN_INFO, LOG_NVME_DISC, "6037 NVMET Unsol rcv: sz %d rc %d: %08x %08x %08x " "%08x %08x %08x\n", size, rc, *payload, *(payload+1), *(payload+2), *(payload+3), *(payload+4), *(payload+5)); if (rc == 0) { atomic_inc(&tgtp->rcv_ls_req_out); return; } lpfc_nvmeio_data(phba, "NVMET LS DROP: xri x%x sz %d from %06x\n", oxid, size, sid); atomic_inc(&tgtp->rcv_ls_req_drop); lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, "6156 LS Drop IO x%x: nvmet_fc_rcv_ls_req %d\n", ctxp->oxid, rc); /* We assume a rcv'ed cmd ALWAYs fits into 1 buffer */ lpfc_in_buf_free(phba, &nvmebuf->dbuf); atomic_inc(&tgtp->xmt_ls_abort); lpfc_nvmet_unsol_ls_issue_abort(phba, ctxp, sid, oxid); #endif } static struct lpfc_nvmet_ctxbuf * lpfc_nvmet_replenish_context(struct lpfc_hba *phba, struct lpfc_nvmet_ctx_info *current_infop) { #if (IS_ENABLED(CONFIG_NVME_TARGET_FC)) struct lpfc_nvmet_ctxbuf *ctx_buf = NULL; struct lpfc_nvmet_ctx_info *get_infop; int i; /* * The current_infop for the MRQ a NVME command IU was received * on is empty. Our goal is to replenish this MRQs context * list from a another CPUs. * * First we need to pick a context list to start looking on. * nvmet_ctx_start_cpu has available context the last time * we needed to replenish this CPU where nvmet_ctx_next_cpu * is just the next sequential CPU for this MRQ. */ if (current_infop->nvmet_ctx_start_cpu) get_infop = current_infop->nvmet_ctx_start_cpu; else get_infop = current_infop->nvmet_ctx_next_cpu; for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) { if (get_infop == current_infop) { get_infop = get_infop->nvmet_ctx_next_cpu; continue; } spin_lock(&get_infop->nvmet_ctx_list_lock); /* Just take the entire context list, if there are any */ if (get_infop->nvmet_ctx_list_cnt) { list_splice_init(&get_infop->nvmet_ctx_list, ¤t_infop->nvmet_ctx_list); current_infop->nvmet_ctx_list_cnt = get_infop->nvmet_ctx_list_cnt - 1; get_infop->nvmet_ctx_list_cnt = 0; spin_unlock(&get_infop->nvmet_ctx_list_lock); current_infop->nvmet_ctx_start_cpu = get_infop; list_remove_head(¤t_infop->nvmet_ctx_list, ctx_buf, struct lpfc_nvmet_ctxbuf, list); return ctx_buf; } /* Otherwise, move on to the next CPU for this MRQ */ spin_unlock(&get_infop->nvmet_ctx_list_lock); get_infop = get_infop->nvmet_ctx_next_cpu; } #endif /* Nothing found, all contexts for the MRQ are in-flight */ return NULL; } /** * lpfc_nvmet_unsol_fcp_buffer - Process an unsolicited event data buffer * @phba: pointer to lpfc hba data structure. * @idx: relative index of MRQ vector * @nvmebuf: pointer to lpfc nvme command HBQ data structure. * * This routine is used for processing the WQE associated with a unsolicited * event. It first determines whether there is an existing ndlp that matches * the DID from the unsolicited WQE. If not, it will create a new one with * the DID from the unsolicited WQE. The ELS command from the unsolicited * WQE is then used to invoke the proper routine and to set up proper state * of the discovery state machine. **/ static void lpfc_nvmet_unsol_fcp_buffer(struct lpfc_hba *phba, uint32_t idx, struct rqb_dmabuf *nvmebuf, uint64_t isr_timestamp) { struct lpfc_nvmet_rcv_ctx *ctxp; struct lpfc_nvmet_tgtport *tgtp; struct fc_frame_header *fc_hdr; struct lpfc_nvmet_ctxbuf *ctx_buf; struct lpfc_nvmet_ctx_info *current_infop; uint32_t *payload; uint32_t size, oxid, sid, rc, qno; unsigned long iflag; int current_cpu; #ifdef CONFIG_SCSI_LPFC_DEBUG_FS uint32_t id; #endif if (!IS_ENABLED(CONFIG_NVME_TARGET_FC)) return; ctx_buf = NULL; if (!nvmebuf || !phba->targetport) { lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, "6157 NVMET FCP Drop IO\n"); oxid = 0; size = 0; sid = 0; ctxp = NULL; goto dropit; } /* * Get a pointer to the context list for this MRQ based on * the CPU this MRQ IRQ is associated with. If the CPU association * changes from our initial assumption, the context list could * be empty, thus it would need to be replenished with the * context list from another CPU for this MRQ. */ current_cpu = smp_processor_id(); current_infop = lpfc_get_ctx_list(phba, current_cpu, idx); spin_lock_irqsave(¤t_infop->nvmet_ctx_list_lock, iflag); if (current_infop->nvmet_ctx_list_cnt) { list_remove_head(¤t_infop->nvmet_ctx_list, ctx_buf, struct lpfc_nvmet_ctxbuf, list); current_infop->nvmet_ctx_list_cnt--; } else { ctx_buf = lpfc_nvmet_replenish_context(phba, current_infop); } spin_unlock_irqrestore(¤t_infop->nvmet_ctx_list_lock, iflag); fc_hdr = (struct fc_frame_header *)(nvmebuf->hbuf.virt); oxid = be16_to_cpu(fc_hdr->fh_ox_id); size = nvmebuf->bytes_recv; #ifdef CONFIG_SCSI_LPFC_DEBUG_FS if (phba->cpucheck_on & LPFC_CHECK_NVMET_RCV) { id = smp_processor_id(); if (id < LPFC_CHECK_CPU_CNT) phba->cpucheck_rcv_io[id]++; } #endif lpfc_nvmeio_data(phba, "NVMET FCP RCV: xri x%x sz %d CPU %02x\n", oxid, size, smp_processor_id()); tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; if (!ctx_buf) { /* Queue this NVME IO to process later */ spin_lock_irqsave(&phba->sli4_hba.nvmet_io_wait_lock, iflag); list_add_tail(&nvmebuf->hbuf.list, &phba->sli4_hba.lpfc_nvmet_io_wait_list); phba->sli4_hba.nvmet_io_wait_cnt++; phba->sli4_hba.nvmet_io_wait_total++; spin_unlock_irqrestore(&phba->sli4_hba.nvmet_io_wait_lock, iflag); /* Post a brand new DMA buffer to RQ */ qno = nvmebuf->idx; lpfc_post_rq_buffer( phba, phba->sli4_hba.nvmet_mrq_hdr[qno], phba->sli4_hba.nvmet_mrq_data[qno], 1, qno); atomic_inc(&tgtp->defer_ctx); return; } payload = (uint32_t *)(nvmebuf->dbuf.virt); sid = sli4_sid_from_fc_hdr(fc_hdr); ctxp = (struct lpfc_nvmet_rcv_ctx *)ctx_buf->context; if (ctxp->state != LPFC_NVMET_STE_FREE) { lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, "6414 NVMET Context corrupt %d %d oxid x%x\n", ctxp->state, ctxp->entry_cnt, ctxp->oxid); } ctxp->wqeq = NULL; ctxp->txrdy = NULL; ctxp->offset = 0; ctxp->phba = phba; ctxp->size = size; ctxp->oxid = oxid; ctxp->sid = sid; ctxp->idx = idx; ctxp->state = LPFC_NVMET_STE_RCV; ctxp->entry_cnt = 1; ctxp->flag = 0; ctxp->ctxbuf = ctx_buf; ctxp->rqb_buffer = (void *)nvmebuf; spin_lock_init(&ctxp->ctxlock); #ifdef CONFIG_SCSI_LPFC_DEBUG_FS if (isr_timestamp) { ctxp->ts_isr_cmd = isr_timestamp; ctxp->ts_cmd_nvme = ktime_get_ns(); ctxp->ts_nvme_data = 0; ctxp->ts_data_wqput = 0; ctxp->ts_isr_data = 0; ctxp->ts_data_nvme = 0; ctxp->ts_nvme_status = 0; ctxp->ts_status_wqput = 0; ctxp->ts_isr_status = 0; ctxp->ts_status_nvme = 0; } else { ctxp->ts_cmd_nvme = 0; } #endif atomic_inc(&tgtp->rcv_fcp_cmd_in); /* * The calling sequence should be: * nvmet_fc_rcv_fcp_req -> lpfc_nvmet_xmt_fcp_op/cmp -> req->done * lpfc_nvmet_xmt_fcp_op_cmp should free the allocated ctxp. * When we return from nvmet_fc_rcv_fcp_req, all relevant info in * the NVME command / FC header is stored, so we are free to repost * the buffer. */ rc = nvmet_fc_rcv_fcp_req(phba->targetport, &ctxp->ctx.fcp_req, payload, size); /* Process FCP command */ if (rc == 0) { ctxp->rqb_buffer = NULL; atomic_inc(&tgtp->rcv_fcp_cmd_out); lpfc_rq_buf_free(phba, &nvmebuf->hbuf); /* repost */ return; } /* Processing of FCP command is deferred */ if (rc == -EOVERFLOW) { /* * Post a brand new DMA buffer to RQ and defer * freeing rcv buffer till .defer_rcv callback */ qno = nvmebuf->idx; lpfc_post_rq_buffer( phba, phba->sli4_hba.nvmet_mrq_hdr[qno], phba->sli4_hba.nvmet_mrq_data[qno], 1, qno); lpfc_nvmeio_data(phba, "NVMET RCV BUSY: xri x%x sz %d from %06x\n", oxid, size, sid); atomic_inc(&tgtp->rcv_fcp_cmd_out); atomic_inc(&tgtp->defer_fod); return; } ctxp->rqb_buffer = nvmebuf; atomic_inc(&tgtp->rcv_fcp_cmd_drop); lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, "6159 FCP Drop IO x%x: err x%x: x%x x%x x%x\n", ctxp->oxid, rc, atomic_read(&tgtp->rcv_fcp_cmd_in), atomic_read(&tgtp->rcv_fcp_cmd_out), atomic_read(&tgtp->xmt_fcp_release)); dropit: lpfc_nvmeio_data(phba, "NVMET FCP DROP: xri x%x sz %d from %06x\n", oxid, size, sid); if (oxid) { lpfc_nvmet_defer_release(phba, ctxp); lpfc_nvmet_unsol_fcp_issue_abort(phba, ctxp, sid, oxid); lpfc_rq_buf_free(phba, &nvmebuf->hbuf); /* repost */ return; } if (ctx_buf) lpfc_nvmet_ctxbuf_post(phba, ctx_buf); if (nvmebuf) lpfc_rq_buf_free(phba, &nvmebuf->hbuf); /* repost */ } /** * lpfc_nvmet_unsol_ls_event - Process an unsolicited event from an nvme nport * @phba: pointer to lpfc hba data structure. * @pring: pointer to a SLI ring. * @nvmebuf: pointer to received nvme data structure. * * This routine is used to process an unsolicited event received from a SLI * (Service Level Interface) ring. The actual processing of the data buffer * associated with the unsolicited event is done by invoking the routine * lpfc_nvmet_unsol_ls_buffer() after properly set up the buffer from the * SLI RQ on which the unsolicited event was received. **/ void lpfc_nvmet_unsol_ls_event(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, struct lpfc_iocbq *piocb) { struct lpfc_dmabuf *d_buf; struct hbq_dmabuf *nvmebuf; d_buf = piocb->context2; nvmebuf = container_of(d_buf, struct hbq_dmabuf, dbuf); if (phba->nvmet_support == 0) { lpfc_in_buf_free(phba, &nvmebuf->dbuf); return; } lpfc_nvmet_unsol_ls_buffer(phba, pring, nvmebuf); } /** * lpfc_nvmet_unsol_fcp_event - Process an unsolicited event from an nvme nport * @phba: pointer to lpfc hba data structure. * @idx: relative index of MRQ vector * @nvmebuf: pointer to received nvme data structure. * * This routine is used to process an unsolicited event received from a SLI * (Service Level Interface) ring. The actual processing of the data buffer * associated with the unsolicited event is done by invoking the routine * lpfc_nvmet_unsol_fcp_buffer() after properly set up the buffer from the * SLI RQ on which the unsolicited event was received. **/ void lpfc_nvmet_unsol_fcp_event(struct lpfc_hba *phba, uint32_t idx, struct rqb_dmabuf *nvmebuf, uint64_t isr_timestamp) { if (phba->nvmet_support == 0) { lpfc_rq_buf_free(phba, &nvmebuf->hbuf); return; } lpfc_nvmet_unsol_fcp_buffer(phba, idx, nvmebuf, isr_timestamp); } /** * lpfc_nvmet_prep_ls_wqe - Allocate and prepare a lpfc wqe data structure * @phba: pointer to a host N_Port data structure. * @ctxp: Context info for NVME LS Request * @rspbuf: DMA buffer of NVME command. * @rspsize: size of the NVME command. * * This routine is used for allocating a lpfc-WQE data structure from * the driver lpfc-WQE free-list and prepare the WQE with the parameters * passed into the routine for discovery state machine to issue an Extended * Link Service (NVME) commands. It is a generic lpfc-WQE allocation * and preparation routine that is used by all the discovery state machine * routines and the NVME command-specific fields will be later set up by * the individual discovery machine routines after calling this routine * allocating and preparing a generic WQE data structure. It fills in the * Buffer Descriptor Entries (BDEs), allocates buffers for both command * payload and response payload (if expected). The reference count on the * ndlp is incremented by 1 and the reference to the ndlp is put into * context1 of the WQE data structure for this WQE to hold the ndlp * reference for the command's callback function to access later. * * Return code * Pointer to the newly allocated/prepared nvme wqe data structure * NULL - when nvme wqe data structure allocation/preparation failed **/ static struct lpfc_iocbq * lpfc_nvmet_prep_ls_wqe(struct lpfc_hba *phba, struct lpfc_nvmet_rcv_ctx *ctxp, dma_addr_t rspbuf, uint16_t rspsize) { struct lpfc_nodelist *ndlp; struct lpfc_iocbq *nvmewqe; union lpfc_wqe128 *wqe; if (!lpfc_is_link_up(phba)) { lpfc_printf_log(phba, KERN_ERR, LOG_NVME_DISC, "6104 NVMET prep LS wqe: link err: " "NPORT x%x oxid:x%x ste %d\n", ctxp->sid, ctxp->oxid, ctxp->state); return NULL; } /* Allocate buffer for command wqe */ nvmewqe = lpfc_sli_get_iocbq(phba); if (nvmewqe == NULL) { lpfc_printf_log(phba, KERN_ERR, LOG_NVME_DISC, "6105 NVMET prep LS wqe: No WQE: " "NPORT x%x oxid x%x ste %d\n", ctxp->sid, ctxp->oxid, ctxp->state); return NULL; } ndlp = lpfc_findnode_did(phba->pport, ctxp->sid); if (!ndlp || !NLP_CHK_NODE_ACT(ndlp) || ((ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) && (ndlp->nlp_state != NLP_STE_MAPPED_NODE))) { lpfc_printf_log(phba, KERN_ERR, LOG_NVME_DISC, "6106 NVMET prep LS wqe: No ndlp: " "NPORT x%x oxid x%x ste %d\n", ctxp->sid, ctxp->oxid, ctxp->state); goto nvme_wqe_free_wqeq_exit; } ctxp->wqeq = nvmewqe; /* prevent preparing wqe with NULL ndlp reference */ nvmewqe->context1 = lpfc_nlp_get(ndlp); if (nvmewqe->context1 == NULL) goto nvme_wqe_free_wqeq_exit; nvmewqe->context2 = ctxp; wqe = &nvmewqe->wqe; memset(wqe, 0, sizeof(union lpfc_wqe)); /* Words 0 - 2 */ wqe->xmit_sequence.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64; wqe->xmit_sequence.bde.tus.f.bdeSize = rspsize; wqe->xmit_sequence.bde.addrLow = le32_to_cpu(putPaddrLow(rspbuf)); wqe->xmit_sequence.bde.addrHigh = le32_to_cpu(putPaddrHigh(rspbuf)); /* Word 3 */ /* Word 4 */ /* Word 5 */ bf_set(wqe_dfctl, &wqe->xmit_sequence.wge_ctl, 0); bf_set(wqe_ls, &wqe->xmit_sequence.wge_ctl, 1); bf_set(wqe_la, &wqe->xmit_sequence.wge_ctl, 0); bf_set(wqe_rctl, &wqe->xmit_sequence.wge_ctl, FC_RCTL_ELS4_REP); bf_set(wqe_type, &wqe->xmit_sequence.wge_ctl, FC_TYPE_NVME); /* Word 6 */ bf_set(wqe_ctxt_tag, &wqe->xmit_sequence.wqe_com, phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); bf_set(wqe_xri_tag, &wqe->xmit_sequence.wqe_com, nvmewqe->sli4_xritag); /* Word 7 */ bf_set(wqe_cmnd, &wqe->xmit_sequence.wqe_com, CMD_XMIT_SEQUENCE64_WQE); bf_set(wqe_ct, &wqe->xmit_sequence.wqe_com, SLI4_CT_RPI); bf_set(wqe_class, &wqe->xmit_sequence.wqe_com, CLASS3); bf_set(wqe_pu, &wqe->xmit_sequence.wqe_com, 0); /* Word 8 */ wqe->xmit_sequence.wqe_com.abort_tag = nvmewqe->iotag; /* Word 9 */ bf_set(wqe_reqtag, &wqe->xmit_sequence.wqe_com, nvmewqe->iotag); /* Needs to be set by caller */ bf_set(wqe_rcvoxid, &wqe->xmit_sequence.wqe_com, ctxp->oxid); /* Word 10 */ bf_set(wqe_dbde, &wqe->xmit_sequence.wqe_com, 1); bf_set(wqe_iod, &wqe->xmit_sequence.wqe_com, LPFC_WQE_IOD_WRITE); bf_set(wqe_lenloc, &wqe->xmit_sequence.wqe_com, LPFC_WQE_LENLOC_WORD12); bf_set(wqe_ebde_cnt, &wqe->xmit_sequence.wqe_com, 0); /* Word 11 */ bf_set(wqe_cqid, &wqe->xmit_sequence.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); bf_set(wqe_cmd_type, &wqe->xmit_sequence.wqe_com, OTHER_COMMAND); /* Word 12 */ wqe->xmit_sequence.xmit_len = rspsize; nvmewqe->retry = 1; nvmewqe->vport = phba->pport; nvmewqe->drvrTimeout = (phba->fc_ratov * 3) + LPFC_DRVR_TIMEOUT; nvmewqe->iocb_flag |= LPFC_IO_NVME_LS; /* Xmit NVMET response to remote NPORT <did> */ lpfc_printf_log(phba, KERN_INFO, LOG_NVME_DISC, "6039 Xmit NVMET LS response to remote " "NPORT x%x iotag:x%x oxid:x%x size:x%x\n", ndlp->nlp_DID, nvmewqe->iotag, ctxp->oxid, rspsize); return nvmewqe; nvme_wqe_free_wqeq_exit: nvmewqe->context2 = NULL; nvmewqe->context3 = NULL; lpfc_sli_release_iocbq(phba, nvmewqe); return NULL; } static struct lpfc_iocbq * lpfc_nvmet_prep_fcp_wqe(struct lpfc_hba *phba, struct lpfc_nvmet_rcv_ctx *ctxp) { struct nvmefc_tgt_fcp_req *rsp = &ctxp->ctx.fcp_req; struct lpfc_nvmet_tgtport *tgtp; struct sli4_sge *sgl; struct lpfc_nodelist *ndlp; struct lpfc_iocbq *nvmewqe; struct scatterlist *sgel; union lpfc_wqe128 *wqe; struct ulp_bde64 *bde; uint32_t *txrdy; dma_addr_t physaddr; int i, cnt; int do_pbde; int xc = 1; if (!lpfc_is_link_up(phba)) { lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, "6107 NVMET prep FCP wqe: link err:" "NPORT x%x oxid x%x ste %d\n", ctxp->sid, ctxp->oxid, ctxp->state); return NULL; } ndlp = lpfc_findnode_did(phba->pport, ctxp->sid); if (!ndlp || !NLP_CHK_NODE_ACT(ndlp) || ((ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) && (ndlp->nlp_state != NLP_STE_MAPPED_NODE))) { lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, "6108 NVMET prep FCP wqe: no ndlp: " "NPORT x%x oxid x%x ste %d\n", ctxp->sid, ctxp->oxid, ctxp->state); return NULL; } if (rsp->sg_cnt > lpfc_tgttemplate.max_sgl_segments) { lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, "6109 NVMET prep FCP wqe: seg cnt err: " "NPORT x%x oxid x%x ste %d cnt %d\n", ctxp->sid, ctxp->oxid, ctxp->state, phba->cfg_nvme_seg_cnt); return NULL; } tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; nvmewqe = ctxp->wqeq; if (nvmewqe == NULL) { /* Allocate buffer for command wqe */ nvmewqe = ctxp->ctxbuf->iocbq; if (nvmewqe == NULL) { lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, "6110 NVMET prep FCP wqe: No " "WQE: NPORT x%x oxid x%x ste %d\n", ctxp->sid, ctxp->oxid, ctxp->state); return NULL; } ctxp->wqeq = nvmewqe; xc = 0; /* create new XRI */ nvmewqe->sli4_lxritag = NO_XRI; nvmewqe->sli4_xritag = NO_XRI; } /* Sanity check */ if (((ctxp->state == LPFC_NVMET_STE_RCV) && (ctxp->entry_cnt == 1)) || (ctxp->state == LPFC_NVMET_STE_DATA)) { wqe = &nvmewqe->wqe; } else { lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, "6111 Wrong state NVMET FCP: %d cnt %d\n", ctxp->state, ctxp->entry_cnt); return NULL; } sgl = (struct sli4_sge *)ctxp->ctxbuf->sglq->sgl; switch (rsp->op) { case NVMET_FCOP_READDATA: case NVMET_FCOP_READDATA_RSP: /* From the tsend template, initialize words 7 - 11 */ memcpy(&wqe->words[7], &lpfc_tsend_cmd_template.words[7], sizeof(uint32_t) * 5); /* Words 0 - 2 : The first sg segment */ sgel = &rsp->sg[0]; physaddr = sg_dma_address(sgel); wqe->fcp_tsend.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64; wqe->fcp_tsend.bde.tus.f.bdeSize = sg_dma_len(sgel); wqe->fcp_tsend.bde.addrLow = cpu_to_le32(putPaddrLow(physaddr)); wqe->fcp_tsend.bde.addrHigh = cpu_to_le32(putPaddrHigh(physaddr)); /* Word 3 */ wqe->fcp_tsend.payload_offset_len = 0; /* Word 4 */ wqe->fcp_tsend.relative_offset = ctxp->offset; /* Word 5 */ wqe->fcp_tsend.reserved = 0; /* Word 6 */ bf_set(wqe_ctxt_tag, &wqe->fcp_tsend.wqe_com, phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); bf_set(wqe_xri_tag, &wqe->fcp_tsend.wqe_com, nvmewqe->sli4_xritag); /* Word 7 - set ar later */ /* Word 8 */ wqe->fcp_tsend.wqe_com.abort_tag = nvmewqe->iotag; /* Word 9 */ bf_set(wqe_reqtag, &wqe->fcp_tsend.wqe_com, nvmewqe->iotag); bf_set(wqe_rcvoxid, &wqe->fcp_tsend.wqe_com, ctxp->oxid); /* Word 10 - set wqes later, in template xc=1 */ if (!xc) bf_set(wqe_xc, &wqe->fcp_tsend.wqe_com, 0); /* Word 11 - set sup, irsp, irsplen later */ do_pbde = 0; /* Word 12 */ wqe->fcp_tsend.fcp_data_len = rsp->transfer_length; /* Setup 2 SKIP SGEs */ sgl->addr_hi = 0; sgl->addr_lo = 0; sgl->word2 = 0; bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_SKIP); sgl->word2 = cpu_to_le32(sgl->word2); sgl->sge_len = 0; sgl++; sgl->addr_hi = 0; sgl->addr_lo = 0; sgl->word2 = 0; bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_SKIP); sgl->word2 = cpu_to_le32(sgl->word2); sgl->sge_len = 0; sgl++; if (rsp->op == NVMET_FCOP_READDATA_RSP) { atomic_inc(&tgtp->xmt_fcp_read_rsp); /* In template ar=1 wqes=0 sup=0 irsp=0 irsplen=0 */ if (rsp->rsplen == LPFC_NVMET_SUCCESS_LEN) { if (ndlp->nlp_flag & NLP_SUPPRESS_RSP) bf_set(wqe_sup, &wqe->fcp_tsend.wqe_com, 1); } else { bf_set(wqe_wqes, &wqe->fcp_tsend.wqe_com, 1); bf_set(wqe_irsp, &wqe->fcp_tsend.wqe_com, 1); bf_set(wqe_irsplen, &wqe->fcp_tsend.wqe_com, ((rsp->rsplen >> 2) - 1)); memcpy(&wqe->words[16], rsp->rspaddr, rsp->rsplen); } } else { atomic_inc(&tgtp->xmt_fcp_read); /* In template ar=1 wqes=0 sup=0 irsp=0 irsplen=0 */ bf_set(wqe_ar, &wqe->fcp_tsend.wqe_com, 0); } break; case NVMET_FCOP_WRITEDATA: /* From the treceive template, initialize words 3 - 11 */ memcpy(&wqe->words[3], &lpfc_treceive_cmd_template.words[3], sizeof(uint32_t) * 9); /* Words 0 - 2 : The first sg segment */ txrdy = dma_pool_alloc(phba->txrdy_payload_pool, GFP_KERNEL, &physaddr); if (!txrdy) { lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, "6041 Bad txrdy buffer: oxid x%x\n", ctxp->oxid); return NULL; } ctxp->txrdy = txrdy; ctxp->txrdy_phys = physaddr; wqe->fcp_treceive.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64; wqe->fcp_treceive.bde.tus.f.bdeSize = TXRDY_PAYLOAD_LEN; wqe->fcp_treceive.bde.addrLow = cpu_to_le32(putPaddrLow(physaddr)); wqe->fcp_treceive.bde.addrHigh = cpu_to_le32(putPaddrHigh(physaddr)); /* Word 4 */ wqe->fcp_treceive.relative_offset = ctxp->offset; /* Word 6 */ bf_set(wqe_ctxt_tag, &wqe->fcp_treceive.wqe_com, phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); bf_set(wqe_xri_tag, &wqe->fcp_treceive.wqe_com, nvmewqe->sli4_xritag); /* Word 7 */ /* Word 8 */ wqe->fcp_treceive.wqe_com.abort_tag = nvmewqe->iotag; /* Word 9 */ bf_set(wqe_reqtag, &wqe->fcp_treceive.wqe_com, nvmewqe->iotag); bf_set(wqe_rcvoxid, &wqe->fcp_treceive.wqe_com, ctxp->oxid); /* Word 10 - in template xc=1 */ if (!xc) bf_set(wqe_xc, &wqe->fcp_treceive.wqe_com, 0); /* Word 11 - set pbde later */ if (phba->cfg_enable_pbde) { do_pbde = 1; } else { bf_set(wqe_pbde, &wqe->fcp_treceive.wqe_com, 0); do_pbde = 0; } /* Word 12 */ wqe->fcp_tsend.fcp_data_len = rsp->transfer_length; /* Setup 1 TXRDY and 1 SKIP SGE */ txrdy[0] = 0; txrdy[1] = cpu_to_be32(rsp->transfer_length); txrdy[2] = 0; sgl->addr_hi = putPaddrHigh(physaddr); sgl->addr_lo = putPaddrLow(physaddr); sgl->word2 = 0; bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_DATA); sgl->word2 = cpu_to_le32(sgl->word2); sgl->sge_len = cpu_to_le32(TXRDY_PAYLOAD_LEN); sgl++; sgl->addr_hi = 0; sgl->addr_lo = 0; sgl->word2 = 0; bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_SKIP); sgl->word2 = cpu_to_le32(sgl->word2); sgl->sge_len = 0; sgl++; atomic_inc(&tgtp->xmt_fcp_write); break; case NVMET_FCOP_RSP: /* From the treceive template, initialize words 4 - 11 */ memcpy(&wqe->words[4], &lpfc_trsp_cmd_template.words[4], sizeof(uint32_t) * 8); /* Words 0 - 2 */ physaddr = rsp->rspdma; wqe->fcp_trsp.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64; wqe->fcp_trsp.bde.tus.f.bdeSize = rsp->rsplen; wqe->fcp_trsp.bde.addrLow = cpu_to_le32(putPaddrLow(physaddr)); wqe->fcp_trsp.bde.addrHigh = cpu_to_le32(putPaddrHigh(physaddr)); /* Word 3 */ wqe->fcp_trsp.response_len = rsp->rsplen; /* Word 6 */ bf_set(wqe_ctxt_tag, &wqe->fcp_trsp.wqe_com, phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); bf_set(wqe_xri_tag, &wqe->fcp_trsp.wqe_com, nvmewqe->sli4_xritag); /* Word 7 */ /* Word 8 */ wqe->fcp_trsp.wqe_com.abort_tag = nvmewqe->iotag; /* Word 9 */ bf_set(wqe_reqtag, &wqe->fcp_trsp.wqe_com, nvmewqe->iotag); bf_set(wqe_rcvoxid, &wqe->fcp_trsp.wqe_com, ctxp->oxid); /* Word 10 */ if (xc) bf_set(wqe_xc, &wqe->fcp_trsp.wqe_com, 1); /* Word 11 */ /* In template wqes=0 irsp=0 irsplen=0 - good response */ if (rsp->rsplen != LPFC_NVMET_SUCCESS_LEN) { /* Bad response - embed it */ bf_set(wqe_wqes, &wqe->fcp_trsp.wqe_com, 1); bf_set(wqe_irsp, &wqe->fcp_trsp.wqe_com, 1); bf_set(wqe_irsplen, &wqe->fcp_trsp.wqe_com, ((rsp->rsplen >> 2) - 1)); memcpy(&wqe->words[16], rsp->rspaddr, rsp->rsplen); } do_pbde = 0; /* Word 12 */ wqe->fcp_trsp.rsvd_12_15[0] = 0; /* Use rspbuf, NOT sg list */ rsp->sg_cnt = 0; sgl->word2 = 0; atomic_inc(&tgtp->xmt_fcp_rsp); break; default: lpfc_printf_log(phba, KERN_INFO, LOG_NVME_IOERR, "6064 Unknown Rsp Op %d\n", rsp->op); return NULL; } nvmewqe->retry = 1; nvmewqe->vport = phba->pport; nvmewqe->drvrTimeout = (phba->fc_ratov * 3) + LPFC_DRVR_TIMEOUT; nvmewqe->context1 = ndlp; for (i = 0; i < rsp->sg_cnt; i++) { sgel = &rsp->sg[i]; physaddr = sg_dma_address(sgel); cnt = sg_dma_len(sgel); sgl->addr_hi = putPaddrHigh(physaddr); sgl->addr_lo = putPaddrLow(physaddr); sgl->word2 = 0; bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_DATA); bf_set(lpfc_sli4_sge_offset, sgl, ctxp->offset); if ((i+1) == rsp->sg_cnt) bf_set(lpfc_sli4_sge_last, sgl, 1); sgl->word2 = cpu_to_le32(sgl->word2); sgl->sge_len = cpu_to_le32(cnt); if (i == 0) { bde = (struct ulp_bde64 *)&wqe->words[13]; if (do_pbde) { /* Words 13-15 (PBDE) */ bde->addrLow = sgl->addr_lo; bde->addrHigh = sgl->addr_hi; bde->tus.f.bdeSize = le32_to_cpu(sgl->sge_len); bde->tus.f.bdeFlags = BUFF_TYPE_BDE_64; bde->tus.w = cpu_to_le32(bde->tus.w); } else { memset(bde, 0, sizeof(struct ulp_bde64)); } } sgl++; ctxp->offset += cnt; } ctxp->state = LPFC_NVMET_STE_DATA; ctxp->entry_cnt++; return nvmewqe; } /** * lpfc_nvmet_sol_fcp_abort_cmp - Completion handler for ABTS * @phba: Pointer to HBA context object. * @cmdwqe: Pointer to driver command WQE object. * @wcqe: Pointer to driver response CQE object. * * The function is called from SLI ring event handler with no * lock held. This function is the completion handler for NVME ABTS for FCP cmds * The function frees memory resources used for the NVME commands. **/ static void lpfc_nvmet_sol_fcp_abort_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe, struct lpfc_wcqe_complete *wcqe) { struct lpfc_nvmet_rcv_ctx *ctxp; struct lpfc_nvmet_tgtport *tgtp; uint32_t status, result; unsigned long flags; bool released = false; ctxp = cmdwqe->context2; status = bf_get(lpfc_wcqe_c_status, wcqe); result = wcqe->parameter; tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; if (ctxp->flag & LPFC_NVMET_ABORT_OP) atomic_inc(&tgtp->xmt_fcp_abort_cmpl); ctxp->state = LPFC_NVMET_STE_DONE; /* Check if we already received a free context call * and we have completed processing an abort situation. */ spin_lock_irqsave(&ctxp->ctxlock, flags); if ((ctxp->flag & LPFC_NVMET_CTX_RLS) && !(ctxp->flag & LPFC_NVMET_XBUSY)) { list_del(&ctxp->list); released = true; } ctxp->flag &= ~LPFC_NVMET_ABORT_OP; spin_unlock_irqrestore(&ctxp->ctxlock, flags); atomic_inc(&tgtp->xmt_abort_rsp); lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, "6165 ABORT cmpl: xri x%x flg x%x (%d) " "WCQE: %08x %08x %08x %08x\n", ctxp->oxid, ctxp->flag, released, wcqe->word0, wcqe->total_data_placed, result, wcqe->word3); cmdwqe->context2 = NULL; cmdwqe->context3 = NULL; /* * if transport has released ctx, then can reuse it. Otherwise, * will be recycled by transport release call. */ if (released) lpfc_nvmet_ctxbuf_post(phba, ctxp->ctxbuf); /* This is the iocbq for the abort, not the command */ lpfc_sli_release_iocbq(phba, cmdwqe); /* Since iaab/iaar are NOT set, there is no work left. * For LPFC_NVMET_XBUSY, lpfc_sli4_nvmet_xri_aborted * should have been called already. */ } /** * lpfc_nvmet_unsol_fcp_abort_cmp - Completion handler for ABTS * @phba: Pointer to HBA context object. * @cmdwqe: Pointer to driver command WQE object. * @wcqe: Pointer to driver response CQE object. * * The function is called from SLI ring event handler with no * lock held. This function is the completion handler for NVME ABTS for FCP cmds * The function frees memory resources used for the NVME commands. **/ static void lpfc_nvmet_unsol_fcp_abort_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe, struct lpfc_wcqe_complete *wcqe) { struct lpfc_nvmet_rcv_ctx *ctxp; struct lpfc_nvmet_tgtport *tgtp; unsigned long flags; uint32_t status, result; bool released = false; ctxp = cmdwqe->context2; status = bf_get(lpfc_wcqe_c_status, wcqe); result = wcqe->parameter; if (!ctxp) { /* if context is clear, related io alrady complete */ lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, "6070 ABTS cmpl: WCQE: %08x %08x %08x %08x\n", wcqe->word0, wcqe->total_data_placed, result, wcqe->word3); return; } tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; if (ctxp->flag & LPFC_NVMET_ABORT_OP) atomic_inc(&tgtp->xmt_fcp_abort_cmpl); /* Sanity check */ if (ctxp->state != LPFC_NVMET_STE_ABORT) { lpfc_printf_log(phba, KERN_ERR, LOG_NVME_ABTS, "6112 ABTS Wrong state:%d oxid x%x\n", ctxp->state, ctxp->oxid); } /* Check if we already received a free context call * and we have completed processing an abort situation. */ ctxp->state = LPFC_NVMET_STE_DONE; spin_lock_irqsave(&ctxp->ctxlock, flags); if ((ctxp->flag & LPFC_NVMET_CTX_RLS) && !(ctxp->flag & LPFC_NVMET_XBUSY)) { list_del(&ctxp->list); released = true; } ctxp->flag &= ~LPFC_NVMET_ABORT_OP; spin_unlock_irqrestore(&ctxp->ctxlock, flags); atomic_inc(&tgtp->xmt_abort_rsp); lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, "6316 ABTS cmpl xri x%x flg x%x (%x) " "WCQE: %08x %08x %08x %08x\n", ctxp->oxid, ctxp->flag, released, wcqe->word0, wcqe->total_data_placed, result, wcqe->word3); cmdwqe->context2 = NULL; cmdwqe->context3 = NULL; /* * if transport has released ctx, then can reuse it. Otherwise, * will be recycled by transport release call. */ if (released) lpfc_nvmet_ctxbuf_post(phba, ctxp->ctxbuf); /* Since iaab/iaar are NOT set, there is no work left. * For LPFC_NVMET_XBUSY, lpfc_sli4_nvmet_xri_aborted * should have been called already. */ } /** * lpfc_nvmet_xmt_ls_abort_cmp - Completion handler for ABTS * @phba: Pointer to HBA context object. * @cmdwqe: Pointer to driver command WQE object. * @wcqe: Pointer to driver response CQE object. * * The function is called from SLI ring event handler with no * lock held. This function is the completion handler for NVME ABTS for LS cmds * The function frees memory resources used for the NVME commands. **/ static void lpfc_nvmet_xmt_ls_abort_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe, struct lpfc_wcqe_complete *wcqe) { struct lpfc_nvmet_rcv_ctx *ctxp; struct lpfc_nvmet_tgtport *tgtp; uint32_t status, result; ctxp = cmdwqe->context2; status = bf_get(lpfc_wcqe_c_status, wcqe); result = wcqe->parameter; tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; atomic_inc(&tgtp->xmt_ls_abort_cmpl); lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, "6083 Abort cmpl: ctx %p WCQE:%08x %08x %08x %08x\n", ctxp, wcqe->word0, wcqe->total_data_placed, result, wcqe->word3); if (!ctxp) { lpfc_printf_log(phba, KERN_ERR, LOG_NVME_ABTS, "6415 NVMET LS Abort No ctx: WCQE: " "%08x %08x %08x %08x\n", wcqe->word0, wcqe->total_data_placed, result, wcqe->word3); lpfc_sli_release_iocbq(phba, cmdwqe); return; } if (ctxp->state != LPFC_NVMET_STE_LS_ABORT) { lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, "6416 NVMET LS abort cmpl state mismatch: " "oxid x%x: %d %d\n", ctxp->oxid, ctxp->state, ctxp->entry_cnt); } cmdwqe->context2 = NULL; cmdwqe->context3 = NULL; lpfc_sli_release_iocbq(phba, cmdwqe); kfree(ctxp); } static int lpfc_nvmet_unsol_issue_abort(struct lpfc_hba *phba, struct lpfc_nvmet_rcv_ctx *ctxp, uint32_t sid, uint16_t xri) { struct lpfc_nvmet_tgtport *tgtp; struct lpfc_iocbq *abts_wqeq; union lpfc_wqe128 *wqe_abts; struct lpfc_nodelist *ndlp; lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, "6067 ABTS: sid %x xri x%x/x%x\n", sid, xri, ctxp->wqeq->sli4_xritag); tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; ndlp = lpfc_findnode_did(phba->pport, sid); if (!ndlp || !NLP_CHK_NODE_ACT(ndlp) || ((ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) && (ndlp->nlp_state != NLP_STE_MAPPED_NODE))) { atomic_inc(&tgtp->xmt_abort_rsp_error); lpfc_printf_log(phba, KERN_ERR, LOG_NVME_ABTS, "6134 Drop ABTS - wrong NDLP state x%x.\n", (ndlp) ? ndlp->nlp_state : NLP_STE_MAX_STATE); /* No failure to an ABTS request. */ return 0; } abts_wqeq = ctxp->wqeq; wqe_abts = &abts_wqeq->wqe; /* * Since we zero the whole WQE, we need to ensure we set the WQE fields * that were initialized in lpfc_sli4_nvmet_alloc. */ memset(wqe_abts, 0, sizeof(union lpfc_wqe)); /* Word 5 */ bf_set(wqe_dfctl, &wqe_abts->xmit_sequence.wge_ctl, 0); bf_set(wqe_ls, &wqe_abts->xmit_sequence.wge_ctl, 1); bf_set(wqe_la, &wqe_abts->xmit_sequence.wge_ctl, 0); bf_set(wqe_rctl, &wqe_abts->xmit_sequence.wge_ctl, FC_RCTL_BA_ABTS); bf_set(wqe_type, &wqe_abts->xmit_sequence.wge_ctl, FC_TYPE_BLS); /* Word 6 */ bf_set(wqe_ctxt_tag, &wqe_abts->xmit_sequence.wqe_com, phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); bf_set(wqe_xri_tag, &wqe_abts->xmit_sequence.wqe_com, abts_wqeq->sli4_xritag); /* Word 7 */ bf_set(wqe_cmnd, &wqe_abts->xmit_sequence.wqe_com, CMD_XMIT_SEQUENCE64_WQE); bf_set(wqe_ct, &wqe_abts->xmit_sequence.wqe_com, SLI4_CT_RPI); bf_set(wqe_class, &wqe_abts->xmit_sequence.wqe_com, CLASS3); bf_set(wqe_pu, &wqe_abts->xmit_sequence.wqe_com, 0); /* Word 8 */ wqe_abts->xmit_sequence.wqe_com.abort_tag = abts_wqeq->iotag; /* Word 9 */ bf_set(wqe_reqtag, &wqe_abts->xmit_sequence.wqe_com, abts_wqeq->iotag); /* Needs to be set by caller */ bf_set(wqe_rcvoxid, &wqe_abts->xmit_sequence.wqe_com, xri); /* Word 10 */ bf_set(wqe_dbde, &wqe_abts->xmit_sequence.wqe_com, 1); bf_set(wqe_iod, &wqe_abts->xmit_sequence.wqe_com, LPFC_WQE_IOD_WRITE); bf_set(wqe_lenloc, &wqe_abts->xmit_sequence.wqe_com, LPFC_WQE_LENLOC_WORD12); bf_set(wqe_ebde_cnt, &wqe_abts->xmit_sequence.wqe_com, 0); bf_set(wqe_qosd, &wqe_abts->xmit_sequence.wqe_com, 0); /* Word 11 */ bf_set(wqe_cqid, &wqe_abts->xmit_sequence.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); bf_set(wqe_cmd_type, &wqe_abts->xmit_sequence.wqe_com, OTHER_COMMAND); abts_wqeq->vport = phba->pport; abts_wqeq->context1 = ndlp; abts_wqeq->context2 = ctxp; abts_wqeq->context3 = NULL; abts_wqeq->rsvd2 = 0; /* hba_wqidx should already be setup from command we are aborting */ abts_wqeq->iocb.ulpCommand = CMD_XMIT_SEQUENCE64_CR; abts_wqeq->iocb.ulpLe = 1; lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, "6069 Issue ABTS to xri x%x reqtag x%x\n", xri, abts_wqeq->iotag); return 1; } static int lpfc_nvmet_sol_fcp_issue_abort(struct lpfc_hba *phba, struct lpfc_nvmet_rcv_ctx *ctxp, uint32_t sid, uint16_t xri) { struct lpfc_nvmet_tgtport *tgtp; struct lpfc_iocbq *abts_wqeq; union lpfc_wqe128 *abts_wqe; struct lpfc_nodelist *ndlp; unsigned long flags; int rc; tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; if (!ctxp->wqeq) { ctxp->wqeq = ctxp->ctxbuf->iocbq; ctxp->wqeq->hba_wqidx = 0; } ndlp = lpfc_findnode_did(phba->pport, sid); if (!ndlp || !NLP_CHK_NODE_ACT(ndlp) || ((ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) && (ndlp->nlp_state != NLP_STE_MAPPED_NODE))) { atomic_inc(&tgtp->xmt_abort_rsp_error); lpfc_printf_log(phba, KERN_ERR, LOG_NVME_ABTS, "6160 Drop ABORT - wrong NDLP state x%x.\n", (ndlp) ? ndlp->nlp_state : NLP_STE_MAX_STATE); /* No failure to an ABTS request. */ ctxp->flag &= ~LPFC_NVMET_ABORT_OP; return 0; } /* Issue ABTS for this WQE based on iotag */ ctxp->abort_wqeq = lpfc_sli_get_iocbq(phba); if (!ctxp->abort_wqeq) { atomic_inc(&tgtp->xmt_abort_rsp_error); lpfc_printf_log(phba, KERN_ERR, LOG_NVME_ABTS, "6161 ABORT failed: No wqeqs: " "xri: x%x\n", ctxp->oxid); /* No failure to an ABTS request. */ ctxp->flag &= ~LPFC_NVMET_ABORT_OP; return 0; } abts_wqeq = ctxp->abort_wqeq; abts_wqe = &abts_wqeq->wqe; ctxp->state = LPFC_NVMET_STE_ABORT; /* Announce entry to new IO submit field. */ lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, "6162 ABORT Request to rport DID x%06x " "for xri x%x x%x\n", ctxp->sid, ctxp->oxid, ctxp->wqeq->sli4_xritag); /* If the hba is getting reset, this flag is set. It is * cleared when the reset is complete and rings reestablished. */ spin_lock_irqsave(&phba->hbalock, flags); /* driver queued commands are in process of being flushed */ if (phba->hba_flag & HBA_NVME_IOQ_FLUSH) { spin_unlock_irqrestore(&phba->hbalock, flags); atomic_inc(&tgtp->xmt_abort_rsp_error); lpfc_printf_log(phba, KERN_ERR, LOG_NVME, "6163 Driver in reset cleanup - flushing " "NVME Req now. hba_flag x%x oxid x%x\n", phba->hba_flag, ctxp->oxid); lpfc_sli_release_iocbq(phba, abts_wqeq); ctxp->flag &= ~LPFC_NVMET_ABORT_OP; return 0; } /* Outstanding abort is in progress */ if (abts_wqeq->iocb_flag & LPFC_DRIVER_ABORTED) { spin_unlock_irqrestore(&phba->hbalock, flags); atomic_inc(&tgtp->xmt_abort_rsp_error); lpfc_printf_log(phba, KERN_ERR, LOG_NVME, "6164 Outstanding NVME I/O Abort Request " "still pending on oxid x%x\n", ctxp->oxid); lpfc_sli_release_iocbq(phba, abts_wqeq); ctxp->flag &= ~LPFC_NVMET_ABORT_OP; return 0; } /* Ready - mark outstanding as aborted by driver. */ abts_wqeq->iocb_flag |= LPFC_DRIVER_ABORTED; /* WQEs are reused. Clear stale data and set key fields to * zero like ia, iaab, iaar, xri_tag, and ctxt_tag. */ memset(abts_wqe, 0, sizeof(union lpfc_wqe)); /* word 3 */ bf_set(abort_cmd_criteria, &abts_wqe->abort_cmd, T_XRI_TAG); /* word 7 */ bf_set(wqe_ct, &abts_wqe->abort_cmd.wqe_com, 0); bf_set(wqe_cmnd, &abts_wqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX); /* word 8 - tell the FW to abort the IO associated with this * outstanding exchange ID. */ abts_wqe->abort_cmd.wqe_com.abort_tag = ctxp->wqeq->sli4_xritag; /* word 9 - this is the iotag for the abts_wqe completion. */ bf_set(wqe_reqtag, &abts_wqe->abort_cmd.wqe_com, abts_wqeq->iotag); /* word 10 */ bf_set(wqe_qosd, &abts_wqe->abort_cmd.wqe_com, 1); bf_set(wqe_lenloc, &abts_wqe->abort_cmd.wqe_com, LPFC_WQE_LENLOC_NONE); /* word 11 */ bf_set(wqe_cmd_type, &abts_wqe->abort_cmd.wqe_com, OTHER_COMMAND); bf_set(wqe_wqec, &abts_wqe->abort_cmd.wqe_com, 1); bf_set(wqe_cqid, &abts_wqe->abort_cmd.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); /* ABTS WQE must go to the same WQ as the WQE to be aborted */ abts_wqeq->hba_wqidx = ctxp->wqeq->hba_wqidx; abts_wqeq->wqe_cmpl = lpfc_nvmet_sol_fcp_abort_cmp; abts_wqeq->iocb_cmpl = 0; abts_wqeq->iocb_flag |= LPFC_IO_NVME; abts_wqeq->context2 = ctxp; abts_wqeq->vport = phba->pport; rc = lpfc_sli4_issue_wqe(phba, LPFC_FCP_RING, abts_wqeq); spin_unlock_irqrestore(&phba->hbalock, flags); if (rc == WQE_SUCCESS) { atomic_inc(&tgtp->xmt_abort_sol); return 0; } atomic_inc(&tgtp->xmt_abort_rsp_error); ctxp->flag &= ~LPFC_NVMET_ABORT_OP; lpfc_sli_release_iocbq(phba, abts_wqeq); lpfc_printf_log(phba, KERN_ERR, LOG_NVME_ABTS, "6166 Failed ABORT issue_wqe with status x%x " "for oxid x%x.\n", rc, ctxp->oxid); return 1; } static int lpfc_nvmet_unsol_fcp_issue_abort(struct lpfc_hba *phba, struct lpfc_nvmet_rcv_ctx *ctxp, uint32_t sid, uint16_t xri) { struct lpfc_nvmet_tgtport *tgtp; struct lpfc_iocbq *abts_wqeq; unsigned long flags; int rc; tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; if (!ctxp->wqeq) { ctxp->wqeq = ctxp->ctxbuf->iocbq; ctxp->wqeq->hba_wqidx = 0; } if (ctxp->state == LPFC_NVMET_STE_FREE) { lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, "6417 NVMET ABORT ctx freed %d %d oxid x%x\n", ctxp->state, ctxp->entry_cnt, ctxp->oxid); rc = WQE_BUSY; goto aerr; } ctxp->state = LPFC_NVMET_STE_ABORT; ctxp->entry_cnt++; rc = lpfc_nvmet_unsol_issue_abort(phba, ctxp, sid, xri); if (rc == 0) goto aerr; spin_lock_irqsave(&phba->hbalock, flags); abts_wqeq = ctxp->wqeq; abts_wqeq->wqe_cmpl = lpfc_nvmet_unsol_fcp_abort_cmp; abts_wqeq->iocb_cmpl = NULL; abts_wqeq->iocb_flag |= LPFC_IO_NVMET; rc = lpfc_sli4_issue_wqe(phba, LPFC_FCP_RING, abts_wqeq); spin_unlock_irqrestore(&phba->hbalock, flags); if (rc == WQE_SUCCESS) { return 0; } aerr: spin_lock_irqsave(&ctxp->ctxlock, flags); if (ctxp->flag & LPFC_NVMET_CTX_RLS) list_del(&ctxp->list); ctxp->flag &= ~(LPFC_NVMET_ABORT_OP | LPFC_NVMET_CTX_RLS); spin_unlock_irqrestore(&ctxp->ctxlock, flags); atomic_inc(&tgtp->xmt_abort_rsp_error); lpfc_printf_log(phba, KERN_ERR, LOG_NVME_ABTS, "6135 Failed to Issue ABTS for oxid x%x. Status x%x\n", ctxp->oxid, rc); lpfc_nvmet_ctxbuf_post(phba, ctxp->ctxbuf); return 1; } static int lpfc_nvmet_unsol_ls_issue_abort(struct lpfc_hba *phba, struct lpfc_nvmet_rcv_ctx *ctxp, uint32_t sid, uint16_t xri) { struct lpfc_nvmet_tgtport *tgtp; struct lpfc_iocbq *abts_wqeq; union lpfc_wqe128 *wqe_abts; unsigned long flags; int rc; if ((ctxp->state == LPFC_NVMET_STE_LS_RCV && ctxp->entry_cnt == 1) || (ctxp->state == LPFC_NVMET_STE_LS_RSP && ctxp->entry_cnt == 2)) { ctxp->state = LPFC_NVMET_STE_LS_ABORT; ctxp->entry_cnt++; } else { lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, "6418 NVMET LS abort state mismatch " "IO x%x: %d %d\n", ctxp->oxid, ctxp->state, ctxp->entry_cnt); ctxp->state = LPFC_NVMET_STE_LS_ABORT; } tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; if (!ctxp->wqeq) { /* Issue ABTS for this WQE based on iotag */ ctxp->wqeq = lpfc_sli_get_iocbq(phba); if (!ctxp->wqeq) { lpfc_printf_log(phba, KERN_ERR, LOG_NVME_ABTS, "6068 Abort failed: No wqeqs: " "xri: x%x\n", xri); /* No failure to an ABTS request. */ kfree(ctxp); return 0; } } abts_wqeq = ctxp->wqeq; wqe_abts = &abts_wqeq->wqe; if (lpfc_nvmet_unsol_issue_abort(phba, ctxp, sid, xri) == 0) { rc = WQE_BUSY; goto out; } spin_lock_irqsave(&phba->hbalock, flags); abts_wqeq->wqe_cmpl = lpfc_nvmet_xmt_ls_abort_cmp; abts_wqeq->iocb_cmpl = 0; abts_wqeq->iocb_flag |= LPFC_IO_NVME_LS; rc = lpfc_sli4_issue_wqe(phba, LPFC_ELS_RING, abts_wqeq); spin_unlock_irqrestore(&phba->hbalock, flags); if (rc == WQE_SUCCESS) { atomic_inc(&tgtp->xmt_abort_unsol); return 0; } out: atomic_inc(&tgtp->xmt_abort_rsp_error); abts_wqeq->context2 = NULL; abts_wqeq->context3 = NULL; lpfc_sli_release_iocbq(phba, abts_wqeq); kfree(ctxp); lpfc_printf_log(phba, KERN_ERR, LOG_NVME_ABTS, "6056 Failed to Issue ABTS. Status x%x\n", rc); return 0; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1