Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Lee Jones | 1999 | 97.75% | 2 | 40.00% |
Axel Lin | 45 | 2.20% | 2 | 40.00% |
Fabian Frederick | 1 | 0.05% | 1 | 20.00% |
Total | 2045 | 5 |
/* * Copyright (c) 2008-2014 STMicroelectronics Limited * * Author: Angus Clark <Angus.Clark@st.com> * Patrice Chotard <patrice.chotard@st.com> * Lee Jones <lee.jones@linaro.org> * * SPI master mode controller driver, used in STMicroelectronics devices. * * May be copied or modified under the terms of the GNU General Public * License Version 2.0 only. See linux/COPYING for more information. */ #include <linux/clk.h> #include <linux/delay.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/module.h> #include <linux/pinctrl/consumer.h> #include <linux/platform_device.h> #include <linux/of.h> #include <linux/of_gpio.h> #include <linux/of_irq.h> #include <linux/pm_runtime.h> #include <linux/spi/spi.h> #include <linux/spi/spi_bitbang.h> /* SSC registers */ #define SSC_BRG 0x000 #define SSC_TBUF 0x004 #define SSC_RBUF 0x008 #define SSC_CTL 0x00C #define SSC_IEN 0x010 #define SSC_I2C 0x018 /* SSC Control */ #define SSC_CTL_DATA_WIDTH_9 0x8 #define SSC_CTL_DATA_WIDTH_MSK 0xf #define SSC_CTL_BM 0xf #define SSC_CTL_HB BIT(4) #define SSC_CTL_PH BIT(5) #define SSC_CTL_PO BIT(6) #define SSC_CTL_SR BIT(7) #define SSC_CTL_MS BIT(8) #define SSC_CTL_EN BIT(9) #define SSC_CTL_LPB BIT(10) #define SSC_CTL_EN_TX_FIFO BIT(11) #define SSC_CTL_EN_RX_FIFO BIT(12) #define SSC_CTL_EN_CLST_RX BIT(13) /* SSC Interrupt Enable */ #define SSC_IEN_TEEN BIT(2) #define FIFO_SIZE 8 struct spi_st { /* SSC SPI Controller */ void __iomem *base; struct clk *clk; struct device *dev; /* SSC SPI current transaction */ const u8 *tx_ptr; u8 *rx_ptr; u16 bytes_per_word; unsigned int words_remaining; unsigned int baud; struct completion done; }; /* Load the TX FIFO */ static void ssc_write_tx_fifo(struct spi_st *spi_st) { unsigned int count, i; uint32_t word = 0; if (spi_st->words_remaining > FIFO_SIZE) count = FIFO_SIZE; else count = spi_st->words_remaining; for (i = 0; i < count; i++) { if (spi_st->tx_ptr) { if (spi_st->bytes_per_word == 1) { word = *spi_st->tx_ptr++; } else { word = *spi_st->tx_ptr++; word = *spi_st->tx_ptr++ | (word << 8); } } writel_relaxed(word, spi_st->base + SSC_TBUF); } } /* Read the RX FIFO */ static void ssc_read_rx_fifo(struct spi_st *spi_st) { unsigned int count, i; uint32_t word = 0; if (spi_st->words_remaining > FIFO_SIZE) count = FIFO_SIZE; else count = spi_st->words_remaining; for (i = 0; i < count; i++) { word = readl_relaxed(spi_st->base + SSC_RBUF); if (spi_st->rx_ptr) { if (spi_st->bytes_per_word == 1) { *spi_st->rx_ptr++ = (uint8_t)word; } else { *spi_st->rx_ptr++ = (word >> 8); *spi_st->rx_ptr++ = word & 0xff; } } } spi_st->words_remaining -= count; } static int spi_st_transfer_one(struct spi_master *master, struct spi_device *spi, struct spi_transfer *t) { struct spi_st *spi_st = spi_master_get_devdata(master); uint32_t ctl = 0; /* Setup transfer */ spi_st->tx_ptr = t->tx_buf; spi_st->rx_ptr = t->rx_buf; if (spi->bits_per_word > 8) { /* * Anything greater than 8 bits-per-word requires 2 * bytes-per-word in the RX/TX buffers */ spi_st->bytes_per_word = 2; spi_st->words_remaining = t->len / 2; } else if (spi->bits_per_word == 8 && !(t->len & 0x1)) { /* * If transfer is even-length, and 8 bits-per-word, then * implement as half-length 16 bits-per-word transfer */ spi_st->bytes_per_word = 2; spi_st->words_remaining = t->len / 2; /* Set SSC_CTL to 16 bits-per-word */ ctl = readl_relaxed(spi_st->base + SSC_CTL); writel_relaxed((ctl | 0xf), spi_st->base + SSC_CTL); readl_relaxed(spi_st->base + SSC_RBUF); } else { spi_st->bytes_per_word = 1; spi_st->words_remaining = t->len; } reinit_completion(&spi_st->done); /* Start transfer by writing to the TX FIFO */ ssc_write_tx_fifo(spi_st); writel_relaxed(SSC_IEN_TEEN, spi_st->base + SSC_IEN); /* Wait for transfer to complete */ wait_for_completion(&spi_st->done); /* Restore SSC_CTL if necessary */ if (ctl) writel_relaxed(ctl, spi_st->base + SSC_CTL); spi_finalize_current_transfer(spi->master); return t->len; } static void spi_st_cleanup(struct spi_device *spi) { gpio_free(spi->cs_gpio); } /* the spi->mode bits understood by this driver: */ #define MODEBITS (SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST | SPI_LOOP | SPI_CS_HIGH) static int spi_st_setup(struct spi_device *spi) { struct spi_st *spi_st = spi_master_get_devdata(spi->master); u32 spi_st_clk, sscbrg, var; u32 hz = spi->max_speed_hz; int cs = spi->cs_gpio; int ret; if (!hz) { dev_err(&spi->dev, "max_speed_hz unspecified\n"); return -EINVAL; } if (!gpio_is_valid(cs)) { dev_err(&spi->dev, "%d is not a valid gpio\n", cs); return -EINVAL; } ret = gpio_request(cs, dev_name(&spi->dev)); if (ret) { dev_err(&spi->dev, "could not request gpio:%d\n", cs); return ret; } ret = gpio_direction_output(cs, spi->mode & SPI_CS_HIGH); if (ret) goto out_free_gpio; spi_st_clk = clk_get_rate(spi_st->clk); /* Set SSC_BRF */ sscbrg = spi_st_clk / (2 * hz); if (sscbrg < 0x07 || sscbrg > BIT(16)) { dev_err(&spi->dev, "baudrate %d outside valid range %d\n", sscbrg, hz); ret = -EINVAL; goto out_free_gpio; } spi_st->baud = spi_st_clk / (2 * sscbrg); if (sscbrg == BIT(16)) /* 16-bit counter wraps */ sscbrg = 0x0; writel_relaxed(sscbrg, spi_st->base + SSC_BRG); dev_dbg(&spi->dev, "setting baudrate:target= %u hz, actual= %u hz, sscbrg= %u\n", hz, spi_st->baud, sscbrg); /* Set SSC_CTL and enable SSC */ var = readl_relaxed(spi_st->base + SSC_CTL); var |= SSC_CTL_MS; if (spi->mode & SPI_CPOL) var |= SSC_CTL_PO; else var &= ~SSC_CTL_PO; if (spi->mode & SPI_CPHA) var |= SSC_CTL_PH; else var &= ~SSC_CTL_PH; if ((spi->mode & SPI_LSB_FIRST) == 0) var |= SSC_CTL_HB; else var &= ~SSC_CTL_HB; if (spi->mode & SPI_LOOP) var |= SSC_CTL_LPB; else var &= ~SSC_CTL_LPB; var &= ~SSC_CTL_DATA_WIDTH_MSK; var |= (spi->bits_per_word - 1); var |= SSC_CTL_EN_TX_FIFO | SSC_CTL_EN_RX_FIFO; var |= SSC_CTL_EN; writel_relaxed(var, spi_st->base + SSC_CTL); /* Clear the status register */ readl_relaxed(spi_st->base + SSC_RBUF); return 0; out_free_gpio: gpio_free(cs); return ret; } /* Interrupt fired when TX shift register becomes empty */ static irqreturn_t spi_st_irq(int irq, void *dev_id) { struct spi_st *spi_st = (struct spi_st *)dev_id; /* Read RX FIFO */ ssc_read_rx_fifo(spi_st); /* Fill TX FIFO */ if (spi_st->words_remaining) { ssc_write_tx_fifo(spi_st); } else { /* TX/RX complete */ writel_relaxed(0x0, spi_st->base + SSC_IEN); /* * read SSC_IEN to ensure that this bit is set * before re-enabling interrupt */ readl(spi_st->base + SSC_IEN); complete(&spi_st->done); } return IRQ_HANDLED; } static int spi_st_probe(struct platform_device *pdev) { struct device_node *np = pdev->dev.of_node; struct spi_master *master; struct resource *res; struct spi_st *spi_st; int irq, ret = 0; u32 var; master = spi_alloc_master(&pdev->dev, sizeof(*spi_st)); if (!master) return -ENOMEM; master->dev.of_node = np; master->mode_bits = MODEBITS; master->setup = spi_st_setup; master->cleanup = spi_st_cleanup; master->transfer_one = spi_st_transfer_one; master->bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(16); master->auto_runtime_pm = true; master->bus_num = pdev->id; spi_st = spi_master_get_devdata(master); spi_st->clk = devm_clk_get(&pdev->dev, "ssc"); if (IS_ERR(spi_st->clk)) { dev_err(&pdev->dev, "Unable to request clock\n"); ret = PTR_ERR(spi_st->clk); goto put_master; } ret = clk_prepare_enable(spi_st->clk); if (ret) goto put_master; init_completion(&spi_st->done); /* Get resources */ res = platform_get_resource(pdev, IORESOURCE_MEM, 0); spi_st->base = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(spi_st->base)) { ret = PTR_ERR(spi_st->base); goto clk_disable; } /* Disable I2C and Reset SSC */ writel_relaxed(0x0, spi_st->base + SSC_I2C); var = readw_relaxed(spi_st->base + SSC_CTL); var |= SSC_CTL_SR; writel_relaxed(var, spi_st->base + SSC_CTL); udelay(1); var = readl_relaxed(spi_st->base + SSC_CTL); var &= ~SSC_CTL_SR; writel_relaxed(var, spi_st->base + SSC_CTL); /* Set SSC into slave mode before reconfiguring PIO pins */ var = readl_relaxed(spi_st->base + SSC_CTL); var &= ~SSC_CTL_MS; writel_relaxed(var, spi_st->base + SSC_CTL); irq = irq_of_parse_and_map(np, 0); if (!irq) { dev_err(&pdev->dev, "IRQ missing or invalid\n"); ret = -EINVAL; goto clk_disable; } ret = devm_request_irq(&pdev->dev, irq, spi_st_irq, 0, pdev->name, spi_st); if (ret) { dev_err(&pdev->dev, "Failed to request irq %d\n", irq); goto clk_disable; } /* by default the device is on */ pm_runtime_set_active(&pdev->dev); pm_runtime_enable(&pdev->dev); platform_set_drvdata(pdev, master); ret = devm_spi_register_master(&pdev->dev, master); if (ret) { dev_err(&pdev->dev, "Failed to register master\n"); goto clk_disable; } return 0; clk_disable: clk_disable_unprepare(spi_st->clk); put_master: spi_master_put(master); return ret; } static int spi_st_remove(struct platform_device *pdev) { struct spi_master *master = platform_get_drvdata(pdev); struct spi_st *spi_st = spi_master_get_devdata(master); clk_disable_unprepare(spi_st->clk); pinctrl_pm_select_sleep_state(&pdev->dev); return 0; } #ifdef CONFIG_PM static int spi_st_runtime_suspend(struct device *dev) { struct spi_master *master = dev_get_drvdata(dev); struct spi_st *spi_st = spi_master_get_devdata(master); writel_relaxed(0, spi_st->base + SSC_IEN); pinctrl_pm_select_sleep_state(dev); clk_disable_unprepare(spi_st->clk); return 0; } static int spi_st_runtime_resume(struct device *dev) { struct spi_master *master = dev_get_drvdata(dev); struct spi_st *spi_st = spi_master_get_devdata(master); int ret; ret = clk_prepare_enable(spi_st->clk); pinctrl_pm_select_default_state(dev); return ret; } #endif #ifdef CONFIG_PM_SLEEP static int spi_st_suspend(struct device *dev) { struct spi_master *master = dev_get_drvdata(dev); int ret; ret = spi_master_suspend(master); if (ret) return ret; return pm_runtime_force_suspend(dev); } static int spi_st_resume(struct device *dev) { struct spi_master *master = dev_get_drvdata(dev); int ret; ret = spi_master_resume(master); if (ret) return ret; return pm_runtime_force_resume(dev); } #endif static const struct dev_pm_ops spi_st_pm = { SET_SYSTEM_SLEEP_PM_OPS(spi_st_suspend, spi_st_resume) SET_RUNTIME_PM_OPS(spi_st_runtime_suspend, spi_st_runtime_resume, NULL) }; static const struct of_device_id stm_spi_match[] = { { .compatible = "st,comms-ssc4-spi", }, {}, }; MODULE_DEVICE_TABLE(of, stm_spi_match); static struct platform_driver spi_st_driver = { .driver = { .name = "spi-st", .pm = &spi_st_pm, .of_match_table = of_match_ptr(stm_spi_match), }, .probe = spi_st_probe, .remove = spi_st_remove, }; module_platform_driver(spi_st_driver); MODULE_AUTHOR("Patrice Chotard <patrice.chotard@st.com>"); MODULE_DESCRIPTION("STM SSC SPI driver"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1