Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Michael Hennerich | 4056 | 85.52% | 3 | 7.14% |
Slawomir Stepien | 219 | 4.62% | 5 | 11.90% |
Jonathan Cameron | 119 | 2.51% | 8 | 19.05% |
Lars-Peter Clausen | 76 | 1.60% | 6 | 14.29% |
Nicholas Mc Guire | 62 | 1.31% | 1 | 2.38% |
Jaya Durga | 60 | 1.27% | 1 | 2.38% |
Gargi Sharma | 33 | 0.70% | 1 | 2.38% |
Haneen Mohammed | 27 | 0.57% | 1 | 2.38% |
Alison Schofield | 21 | 0.44% | 1 | 2.38% |
Sachin Kamat | 13 | 0.27% | 1 | 2.38% |
Thomas Meyer | 13 | 0.27% | 1 | 2.38% |
Grégor Boirie | 12 | 0.25% | 1 | 2.38% |
Olivier Leveque | 6 | 0.13% | 1 | 2.38% |
Ioana Ciornei | 6 | 0.13% | 2 | 4.76% |
Vaishali Thakkar | 4 | 0.08% | 1 | 2.38% |
Nizam Haider | 4 | 0.08% | 1 | 2.38% |
Paul Gortmaker | 3 | 0.06% | 1 | 2.38% |
Navya Sri Nizamkari | 2 | 0.04% | 1 | 2.38% |
Bhumika Goyal | 2 | 0.04% | 2 | 4.76% |
Andreas Ruprecht | 2 | 0.04% | 1 | 2.38% |
Masanari Iida | 2 | 0.04% | 1 | 2.38% |
Aida Mynzhasova | 1 | 0.02% | 1 | 2.38% |
Total | 4743 | 42 |
/* * AD7280A Lithium Ion Battery Monitoring System * * Copyright 2011 Analog Devices Inc. * * Licensed under the GPL-2. */ #include <linux/crc8.h> #include <linux/device.h> #include <linux/kernel.h> #include <linux/slab.h> #include <linux/sysfs.h> #include <linux/spi/spi.h> #include <linux/err.h> #include <linux/delay.h> #include <linux/interrupt.h> #include <linux/module.h> #include <linux/iio/iio.h> #include <linux/iio/sysfs.h> #include <linux/iio/events.h> #include "ad7280a.h" /* Registers */ #define AD7280A_CELL_VOLTAGE_1 0x0 /* D11 to D0, Read only */ #define AD7280A_CELL_VOLTAGE_2 0x1 /* D11 to D0, Read only */ #define AD7280A_CELL_VOLTAGE_3 0x2 /* D11 to D0, Read only */ #define AD7280A_CELL_VOLTAGE_4 0x3 /* D11 to D0, Read only */ #define AD7280A_CELL_VOLTAGE_5 0x4 /* D11 to D0, Read only */ #define AD7280A_CELL_VOLTAGE_6 0x5 /* D11 to D0, Read only */ #define AD7280A_AUX_ADC_1 0x6 /* D11 to D0, Read only */ #define AD7280A_AUX_ADC_2 0x7 /* D11 to D0, Read only */ #define AD7280A_AUX_ADC_3 0x8 /* D11 to D0, Read only */ #define AD7280A_AUX_ADC_4 0x9 /* D11 to D0, Read only */ #define AD7280A_AUX_ADC_5 0xA /* D11 to D0, Read only */ #define AD7280A_AUX_ADC_6 0xB /* D11 to D0, Read only */ #define AD7280A_SELF_TEST 0xC /* D11 to D0, Read only */ #define AD7280A_CONTROL_HB 0xD /* D15 to D8, Read/write */ #define AD7280A_CONTROL_LB 0xE /* D7 to D0, Read/write */ #define AD7280A_CELL_OVERVOLTAGE 0xF /* D7 to D0, Read/write */ #define AD7280A_CELL_UNDERVOLTAGE 0x10 /* D7 to D0, Read/write */ #define AD7280A_AUX_ADC_OVERVOLTAGE 0x11 /* D7 to D0, Read/write */ #define AD7280A_AUX_ADC_UNDERVOLTAGE 0x12 /* D7 to D0, Read/write */ #define AD7280A_ALERT 0x13 /* D7 to D0, Read/write */ #define AD7280A_CELL_BALANCE 0x14 /* D7 to D0, Read/write */ #define AD7280A_CB1_TIMER 0x15 /* D7 to D0, Read/write */ #define AD7280A_CB2_TIMER 0x16 /* D7 to D0, Read/write */ #define AD7280A_CB3_TIMER 0x17 /* D7 to D0, Read/write */ #define AD7280A_CB4_TIMER 0x18 /* D7 to D0, Read/write */ #define AD7280A_CB5_TIMER 0x19 /* D7 to D0, Read/write */ #define AD7280A_CB6_TIMER 0x1A /* D7 to D0, Read/write */ #define AD7280A_PD_TIMER 0x1B /* D7 to D0, Read/write */ #define AD7280A_READ 0x1C /* D7 to D0, Read/write */ #define AD7280A_CNVST_CONTROL 0x1D /* D7 to D0, Read/write */ /* Bits and Masks */ #define AD7280A_CTRL_HB_CONV_INPUT_ALL 0 #define AD7280A_CTRL_HB_CONV_INPUT_6CELL_AUX1_3_4 BIT(6) #define AD7280A_CTRL_HB_CONV_INPUT_6CELL BIT(7) #define AD7280A_CTRL_HB_CONV_INPUT_SELF_TEST (BIT(7) | BIT(6)) #define AD7280A_CTRL_HB_CONV_RES_READ_ALL 0 #define AD7280A_CTRL_HB_CONV_RES_READ_6CELL_AUX1_3_4 BIT(4) #define AD7280A_CTRL_HB_CONV_RES_READ_6CELL BIT(5) #define AD7280A_CTRL_HB_CONV_RES_READ_NO (BIT(5) | BIT(4)) #define AD7280A_CTRL_HB_CONV_START_CNVST 0 #define AD7280A_CTRL_HB_CONV_START_CS BIT(3) #define AD7280A_CTRL_HB_CONV_AVG_DIS 0 #define AD7280A_CTRL_HB_CONV_AVG_2 BIT(1) #define AD7280A_CTRL_HB_CONV_AVG_4 BIT(2) #define AD7280A_CTRL_HB_CONV_AVG_8 (BIT(2) | BIT(1)) #define AD7280A_CTRL_HB_CONV_AVG(x) ((x) << 1) #define AD7280A_CTRL_HB_PWRDN_SW BIT(0) #define AD7280A_CTRL_LB_SWRST BIT(7) #define AD7280A_CTRL_LB_ACQ_TIME_400ns 0 #define AD7280A_CTRL_LB_ACQ_TIME_800ns BIT(5) #define AD7280A_CTRL_LB_ACQ_TIME_1200ns BIT(6) #define AD7280A_CTRL_LB_ACQ_TIME_1600ns (BIT(6) | BIT(5)) #define AD7280A_CTRL_LB_ACQ_TIME(x) ((x) << 5) #define AD7280A_CTRL_LB_MUST_SET BIT(4) #define AD7280A_CTRL_LB_THERMISTOR_EN BIT(3) #define AD7280A_CTRL_LB_LOCK_DEV_ADDR BIT(2) #define AD7280A_CTRL_LB_INC_DEV_ADDR BIT(1) #define AD7280A_CTRL_LB_DAISY_CHAIN_RB_EN BIT(0) #define AD7280A_ALERT_GEN_STATIC_HIGH BIT(6) #define AD7280A_ALERT_RELAY_SIG_CHAIN_DOWN (BIT(7) | BIT(6)) #define AD7280A_ALL_CELLS (0xAD << 16) #define AD7280A_MAX_SPI_CLK_HZ 700000 /* < 1MHz */ #define AD7280A_MAX_CHAIN 8 #define AD7280A_CELLS_PER_DEV 6 #define AD7280A_BITS 12 #define AD7280A_NUM_CH (AD7280A_AUX_ADC_6 - \ AD7280A_CELL_VOLTAGE_1 + 1) #define AD7280A_DEVADDR_MASTER 0 #define AD7280A_DEVADDR_ALL 0x1F /* 5-bit device address is sent LSB first */ static unsigned int ad7280a_devaddr(unsigned int addr) { return ((addr & 0x1) << 4) | ((addr & 0x2) << 3) | (addr & 0x4) | ((addr & 0x8) >> 3) | ((addr & 0x10) >> 4); } /* During a read a valid write is mandatory. * So writing to the highest available address (Address 0x1F) * and setting the address all parts bit to 0 is recommended * So the TXVAL is AD7280A_DEVADDR_ALL + CRC */ #define AD7280A_READ_TXVAL 0xF800030A /* * AD7280 CRC * * P(x) = x^8 + x^5 + x^3 + x^2 + x^1 + x^0 = 0b100101111 => 0x2F */ #define POLYNOM 0x2F struct ad7280_state { struct spi_device *spi; struct iio_chan_spec *channels; struct iio_dev_attr *iio_attr; int slave_num; int scan_cnt; int readback_delay_us; unsigned char crc_tab[CRC8_TABLE_SIZE]; unsigned char ctrl_hb; unsigned char ctrl_lb; unsigned char cell_threshhigh; unsigned char cell_threshlow; unsigned char aux_threshhigh; unsigned char aux_threshlow; unsigned char cb_mask[AD7280A_MAX_CHAIN]; struct mutex lock; /* protect sensor state */ __be32 buf[2] ____cacheline_aligned; }; static unsigned char ad7280_calc_crc8(unsigned char *crc_tab, unsigned int val) { unsigned char crc; crc = crc_tab[val >> 16 & 0xFF]; crc = crc_tab[crc ^ (val >> 8 & 0xFF)]; return crc ^ (val & 0xFF); } static int ad7280_check_crc(struct ad7280_state *st, unsigned int val) { unsigned char crc = ad7280_calc_crc8(st->crc_tab, val >> 10); if (crc != ((val >> 2) & 0xFF)) return -EIO; return 0; } /* After initiating a conversion sequence we need to wait until the * conversion is done. The delay is typically in the range of 15..30 us * however depending an the number of devices in the daisy chain and the * number of averages taken, conversion delays and acquisition time options * it may take up to 250us, in this case we better sleep instead of busy * wait. */ static void ad7280_delay(struct ad7280_state *st) { if (st->readback_delay_us < 50) udelay(st->readback_delay_us); else usleep_range(250, 500); } static int __ad7280_read32(struct ad7280_state *st, unsigned int *val) { int ret; struct spi_transfer t = { .tx_buf = &st->buf[0], .rx_buf = &st->buf[1], .len = 4, }; st->buf[0] = cpu_to_be32(AD7280A_READ_TXVAL); ret = spi_sync_transfer(st->spi, &t, 1); if (ret) return ret; *val = be32_to_cpu(st->buf[1]); return 0; } static int ad7280_write(struct ad7280_state *st, unsigned int devaddr, unsigned int addr, bool all, unsigned int val) { unsigned int reg = devaddr << 27 | addr << 21 | (val & 0xFF) << 13 | all << 12; reg |= ad7280_calc_crc8(st->crc_tab, reg >> 11) << 3 | 0x2; st->buf[0] = cpu_to_be32(reg); return spi_write(st->spi, &st->buf[0], 4); } static int ad7280_read(struct ad7280_state *st, unsigned int devaddr, unsigned int addr) { int ret; unsigned int tmp; /* turns off the read operation on all parts */ ret = ad7280_write(st, AD7280A_DEVADDR_MASTER, AD7280A_CONTROL_HB, 1, AD7280A_CTRL_HB_CONV_INPUT_ALL | AD7280A_CTRL_HB_CONV_RES_READ_NO | st->ctrl_hb); if (ret) return ret; /* turns on the read operation on the addressed part */ ret = ad7280_write(st, devaddr, AD7280A_CONTROL_HB, 0, AD7280A_CTRL_HB_CONV_INPUT_ALL | AD7280A_CTRL_HB_CONV_RES_READ_ALL | st->ctrl_hb); if (ret) return ret; /* Set register address on the part to be read from */ ret = ad7280_write(st, devaddr, AD7280A_READ, 0, addr << 2); if (ret) return ret; ret = __ad7280_read32(st, &tmp); if (ret) return ret; if (ad7280_check_crc(st, tmp)) return -EIO; if (((tmp >> 27) != devaddr) || (((tmp >> 21) & 0x3F) != addr)) return -EFAULT; return (tmp >> 13) & 0xFF; } static int ad7280_read_channel(struct ad7280_state *st, unsigned int devaddr, unsigned int addr) { int ret; unsigned int tmp; ret = ad7280_write(st, devaddr, AD7280A_READ, 0, addr << 2); if (ret) return ret; ret = ad7280_write(st, AD7280A_DEVADDR_MASTER, AD7280A_CONTROL_HB, 1, AD7280A_CTRL_HB_CONV_INPUT_ALL | AD7280A_CTRL_HB_CONV_RES_READ_NO | st->ctrl_hb); if (ret) return ret; ret = ad7280_write(st, devaddr, AD7280A_CONTROL_HB, 0, AD7280A_CTRL_HB_CONV_INPUT_ALL | AD7280A_CTRL_HB_CONV_RES_READ_ALL | AD7280A_CTRL_HB_CONV_START_CS | st->ctrl_hb); if (ret) return ret; ad7280_delay(st); ret = __ad7280_read32(st, &tmp); if (ret) return ret; if (ad7280_check_crc(st, tmp)) return -EIO; if (((tmp >> 27) != devaddr) || (((tmp >> 23) & 0xF) != addr)) return -EFAULT; return (tmp >> 11) & 0xFFF; } static int ad7280_read_all_channels(struct ad7280_state *st, unsigned int cnt, unsigned int *array) { int i, ret; unsigned int tmp, sum = 0; ret = ad7280_write(st, AD7280A_DEVADDR_MASTER, AD7280A_READ, 1, AD7280A_CELL_VOLTAGE_1 << 2); if (ret) return ret; ret = ad7280_write(st, AD7280A_DEVADDR_MASTER, AD7280A_CONTROL_HB, 1, AD7280A_CTRL_HB_CONV_INPUT_ALL | AD7280A_CTRL_HB_CONV_RES_READ_ALL | AD7280A_CTRL_HB_CONV_START_CS | st->ctrl_hb); if (ret) return ret; ad7280_delay(st); for (i = 0; i < cnt; i++) { ret = __ad7280_read32(st, &tmp); if (ret) return ret; if (ad7280_check_crc(st, tmp)) return -EIO; if (array) array[i] = tmp; /* only sum cell voltages */ if (((tmp >> 23) & 0xF) <= AD7280A_CELL_VOLTAGE_6) sum += ((tmp >> 11) & 0xFFF); } return sum; } static void ad7280_sw_power_down(void *data) { struct ad7280_state *st = data; ad7280_write(st, AD7280A_DEVADDR_MASTER, AD7280A_CONTROL_HB, 1, AD7280A_CTRL_HB_PWRDN_SW | st->ctrl_hb); } static int ad7280_chain_setup(struct ad7280_state *st) { unsigned int val, n; int ret; ret = ad7280_write(st, AD7280A_DEVADDR_MASTER, AD7280A_CONTROL_LB, 1, AD7280A_CTRL_LB_DAISY_CHAIN_RB_EN | AD7280A_CTRL_LB_LOCK_DEV_ADDR | AD7280A_CTRL_LB_MUST_SET | AD7280A_CTRL_LB_SWRST | st->ctrl_lb); if (ret) return ret; ret = ad7280_write(st, AD7280A_DEVADDR_MASTER, AD7280A_CONTROL_LB, 1, AD7280A_CTRL_LB_DAISY_CHAIN_RB_EN | AD7280A_CTRL_LB_LOCK_DEV_ADDR | AD7280A_CTRL_LB_MUST_SET | st->ctrl_lb); if (ret) goto error_power_down; ret = ad7280_write(st, AD7280A_DEVADDR_MASTER, AD7280A_READ, 1, AD7280A_CONTROL_LB << 2); if (ret) goto error_power_down; for (n = 0; n <= AD7280A_MAX_CHAIN; n++) { ret = __ad7280_read32(st, &val); if (ret) goto error_power_down; if (val == 0) return n - 1; if (ad7280_check_crc(st, val)) { ret = -EIO; goto error_power_down; } if (n != ad7280a_devaddr(val >> 27)) { ret = -EIO; goto error_power_down; } } ret = -EFAULT; error_power_down: ad7280_write(st, AD7280A_DEVADDR_MASTER, AD7280A_CONTROL_HB, 1, AD7280A_CTRL_HB_PWRDN_SW | st->ctrl_hb); return ret; } static ssize_t ad7280_show_balance_sw(struct device *dev, struct device_attribute *attr, char *buf) { struct iio_dev *indio_dev = dev_to_iio_dev(dev); struct ad7280_state *st = iio_priv(indio_dev); struct iio_dev_attr *this_attr = to_iio_dev_attr(attr); return sprintf(buf, "%d\n", !!(st->cb_mask[this_attr->address >> 8] & (1 << ((this_attr->address & 0xFF) + 2)))); } static ssize_t ad7280_store_balance_sw(struct device *dev, struct device_attribute *attr, const char *buf, size_t len) { struct iio_dev *indio_dev = dev_to_iio_dev(dev); struct ad7280_state *st = iio_priv(indio_dev); struct iio_dev_attr *this_attr = to_iio_dev_attr(attr); bool readin; int ret; unsigned int devaddr, ch; ret = strtobool(buf, &readin); if (ret) return ret; devaddr = this_attr->address >> 8; ch = this_attr->address & 0xFF; mutex_lock(&st->lock); if (readin) st->cb_mask[devaddr] |= 1 << (ch + 2); else st->cb_mask[devaddr] &= ~(1 << (ch + 2)); ret = ad7280_write(st, devaddr, AD7280A_CELL_BALANCE, 0, st->cb_mask[devaddr]); mutex_unlock(&st->lock); return ret ? ret : len; } static ssize_t ad7280_show_balance_timer(struct device *dev, struct device_attribute *attr, char *buf) { struct iio_dev *indio_dev = dev_to_iio_dev(dev); struct ad7280_state *st = iio_priv(indio_dev); struct iio_dev_attr *this_attr = to_iio_dev_attr(attr); int ret; unsigned int msecs; mutex_lock(&st->lock); ret = ad7280_read(st, this_attr->address >> 8, this_attr->address & 0xFF); mutex_unlock(&st->lock); if (ret < 0) return ret; msecs = (ret >> 3) * 71500; return sprintf(buf, "%u\n", msecs); } static ssize_t ad7280_store_balance_timer(struct device *dev, struct device_attribute *attr, const char *buf, size_t len) { struct iio_dev *indio_dev = dev_to_iio_dev(dev); struct ad7280_state *st = iio_priv(indio_dev); struct iio_dev_attr *this_attr = to_iio_dev_attr(attr); unsigned long val; int ret; ret = kstrtoul(buf, 10, &val); if (ret) return ret; val /= 71500; if (val > 31) return -EINVAL; mutex_lock(&st->lock); ret = ad7280_write(st, this_attr->address >> 8, this_attr->address & 0xFF, 0, (val & 0x1F) << 3); mutex_unlock(&st->lock); return ret ? ret : len; } static struct attribute *ad7280_attributes[AD7280A_MAX_CHAIN * AD7280A_CELLS_PER_DEV * 2 + 1]; static const struct attribute_group ad7280_attrs_group = { .attrs = ad7280_attributes, }; static int ad7280_channel_init(struct ad7280_state *st) { int dev, ch, cnt; st->channels = devm_kcalloc(&st->spi->dev, (st->slave_num + 1) * 12 + 2, sizeof(*st->channels), GFP_KERNEL); if (!st->channels) return -ENOMEM; for (dev = 0, cnt = 0; dev <= st->slave_num; dev++) for (ch = AD7280A_CELL_VOLTAGE_1; ch <= AD7280A_AUX_ADC_6; ch++, cnt++) { if (ch < AD7280A_AUX_ADC_1) { st->channels[cnt].type = IIO_VOLTAGE; st->channels[cnt].differential = 1; st->channels[cnt].channel = (dev * 6) + ch; st->channels[cnt].channel2 = st->channels[cnt].channel + 1; } else { st->channels[cnt].type = IIO_TEMP; st->channels[cnt].channel = (dev * 6) + ch - 6; } st->channels[cnt].indexed = 1; st->channels[cnt].info_mask_separate = BIT(IIO_CHAN_INFO_RAW); st->channels[cnt].info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE); st->channels[cnt].address = ad7280a_devaddr(dev) << 8 | ch; st->channels[cnt].scan_index = cnt; st->channels[cnt].scan_type.sign = 'u'; st->channels[cnt].scan_type.realbits = 12; st->channels[cnt].scan_type.storagebits = 32; st->channels[cnt].scan_type.shift = 0; } st->channels[cnt].type = IIO_VOLTAGE; st->channels[cnt].differential = 1; st->channels[cnt].channel = 0; st->channels[cnt].channel2 = dev * 6; st->channels[cnt].address = AD7280A_ALL_CELLS; st->channels[cnt].indexed = 1; st->channels[cnt].info_mask_separate = BIT(IIO_CHAN_INFO_RAW); st->channels[cnt].info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE); st->channels[cnt].scan_index = cnt; st->channels[cnt].scan_type.sign = 'u'; st->channels[cnt].scan_type.realbits = 32; st->channels[cnt].scan_type.storagebits = 32; st->channels[cnt].scan_type.shift = 0; cnt++; st->channels[cnt].type = IIO_TIMESTAMP; st->channels[cnt].channel = -1; st->channels[cnt].scan_index = cnt; st->channels[cnt].scan_type.sign = 's'; st->channels[cnt].scan_type.realbits = 64; st->channels[cnt].scan_type.storagebits = 64; st->channels[cnt].scan_type.shift = 0; return cnt + 1; } static int ad7280_attr_init(struct ad7280_state *st) { int dev, ch, cnt; unsigned int index; struct iio_dev_attr *iio_attr; st->iio_attr = devm_kcalloc(&st->spi->dev, 2, sizeof(*st->iio_attr) * (st->slave_num + 1) * AD7280A_CELLS_PER_DEV, GFP_KERNEL); if (!st->iio_attr) return -ENOMEM; for (dev = 0, cnt = 0; dev <= st->slave_num; dev++) for (ch = AD7280A_CELL_VOLTAGE_1; ch <= AD7280A_CELL_VOLTAGE_6; ch++, cnt++) { iio_attr = &st->iio_attr[cnt]; index = dev * AD7280A_CELLS_PER_DEV + ch; iio_attr->address = ad7280a_devaddr(dev) << 8 | ch; iio_attr->dev_attr.attr.mode = 0644; iio_attr->dev_attr.show = ad7280_show_balance_sw; iio_attr->dev_attr.store = ad7280_store_balance_sw; iio_attr->dev_attr.attr.name = devm_kasprintf(&st->spi->dev, GFP_KERNEL, "in%d-in%d_balance_switch_en", index, index + 1); if (!iio_attr->dev_attr.attr.name) return -ENOMEM; ad7280_attributes[cnt] = &iio_attr->dev_attr.attr; cnt++; iio_attr = &st->iio_attr[cnt]; iio_attr->address = ad7280a_devaddr(dev) << 8 | (AD7280A_CB1_TIMER + ch); iio_attr->dev_attr.attr.mode = 0644; iio_attr->dev_attr.show = ad7280_show_balance_timer; iio_attr->dev_attr.store = ad7280_store_balance_timer; iio_attr->dev_attr.attr.name = devm_kasprintf(&st->spi->dev, GFP_KERNEL, "in%d-in%d_balance_timer", index, index + 1); if (!iio_attr->dev_attr.attr.name) return -ENOMEM; ad7280_attributes[cnt] = &iio_attr->dev_attr.attr; } ad7280_attributes[cnt] = NULL; return 0; } static ssize_t ad7280_read_channel_config(struct device *dev, struct device_attribute *attr, char *buf) { struct iio_dev *indio_dev = dev_to_iio_dev(dev); struct ad7280_state *st = iio_priv(indio_dev); struct iio_dev_attr *this_attr = to_iio_dev_attr(attr); unsigned int val; switch (this_attr->address) { case AD7280A_CELL_OVERVOLTAGE: val = 1000 + (st->cell_threshhigh * 1568) / 100; break; case AD7280A_CELL_UNDERVOLTAGE: val = 1000 + (st->cell_threshlow * 1568) / 100; break; case AD7280A_AUX_ADC_OVERVOLTAGE: val = (st->aux_threshhigh * 196) / 10; break; case AD7280A_AUX_ADC_UNDERVOLTAGE: val = (st->aux_threshlow * 196) / 10; break; default: return -EINVAL; } return sprintf(buf, "%u\n", val); } static ssize_t ad7280_write_channel_config(struct device *dev, struct device_attribute *attr, const char *buf, size_t len) { struct iio_dev *indio_dev = dev_to_iio_dev(dev); struct ad7280_state *st = iio_priv(indio_dev); struct iio_dev_attr *this_attr = to_iio_dev_attr(attr); long val; int ret; ret = kstrtol(buf, 10, &val); if (ret) return ret; switch (this_attr->address) { case AD7280A_CELL_OVERVOLTAGE: case AD7280A_CELL_UNDERVOLTAGE: val = ((val - 1000) * 100) / 1568; /* LSB 15.68mV */ break; case AD7280A_AUX_ADC_OVERVOLTAGE: case AD7280A_AUX_ADC_UNDERVOLTAGE: val = (val * 10) / 196; /* LSB 19.6mV */ break; default: return -EFAULT; } val = clamp(val, 0L, 0xFFL); mutex_lock(&st->lock); switch (this_attr->address) { case AD7280A_CELL_OVERVOLTAGE: st->cell_threshhigh = val; break; case AD7280A_CELL_UNDERVOLTAGE: st->cell_threshlow = val; break; case AD7280A_AUX_ADC_OVERVOLTAGE: st->aux_threshhigh = val; break; case AD7280A_AUX_ADC_UNDERVOLTAGE: st->aux_threshlow = val; break; } ret = ad7280_write(st, AD7280A_DEVADDR_MASTER, this_attr->address, 1, val); mutex_unlock(&st->lock); return ret ? ret : len; } static irqreturn_t ad7280_event_handler(int irq, void *private) { struct iio_dev *indio_dev = private; struct ad7280_state *st = iio_priv(indio_dev); unsigned int *channels; int i, ret; channels = kcalloc(st->scan_cnt, sizeof(*channels), GFP_KERNEL); if (!channels) return IRQ_HANDLED; ret = ad7280_read_all_channels(st, st->scan_cnt, channels); if (ret < 0) goto out; for (i = 0; i < st->scan_cnt; i++) { if (((channels[i] >> 23) & 0xF) <= AD7280A_CELL_VOLTAGE_6) { if (((channels[i] >> 11) & 0xFFF) >= st->cell_threshhigh) iio_push_event(indio_dev, IIO_EVENT_CODE(IIO_VOLTAGE, 1, 0, IIO_EV_DIR_RISING, IIO_EV_TYPE_THRESH, 0, 0, 0), iio_get_time_ns(indio_dev)); else if (((channels[i] >> 11) & 0xFFF) <= st->cell_threshlow) iio_push_event(indio_dev, IIO_EVENT_CODE(IIO_VOLTAGE, 1, 0, IIO_EV_DIR_FALLING, IIO_EV_TYPE_THRESH, 0, 0, 0), iio_get_time_ns(indio_dev)); } else { if (((channels[i] >> 11) & 0xFFF) >= st->aux_threshhigh) iio_push_event(indio_dev, IIO_UNMOD_EVENT_CODE( IIO_TEMP, 0, IIO_EV_TYPE_THRESH, IIO_EV_DIR_RISING), iio_get_time_ns(indio_dev)); else if (((channels[i] >> 11) & 0xFFF) <= st->aux_threshlow) iio_push_event(indio_dev, IIO_UNMOD_EVENT_CODE( IIO_TEMP, 0, IIO_EV_TYPE_THRESH, IIO_EV_DIR_FALLING), iio_get_time_ns(indio_dev)); } } out: kfree(channels); return IRQ_HANDLED; } static IIO_DEVICE_ATTR_NAMED(in_thresh_low_value, in_voltage-voltage_thresh_low_value, 0644, ad7280_read_channel_config, ad7280_write_channel_config, AD7280A_CELL_UNDERVOLTAGE); static IIO_DEVICE_ATTR_NAMED(in_thresh_high_value, in_voltage-voltage_thresh_high_value, 0644, ad7280_read_channel_config, ad7280_write_channel_config, AD7280A_CELL_OVERVOLTAGE); static IIO_DEVICE_ATTR(in_temp_thresh_low_value, 0644, ad7280_read_channel_config, ad7280_write_channel_config, AD7280A_AUX_ADC_UNDERVOLTAGE); static IIO_DEVICE_ATTR(in_temp_thresh_high_value, 0644, ad7280_read_channel_config, ad7280_write_channel_config, AD7280A_AUX_ADC_OVERVOLTAGE); static struct attribute *ad7280_event_attributes[] = { &iio_dev_attr_in_thresh_low_value.dev_attr.attr, &iio_dev_attr_in_thresh_high_value.dev_attr.attr, &iio_dev_attr_in_temp_thresh_low_value.dev_attr.attr, &iio_dev_attr_in_temp_thresh_high_value.dev_attr.attr, NULL, }; static const struct attribute_group ad7280_event_attrs_group = { .attrs = ad7280_event_attributes, }; static int ad7280_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long m) { struct ad7280_state *st = iio_priv(indio_dev); int ret; switch (m) { case IIO_CHAN_INFO_RAW: mutex_lock(&st->lock); if (chan->address == AD7280A_ALL_CELLS) ret = ad7280_read_all_channels(st, st->scan_cnt, NULL); else ret = ad7280_read_channel(st, chan->address >> 8, chan->address & 0xFF); mutex_unlock(&st->lock); if (ret < 0) return ret; *val = ret; return IIO_VAL_INT; case IIO_CHAN_INFO_SCALE: if ((chan->address & 0xFF) <= AD7280A_CELL_VOLTAGE_6) *val = 4000; else *val = 5000; *val2 = AD7280A_BITS; return IIO_VAL_FRACTIONAL_LOG2; } return -EINVAL; } static const struct iio_info ad7280_info = { .read_raw = ad7280_read_raw, .event_attrs = &ad7280_event_attrs_group, .attrs = &ad7280_attrs_group, }; static const struct ad7280_platform_data ad7793_default_pdata = { .acquisition_time = AD7280A_ACQ_TIME_400ns, .conversion_averaging = AD7280A_CONV_AVG_DIS, .thermistor_term_en = true, }; static int ad7280_probe(struct spi_device *spi) { const struct ad7280_platform_data *pdata = dev_get_platdata(&spi->dev); struct ad7280_state *st; int ret; const unsigned short tACQ_ns[4] = {465, 1010, 1460, 1890}; const unsigned short nAVG[4] = {1, 2, 4, 8}; struct iio_dev *indio_dev; indio_dev = devm_iio_device_alloc(&spi->dev, sizeof(*st)); if (!indio_dev) return -ENOMEM; st = iio_priv(indio_dev); spi_set_drvdata(spi, indio_dev); st->spi = spi; mutex_init(&st->lock); if (!pdata) pdata = &ad7793_default_pdata; crc8_populate_msb(st->crc_tab, POLYNOM); st->spi->max_speed_hz = AD7280A_MAX_SPI_CLK_HZ; st->spi->mode = SPI_MODE_1; spi_setup(st->spi); st->ctrl_lb = AD7280A_CTRL_LB_ACQ_TIME(pdata->acquisition_time & 0x3); st->ctrl_hb = AD7280A_CTRL_HB_CONV_AVG(pdata->conversion_averaging & 0x3) | (pdata->thermistor_term_en ? AD7280A_CTRL_LB_THERMISTOR_EN : 0); ret = ad7280_chain_setup(st); if (ret < 0) return ret; st->slave_num = ret; st->scan_cnt = (st->slave_num + 1) * AD7280A_NUM_CH; st->cell_threshhigh = 0xFF; st->aux_threshhigh = 0xFF; ret = devm_add_action_or_reset(&spi->dev, ad7280_sw_power_down, st); if (ret) return ret; /* * Total Conversion Time = ((tACQ + tCONV) * * (Number of Conversions per Part)) − * tACQ + ((N - 1) * tDELAY) * * Readback Delay = Total Conversion Time + tWAIT */ st->readback_delay_us = ((tACQ_ns[pdata->acquisition_time & 0x3] + 695) * (AD7280A_NUM_CH * nAVG[pdata->conversion_averaging & 0x3])) - tACQ_ns[pdata->acquisition_time & 0x3] + st->slave_num * 250; /* Convert to usecs */ st->readback_delay_us = DIV_ROUND_UP(st->readback_delay_us, 1000); st->readback_delay_us += 5; /* Add tWAIT */ indio_dev->name = spi_get_device_id(spi)->name; indio_dev->dev.parent = &spi->dev; indio_dev->modes = INDIO_DIRECT_MODE; ret = ad7280_channel_init(st); if (ret < 0) return ret; indio_dev->num_channels = ret; indio_dev->channels = st->channels; indio_dev->info = &ad7280_info; ret = ad7280_attr_init(st); if (ret < 0) return ret; ret = devm_iio_device_register(&spi->dev, indio_dev); if (ret) return ret; if (spi->irq > 0) { ret = ad7280_write(st, AD7280A_DEVADDR_MASTER, AD7280A_ALERT, 1, AD7280A_ALERT_RELAY_SIG_CHAIN_DOWN); if (ret) return ret; ret = ad7280_write(st, ad7280a_devaddr(st->slave_num), AD7280A_ALERT, 0, AD7280A_ALERT_GEN_STATIC_HIGH | (pdata->chain_last_alert_ignore & 0xF)); if (ret) return ret; ret = devm_request_threaded_irq(&spi->dev, spi->irq, NULL, ad7280_event_handler, IRQF_TRIGGER_FALLING | IRQF_ONESHOT, indio_dev->name, indio_dev); if (ret) return ret; } return 0; } static const struct spi_device_id ad7280_id[] = { {"ad7280a", 0}, {} }; MODULE_DEVICE_TABLE(spi, ad7280_id); static struct spi_driver ad7280_driver = { .driver = { .name = "ad7280", }, .probe = ad7280_probe, .id_table = ad7280_id, }; module_spi_driver(ad7280_driver); MODULE_AUTHOR("Michael Hennerich <michael.hennerich@analog.com>"); MODULE_DESCRIPTION("Analog Devices AD7280A"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1