Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Jonathan Cameron | 796 | 34.87% | 10 | 33.33% |
Michael Hennerich | 646 | 28.30% | 7 | 23.33% |
Barry Song | 505 | 22.12% | 1 | 3.33% |
sayli karnik | 283 | 12.40% | 3 | 10.00% |
SF Markus Elfring | 19 | 0.83% | 1 | 3.33% |
Sachin Kamat | 12 | 0.53% | 1 | 3.33% |
Ioana Ciornei | 7 | 0.31% | 1 | 3.33% |
Miguel Robles | 4 | 0.18% | 1 | 3.33% |
Sumit Pundir | 4 | 0.18% | 1 | 3.33% |
Lars-Peter Clausen | 3 | 0.13% | 2 | 6.67% |
Paul Gortmaker | 3 | 0.13% | 1 | 3.33% |
Masanari Iida | 1 | 0.04% | 1 | 3.33% |
Total | 2283 | 30 |
/* * AD7152 capacitive sensor driver supporting AD7152/3 * * Copyright 2010-2011a Analog Devices Inc. * * Licensed under the GPL-2 or later. */ #include <linux/interrupt.h> #include <linux/device.h> #include <linux/kernel.h> #include <linux/slab.h> #include <linux/sysfs.h> #include <linux/i2c.h> #include <linux/module.h> #include <linux/delay.h> #include <linux/iio/iio.h> #include <linux/iio/sysfs.h> /* * TODO: Check compliance of calibbias with abi (units) */ /* * AD7152 registers definition */ #define AD7152_REG_STATUS 0 #define AD7152_REG_CH1_DATA_HIGH 1 #define AD7152_REG_CH2_DATA_HIGH 3 #define AD7152_REG_CH1_OFFS_HIGH 5 #define AD7152_REG_CH2_OFFS_HIGH 7 #define AD7152_REG_CH1_GAIN_HIGH 9 #define AD7152_REG_CH1_SETUP 11 #define AD7152_REG_CH2_GAIN_HIGH 12 #define AD7152_REG_CH2_SETUP 14 #define AD7152_REG_CFG 15 #define AD7152_REG_RESEVERD 16 #define AD7152_REG_CAPDAC_POS 17 #define AD7152_REG_CAPDAC_NEG 18 #define AD7152_REG_CFG2 26 /* Status Register Bit Designations (AD7152_REG_STATUS) */ #define AD7152_STATUS_RDY1 BIT(0) #define AD7152_STATUS_RDY2 BIT(1) #define AD7152_STATUS_C1C2 BIT(2) #define AD7152_STATUS_PWDN BIT(7) /* Setup Register Bit Designations (AD7152_REG_CHx_SETUP) */ #define AD7152_SETUP_CAPDIFF BIT(5) #define AD7152_SETUP_RANGE_2pF (0 << 6) #define AD7152_SETUP_RANGE_0_5pF (1 << 6) #define AD7152_SETUP_RANGE_1pF (2 << 6) #define AD7152_SETUP_RANGE_4pF (3 << 6) #define AD7152_SETUP_RANGE(x) ((x) << 6) /* Config Register Bit Designations (AD7152_REG_CFG) */ #define AD7152_CONF_CH2EN BIT(3) #define AD7152_CONF_CH1EN BIT(4) #define AD7152_CONF_MODE_IDLE (0 << 0) #define AD7152_CONF_MODE_CONT_CONV (1 << 0) #define AD7152_CONF_MODE_SINGLE_CONV (2 << 0) #define AD7152_CONF_MODE_OFFS_CAL (5 << 0) #define AD7152_CONF_MODE_GAIN_CAL (6 << 0) /* Capdac Register Bit Designations (AD7152_REG_CAPDAC_XXX) */ #define AD7152_CAPDAC_DACEN BIT(7) #define AD7152_CAPDAC_DACP(x) ((x) & 0x1F) /* CFG2 Register Bit Designations (AD7152_REG_CFG2) */ #define AD7152_CFG2_OSR(x) (((x) & 0x3) << 4) enum { AD7152_DATA, AD7152_OFFS, AD7152_GAIN, AD7152_SETUP }; /* * struct ad7152_chip_info - chip specific information */ struct ad7152_chip_info { struct i2c_client *client; /* * Capacitive channel digital filter setup; * conversion time/update rate setup per channel */ u8 filter_rate_setup; u8 setup[2]; struct mutex state_lock; /* protect hardware state */ }; static inline ssize_t ad7152_start_calib(struct device *dev, struct device_attribute *attr, const char *buf, size_t len, u8 regval) { struct iio_dev *indio_dev = dev_to_iio_dev(dev); struct ad7152_chip_info *chip = iio_priv(indio_dev); struct iio_dev_attr *this_attr = to_iio_dev_attr(attr); bool doit; int ret, timeout = 10; ret = strtobool(buf, &doit); if (ret < 0) return ret; if (!doit) return 0; if (this_attr->address == 0) regval |= AD7152_CONF_CH1EN; else regval |= AD7152_CONF_CH2EN; mutex_lock(&chip->state_lock); ret = i2c_smbus_write_byte_data(chip->client, AD7152_REG_CFG, regval); if (ret < 0) goto unlock; do { mdelay(20); ret = i2c_smbus_read_byte_data(chip->client, AD7152_REG_CFG); if (ret < 0) goto unlock; } while ((ret == regval) && timeout--); mutex_unlock(&chip->state_lock); return len; unlock: mutex_unlock(&chip->state_lock); return ret; } static ssize_t ad7152_start_offset_calib(struct device *dev, struct device_attribute *attr, const char *buf, size_t len) { return ad7152_start_calib(dev, attr, buf, len, AD7152_CONF_MODE_OFFS_CAL); } static ssize_t ad7152_start_gain_calib(struct device *dev, struct device_attribute *attr, const char *buf, size_t len) { return ad7152_start_calib(dev, attr, buf, len, AD7152_CONF_MODE_GAIN_CAL); } static IIO_DEVICE_ATTR(in_capacitance0_calibbias_calibration, 0200, NULL, ad7152_start_offset_calib, 0); static IIO_DEVICE_ATTR(in_capacitance1_calibbias_calibration, 0200, NULL, ad7152_start_offset_calib, 1); static IIO_DEVICE_ATTR(in_capacitance0_calibscale_calibration, 0200, NULL, ad7152_start_gain_calib, 0); static IIO_DEVICE_ATTR(in_capacitance1_calibscale_calibration, 0200, NULL, ad7152_start_gain_calib, 1); /* Values are Update Rate (Hz), Conversion Time (ms) + 1*/ static const unsigned char ad7152_filter_rate_table[][2] = { {200, 5 + 1}, {50, 20 + 1}, {20, 50 + 1}, {17, 60 + 1}, }; static IIO_CONST_ATTR_SAMP_FREQ_AVAIL("200 50 20 17"); static IIO_CONST_ATTR(in_capacitance_scale_available, "0.000061050 0.000030525 0.000015263 0.000007631"); static struct attribute *ad7152_attributes[] = { &iio_dev_attr_in_capacitance0_calibbias_calibration.dev_attr.attr, &iio_dev_attr_in_capacitance1_calibbias_calibration.dev_attr.attr, &iio_dev_attr_in_capacitance0_calibscale_calibration.dev_attr.attr, &iio_dev_attr_in_capacitance1_calibscale_calibration.dev_attr.attr, &iio_const_attr_in_capacitance_scale_available.dev_attr.attr, &iio_const_attr_sampling_frequency_available.dev_attr.attr, NULL, }; static const struct attribute_group ad7152_attribute_group = { .attrs = ad7152_attributes, }; static const u8 ad7152_addresses[][4] = { { AD7152_REG_CH1_DATA_HIGH, AD7152_REG_CH1_OFFS_HIGH, AD7152_REG_CH1_GAIN_HIGH, AD7152_REG_CH1_SETUP }, { AD7152_REG_CH2_DATA_HIGH, AD7152_REG_CH2_OFFS_HIGH, AD7152_REG_CH2_GAIN_HIGH, AD7152_REG_CH2_SETUP }, }; /* Values are nano relative to pf base. */ static const int ad7152_scale_table[] = { 30525, 7631, 15263, 61050 }; /** * read_raw handler for IIO_CHAN_INFO_SAMP_FREQ * * lock must be held **/ static int ad7152_read_raw_samp_freq(struct device *dev, int *val) { struct ad7152_chip_info *chip = iio_priv(dev_to_iio_dev(dev)); *val = ad7152_filter_rate_table[chip->filter_rate_setup][0]; return 0; } /** * write_raw handler for IIO_CHAN_INFO_SAMP_FREQ * * lock must be held **/ static int ad7152_write_raw_samp_freq(struct device *dev, int val) { struct iio_dev *indio_dev = dev_to_iio_dev(dev); struct ad7152_chip_info *chip = iio_priv(indio_dev); int ret, i; for (i = 0; i < ARRAY_SIZE(ad7152_filter_rate_table); i++) if (val >= ad7152_filter_rate_table[i][0]) break; if (i >= ARRAY_SIZE(ad7152_filter_rate_table)) i = ARRAY_SIZE(ad7152_filter_rate_table) - 1; ret = i2c_smbus_write_byte_data(chip->client, AD7152_REG_CFG2, AD7152_CFG2_OSR(i)); if (ret < 0) return ret; chip->filter_rate_setup = i; return ret; } static int ad7152_write_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int val, int val2, long mask) { struct ad7152_chip_info *chip = iio_priv(indio_dev); int ret, i; mutex_lock(&chip->state_lock); switch (mask) { case IIO_CHAN_INFO_CALIBSCALE: if (val != 1) { ret = -EINVAL; goto out; } val = (val2 * 1024) / 15625; ret = i2c_smbus_write_word_data(chip->client, ad7152_addresses[chan->channel][AD7152_GAIN], swab16(val)); if (ret < 0) goto out; ret = 0; break; case IIO_CHAN_INFO_CALIBBIAS: if ((val < 0) | (val > 0xFFFF)) { ret = -EINVAL; goto out; } ret = i2c_smbus_write_word_data(chip->client, ad7152_addresses[chan->channel][AD7152_OFFS], swab16(val)); if (ret < 0) goto out; ret = 0; break; case IIO_CHAN_INFO_SCALE: if (val) { ret = -EINVAL; goto out; } for (i = 0; i < ARRAY_SIZE(ad7152_scale_table); i++) if (val2 == ad7152_scale_table[i]) break; chip->setup[chan->channel] &= ~AD7152_SETUP_RANGE_4pF; chip->setup[chan->channel] |= AD7152_SETUP_RANGE(i); ret = i2c_smbus_write_byte_data(chip->client, ad7152_addresses[chan->channel][AD7152_SETUP], chip->setup[chan->channel]); if (ret < 0) goto out; ret = 0; break; case IIO_CHAN_INFO_SAMP_FREQ: if (val2) { ret = -EINVAL; goto out; } ret = ad7152_write_raw_samp_freq(&indio_dev->dev, val); if (ret < 0) goto out; ret = 0; break; default: ret = -EINVAL; } out: mutex_unlock(&chip->state_lock); return ret; } static int ad7152_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long mask) { struct ad7152_chip_info *chip = iio_priv(indio_dev); int ret; u8 regval = 0; mutex_lock(&chip->state_lock); switch (mask) { case IIO_CHAN_INFO_RAW: /* First set whether in differential mode */ regval = chip->setup[chan->channel]; if (chan->differential) chip->setup[chan->channel] |= AD7152_SETUP_CAPDIFF; else chip->setup[chan->channel] &= ~AD7152_SETUP_CAPDIFF; if (regval != chip->setup[chan->channel]) { ret = i2c_smbus_write_byte_data(chip->client, ad7152_addresses[chan->channel][AD7152_SETUP], chip->setup[chan->channel]); if (ret < 0) goto out; } /* Make sure the channel is enabled */ if (chan->channel == 0) regval = AD7152_CONF_CH1EN; else regval = AD7152_CONF_CH2EN; /* Trigger a single read */ regval |= AD7152_CONF_MODE_SINGLE_CONV; ret = i2c_smbus_write_byte_data(chip->client, AD7152_REG_CFG, regval); if (ret < 0) goto out; msleep(ad7152_filter_rate_table[chip->filter_rate_setup][1]); /* Now read the actual register */ ret = i2c_smbus_read_word_data(chip->client, ad7152_addresses[chan->channel][AD7152_DATA]); if (ret < 0) goto out; *val = swab16(ret); if (chan->differential) *val -= 0x8000; ret = IIO_VAL_INT; break; case IIO_CHAN_INFO_CALIBSCALE: ret = i2c_smbus_read_word_data(chip->client, ad7152_addresses[chan->channel][AD7152_GAIN]); if (ret < 0) goto out; /* 1 + gain_val / 2^16 */ *val = 1; *val2 = (15625 * swab16(ret)) / 1024; ret = IIO_VAL_INT_PLUS_MICRO; break; case IIO_CHAN_INFO_CALIBBIAS: ret = i2c_smbus_read_word_data(chip->client, ad7152_addresses[chan->channel][AD7152_OFFS]); if (ret < 0) goto out; *val = swab16(ret); ret = IIO_VAL_INT; break; case IIO_CHAN_INFO_SCALE: ret = i2c_smbus_read_byte_data(chip->client, ad7152_addresses[chan->channel][AD7152_SETUP]); if (ret < 0) goto out; *val = 0; *val2 = ad7152_scale_table[ret >> 6]; ret = IIO_VAL_INT_PLUS_NANO; break; case IIO_CHAN_INFO_SAMP_FREQ: ret = ad7152_read_raw_samp_freq(&indio_dev->dev, val); if (ret < 0) goto out; ret = IIO_VAL_INT; break; default: ret = -EINVAL; } out: mutex_unlock(&chip->state_lock); return ret; } static int ad7152_write_raw_get_fmt(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, long mask) { switch (mask) { case IIO_CHAN_INFO_SCALE: return IIO_VAL_INT_PLUS_NANO; default: return IIO_VAL_INT_PLUS_MICRO; } } static const struct iio_info ad7152_info = { .attrs = &ad7152_attribute_group, .read_raw = ad7152_read_raw, .write_raw = ad7152_write_raw, .write_raw_get_fmt = ad7152_write_raw_get_fmt, }; static const struct iio_chan_spec ad7152_channels[] = { { .type = IIO_CAPACITANCE, .indexed = 1, .channel = 0, .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_CALIBSCALE) | BIT(IIO_CHAN_INFO_CALIBBIAS) | BIT(IIO_CHAN_INFO_SCALE), .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ), }, { .type = IIO_CAPACITANCE, .differential = 1, .indexed = 1, .channel = 0, .channel2 = 2, .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_CALIBSCALE) | BIT(IIO_CHAN_INFO_CALIBBIAS) | BIT(IIO_CHAN_INFO_SCALE), .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ), }, { .type = IIO_CAPACITANCE, .indexed = 1, .channel = 1, .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_CALIBSCALE) | BIT(IIO_CHAN_INFO_CALIBBIAS) | BIT(IIO_CHAN_INFO_SCALE), .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ), }, { .type = IIO_CAPACITANCE, .differential = 1, .indexed = 1, .channel = 1, .channel2 = 3, .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_CALIBSCALE) | BIT(IIO_CHAN_INFO_CALIBBIAS) | BIT(IIO_CHAN_INFO_SCALE), .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ), } }; /* * device probe and remove */ static int ad7152_probe(struct i2c_client *client, const struct i2c_device_id *id) { int ret = 0; struct ad7152_chip_info *chip; struct iio_dev *indio_dev; indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*chip)); if (!indio_dev) return -ENOMEM; chip = iio_priv(indio_dev); /* this is only used for device removal purposes */ i2c_set_clientdata(client, indio_dev); chip->client = client; mutex_init(&chip->state_lock); /* Establish that the iio_dev is a child of the i2c device */ indio_dev->name = id->name; indio_dev->dev.parent = &client->dev; indio_dev->info = &ad7152_info; indio_dev->channels = ad7152_channels; if (id->driver_data == 0) indio_dev->num_channels = ARRAY_SIZE(ad7152_channels); else indio_dev->num_channels = 2; indio_dev->num_channels = ARRAY_SIZE(ad7152_channels); indio_dev->modes = INDIO_DIRECT_MODE; ret = devm_iio_device_register(indio_dev->dev.parent, indio_dev); if (ret) return ret; dev_err(&client->dev, "%s capacitive sensor registered\n", id->name); return 0; } static const struct i2c_device_id ad7152_id[] = { { "ad7152", 0 }, { "ad7153", 1 }, {} }; MODULE_DEVICE_TABLE(i2c, ad7152_id); static struct i2c_driver ad7152_driver = { .driver = { .name = KBUILD_MODNAME, }, .probe = ad7152_probe, .id_table = ad7152_id, }; module_i2c_driver(ad7152_driver); MODULE_AUTHOR("Barry Song <21cnbao@gmail.com>"); MODULE_DESCRIPTION("Analog Devices AD7152/3 capacitive sensor driver"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1