Contributors: 8
Author Tokens Token Proportion Commits Commit Proportion
Ivan T. Ivanov 988 55.10% 1 12.50%
Matthias Kaehlcke 534 29.78% 1 12.50%
David Collins 227 12.66% 1 12.50%
Daniel Lezcano 38 2.12% 1 12.50%
Stephen Boyd 2 0.11% 1 12.50%
Srinivas Pandruvada 2 0.11% 1 12.50%
Sascha Hauer 1 0.06% 1 12.50%
Amit Kucheria 1 0.06% 1 12.50%
Total 1793 8


/*
 * Copyright (c) 2011-2015, 2017, The Linux Foundation. All rights reserved.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 and
 * only version 2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/bitops.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/iio/consumer.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/regmap.h>
#include <linux/thermal.h>

#include "../thermal_core.h"

#define QPNP_TM_REG_TYPE		0x04
#define QPNP_TM_REG_SUBTYPE		0x05
#define QPNP_TM_REG_STATUS		0x08
#define QPNP_TM_REG_SHUTDOWN_CTRL1	0x40
#define QPNP_TM_REG_ALARM_CTRL		0x46

#define QPNP_TM_TYPE			0x09
#define QPNP_TM_SUBTYPE_GEN1		0x08
#define QPNP_TM_SUBTYPE_GEN2		0x09

#define STATUS_GEN1_STAGE_MASK		GENMASK(1, 0)
#define STATUS_GEN2_STATE_MASK		GENMASK(6, 4)
#define STATUS_GEN2_STATE_SHIFT		4

#define SHUTDOWN_CTRL1_OVERRIDE_S2	BIT(6)
#define SHUTDOWN_CTRL1_THRESHOLD_MASK	GENMASK(1, 0)

#define SHUTDOWN_CTRL1_RATE_25HZ	BIT(3)

#define ALARM_CTRL_FORCE_ENABLE		BIT(7)

/*
 * Trip point values based on threshold control
 * 0 = {105 C, 125 C, 145 C}
 * 1 = {110 C, 130 C, 150 C}
 * 2 = {115 C, 135 C, 155 C}
 * 3 = {120 C, 140 C, 160 C}
*/
#define TEMP_STAGE_STEP			20000	/* Stage step: 20.000 C */
#define TEMP_STAGE_HYSTERESIS		2000

#define TEMP_THRESH_MIN			105000	/* Threshold Min: 105 C */
#define TEMP_THRESH_STEP		5000	/* Threshold step: 5 C */

#define THRESH_MIN			0
#define THRESH_MAX			3

/* Stage 2 Threshold Min: 125 C */
#define STAGE2_THRESHOLD_MIN		125000
/* Stage 2 Threshold Max: 140 C */
#define STAGE2_THRESHOLD_MAX		140000

/* Temperature in Milli Celsius reported during stage 0 if no ADC is present */
#define DEFAULT_TEMP			37000

struct qpnp_tm_chip {
	struct regmap			*map;
	struct device			*dev;
	struct thermal_zone_device	*tz_dev;
	unsigned int			subtype;
	long				temp;
	unsigned int			thresh;
	unsigned int			stage;
	unsigned int			prev_stage;
	unsigned int			base;
	/* protects .thresh, .stage and chip registers */
	struct mutex			lock;
	bool				initialized;

	struct iio_channel		*adc;
};

/* This array maps from GEN2 alarm state to GEN1 alarm stage */
static const unsigned int alarm_state_map[8] = {0, 1, 1, 2, 2, 3, 3, 3};

static int qpnp_tm_read(struct qpnp_tm_chip *chip, u16 addr, u8 *data)
{
	unsigned int val;
	int ret;

	ret = regmap_read(chip->map, chip->base + addr, &val);
	if (ret < 0)
		return ret;

	*data = val;
	return 0;
}

static int qpnp_tm_write(struct qpnp_tm_chip *chip, u16 addr, u8 data)
{
	return regmap_write(chip->map, chip->base + addr, data);
}

/**
 * qpnp_tm_get_temp_stage() - return over-temperature stage
 * @chip:		Pointer to the qpnp_tm chip
 *
 * Return: stage (GEN1) or state (GEN2) on success, or errno on failure.
 */
static int qpnp_tm_get_temp_stage(struct qpnp_tm_chip *chip)
{
	int ret;
	u8 reg = 0;

	ret = qpnp_tm_read(chip, QPNP_TM_REG_STATUS, &reg);
	if (ret < 0)
		return ret;

	if (chip->subtype == QPNP_TM_SUBTYPE_GEN1)
		ret = reg & STATUS_GEN1_STAGE_MASK;
	else
		ret = (reg & STATUS_GEN2_STATE_MASK) >> STATUS_GEN2_STATE_SHIFT;

	return ret;
}

/*
 * This function updates the internal temp value based on the
 * current thermal stage and threshold as well as the previous stage
 */
static int qpnp_tm_update_temp_no_adc(struct qpnp_tm_chip *chip)
{
	unsigned int stage, stage_new, stage_old;
	int ret;

	WARN_ON(!mutex_is_locked(&chip->lock));

	ret = qpnp_tm_get_temp_stage(chip);
	if (ret < 0)
		return ret;
	stage = ret;

	if (chip->subtype == QPNP_TM_SUBTYPE_GEN1) {
		stage_new = stage;
		stage_old = chip->stage;
	} else {
		stage_new = alarm_state_map[stage];
		stage_old = alarm_state_map[chip->stage];
	}

	if (stage_new > stage_old) {
		/* increasing stage, use lower bound */
		chip->temp = (stage_new - 1) * TEMP_STAGE_STEP +
			     chip->thresh * TEMP_THRESH_STEP +
			     TEMP_STAGE_HYSTERESIS + TEMP_THRESH_MIN;
	} else if (stage_new < stage_old) {
		/* decreasing stage, use upper bound */
		chip->temp = stage_new * TEMP_STAGE_STEP +
			     chip->thresh * TEMP_THRESH_STEP -
			     TEMP_STAGE_HYSTERESIS + TEMP_THRESH_MIN;
	}

	chip->stage = stage;

	return 0;
}

static int qpnp_tm_get_temp(void *data, int *temp)
{
	struct qpnp_tm_chip *chip = data;
	int ret, mili_celsius;

	if (!temp)
		return -EINVAL;

	if (!chip->initialized) {
		*temp = DEFAULT_TEMP;
		return 0;
	}

	if (!chip->adc) {
		mutex_lock(&chip->lock);
		ret = qpnp_tm_update_temp_no_adc(chip);
		mutex_unlock(&chip->lock);
		if (ret < 0)
			return ret;
	} else {
		ret = iio_read_channel_processed(chip->adc, &mili_celsius);
		if (ret < 0)
			return ret;

		chip->temp = mili_celsius;
	}

	*temp = chip->temp < 0 ? 0 : chip->temp;

	return 0;
}

static int qpnp_tm_update_critical_trip_temp(struct qpnp_tm_chip *chip,
					     int temp)
{
	u8 reg;
	bool disable_s2_shutdown = false;

	WARN_ON(!mutex_is_locked(&chip->lock));

	/*
	 * Default: S2 and S3 shutdown enabled, thresholds at
	 * 105C/125C/145C, monitoring at 25Hz
	 */
	reg = SHUTDOWN_CTRL1_RATE_25HZ;

	if (temp == THERMAL_TEMP_INVALID ||
	    temp < STAGE2_THRESHOLD_MIN) {
		chip->thresh = THRESH_MIN;
		goto skip;
	}

	if (temp <= STAGE2_THRESHOLD_MAX) {
		chip->thresh = THRESH_MAX -
			((STAGE2_THRESHOLD_MAX - temp) /
			 TEMP_THRESH_STEP);
		disable_s2_shutdown = true;
	} else {
		chip->thresh = THRESH_MAX;

		if (chip->adc)
			disable_s2_shutdown = true;
		else
			dev_warn(chip->dev,
				 "No ADC is configured and critical temperature is above the maximum stage 2 threshold of 140 C! Configuring stage 2 shutdown at 140 C.\n");
	}

skip:
	reg |= chip->thresh;
	if (disable_s2_shutdown)
		reg |= SHUTDOWN_CTRL1_OVERRIDE_S2;

	return qpnp_tm_write(chip, QPNP_TM_REG_SHUTDOWN_CTRL1, reg);
}

static int qpnp_tm_set_trip_temp(void *data, int trip, int temp)
{
	struct qpnp_tm_chip *chip = data;
	const struct thermal_trip *trip_points;
	int ret;

	trip_points = of_thermal_get_trip_points(chip->tz_dev);
	if (!trip_points)
		return -EINVAL;

	if (trip_points[trip].type != THERMAL_TRIP_CRITICAL)
		return 0;

	mutex_lock(&chip->lock);
	ret = qpnp_tm_update_critical_trip_temp(chip, temp);
	mutex_unlock(&chip->lock);

	return ret;
}

static const struct thermal_zone_of_device_ops qpnp_tm_sensor_ops = {
	.get_temp = qpnp_tm_get_temp,
	.set_trip_temp = qpnp_tm_set_trip_temp,
};

static irqreturn_t qpnp_tm_isr(int irq, void *data)
{
	struct qpnp_tm_chip *chip = data;

	thermal_zone_device_update(chip->tz_dev, THERMAL_EVENT_UNSPECIFIED);

	return IRQ_HANDLED;
}

static int qpnp_tm_get_critical_trip_temp(struct qpnp_tm_chip *chip)
{
	int ntrips;
	const struct thermal_trip *trips;
	int i;

	ntrips = of_thermal_get_ntrips(chip->tz_dev);
	if (ntrips <= 0)
		return THERMAL_TEMP_INVALID;

	trips = of_thermal_get_trip_points(chip->tz_dev);
	if (!trips)
		return THERMAL_TEMP_INVALID;

	for (i = 0; i < ntrips; i++) {
		if (of_thermal_is_trip_valid(chip->tz_dev, i) &&
		    trips[i].type == THERMAL_TRIP_CRITICAL)
			return trips[i].temperature;
	}

	return THERMAL_TEMP_INVALID;
}

/*
 * This function initializes the internal temp value based on only the
 * current thermal stage and threshold. Setup threshold control and
 * disable shutdown override.
 */
static int qpnp_tm_init(struct qpnp_tm_chip *chip)
{
	unsigned int stage;
	int ret;
	u8 reg = 0;
	int crit_temp;

	mutex_lock(&chip->lock);

	ret = qpnp_tm_read(chip, QPNP_TM_REG_SHUTDOWN_CTRL1, &reg);
	if (ret < 0)
		goto out;

	chip->thresh = reg & SHUTDOWN_CTRL1_THRESHOLD_MASK;
	chip->temp = DEFAULT_TEMP;

	ret = qpnp_tm_get_temp_stage(chip);
	if (ret < 0)
		goto out;
	chip->stage = ret;

	stage = chip->subtype == QPNP_TM_SUBTYPE_GEN1
		? chip->stage : alarm_state_map[chip->stage];

	if (stage)
		chip->temp = chip->thresh * TEMP_THRESH_STEP +
			     (stage - 1) * TEMP_STAGE_STEP +
			     TEMP_THRESH_MIN;

	crit_temp = qpnp_tm_get_critical_trip_temp(chip);
	ret = qpnp_tm_update_critical_trip_temp(chip, crit_temp);
	if (ret < 0)
		goto out;

	/* Enable the thermal alarm PMIC module in always-on mode. */
	reg = ALARM_CTRL_FORCE_ENABLE;
	ret = qpnp_tm_write(chip, QPNP_TM_REG_ALARM_CTRL, reg);

	chip->initialized = true;

out:
	mutex_unlock(&chip->lock);
	return ret;
}

static int qpnp_tm_probe(struct platform_device *pdev)
{
	struct qpnp_tm_chip *chip;
	struct device_node *node;
	u8 type, subtype;
	u32 res;
	int ret, irq;

	node = pdev->dev.of_node;

	chip = devm_kzalloc(&pdev->dev, sizeof(*chip), GFP_KERNEL);
	if (!chip)
		return -ENOMEM;

	dev_set_drvdata(&pdev->dev, chip);
	chip->dev = &pdev->dev;

	mutex_init(&chip->lock);

	chip->map = dev_get_regmap(pdev->dev.parent, NULL);
	if (!chip->map)
		return -ENXIO;

	ret = of_property_read_u32(node, "reg", &res);
	if (ret < 0)
		return ret;

	irq = platform_get_irq(pdev, 0);
	if (irq < 0)
		return irq;

	/* ADC based measurements are optional */
	chip->adc = devm_iio_channel_get(&pdev->dev, "thermal");
	if (IS_ERR(chip->adc)) {
		ret = PTR_ERR(chip->adc);
		chip->adc = NULL;
		if (ret == -EPROBE_DEFER)
			return ret;
	}

	chip->base = res;

	ret = qpnp_tm_read(chip, QPNP_TM_REG_TYPE, &type);
	if (ret < 0) {
		dev_err(&pdev->dev, "could not read type\n");
		return ret;
	}

	ret = qpnp_tm_read(chip, QPNP_TM_REG_SUBTYPE, &subtype);
	if (ret < 0) {
		dev_err(&pdev->dev, "could not read subtype\n");
		return ret;
	}

	if (type != QPNP_TM_TYPE || (subtype != QPNP_TM_SUBTYPE_GEN1
				     && subtype != QPNP_TM_SUBTYPE_GEN2)) {
		dev_err(&pdev->dev, "invalid type 0x%02x or subtype 0x%02x\n",
			type, subtype);
		return -ENODEV;
	}

	chip->subtype = subtype;

	/*
	 * Register the sensor before initializing the hardware to be able to
	 * read the trip points. get_temp() returns the default temperature
	 * before the hardware initialization is completed.
	 */
	chip->tz_dev = devm_thermal_zone_of_sensor_register(
		&pdev->dev, 0, chip, &qpnp_tm_sensor_ops);
	if (IS_ERR(chip->tz_dev)) {
		dev_err(&pdev->dev, "failed to register sensor\n");
		return PTR_ERR(chip->tz_dev);
	}

	ret = qpnp_tm_init(chip);
	if (ret < 0) {
		dev_err(&pdev->dev, "init failed\n");
		return ret;
	}

	ret = devm_request_threaded_irq(&pdev->dev, irq, NULL, qpnp_tm_isr,
					IRQF_ONESHOT, node->name, chip);
	if (ret < 0)
		return ret;

	thermal_zone_device_update(chip->tz_dev, THERMAL_EVENT_UNSPECIFIED);

	return 0;
}

static const struct of_device_id qpnp_tm_match_table[] = {
	{ .compatible = "qcom,spmi-temp-alarm" },
	{ }
};
MODULE_DEVICE_TABLE(of, qpnp_tm_match_table);

static struct platform_driver qpnp_tm_driver = {
	.driver = {
		.name = "spmi-temp-alarm",
		.of_match_table = qpnp_tm_match_table,
	},
	.probe  = qpnp_tm_probe,
};
module_platform_driver(qpnp_tm_driver);

MODULE_ALIAS("platform:spmi-temp-alarm");
MODULE_DESCRIPTION("QPNP PMIC Temperature Alarm driver");
MODULE_LICENSE("GPL v2");