Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
David Vrabel | 1314 | 75.78% | 1 | 6.67% |
Jordan Crouse | 253 | 14.59% | 5 | 33.33% |
Andres Salomon | 162 | 9.34% | 7 | 46.67% |
Mike Travis | 4 | 0.23% | 1 | 6.67% |
jia zhang | 1 | 0.06% | 1 | 6.67% |
Total | 1734 | 15 |
/* * Geode GX video processor device. * * Copyright (C) 2006 Arcom Control Systems Ltd. * * Portions from AMD's original 2.4 driver: * Copyright (C) 2004 Advanced Micro Devices, Inc. * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or (at your * option) any later version. */ #include <linux/fb.h> #include <linux/delay.h> #include <asm/io.h> #include <asm/delay.h> #include <asm/msr.h> #include <linux/cs5535.h> #include "gxfb.h" /* * Tables of register settings for various DOTCLKs. */ struct gx_pll_entry { long pixclock; /* ps */ u32 sys_rstpll_bits; u32 dotpll_value; }; #define POSTDIV3 ((u32)MSR_GLCP_SYS_RSTPLL_DOTPOSTDIV3) #define PREMULT2 ((u32)MSR_GLCP_SYS_RSTPLL_DOTPREMULT2) #define PREDIV2 ((u32)MSR_GLCP_SYS_RSTPLL_DOTPOSTDIV3) static const struct gx_pll_entry gx_pll_table_48MHz[] = { { 40123, POSTDIV3, 0x00000BF2 }, /* 24.9230 */ { 39721, 0, 0x00000037 }, /* 25.1750 */ { 35308, POSTDIV3|PREMULT2, 0x00000B1A }, /* 28.3220 */ { 31746, POSTDIV3, 0x000002D2 }, /* 31.5000 */ { 27777, POSTDIV3|PREMULT2, 0x00000FE2 }, /* 36.0000 */ { 26666, POSTDIV3, 0x0000057A }, /* 37.5000 */ { 25000, POSTDIV3, 0x0000030A }, /* 40.0000 */ { 22271, 0, 0x00000063 }, /* 44.9000 */ { 20202, 0, 0x0000054B }, /* 49.5000 */ { 20000, 0, 0x0000026E }, /* 50.0000 */ { 19860, PREMULT2, 0x00000037 }, /* 50.3500 */ { 18518, POSTDIV3|PREMULT2, 0x00000B0D }, /* 54.0000 */ { 17777, 0, 0x00000577 }, /* 56.2500 */ { 17733, 0, 0x000007F7 }, /* 56.3916 */ { 17653, 0, 0x0000057B }, /* 56.6444 */ { 16949, PREMULT2, 0x00000707 }, /* 59.0000 */ { 15873, POSTDIV3|PREMULT2, 0x00000B39 }, /* 63.0000 */ { 15384, POSTDIV3|PREMULT2, 0x00000B45 }, /* 65.0000 */ { 14814, POSTDIV3|PREMULT2, 0x00000FC1 }, /* 67.5000 */ { 14124, POSTDIV3, 0x00000561 }, /* 70.8000 */ { 13888, POSTDIV3, 0x000007E1 }, /* 72.0000 */ { 13426, PREMULT2, 0x00000F4A }, /* 74.4810 */ { 13333, 0, 0x00000052 }, /* 75.0000 */ { 12698, 0, 0x00000056 }, /* 78.7500 */ { 12500, POSTDIV3|PREMULT2, 0x00000709 }, /* 80.0000 */ { 11135, PREMULT2, 0x00000262 }, /* 89.8000 */ { 10582, 0, 0x000002D2 }, /* 94.5000 */ { 10101, PREMULT2, 0x00000B4A }, /* 99.0000 */ { 10000, PREMULT2, 0x00000036 }, /* 100.0000 */ { 9259, 0, 0x000007E2 }, /* 108.0000 */ { 8888, 0, 0x000007F6 }, /* 112.5000 */ { 7692, POSTDIV3|PREMULT2, 0x00000FB0 }, /* 130.0000 */ { 7407, POSTDIV3|PREMULT2, 0x00000B50 }, /* 135.0000 */ { 6349, 0, 0x00000055 }, /* 157.5000 */ { 6172, 0, 0x000009C1 }, /* 162.0000 */ { 5787, PREMULT2, 0x0000002D }, /* 172.798 */ { 5698, 0, 0x000002C1 }, /* 175.5000 */ { 5291, 0, 0x000002D1 }, /* 189.0000 */ { 4938, 0, 0x00000551 }, /* 202.5000 */ { 4357, 0, 0x0000057D }, /* 229.5000 */ }; static const struct gx_pll_entry gx_pll_table_14MHz[] = { { 39721, 0, 0x00000037 }, /* 25.1750 */ { 35308, 0, 0x00000B7B }, /* 28.3220 */ { 31746, 0, 0x000004D3 }, /* 31.5000 */ { 27777, 0, 0x00000BE3 }, /* 36.0000 */ { 26666, 0, 0x0000074F }, /* 37.5000 */ { 25000, 0, 0x0000050B }, /* 40.0000 */ { 22271, 0, 0x00000063 }, /* 44.9000 */ { 20202, 0, 0x0000054B }, /* 49.5000 */ { 20000, 0, 0x0000026E }, /* 50.0000 */ { 19860, 0, 0x000007C3 }, /* 50.3500 */ { 18518, 0, 0x000007E3 }, /* 54.0000 */ { 17777, 0, 0x00000577 }, /* 56.2500 */ { 17733, 0, 0x000002FB }, /* 56.3916 */ { 17653, 0, 0x0000057B }, /* 56.6444 */ { 16949, 0, 0x0000058B }, /* 59.0000 */ { 15873, 0, 0x0000095E }, /* 63.0000 */ { 15384, 0, 0x0000096A }, /* 65.0000 */ { 14814, 0, 0x00000BC2 }, /* 67.5000 */ { 14124, 0, 0x0000098A }, /* 70.8000 */ { 13888, 0, 0x00000BE2 }, /* 72.0000 */ { 13333, 0, 0x00000052 }, /* 75.0000 */ { 12698, 0, 0x00000056 }, /* 78.7500 */ { 12500, 0, 0x0000050A }, /* 80.0000 */ { 11135, 0, 0x0000078E }, /* 89.8000 */ { 10582, 0, 0x000002D2 }, /* 94.5000 */ { 10101, 0, 0x000011F6 }, /* 99.0000 */ { 10000, 0, 0x0000054E }, /* 100.0000 */ { 9259, 0, 0x000007E2 }, /* 108.0000 */ { 8888, 0, 0x000002FA }, /* 112.5000 */ { 7692, 0, 0x00000BB1 }, /* 130.0000 */ { 7407, 0, 0x00000975 }, /* 135.0000 */ { 6349, 0, 0x00000055 }, /* 157.5000 */ { 6172, 0, 0x000009C1 }, /* 162.0000 */ { 5698, 0, 0x000002C1 }, /* 175.5000 */ { 5291, 0, 0x00000539 }, /* 189.0000 */ { 4938, 0, 0x00000551 }, /* 202.5000 */ { 4357, 0, 0x0000057D }, /* 229.5000 */ }; void gx_set_dclk_frequency(struct fb_info *info) { const struct gx_pll_entry *pll_table; int pll_table_len; int i, best_i; long min, diff; u64 dotpll, sys_rstpll; int timeout = 1000; /* Rev. 1 Geode GXs use a 14 MHz reference clock instead of 48 MHz. */ if (cpu_data(0).x86_stepping == 1) { pll_table = gx_pll_table_14MHz; pll_table_len = ARRAY_SIZE(gx_pll_table_14MHz); } else { pll_table = gx_pll_table_48MHz; pll_table_len = ARRAY_SIZE(gx_pll_table_48MHz); } /* Search the table for the closest pixclock. */ best_i = 0; min = abs(pll_table[0].pixclock - info->var.pixclock); for (i = 1; i < pll_table_len; i++) { diff = abs(pll_table[i].pixclock - info->var.pixclock); if (diff < min) { min = diff; best_i = i; } } rdmsrl(MSR_GLCP_SYS_RSTPLL, sys_rstpll); rdmsrl(MSR_GLCP_DOTPLL, dotpll); /* Program new M, N and P. */ dotpll &= 0x00000000ffffffffull; dotpll |= (u64)pll_table[best_i].dotpll_value << 32; dotpll |= MSR_GLCP_DOTPLL_DOTRESET; dotpll &= ~MSR_GLCP_DOTPLL_BYPASS; wrmsrl(MSR_GLCP_DOTPLL, dotpll); /* Program dividers. */ sys_rstpll &= ~( MSR_GLCP_SYS_RSTPLL_DOTPREDIV2 | MSR_GLCP_SYS_RSTPLL_DOTPREMULT2 | MSR_GLCP_SYS_RSTPLL_DOTPOSTDIV3 ); sys_rstpll |= pll_table[best_i].sys_rstpll_bits; wrmsrl(MSR_GLCP_SYS_RSTPLL, sys_rstpll); /* Clear reset bit to start PLL. */ dotpll &= ~(MSR_GLCP_DOTPLL_DOTRESET); wrmsrl(MSR_GLCP_DOTPLL, dotpll); /* Wait for LOCK bit. */ do { rdmsrl(MSR_GLCP_DOTPLL, dotpll); } while (timeout-- && !(dotpll & MSR_GLCP_DOTPLL_LOCK)); } static void gx_configure_tft(struct fb_info *info) { struct gxfb_par *par = info->par; unsigned long val; unsigned long fp; /* Set up the DF pad select MSR */ rdmsrl(MSR_GX_MSR_PADSEL, val); val &= ~MSR_GX_MSR_PADSEL_MASK; val |= MSR_GX_MSR_PADSEL_TFT; wrmsrl(MSR_GX_MSR_PADSEL, val); /* Turn off the panel */ fp = read_fp(par, FP_PM); fp &= ~FP_PM_P; write_fp(par, FP_PM, fp); /* Set timing 1 */ fp = read_fp(par, FP_PT1); fp &= FP_PT1_VSIZE_MASK; fp |= info->var.yres << FP_PT1_VSIZE_SHIFT; write_fp(par, FP_PT1, fp); /* Timing 2 */ /* Set bits that are always on for TFT */ fp = 0x0F100000; /* Configure sync polarity */ if (!(info->var.sync & FB_SYNC_VERT_HIGH_ACT)) fp |= FP_PT2_VSP; if (!(info->var.sync & FB_SYNC_HOR_HIGH_ACT)) fp |= FP_PT2_HSP; write_fp(par, FP_PT2, fp); /* Set the dither control */ write_fp(par, FP_DFC, FP_DFC_NFI); /* Enable the FP data and power (in case the BIOS didn't) */ fp = read_vp(par, VP_DCFG); fp |= VP_DCFG_FP_PWR_EN | VP_DCFG_FP_DATA_EN; write_vp(par, VP_DCFG, fp); /* Unblank the panel */ fp = read_fp(par, FP_PM); fp |= FP_PM_P; write_fp(par, FP_PM, fp); } void gx_configure_display(struct fb_info *info) { struct gxfb_par *par = info->par; u32 dcfg, misc; /* Write the display configuration */ dcfg = read_vp(par, VP_DCFG); /* Disable hsync and vsync */ dcfg &= ~(VP_DCFG_VSYNC_EN | VP_DCFG_HSYNC_EN); write_vp(par, VP_DCFG, dcfg); /* Clear bits from existing mode. */ dcfg &= ~(VP_DCFG_CRT_SYNC_SKW | VP_DCFG_CRT_HSYNC_POL | VP_DCFG_CRT_VSYNC_POL | VP_DCFG_VSYNC_EN | VP_DCFG_HSYNC_EN); /* Set default sync skew. */ dcfg |= VP_DCFG_CRT_SYNC_SKW_DEFAULT; /* Enable hsync and vsync. */ dcfg |= VP_DCFG_HSYNC_EN | VP_DCFG_VSYNC_EN; misc = read_vp(par, VP_MISC); /* Disable gamma correction */ misc |= VP_MISC_GAM_EN; if (par->enable_crt) { /* Power up the CRT DACs */ misc &= ~(VP_MISC_APWRDN | VP_MISC_DACPWRDN); write_vp(par, VP_MISC, misc); /* Only change the sync polarities if we are running * in CRT mode. The FP polarities will be handled in * gxfb_configure_tft */ if (!(info->var.sync & FB_SYNC_HOR_HIGH_ACT)) dcfg |= VP_DCFG_CRT_HSYNC_POL; if (!(info->var.sync & FB_SYNC_VERT_HIGH_ACT)) dcfg |= VP_DCFG_CRT_VSYNC_POL; } else { /* Power down the CRT DACs if in FP mode */ misc |= (VP_MISC_APWRDN | VP_MISC_DACPWRDN); write_vp(par, VP_MISC, misc); } /* Enable the display logic */ /* Set up the DACS to blank normally */ dcfg |= VP_DCFG_CRT_EN | VP_DCFG_DAC_BL_EN; /* Enable the external DAC VREF? */ write_vp(par, VP_DCFG, dcfg); /* Set up the flat panel (if it is enabled) */ if (par->enable_crt == 0) gx_configure_tft(info); } int gx_blank_display(struct fb_info *info, int blank_mode) { struct gxfb_par *par = info->par; u32 dcfg, fp_pm; int blank, hsync, vsync, crt; /* CRT power saving modes. */ switch (blank_mode) { case FB_BLANK_UNBLANK: blank = 0; hsync = 1; vsync = 1; crt = 1; break; case FB_BLANK_NORMAL: blank = 1; hsync = 1; vsync = 1; crt = 1; break; case FB_BLANK_VSYNC_SUSPEND: blank = 1; hsync = 1; vsync = 0; crt = 1; break; case FB_BLANK_HSYNC_SUSPEND: blank = 1; hsync = 0; vsync = 1; crt = 1; break; case FB_BLANK_POWERDOWN: blank = 1; hsync = 0; vsync = 0; crt = 0; break; default: return -EINVAL; } dcfg = read_vp(par, VP_DCFG); dcfg &= ~(VP_DCFG_DAC_BL_EN | VP_DCFG_HSYNC_EN | VP_DCFG_VSYNC_EN | VP_DCFG_CRT_EN); if (!blank) dcfg |= VP_DCFG_DAC_BL_EN; if (hsync) dcfg |= VP_DCFG_HSYNC_EN; if (vsync) dcfg |= VP_DCFG_VSYNC_EN; if (crt) dcfg |= VP_DCFG_CRT_EN; write_vp(par, VP_DCFG, dcfg); /* Power on/off flat panel. */ if (par->enable_crt == 0) { fp_pm = read_fp(par, FP_PM); if (blank_mode == FB_BLANK_POWERDOWN) fp_pm &= ~FP_PM_P; else fp_pm |= FP_PM_P; write_fp(par, FP_PM, fp_pm); } return 0; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1