Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Christoph Hellwig | 307 | 27.76% | 19 | 27.14% |
Tejun Heo | 201 | 18.17% | 3 | 4.29% |
Omar Sandoval | 163 | 14.74% | 1 | 1.43% |
Jens Axboe | 163 | 14.74% | 14 | 20.00% |
Michael Callahan | 59 | 5.33% | 3 | 4.29% |
Keith Busch | 42 | 3.80% | 1 | 1.43% |
Neil Brown | 32 | 2.89% | 2 | 2.86% |
Kent Overstreet | 31 | 2.80% | 4 | 5.71% |
Mikulas Patocka | 22 | 1.99% | 1 | 1.43% |
Shaohua Li | 15 | 1.36% | 4 | 5.71% |
Martin K. Petersen | 14 | 1.27% | 2 | 2.86% |
Josef Bacik | 12 | 1.08% | 2 | 2.86% |
Ming Lei | 8 | 0.72% | 2 | 2.86% |
Goldwyn Rodrigues | 7 | 0.63% | 1 | 1.43% |
Michael Christie | 6 | 0.54% | 3 | 4.29% |
Dennis Zhou | 6 | 0.54% | 2 | 2.86% |
Bart Van Assche | 5 | 0.45% | 1 | 1.43% |
Matthew Wilcox | 5 | 0.45% | 1 | 1.43% |
Chaitanya Kulkarni | 4 | 0.36% | 1 | 1.43% |
Jan Kara | 2 | 0.18% | 1 | 1.43% |
Damien Le Moal | 1 | 0.09% | 1 | 1.43% |
Greg Kroah-Hartman | 1 | 0.09% | 1 | 1.43% |
Total | 1106 | 70 |
/* SPDX-License-Identifier: GPL-2.0 */ /* * Block data types and constants. Directly include this file only to * break include dependency loop. */ #ifndef __LINUX_BLK_TYPES_H #define __LINUX_BLK_TYPES_H #include <linux/types.h> #include <linux/bvec.h> #include <linux/ktime.h> struct bio_set; struct bio; struct bio_integrity_payload; struct page; struct block_device; struct io_context; struct cgroup_subsys_state; typedef void (bio_end_io_t) (struct bio *); /* * Block error status values. See block/blk-core:blk_errors for the details. * Alpha cannot write a byte atomically, so we need to use 32-bit value. */ #if defined(CONFIG_ALPHA) && !defined(__alpha_bwx__) typedef u32 __bitwise blk_status_t; #else typedef u8 __bitwise blk_status_t; #endif #define BLK_STS_OK 0 #define BLK_STS_NOTSUPP ((__force blk_status_t)1) #define BLK_STS_TIMEOUT ((__force blk_status_t)2) #define BLK_STS_NOSPC ((__force blk_status_t)3) #define BLK_STS_TRANSPORT ((__force blk_status_t)4) #define BLK_STS_TARGET ((__force blk_status_t)5) #define BLK_STS_NEXUS ((__force blk_status_t)6) #define BLK_STS_MEDIUM ((__force blk_status_t)7) #define BLK_STS_PROTECTION ((__force blk_status_t)8) #define BLK_STS_RESOURCE ((__force blk_status_t)9) #define BLK_STS_IOERR ((__force blk_status_t)10) /* hack for device mapper, don't use elsewhere: */ #define BLK_STS_DM_REQUEUE ((__force blk_status_t)11) #define BLK_STS_AGAIN ((__force blk_status_t)12) /* * BLK_STS_DEV_RESOURCE is returned from the driver to the block layer if * device related resources are unavailable, but the driver can guarantee * that the queue will be rerun in the future once resources become * available again. This is typically the case for device specific * resources that are consumed for IO. If the driver fails allocating these * resources, we know that inflight (or pending) IO will free these * resource upon completion. * * This is different from BLK_STS_RESOURCE in that it explicitly references * a device specific resource. For resources of wider scope, allocation * failure can happen without having pending IO. This means that we can't * rely on request completions freeing these resources, as IO may not be in * flight. Examples of that are kernel memory allocations, DMA mappings, or * any other system wide resources. */ #define BLK_STS_DEV_RESOURCE ((__force blk_status_t)13) /** * blk_path_error - returns true if error may be path related * @error: status the request was completed with * * Description: * This classifies block error status into non-retryable errors and ones * that may be successful if retried on a failover path. * * Return: * %false - retrying failover path will not help * %true - may succeed if retried */ static inline bool blk_path_error(blk_status_t error) { switch (error) { case BLK_STS_NOTSUPP: case BLK_STS_NOSPC: case BLK_STS_TARGET: case BLK_STS_NEXUS: case BLK_STS_MEDIUM: case BLK_STS_PROTECTION: return false; } /* Anything else could be a path failure, so should be retried */ return true; } /* * From most significant bit: * 1 bit: reserved for other usage, see below * 12 bits: original size of bio * 51 bits: issue time of bio */ #define BIO_ISSUE_RES_BITS 1 #define BIO_ISSUE_SIZE_BITS 12 #define BIO_ISSUE_RES_SHIFT (64 - BIO_ISSUE_RES_BITS) #define BIO_ISSUE_SIZE_SHIFT (BIO_ISSUE_RES_SHIFT - BIO_ISSUE_SIZE_BITS) #define BIO_ISSUE_TIME_MASK ((1ULL << BIO_ISSUE_SIZE_SHIFT) - 1) #define BIO_ISSUE_SIZE_MASK \ (((1ULL << BIO_ISSUE_SIZE_BITS) - 1) << BIO_ISSUE_SIZE_SHIFT) #define BIO_ISSUE_RES_MASK (~((1ULL << BIO_ISSUE_RES_SHIFT) - 1)) /* Reserved bit for blk-throtl */ #define BIO_ISSUE_THROTL_SKIP_LATENCY (1ULL << 63) struct bio_issue { u64 value; }; static inline u64 __bio_issue_time(u64 time) { return time & BIO_ISSUE_TIME_MASK; } static inline u64 bio_issue_time(struct bio_issue *issue) { return __bio_issue_time(issue->value); } static inline sector_t bio_issue_size(struct bio_issue *issue) { return ((issue->value & BIO_ISSUE_SIZE_MASK) >> BIO_ISSUE_SIZE_SHIFT); } static inline void bio_issue_init(struct bio_issue *issue, sector_t size) { size &= (1ULL << BIO_ISSUE_SIZE_BITS) - 1; issue->value = ((issue->value & BIO_ISSUE_RES_MASK) | (ktime_get_ns() & BIO_ISSUE_TIME_MASK) | ((u64)size << BIO_ISSUE_SIZE_SHIFT)); } /* * main unit of I/O for the block layer and lower layers (ie drivers and * stacking drivers) */ struct bio { struct bio *bi_next; /* request queue link */ struct gendisk *bi_disk; unsigned int bi_opf; /* bottom bits req flags, * top bits REQ_OP. Use * accessors. */ unsigned short bi_flags; /* status, etc and bvec pool number */ unsigned short bi_ioprio; unsigned short bi_write_hint; blk_status_t bi_status; u8 bi_partno; /* Number of segments in this BIO after * physical address coalescing is performed. */ unsigned int bi_phys_segments; /* * To keep track of the max segment size, we account for the * sizes of the first and last mergeable segments in this bio. */ unsigned int bi_seg_front_size; unsigned int bi_seg_back_size; struct bvec_iter bi_iter; atomic_t __bi_remaining; bio_end_io_t *bi_end_io; void *bi_private; #ifdef CONFIG_BLK_CGROUP /* * Represents the association of the css and request_queue for the bio. * If a bio goes direct to device, it will not have a blkg as it will * not have a request_queue associated with it. The reference is put * on release of the bio. */ struct blkcg_gq *bi_blkg; struct bio_issue bi_issue; #endif union { #if defined(CONFIG_BLK_DEV_INTEGRITY) struct bio_integrity_payload *bi_integrity; /* data integrity */ #endif }; unsigned short bi_vcnt; /* how many bio_vec's */ /* * Everything starting with bi_max_vecs will be preserved by bio_reset() */ unsigned short bi_max_vecs; /* max bvl_vecs we can hold */ atomic_t __bi_cnt; /* pin count */ struct bio_vec *bi_io_vec; /* the actual vec list */ struct bio_set *bi_pool; /* * We can inline a number of vecs at the end of the bio, to avoid * double allocations for a small number of bio_vecs. This member * MUST obviously be kept at the very end of the bio. */ struct bio_vec bi_inline_vecs[0]; }; #define BIO_RESET_BYTES offsetof(struct bio, bi_max_vecs) /* * bio flags */ #define BIO_SEG_VALID 1 /* bi_phys_segments valid */ #define BIO_CLONED 2 /* doesn't own data */ #define BIO_BOUNCED 3 /* bio is a bounce bio */ #define BIO_USER_MAPPED 4 /* contains user pages */ #define BIO_NULL_MAPPED 5 /* contains invalid user pages */ #define BIO_QUIET 6 /* Make BIO Quiet */ #define BIO_CHAIN 7 /* chained bio, ->bi_remaining in effect */ #define BIO_REFFED 8 /* bio has elevated ->bi_cnt */ #define BIO_THROTTLED 9 /* This bio has already been subjected to * throttling rules. Don't do it again. */ #define BIO_TRACE_COMPLETION 10 /* bio_endio() should trace the final completion * of this bio. */ #define BIO_QUEUE_ENTERED 11 /* can use blk_queue_enter_live() */ #define BIO_TRACKED 12 /* set if bio goes through the rq_qos path */ /* See BVEC_POOL_OFFSET below before adding new flags */ /* * We support 6 different bvec pools, the last one is magic in that it * is backed by a mempool. */ #define BVEC_POOL_NR 6 #define BVEC_POOL_MAX (BVEC_POOL_NR - 1) /* * Top 3 bits of bio flags indicate the pool the bvecs came from. We add * 1 to the actual index so that 0 indicates that there are no bvecs to be * freed. */ #define BVEC_POOL_BITS (3) #define BVEC_POOL_OFFSET (16 - BVEC_POOL_BITS) #define BVEC_POOL_IDX(bio) ((bio)->bi_flags >> BVEC_POOL_OFFSET) #if (1<< BVEC_POOL_BITS) < (BVEC_POOL_NR+1) # error "BVEC_POOL_BITS is too small" #endif /* * Flags starting here get preserved by bio_reset() - this includes * only BVEC_POOL_IDX() */ #define BIO_RESET_BITS BVEC_POOL_OFFSET typedef __u32 __bitwise blk_mq_req_flags_t; /* * Operations and flags common to the bio and request structures. * We use 8 bits for encoding the operation, and the remaining 24 for flags. * * The least significant bit of the operation number indicates the data * transfer direction: * * - if the least significant bit is set transfers are TO the device * - if the least significant bit is not set transfers are FROM the device * * If a operation does not transfer data the least significant bit has no * meaning. */ #define REQ_OP_BITS 8 #define REQ_OP_MASK ((1 << REQ_OP_BITS) - 1) #define REQ_FLAG_BITS 24 enum req_opf { /* read sectors from the device */ REQ_OP_READ = 0, /* write sectors to the device */ REQ_OP_WRITE = 1, /* flush the volatile write cache */ REQ_OP_FLUSH = 2, /* discard sectors */ REQ_OP_DISCARD = 3, /* securely erase sectors */ REQ_OP_SECURE_ERASE = 5, /* reset a zone write pointer */ REQ_OP_ZONE_RESET = 6, /* write the same sector many times */ REQ_OP_WRITE_SAME = 7, /* write the zero filled sector many times */ REQ_OP_WRITE_ZEROES = 9, /* SCSI passthrough using struct scsi_request */ REQ_OP_SCSI_IN = 32, REQ_OP_SCSI_OUT = 33, /* Driver private requests */ REQ_OP_DRV_IN = 34, REQ_OP_DRV_OUT = 35, REQ_OP_LAST, }; enum req_flag_bits { __REQ_FAILFAST_DEV = /* no driver retries of device errors */ REQ_OP_BITS, __REQ_FAILFAST_TRANSPORT, /* no driver retries of transport errors */ __REQ_FAILFAST_DRIVER, /* no driver retries of driver errors */ __REQ_SYNC, /* request is sync (sync write or read) */ __REQ_META, /* metadata io request */ __REQ_PRIO, /* boost priority in cfq */ __REQ_NOMERGE, /* don't touch this for merging */ __REQ_IDLE, /* anticipate more IO after this one */ __REQ_INTEGRITY, /* I/O includes block integrity payload */ __REQ_FUA, /* forced unit access */ __REQ_PREFLUSH, /* request for cache flush */ __REQ_RAHEAD, /* read ahead, can fail anytime */ __REQ_BACKGROUND, /* background IO */ __REQ_NOWAIT, /* Don't wait if request will block */ /* command specific flags for REQ_OP_WRITE_ZEROES: */ __REQ_NOUNMAP, /* do not free blocks when zeroing */ __REQ_HIPRI, /* for driver use */ __REQ_DRV, __REQ_SWAP, /* swapping request. */ __REQ_NR_BITS, /* stops here */ }; #define REQ_FAILFAST_DEV (1ULL << __REQ_FAILFAST_DEV) #define REQ_FAILFAST_TRANSPORT (1ULL << __REQ_FAILFAST_TRANSPORT) #define REQ_FAILFAST_DRIVER (1ULL << __REQ_FAILFAST_DRIVER) #define REQ_SYNC (1ULL << __REQ_SYNC) #define REQ_META (1ULL << __REQ_META) #define REQ_PRIO (1ULL << __REQ_PRIO) #define REQ_NOMERGE (1ULL << __REQ_NOMERGE) #define REQ_IDLE (1ULL << __REQ_IDLE) #define REQ_INTEGRITY (1ULL << __REQ_INTEGRITY) #define REQ_FUA (1ULL << __REQ_FUA) #define REQ_PREFLUSH (1ULL << __REQ_PREFLUSH) #define REQ_RAHEAD (1ULL << __REQ_RAHEAD) #define REQ_BACKGROUND (1ULL << __REQ_BACKGROUND) #define REQ_NOWAIT (1ULL << __REQ_NOWAIT) #define REQ_NOUNMAP (1ULL << __REQ_NOUNMAP) #define REQ_HIPRI (1ULL << __REQ_HIPRI) #define REQ_DRV (1ULL << __REQ_DRV) #define REQ_SWAP (1ULL << __REQ_SWAP) #define REQ_FAILFAST_MASK \ (REQ_FAILFAST_DEV | REQ_FAILFAST_TRANSPORT | REQ_FAILFAST_DRIVER) #define REQ_NOMERGE_FLAGS \ (REQ_NOMERGE | REQ_PREFLUSH | REQ_FUA) enum stat_group { STAT_READ, STAT_WRITE, STAT_DISCARD, NR_STAT_GROUPS }; #define bio_op(bio) \ ((bio)->bi_opf & REQ_OP_MASK) #define req_op(req) \ ((req)->cmd_flags & REQ_OP_MASK) /* obsolete, don't use in new code */ static inline void bio_set_op_attrs(struct bio *bio, unsigned op, unsigned op_flags) { bio->bi_opf = op | op_flags; } static inline bool op_is_write(unsigned int op) { return (op & 1); } /* * Check if the bio or request is one that needs special treatment in the * flush state machine. */ static inline bool op_is_flush(unsigned int op) { return op & (REQ_FUA | REQ_PREFLUSH); } /* * Reads are always treated as synchronous, as are requests with the FUA or * PREFLUSH flag. Other operations may be marked as synchronous using the * REQ_SYNC flag. */ static inline bool op_is_sync(unsigned int op) { return (op & REQ_OP_MASK) == REQ_OP_READ || (op & (REQ_SYNC | REQ_FUA | REQ_PREFLUSH)); } static inline bool op_is_discard(unsigned int op) { return (op & REQ_OP_MASK) == REQ_OP_DISCARD; } static inline int op_stat_group(unsigned int op) { if (op_is_discard(op)) return STAT_DISCARD; return op_is_write(op); } typedef unsigned int blk_qc_t; #define BLK_QC_T_NONE -1U #define BLK_QC_T_SHIFT 16 #define BLK_QC_T_INTERNAL (1U << 31) static inline bool blk_qc_t_valid(blk_qc_t cookie) { return cookie != BLK_QC_T_NONE; } static inline unsigned int blk_qc_t_to_queue_num(blk_qc_t cookie) { return (cookie & ~BLK_QC_T_INTERNAL) >> BLK_QC_T_SHIFT; } static inline unsigned int blk_qc_t_to_tag(blk_qc_t cookie) { return cookie & ((1u << BLK_QC_T_SHIFT) - 1); } static inline bool blk_qc_t_is_internal(blk_qc_t cookie) { return (cookie & BLK_QC_T_INTERNAL) != 0; } struct blk_rq_stat { u64 mean; u64 min; u64 max; u32 nr_samples; u64 batch; }; #endif /* __LINUX_BLK_TYPES_H */
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1