Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Joe Perches | 833 | 12.68% | 11 | 3.77% |
Kay Sievers | 725 | 11.04% | 16 | 5.48% |
Greg Kroah-Hartman | 698 | 10.62% | 45 | 15.41% |
Rafael J. Wysocki | 493 | 7.50% | 17 | 5.82% |
Patrick Mochel | 440 | 6.70% | 31 | 10.62% |
Tejun Heo | 433 | 6.59% | 6 | 2.05% |
Dmitry Torokhov | 309 | 4.70% | 13 | 4.45% |
Heikki Krogerus | 174 | 2.65% | 2 | 0.68% |
Linus Torvalds | 153 | 2.33% | 2 | 0.68% |
Hiroshi Doyu | 149 | 2.27% | 2 | 0.68% |
Cornelia Huck | 123 | 1.87% | 6 | 2.05% |
Benjamin Herrenschmidt | 113 | 1.72% | 4 | 1.37% |
Christoph Hellwig | 110 | 1.67% | 2 | 0.68% |
Jean Delvare | 109 | 1.66% | 4 | 1.37% |
Andi Kleen | 82 | 1.25% | 3 | 1.03% |
Marc Zyngier | 68 | 1.04% | 1 | 0.34% |
Dan J Williams | 67 | 1.02% | 2 | 0.68% |
Yang Ruirui | 60 | 0.91% | 1 | 0.34% |
Rasmus Villemoes | 54 | 0.82% | 1 | 0.34% |
Borislav Petkov | 52 | 0.79% | 1 | 0.34% |
Sudip Mukherjee | 52 | 0.79% | 1 | 0.34% |
Phil Sutter | 49 | 0.75% | 2 | 0.68% |
Lei Ming | 45 | 0.68% | 2 | 0.68% |
Andrew Morton | 44 | 0.67% | 4 | 1.37% |
Matthew Wilcox | 44 | 0.67% | 3 | 1.03% |
Joerg Roedel | 43 | 0.65% | 4 | 1.37% |
Madalin Bucur | 42 | 0.64% | 1 | 0.34% |
Guenter Roeck | 41 | 0.62% | 1 | 0.34% |
Ming Lei | 41 | 0.62% | 1 | 0.34% |
Lars-Peter Clausen | 40 | 0.61% | 3 | 1.03% |
Mark Brown | 39 | 0.59% | 2 | 0.68% |
Russell King | 36 | 0.55% | 1 | 0.34% |
Andy Shevchenko | 34 | 0.52% | 2 | 0.68% |
Alan Stern | 32 | 0.49% | 4 | 1.37% |
Mark McLoughlin | 32 | 0.49% | 1 | 0.34% |
Eli Billauer | 32 | 0.49% | 1 | 0.34% |
Al Viro | 31 | 0.47% | 2 | 0.68% |
Himangi Saraogi | 22 | 0.33% | 1 | 0.34% |
Srinivas Pandruvada | 22 | 0.33% | 1 | 0.34% |
Bartosz Golaszewski | 21 | 0.32% | 2 | 0.68% |
Paul Gortmaker | 21 | 0.32% | 3 | 1.03% |
Oliver Neukum | 21 | 0.32% | 1 | 0.34% |
Konrad Rzeszutek Wilk | 20 | 0.30% | 1 | 0.34% |
Eric W. Biedermann | 20 | 0.30% | 1 | 0.34% |
Johan Hovold | 20 | 0.30% | 1 | 0.34% |
FUJITA Tomonori | 19 | 0.29% | 1 | 0.34% |
Arjan van de Ven | 18 | 0.27% | 2 | 0.68% |
Kees Cook | 17 | 0.26% | 1 | 0.34% |
David Brownell | 16 | 0.24% | 2 | 0.68% |
Daniel Ritz | 16 | 0.24% | 1 | 0.34% |
Stephen Rothwell | 15 | 0.23% | 1 | 0.34% |
Daniel E. F. Stekloff | 14 | 0.21% | 1 | 0.34% |
Christophe Leroy | 14 | 0.21% | 1 | 0.34% |
Thierry Reding | 14 | 0.21% | 2 | 0.68% |
Grant C. Likely | 14 | 0.21% | 3 | 1.03% |
Dmitry Kasatkin | 14 | 0.21% | 1 | 0.34% |
Felipe Balbi | 14 | 0.21% | 1 | 0.34% |
pascal paillet | 13 | 0.20% | 1 | 0.34% |
Arend Van Spriel | 13 | 0.20% | 2 | 0.68% |
Paul Mundt | 12 | 0.18% | 1 | 0.34% |
Nipun Gupta | 12 | 0.18% | 1 | 0.34% |
Robin Murphy | 12 | 0.18% | 2 | 0.68% |
Marek Szyprowski | 11 | 0.17% | 2 | 0.68% |
Manish Badarkhe | 11 | 0.17% | 1 | 0.34% |
Josh Zimmerman | 11 | 0.17% | 1 | 0.34% |
Jason Baron | 11 | 0.17% | 1 | 0.34% |
James Bottomley | 11 | 0.17% | 2 | 0.68% |
Tomeu Vizoso | 10 | 0.15% | 1 | 0.34% |
Linus Walleij | 10 | 0.15% | 1 | 0.34% |
Rob Herring | 9 | 0.14% | 1 | 0.34% |
Matt Domsch | 9 | 0.14% | 1 | 0.34% |
Thomas Gleixner | 9 | 0.14% | 1 | 0.34% |
Eric Moore | 9 | 0.14% | 1 | 0.34% |
Jiang Liu | 9 | 0.14% | 1 | 0.34% |
Nicolas Iooss | 8 | 0.12% | 1 | 0.34% |
Alex Williamson | 8 | 0.12% | 1 | 0.34% |
Emil Medve | 8 | 0.12% | 1 | 0.34% |
Vivek Gautam | 7 | 0.11% | 2 | 0.68% |
Mika Westerberg | 7 | 0.11% | 1 | 0.34% |
Phil Carmody | 7 | 0.11% | 3 | 1.03% |
Bart Van Assche | 6 | 0.09% | 1 | 0.34% |
Adrian Bunk | 6 | 0.09% | 1 | 0.34% |
Deepak Saxena | 5 | 0.08% | 1 | 0.34% |
Michal Hocko | 5 | 0.08% | 1 | 0.34% |
Lukas Wunner | 5 | 0.08% | 1 | 0.34% |
Santosh Shilimkar | 4 | 0.06% | 1 | 0.34% |
Geert Uytterhoeven | 4 | 0.06% | 1 | 0.34% |
Luis R. Rodriguez | 4 | 0.06% | 2 | 0.68% |
Magnus Damm | 4 | 0.06% | 1 | 0.34% |
Martin Liu | 3 | 0.05% | 1 | 0.34% |
Wolfram Sang | 3 | 0.05% | 1 | 0.34% |
Björn Helgaas | 3 | 0.05% | 1 | 0.34% |
Michał Mirosław | 2 | 0.03% | 1 | 0.34% |
Pavel Machek | 2 | 0.03% | 2 | 0.68% |
Wanlong Gao | 1 | 0.02% | 1 | 0.34% |
Stephen Hemminger | 1 | 0.02% | 1 | 0.34% |
James Keniston | 1 | 0.02% | 1 | 0.34% |
Jim Cromie | 1 | 0.02% | 1 | 0.34% |
Robert P. J. Day | 1 | 0.02% | 1 | 0.34% |
Viresh Kumar | 1 | 0.02% | 1 | 0.34% |
Arun Sharma | 1 | 0.02% | 1 | 0.34% |
Randy Dunlap | 1 | 0.02% | 1 | 0.34% |
Michael Davidson | 1 | 0.02% | 1 | 0.34% |
Miguel Ojeda Sandonis | 1 | 0.02% | 1 | 0.34% |
Rytchkov Alexey | 1 | 0.02% | 1 | 0.34% |
Michal Suchanek | 1 | 0.02% | 1 | 0.34% |
Johannes Berg | 1 | 0.02% | 1 | 0.34% |
Total | 6570 | 292 |
// SPDX-License-Identifier: GPL-2.0 /* * device.h - generic, centralized driver model * * Copyright (c) 2001-2003 Patrick Mochel <mochel@osdl.org> * Copyright (c) 2004-2009 Greg Kroah-Hartman <gregkh@suse.de> * Copyright (c) 2008-2009 Novell Inc. * * See Documentation/driver-model/ for more information. */ #ifndef _DEVICE_H_ #define _DEVICE_H_ #include <linux/ioport.h> #include <linux/kobject.h> #include <linux/klist.h> #include <linux/list.h> #include <linux/lockdep.h> #include <linux/compiler.h> #include <linux/types.h> #include <linux/mutex.h> #include <linux/pm.h> #include <linux/atomic.h> #include <linux/ratelimit.h> #include <linux/uidgid.h> #include <linux/gfp.h> #include <linux/overflow.h> #include <asm/device.h> struct device; struct device_private; struct device_driver; struct driver_private; struct module; struct class; struct subsys_private; struct bus_type; struct device_node; struct fwnode_handle; struct iommu_ops; struct iommu_group; struct iommu_fwspec; struct dev_pin_info; struct bus_attribute { struct attribute attr; ssize_t (*show)(struct bus_type *bus, char *buf); ssize_t (*store)(struct bus_type *bus, const char *buf, size_t count); }; #define BUS_ATTR(_name, _mode, _show, _store) \ struct bus_attribute bus_attr_##_name = __ATTR(_name, _mode, _show, _store) #define BUS_ATTR_RW(_name) \ struct bus_attribute bus_attr_##_name = __ATTR_RW(_name) #define BUS_ATTR_RO(_name) \ struct bus_attribute bus_attr_##_name = __ATTR_RO(_name) #define BUS_ATTR_WO(_name) \ struct bus_attribute bus_attr_##_name = __ATTR_WO(_name) extern int __must_check bus_create_file(struct bus_type *, struct bus_attribute *); extern void bus_remove_file(struct bus_type *, struct bus_attribute *); /** * struct bus_type - The bus type of the device * * @name: The name of the bus. * @dev_name: Used for subsystems to enumerate devices like ("foo%u", dev->id). * @dev_root: Default device to use as the parent. * @bus_groups: Default attributes of the bus. * @dev_groups: Default attributes of the devices on the bus. * @drv_groups: Default attributes of the device drivers on the bus. * @match: Called, perhaps multiple times, whenever a new device or driver * is added for this bus. It should return a positive value if the * given device can be handled by the given driver and zero * otherwise. It may also return error code if determining that * the driver supports the device is not possible. In case of * -EPROBE_DEFER it will queue the device for deferred probing. * @uevent: Called when a device is added, removed, or a few other things * that generate uevents to add the environment variables. * @probe: Called when a new device or driver add to this bus, and callback * the specific driver's probe to initial the matched device. * @remove: Called when a device removed from this bus. * @shutdown: Called at shut-down time to quiesce the device. * * @online: Called to put the device back online (after offlining it). * @offline: Called to put the device offline for hot-removal. May fail. * * @suspend: Called when a device on this bus wants to go to sleep mode. * @resume: Called to bring a device on this bus out of sleep mode. * @num_vf: Called to find out how many virtual functions a device on this * bus supports. * @dma_configure: Called to setup DMA configuration on a device on * this bus. * @pm: Power management operations of this bus, callback the specific * device driver's pm-ops. * @iommu_ops: IOMMU specific operations for this bus, used to attach IOMMU * driver implementations to a bus and allow the driver to do * bus-specific setup * @p: The private data of the driver core, only the driver core can * touch this. * @lock_key: Lock class key for use by the lock validator * @need_parent_lock: When probing or removing a device on this bus, the * device core should lock the device's parent. * * A bus is a channel between the processor and one or more devices. For the * purposes of the device model, all devices are connected via a bus, even if * it is an internal, virtual, "platform" bus. Buses can plug into each other. * A USB controller is usually a PCI device, for example. The device model * represents the actual connections between buses and the devices they control. * A bus is represented by the bus_type structure. It contains the name, the * default attributes, the bus' methods, PM operations, and the driver core's * private data. */ struct bus_type { const char *name; const char *dev_name; struct device *dev_root; const struct attribute_group **bus_groups; const struct attribute_group **dev_groups; const struct attribute_group **drv_groups; int (*match)(struct device *dev, struct device_driver *drv); int (*uevent)(struct device *dev, struct kobj_uevent_env *env); int (*probe)(struct device *dev); int (*remove)(struct device *dev); void (*shutdown)(struct device *dev); int (*online)(struct device *dev); int (*offline)(struct device *dev); int (*suspend)(struct device *dev, pm_message_t state); int (*resume)(struct device *dev); int (*num_vf)(struct device *dev); int (*dma_configure)(struct device *dev); const struct dev_pm_ops *pm; const struct iommu_ops *iommu_ops; struct subsys_private *p; struct lock_class_key lock_key; bool need_parent_lock; }; extern int __must_check bus_register(struct bus_type *bus); extern void bus_unregister(struct bus_type *bus); extern int __must_check bus_rescan_devices(struct bus_type *bus); /* iterator helpers for buses */ struct subsys_dev_iter { struct klist_iter ki; const struct device_type *type; }; void subsys_dev_iter_init(struct subsys_dev_iter *iter, struct bus_type *subsys, struct device *start, const struct device_type *type); struct device *subsys_dev_iter_next(struct subsys_dev_iter *iter); void subsys_dev_iter_exit(struct subsys_dev_iter *iter); int bus_for_each_dev(struct bus_type *bus, struct device *start, void *data, int (*fn)(struct device *dev, void *data)); struct device *bus_find_device(struct bus_type *bus, struct device *start, void *data, int (*match)(struct device *dev, void *data)); struct device *bus_find_device_by_name(struct bus_type *bus, struct device *start, const char *name); struct device *subsys_find_device_by_id(struct bus_type *bus, unsigned int id, struct device *hint); int bus_for_each_drv(struct bus_type *bus, struct device_driver *start, void *data, int (*fn)(struct device_driver *, void *)); void bus_sort_breadthfirst(struct bus_type *bus, int (*compare)(const struct device *a, const struct device *b)); /* * Bus notifiers: Get notified of addition/removal of devices * and binding/unbinding of drivers to devices. * In the long run, it should be a replacement for the platform * notify hooks. */ struct notifier_block; extern int bus_register_notifier(struct bus_type *bus, struct notifier_block *nb); extern int bus_unregister_notifier(struct bus_type *bus, struct notifier_block *nb); /* All 4 notifers below get called with the target struct device * * as an argument. Note that those functions are likely to be called * with the device lock held in the core, so be careful. */ #define BUS_NOTIFY_ADD_DEVICE 0x00000001 /* device added */ #define BUS_NOTIFY_DEL_DEVICE 0x00000002 /* device to be removed */ #define BUS_NOTIFY_REMOVED_DEVICE 0x00000003 /* device removed */ #define BUS_NOTIFY_BIND_DRIVER 0x00000004 /* driver about to be bound */ #define BUS_NOTIFY_BOUND_DRIVER 0x00000005 /* driver bound to device */ #define BUS_NOTIFY_UNBIND_DRIVER 0x00000006 /* driver about to be unbound */ #define BUS_NOTIFY_UNBOUND_DRIVER 0x00000007 /* driver is unbound from the device */ #define BUS_NOTIFY_DRIVER_NOT_BOUND 0x00000008 /* driver fails to be bound */ extern struct kset *bus_get_kset(struct bus_type *bus); extern struct klist *bus_get_device_klist(struct bus_type *bus); /** * enum probe_type - device driver probe type to try * Device drivers may opt in for special handling of their * respective probe routines. This tells the core what to * expect and prefer. * * @PROBE_DEFAULT_STRATEGY: Used by drivers that work equally well * whether probed synchronously or asynchronously. * @PROBE_PREFER_ASYNCHRONOUS: Drivers for "slow" devices which * probing order is not essential for booting the system may * opt into executing their probes asynchronously. * @PROBE_FORCE_SYNCHRONOUS: Use this to annotate drivers that need * their probe routines to run synchronously with driver and * device registration (with the exception of -EPROBE_DEFER * handling - re-probing always ends up being done asynchronously). * * Note that the end goal is to switch the kernel to use asynchronous * probing by default, so annotating drivers with * %PROBE_PREFER_ASYNCHRONOUS is a temporary measure that allows us * to speed up boot process while we are validating the rest of the * drivers. */ enum probe_type { PROBE_DEFAULT_STRATEGY, PROBE_PREFER_ASYNCHRONOUS, PROBE_FORCE_SYNCHRONOUS, }; /** * struct device_driver - The basic device driver structure * @name: Name of the device driver. * @bus: The bus which the device of this driver belongs to. * @owner: The module owner. * @mod_name: Used for built-in modules. * @suppress_bind_attrs: Disables bind/unbind via sysfs. * @probe_type: Type of the probe (synchronous or asynchronous) to use. * @of_match_table: The open firmware table. * @acpi_match_table: The ACPI match table. * @probe: Called to query the existence of a specific device, * whether this driver can work with it, and bind the driver * to a specific device. * @remove: Called when the device is removed from the system to * unbind a device from this driver. * @shutdown: Called at shut-down time to quiesce the device. * @suspend: Called to put the device to sleep mode. Usually to a * low power state. * @resume: Called to bring a device from sleep mode. * @groups: Default attributes that get created by the driver core * automatically. * @pm: Power management operations of the device which matched * this driver. * @coredump: Called when sysfs entry is written to. The device driver * is expected to call the dev_coredump API resulting in a * uevent. * @p: Driver core's private data, no one other than the driver * core can touch this. * * The device driver-model tracks all of the drivers known to the system. * The main reason for this tracking is to enable the driver core to match * up drivers with new devices. Once drivers are known objects within the * system, however, a number of other things become possible. Device drivers * can export information and configuration variables that are independent * of any specific device. */ struct device_driver { const char *name; struct bus_type *bus; struct module *owner; const char *mod_name; /* used for built-in modules */ bool suppress_bind_attrs; /* disables bind/unbind via sysfs */ enum probe_type probe_type; const struct of_device_id *of_match_table; const struct acpi_device_id *acpi_match_table; int (*probe) (struct device *dev); int (*remove) (struct device *dev); void (*shutdown) (struct device *dev); int (*suspend) (struct device *dev, pm_message_t state); int (*resume) (struct device *dev); const struct attribute_group **groups; const struct dev_pm_ops *pm; void (*coredump) (struct device *dev); struct driver_private *p; }; extern int __must_check driver_register(struct device_driver *drv); extern void driver_unregister(struct device_driver *drv); extern struct device_driver *driver_find(const char *name, struct bus_type *bus); extern int driver_probe_done(void); extern void wait_for_device_probe(void); /* sysfs interface for exporting driver attributes */ struct driver_attribute { struct attribute attr; ssize_t (*show)(struct device_driver *driver, char *buf); ssize_t (*store)(struct device_driver *driver, const char *buf, size_t count); }; #define DRIVER_ATTR_RW(_name) \ struct driver_attribute driver_attr_##_name = __ATTR_RW(_name) #define DRIVER_ATTR_RO(_name) \ struct driver_attribute driver_attr_##_name = __ATTR_RO(_name) #define DRIVER_ATTR_WO(_name) \ struct driver_attribute driver_attr_##_name = __ATTR_WO(_name) extern int __must_check driver_create_file(struct device_driver *driver, const struct driver_attribute *attr); extern void driver_remove_file(struct device_driver *driver, const struct driver_attribute *attr); extern int __must_check driver_for_each_device(struct device_driver *drv, struct device *start, void *data, int (*fn)(struct device *dev, void *)); struct device *driver_find_device(struct device_driver *drv, struct device *start, void *data, int (*match)(struct device *dev, void *data)); int driver_deferred_probe_check_state(struct device *dev); /** * struct subsys_interface - interfaces to device functions * @name: name of the device function * @subsys: subsytem of the devices to attach to * @node: the list of functions registered at the subsystem * @add_dev: device hookup to device function handler * @remove_dev: device hookup to device function handler * * Simple interfaces attached to a subsystem. Multiple interfaces can * attach to a subsystem and its devices. Unlike drivers, they do not * exclusively claim or control devices. Interfaces usually represent * a specific functionality of a subsystem/class of devices. */ struct subsys_interface { const char *name; struct bus_type *subsys; struct list_head node; int (*add_dev)(struct device *dev, struct subsys_interface *sif); void (*remove_dev)(struct device *dev, struct subsys_interface *sif); }; int subsys_interface_register(struct subsys_interface *sif); void subsys_interface_unregister(struct subsys_interface *sif); int subsys_system_register(struct bus_type *subsys, const struct attribute_group **groups); int subsys_virtual_register(struct bus_type *subsys, const struct attribute_group **groups); /** * struct class - device classes * @name: Name of the class. * @owner: The module owner. * @class_groups: Default attributes of this class. * @dev_groups: Default attributes of the devices that belong to the class. * @dev_kobj: The kobject that represents this class and links it into the hierarchy. * @dev_uevent: Called when a device is added, removed from this class, or a * few other things that generate uevents to add the environment * variables. * @devnode: Callback to provide the devtmpfs. * @class_release: Called to release this class. * @dev_release: Called to release the device. * @shutdown_pre: Called at shut-down time before driver shutdown. * @ns_type: Callbacks so sysfs can detemine namespaces. * @namespace: Namespace of the device belongs to this class. * @get_ownership: Allows class to specify uid/gid of the sysfs directories * for the devices belonging to the class. Usually tied to * device's namespace. * @pm: The default device power management operations of this class. * @p: The private data of the driver core, no one other than the * driver core can touch this. * * A class is a higher-level view of a device that abstracts out low-level * implementation details. Drivers may see a SCSI disk or an ATA disk, but, * at the class level, they are all simply disks. Classes allow user space * to work with devices based on what they do, rather than how they are * connected or how they work. */ struct class { const char *name; struct module *owner; const struct attribute_group **class_groups; const struct attribute_group **dev_groups; struct kobject *dev_kobj; int (*dev_uevent)(struct device *dev, struct kobj_uevent_env *env); char *(*devnode)(struct device *dev, umode_t *mode); void (*class_release)(struct class *class); void (*dev_release)(struct device *dev); int (*shutdown_pre)(struct device *dev); const struct kobj_ns_type_operations *ns_type; const void *(*namespace)(struct device *dev); void (*get_ownership)(struct device *dev, kuid_t *uid, kgid_t *gid); const struct dev_pm_ops *pm; struct subsys_private *p; }; struct class_dev_iter { struct klist_iter ki; const struct device_type *type; }; extern struct kobject *sysfs_dev_block_kobj; extern struct kobject *sysfs_dev_char_kobj; extern int __must_check __class_register(struct class *class, struct lock_class_key *key); extern void class_unregister(struct class *class); /* This is a #define to keep the compiler from merging different * instances of the __key variable */ #define class_register(class) \ ({ \ static struct lock_class_key __key; \ __class_register(class, &__key); \ }) struct class_compat; struct class_compat *class_compat_register(const char *name); void class_compat_unregister(struct class_compat *cls); int class_compat_create_link(struct class_compat *cls, struct device *dev, struct device *device_link); void class_compat_remove_link(struct class_compat *cls, struct device *dev, struct device *device_link); extern void class_dev_iter_init(struct class_dev_iter *iter, struct class *class, struct device *start, const struct device_type *type); extern struct device *class_dev_iter_next(struct class_dev_iter *iter); extern void class_dev_iter_exit(struct class_dev_iter *iter); extern int class_for_each_device(struct class *class, struct device *start, void *data, int (*fn)(struct device *dev, void *data)); extern struct device *class_find_device(struct class *class, struct device *start, const void *data, int (*match)(struct device *, const void *)); struct class_attribute { struct attribute attr; ssize_t (*show)(struct class *class, struct class_attribute *attr, char *buf); ssize_t (*store)(struct class *class, struct class_attribute *attr, const char *buf, size_t count); }; #define CLASS_ATTR_RW(_name) \ struct class_attribute class_attr_##_name = __ATTR_RW(_name) #define CLASS_ATTR_RO(_name) \ struct class_attribute class_attr_##_name = __ATTR_RO(_name) #define CLASS_ATTR_WO(_name) \ struct class_attribute class_attr_##_name = __ATTR_WO(_name) extern int __must_check class_create_file_ns(struct class *class, const struct class_attribute *attr, const void *ns); extern void class_remove_file_ns(struct class *class, const struct class_attribute *attr, const void *ns); static inline int __must_check class_create_file(struct class *class, const struct class_attribute *attr) { return class_create_file_ns(class, attr, NULL); } static inline void class_remove_file(struct class *class, const struct class_attribute *attr) { return class_remove_file_ns(class, attr, NULL); } /* Simple class attribute that is just a static string */ struct class_attribute_string { struct class_attribute attr; char *str; }; /* Currently read-only only */ #define _CLASS_ATTR_STRING(_name, _mode, _str) \ { __ATTR(_name, _mode, show_class_attr_string, NULL), _str } #define CLASS_ATTR_STRING(_name, _mode, _str) \ struct class_attribute_string class_attr_##_name = \ _CLASS_ATTR_STRING(_name, _mode, _str) extern ssize_t show_class_attr_string(struct class *class, struct class_attribute *attr, char *buf); struct class_interface { struct list_head node; struct class *class; int (*add_dev) (struct device *, struct class_interface *); void (*remove_dev) (struct device *, struct class_interface *); }; extern int __must_check class_interface_register(struct class_interface *); extern void class_interface_unregister(struct class_interface *); extern struct class * __must_check __class_create(struct module *owner, const char *name, struct lock_class_key *key); extern void class_destroy(struct class *cls); /* This is a #define to keep the compiler from merging different * instances of the __key variable */ #define class_create(owner, name) \ ({ \ static struct lock_class_key __key; \ __class_create(owner, name, &__key); \ }) /* * The type of device, "struct device" is embedded in. A class * or bus can contain devices of different types * like "partitions" and "disks", "mouse" and "event". * This identifies the device type and carries type-specific * information, equivalent to the kobj_type of a kobject. * If "name" is specified, the uevent will contain it in * the DEVTYPE variable. */ struct device_type { const char *name; const struct attribute_group **groups; int (*uevent)(struct device *dev, struct kobj_uevent_env *env); char *(*devnode)(struct device *dev, umode_t *mode, kuid_t *uid, kgid_t *gid); void (*release)(struct device *dev); const struct dev_pm_ops *pm; }; /* interface for exporting device attributes */ struct device_attribute { struct attribute attr; ssize_t (*show)(struct device *dev, struct device_attribute *attr, char *buf); ssize_t (*store)(struct device *dev, struct device_attribute *attr, const char *buf, size_t count); }; struct dev_ext_attribute { struct device_attribute attr; void *var; }; ssize_t device_show_ulong(struct device *dev, struct device_attribute *attr, char *buf); ssize_t device_store_ulong(struct device *dev, struct device_attribute *attr, const char *buf, size_t count); ssize_t device_show_int(struct device *dev, struct device_attribute *attr, char *buf); ssize_t device_store_int(struct device *dev, struct device_attribute *attr, const char *buf, size_t count); ssize_t device_show_bool(struct device *dev, struct device_attribute *attr, char *buf); ssize_t device_store_bool(struct device *dev, struct device_attribute *attr, const char *buf, size_t count); #define DEVICE_ATTR(_name, _mode, _show, _store) \ struct device_attribute dev_attr_##_name = __ATTR(_name, _mode, _show, _store) #define DEVICE_ATTR_PREALLOC(_name, _mode, _show, _store) \ struct device_attribute dev_attr_##_name = \ __ATTR_PREALLOC(_name, _mode, _show, _store) #define DEVICE_ATTR_RW(_name) \ struct device_attribute dev_attr_##_name = __ATTR_RW(_name) #define DEVICE_ATTR_RO(_name) \ struct device_attribute dev_attr_##_name = __ATTR_RO(_name) #define DEVICE_ATTR_WO(_name) \ struct device_attribute dev_attr_##_name = __ATTR_WO(_name) #define DEVICE_ULONG_ATTR(_name, _mode, _var) \ struct dev_ext_attribute dev_attr_##_name = \ { __ATTR(_name, _mode, device_show_ulong, device_store_ulong), &(_var) } #define DEVICE_INT_ATTR(_name, _mode, _var) \ struct dev_ext_attribute dev_attr_##_name = \ { __ATTR(_name, _mode, device_show_int, device_store_int), &(_var) } #define DEVICE_BOOL_ATTR(_name, _mode, _var) \ struct dev_ext_attribute dev_attr_##_name = \ { __ATTR(_name, _mode, device_show_bool, device_store_bool), &(_var) } #define DEVICE_ATTR_IGNORE_LOCKDEP(_name, _mode, _show, _store) \ struct device_attribute dev_attr_##_name = \ __ATTR_IGNORE_LOCKDEP(_name, _mode, _show, _store) extern int device_create_file(struct device *device, const struct device_attribute *entry); extern void device_remove_file(struct device *dev, const struct device_attribute *attr); extern bool device_remove_file_self(struct device *dev, const struct device_attribute *attr); extern int __must_check device_create_bin_file(struct device *dev, const struct bin_attribute *attr); extern void device_remove_bin_file(struct device *dev, const struct bin_attribute *attr); /* device resource management */ typedef void (*dr_release_t)(struct device *dev, void *res); typedef int (*dr_match_t)(struct device *dev, void *res, void *match_data); #ifdef CONFIG_DEBUG_DEVRES extern void *__devres_alloc_node(dr_release_t release, size_t size, gfp_t gfp, int nid, const char *name) __malloc; #define devres_alloc(release, size, gfp) \ __devres_alloc_node(release, size, gfp, NUMA_NO_NODE, #release) #define devres_alloc_node(release, size, gfp, nid) \ __devres_alloc_node(release, size, gfp, nid, #release) #else extern void *devres_alloc_node(dr_release_t release, size_t size, gfp_t gfp, int nid) __malloc; static inline void *devres_alloc(dr_release_t release, size_t size, gfp_t gfp) { return devres_alloc_node(release, size, gfp, NUMA_NO_NODE); } #endif extern void devres_for_each_res(struct device *dev, dr_release_t release, dr_match_t match, void *match_data, void (*fn)(struct device *, void *, void *), void *data); extern void devres_free(void *res); extern void devres_add(struct device *dev, void *res); extern void *devres_find(struct device *dev, dr_release_t release, dr_match_t match, void *match_data); extern void *devres_get(struct device *dev, void *new_res, dr_match_t match, void *match_data); extern void *devres_remove(struct device *dev, dr_release_t release, dr_match_t match, void *match_data); extern int devres_destroy(struct device *dev, dr_release_t release, dr_match_t match, void *match_data); extern int devres_release(struct device *dev, dr_release_t release, dr_match_t match, void *match_data); /* devres group */ extern void * __must_check devres_open_group(struct device *dev, void *id, gfp_t gfp); extern void devres_close_group(struct device *dev, void *id); extern void devres_remove_group(struct device *dev, void *id); extern int devres_release_group(struct device *dev, void *id); /* managed devm_k.alloc/kfree for device drivers */ extern void *devm_kmalloc(struct device *dev, size_t size, gfp_t gfp) __malloc; extern __printf(3, 0) char *devm_kvasprintf(struct device *dev, gfp_t gfp, const char *fmt, va_list ap) __malloc; extern __printf(3, 4) char *devm_kasprintf(struct device *dev, gfp_t gfp, const char *fmt, ...) __malloc; static inline void *devm_kzalloc(struct device *dev, size_t size, gfp_t gfp) { return devm_kmalloc(dev, size, gfp | __GFP_ZERO); } static inline void *devm_kmalloc_array(struct device *dev, size_t n, size_t size, gfp_t flags) { size_t bytes; if (unlikely(check_mul_overflow(n, size, &bytes))) return NULL; return devm_kmalloc(dev, bytes, flags); } static inline void *devm_kcalloc(struct device *dev, size_t n, size_t size, gfp_t flags) { return devm_kmalloc_array(dev, n, size, flags | __GFP_ZERO); } extern void devm_kfree(struct device *dev, const void *p); extern char *devm_kstrdup(struct device *dev, const char *s, gfp_t gfp) __malloc; extern const char *devm_kstrdup_const(struct device *dev, const char *s, gfp_t gfp); extern void *devm_kmemdup(struct device *dev, const void *src, size_t len, gfp_t gfp); extern unsigned long devm_get_free_pages(struct device *dev, gfp_t gfp_mask, unsigned int order); extern void devm_free_pages(struct device *dev, unsigned long addr); void __iomem *devm_ioremap_resource(struct device *dev, struct resource *res); void __iomem *devm_of_iomap(struct device *dev, struct device_node *node, int index, resource_size_t *size); /* allows to add/remove a custom action to devres stack */ int devm_add_action(struct device *dev, void (*action)(void *), void *data); void devm_remove_action(struct device *dev, void (*action)(void *), void *data); static inline int devm_add_action_or_reset(struct device *dev, void (*action)(void *), void *data) { int ret; ret = devm_add_action(dev, action, data); if (ret) action(data); return ret; } /** * devm_alloc_percpu - Resource-managed alloc_percpu * @dev: Device to allocate per-cpu memory for * @type: Type to allocate per-cpu memory for * * Managed alloc_percpu. Per-cpu memory allocated with this function is * automatically freed on driver detach. * * RETURNS: * Pointer to allocated memory on success, NULL on failure. */ #define devm_alloc_percpu(dev, type) \ ((typeof(type) __percpu *)__devm_alloc_percpu((dev), sizeof(type), \ __alignof__(type))) void __percpu *__devm_alloc_percpu(struct device *dev, size_t size, size_t align); void devm_free_percpu(struct device *dev, void __percpu *pdata); struct device_dma_parameters { /* * a low level driver may set these to teach IOMMU code about * sg limitations. */ unsigned int max_segment_size; unsigned long segment_boundary_mask; }; /** * struct device_connection - Device Connection Descriptor * @endpoint: The names of the two devices connected together * @id: Unique identifier for the connection * @list: List head, private, for internal use only */ struct device_connection { const char *endpoint[2]; const char *id; struct list_head list; }; void *device_connection_find_match(struct device *dev, const char *con_id, void *data, void *(*match)(struct device_connection *con, int ep, void *data)); struct device *device_connection_find(struct device *dev, const char *con_id); void device_connection_add(struct device_connection *con); void device_connection_remove(struct device_connection *con); /** * device_connections_add - Add multiple device connections at once * @cons: Zero terminated array of device connection descriptors */ static inline void device_connections_add(struct device_connection *cons) { struct device_connection *c; for (c = cons; c->endpoint[0]; c++) device_connection_add(c); } /** * device_connections_remove - Remove multiple device connections at once * @cons: Zero terminated array of device connection descriptors */ static inline void device_connections_remove(struct device_connection *cons) { struct device_connection *c; for (c = cons; c->endpoint[0]; c++) device_connection_remove(c); } /** * enum device_link_state - Device link states. * @DL_STATE_NONE: The presence of the drivers is not being tracked. * @DL_STATE_DORMANT: None of the supplier/consumer drivers is present. * @DL_STATE_AVAILABLE: The supplier driver is present, but the consumer is not. * @DL_STATE_CONSUMER_PROBE: The consumer is probing (supplier driver present). * @DL_STATE_ACTIVE: Both the supplier and consumer drivers are present. * @DL_STATE_SUPPLIER_UNBIND: The supplier driver is unbinding. */ enum device_link_state { DL_STATE_NONE = -1, DL_STATE_DORMANT = 0, DL_STATE_AVAILABLE, DL_STATE_CONSUMER_PROBE, DL_STATE_ACTIVE, DL_STATE_SUPPLIER_UNBIND, }; /* * Device link flags. * * STATELESS: The core won't track the presence of supplier/consumer drivers. * AUTOREMOVE_CONSUMER: Remove the link automatically on consumer driver unbind. * PM_RUNTIME: If set, the runtime PM framework will use this link. * RPM_ACTIVE: Run pm_runtime_get_sync() on the supplier during link creation. * AUTOREMOVE_SUPPLIER: Remove the link automatically on supplier driver unbind. */ #define DL_FLAG_STATELESS BIT(0) #define DL_FLAG_AUTOREMOVE_CONSUMER BIT(1) #define DL_FLAG_PM_RUNTIME BIT(2) #define DL_FLAG_RPM_ACTIVE BIT(3) #define DL_FLAG_AUTOREMOVE_SUPPLIER BIT(4) /** * struct device_link - Device link representation. * @supplier: The device on the supplier end of the link. * @s_node: Hook to the supplier device's list of links to consumers. * @consumer: The device on the consumer end of the link. * @c_node: Hook to the consumer device's list of links to suppliers. * @status: The state of the link (with respect to the presence of drivers). * @flags: Link flags. * @rpm_active: Whether or not the consumer device is runtime-PM-active. * @kref: Count repeated addition of the same link. * @rcu_head: An RCU head to use for deferred execution of SRCU callbacks. */ struct device_link { struct device *supplier; struct list_head s_node; struct device *consumer; struct list_head c_node; enum device_link_state status; u32 flags; bool rpm_active; struct kref kref; #ifdef CONFIG_SRCU struct rcu_head rcu_head; #endif }; /** * enum dl_dev_state - Device driver presence tracking information. * @DL_DEV_NO_DRIVER: There is no driver attached to the device. * @DL_DEV_PROBING: A driver is probing. * @DL_DEV_DRIVER_BOUND: The driver has been bound to the device. * @DL_DEV_UNBINDING: The driver is unbinding from the device. */ enum dl_dev_state { DL_DEV_NO_DRIVER = 0, DL_DEV_PROBING, DL_DEV_DRIVER_BOUND, DL_DEV_UNBINDING, }; /** * struct dev_links_info - Device data related to device links. * @suppliers: List of links to supplier devices. * @consumers: List of links to consumer devices. * @status: Driver status information. */ struct dev_links_info { struct list_head suppliers; struct list_head consumers; enum dl_dev_state status; }; /** * struct device - The basic device structure * @parent: The device's "parent" device, the device to which it is attached. * In most cases, a parent device is some sort of bus or host * controller. If parent is NULL, the device, is a top-level device, * which is not usually what you want. * @p: Holds the private data of the driver core portions of the device. * See the comment of the struct device_private for detail. * @kobj: A top-level, abstract class from which other classes are derived. * @init_name: Initial name of the device. * @type: The type of device. * This identifies the device type and carries type-specific * information. * @mutex: Mutex to synchronize calls to its driver. * @bus: Type of bus device is on. * @driver: Which driver has allocated this * @platform_data: Platform data specific to the device. * Example: For devices on custom boards, as typical of embedded * and SOC based hardware, Linux often uses platform_data to point * to board-specific structures describing devices and how they * are wired. That can include what ports are available, chip * variants, which GPIO pins act in what additional roles, and so * on. This shrinks the "Board Support Packages" (BSPs) and * minimizes board-specific #ifdefs in drivers. * @driver_data: Private pointer for driver specific info. * @links: Links to suppliers and consumers of this device. * @power: For device power management. * See Documentation/driver-api/pm/devices.rst for details. * @pm_domain: Provide callbacks that are executed during system suspend, * hibernation, system resume and during runtime PM transitions * along with subsystem-level and driver-level callbacks. * @pins: For device pin management. * See Documentation/driver-api/pinctl.rst for details. * @msi_list: Hosts MSI descriptors * @msi_domain: The generic MSI domain this device is using. * @numa_node: NUMA node this device is close to. * @dma_ops: DMA mapping operations for this device. * @dma_mask: Dma mask (if dma'ble device). * @coherent_dma_mask: Like dma_mask, but for alloc_coherent mapping as not all * hardware supports 64-bit addresses for consistent allocations * such descriptors. * @bus_dma_mask: Mask of an upstream bridge or bus which imposes a smaller DMA * limit than the device itself supports. * @dma_pfn_offset: offset of DMA memory range relatively of RAM * @dma_parms: A low level driver may set these to teach IOMMU code about * segment limitations. * @dma_pools: Dma pools (if dma'ble device). * @dma_mem: Internal for coherent mem override. * @cma_area: Contiguous memory area for dma allocations * @archdata: For arch-specific additions. * @of_node: Associated device tree node. * @fwnode: Associated device node supplied by platform firmware. * @devt: For creating the sysfs "dev". * @id: device instance * @devres_lock: Spinlock to protect the resource of the device. * @devres_head: The resources list of the device. * @knode_class: The node used to add the device to the class list. * @class: The class of the device. * @groups: Optional attribute groups. * @release: Callback to free the device after all references have * gone away. This should be set by the allocator of the * device (i.e. the bus driver that discovered the device). * @iommu_group: IOMMU group the device belongs to. * @iommu_fwspec: IOMMU-specific properties supplied by firmware. * * @offline_disabled: If set, the device is permanently online. * @offline: Set after successful invocation of bus type's .offline(). * @of_node_reused: Set if the device-tree node is shared with an ancestor * device. * @dma_coherent: this particular device is dma coherent, even if the * architecture supports non-coherent devices. * * At the lowest level, every device in a Linux system is represented by an * instance of struct device. The device structure contains the information * that the device model core needs to model the system. Most subsystems, * however, track additional information about the devices they host. As a * result, it is rare for devices to be represented by bare device structures; * instead, that structure, like kobject structures, is usually embedded within * a higher-level representation of the device. */ struct device { struct device *parent; struct device_private *p; struct kobject kobj; const char *init_name; /* initial name of the device */ const struct device_type *type; struct mutex mutex; /* mutex to synchronize calls to * its driver. */ struct bus_type *bus; /* type of bus device is on */ struct device_driver *driver; /* which driver has allocated this device */ void *platform_data; /* Platform specific data, device core doesn't touch it */ void *driver_data; /* Driver data, set and get with dev_set/get_drvdata */ struct dev_links_info links; struct dev_pm_info power; struct dev_pm_domain *pm_domain; #ifdef CONFIG_GENERIC_MSI_IRQ_DOMAIN struct irq_domain *msi_domain; #endif #ifdef CONFIG_PINCTRL struct dev_pin_info *pins; #endif #ifdef CONFIG_GENERIC_MSI_IRQ struct list_head msi_list; #endif #ifdef CONFIG_NUMA int numa_node; /* NUMA node this device is close to */ #endif const struct dma_map_ops *dma_ops; u64 *dma_mask; /* dma mask (if dma'able device) */ u64 coherent_dma_mask;/* Like dma_mask, but for alloc_coherent mappings as not all hardware supports 64 bit addresses for consistent allocations such descriptors. */ u64 bus_dma_mask; /* upstream dma_mask constraint */ unsigned long dma_pfn_offset; struct device_dma_parameters *dma_parms; struct list_head dma_pools; /* dma pools (if dma'ble) */ struct dma_coherent_mem *dma_mem; /* internal for coherent mem override */ #ifdef CONFIG_DMA_CMA struct cma *cma_area; /* contiguous memory area for dma allocations */ #endif /* arch specific additions */ struct dev_archdata archdata; struct device_node *of_node; /* associated device tree node */ struct fwnode_handle *fwnode; /* firmware device node */ dev_t devt; /* dev_t, creates the sysfs "dev" */ u32 id; /* device instance */ spinlock_t devres_lock; struct list_head devres_head; struct klist_node knode_class; struct class *class; const struct attribute_group **groups; /* optional groups */ void (*release)(struct device *dev); struct iommu_group *iommu_group; struct iommu_fwspec *iommu_fwspec; bool offline_disabled:1; bool offline:1; bool of_node_reused:1; #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \ defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \ defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) bool dma_coherent:1; #endif }; static inline struct device *kobj_to_dev(struct kobject *kobj) { return container_of(kobj, struct device, kobj); } /** * device_iommu_mapped - Returns true when the device DMA is translated * by an IOMMU * @dev: Device to perform the check on */ static inline bool device_iommu_mapped(struct device *dev) { return (dev->iommu_group != NULL); } /* Get the wakeup routines, which depend on struct device */ #include <linux/pm_wakeup.h> static inline const char *dev_name(const struct device *dev) { /* Use the init name until the kobject becomes available */ if (dev->init_name) return dev->init_name; return kobject_name(&dev->kobj); } extern __printf(2, 3) int dev_set_name(struct device *dev, const char *name, ...); #ifdef CONFIG_NUMA static inline int dev_to_node(struct device *dev) { return dev->numa_node; } static inline void set_dev_node(struct device *dev, int node) { dev->numa_node = node; } #else static inline int dev_to_node(struct device *dev) { return -1; } static inline void set_dev_node(struct device *dev, int node) { } #endif static inline struct irq_domain *dev_get_msi_domain(const struct device *dev) { #ifdef CONFIG_GENERIC_MSI_IRQ_DOMAIN return dev->msi_domain; #else return NULL; #endif } static inline void dev_set_msi_domain(struct device *dev, struct irq_domain *d) { #ifdef CONFIG_GENERIC_MSI_IRQ_DOMAIN dev->msi_domain = d; #endif } static inline void *dev_get_drvdata(const struct device *dev) { return dev->driver_data; } static inline void dev_set_drvdata(struct device *dev, void *data) { dev->driver_data = data; } static inline struct pm_subsys_data *dev_to_psd(struct device *dev) { return dev ? dev->power.subsys_data : NULL; } static inline unsigned int dev_get_uevent_suppress(const struct device *dev) { return dev->kobj.uevent_suppress; } static inline void dev_set_uevent_suppress(struct device *dev, int val) { dev->kobj.uevent_suppress = val; } static inline int device_is_registered(struct device *dev) { return dev->kobj.state_in_sysfs; } static inline void device_enable_async_suspend(struct device *dev) { if (!dev->power.is_prepared) dev->power.async_suspend = true; } static inline void device_disable_async_suspend(struct device *dev) { if (!dev->power.is_prepared) dev->power.async_suspend = false; } static inline bool device_async_suspend_enabled(struct device *dev) { return !!dev->power.async_suspend; } static inline void dev_pm_syscore_device(struct device *dev, bool val) { #ifdef CONFIG_PM_SLEEP dev->power.syscore = val; #endif } static inline void dev_pm_set_driver_flags(struct device *dev, u32 flags) { dev->power.driver_flags = flags; } static inline bool dev_pm_test_driver_flags(struct device *dev, u32 flags) { return !!(dev->power.driver_flags & flags); } static inline void device_lock(struct device *dev) { mutex_lock(&dev->mutex); } static inline int device_lock_interruptible(struct device *dev) { return mutex_lock_interruptible(&dev->mutex); } static inline int device_trylock(struct device *dev) { return mutex_trylock(&dev->mutex); } static inline void device_unlock(struct device *dev) { mutex_unlock(&dev->mutex); } static inline void device_lock_assert(struct device *dev) { lockdep_assert_held(&dev->mutex); } static inline struct device_node *dev_of_node(struct device *dev) { if (!IS_ENABLED(CONFIG_OF)) return NULL; return dev->of_node; } void driver_init(void); /* * High level routines for use by the bus drivers */ extern int __must_check device_register(struct device *dev); extern void device_unregister(struct device *dev); extern void device_initialize(struct device *dev); extern int __must_check device_add(struct device *dev); extern void device_del(struct device *dev); extern int device_for_each_child(struct device *dev, void *data, int (*fn)(struct device *dev, void *data)); extern int device_for_each_child_reverse(struct device *dev, void *data, int (*fn)(struct device *dev, void *data)); extern struct device *device_find_child(struct device *dev, void *data, int (*match)(struct device *dev, void *data)); extern int device_rename(struct device *dev, const char *new_name); extern int device_move(struct device *dev, struct device *new_parent, enum dpm_order dpm_order); extern const char *device_get_devnode(struct device *dev, umode_t *mode, kuid_t *uid, kgid_t *gid, const char **tmp); static inline bool device_supports_offline(struct device *dev) { return dev->bus && dev->bus->offline && dev->bus->online; } extern void lock_device_hotplug(void); extern void unlock_device_hotplug(void); extern int lock_device_hotplug_sysfs(void); extern int device_offline(struct device *dev); extern int device_online(struct device *dev); extern void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode); extern void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode); void device_set_of_node_from_dev(struct device *dev, const struct device *dev2); static inline int dev_num_vf(struct device *dev) { if (dev->bus && dev->bus->num_vf) return dev->bus->num_vf(dev); return 0; } /* * Root device objects for grouping under /sys/devices */ extern struct device *__root_device_register(const char *name, struct module *owner); /* This is a macro to avoid include problems with THIS_MODULE */ #define root_device_register(name) \ __root_device_register(name, THIS_MODULE) extern void root_device_unregister(struct device *root); static inline void *dev_get_platdata(const struct device *dev) { return dev->platform_data; } /* * Manual binding of a device to driver. See drivers/base/bus.c * for information on use. */ extern int __must_check device_bind_driver(struct device *dev); extern void device_release_driver(struct device *dev); extern int __must_check device_attach(struct device *dev); extern int __must_check driver_attach(struct device_driver *drv); extern void device_initial_probe(struct device *dev); extern int __must_check device_reprobe(struct device *dev); extern bool device_is_bound(struct device *dev); /* * Easy functions for dynamically creating devices on the fly */ extern __printf(5, 0) struct device *device_create_vargs(struct class *cls, struct device *parent, dev_t devt, void *drvdata, const char *fmt, va_list vargs); extern __printf(5, 6) struct device *device_create(struct class *cls, struct device *parent, dev_t devt, void *drvdata, const char *fmt, ...); extern __printf(6, 7) struct device *device_create_with_groups(struct class *cls, struct device *parent, dev_t devt, void *drvdata, const struct attribute_group **groups, const char *fmt, ...); extern void device_destroy(struct class *cls, dev_t devt); extern int __must_check device_add_groups(struct device *dev, const struct attribute_group **groups); extern void device_remove_groups(struct device *dev, const struct attribute_group **groups); static inline int __must_check device_add_group(struct device *dev, const struct attribute_group *grp) { const struct attribute_group *groups[] = { grp, NULL }; return device_add_groups(dev, groups); } static inline void device_remove_group(struct device *dev, const struct attribute_group *grp) { const struct attribute_group *groups[] = { grp, NULL }; return device_remove_groups(dev, groups); } extern int __must_check devm_device_add_groups(struct device *dev, const struct attribute_group **groups); extern void devm_device_remove_groups(struct device *dev, const struct attribute_group **groups); extern int __must_check devm_device_add_group(struct device *dev, const struct attribute_group *grp); extern void devm_device_remove_group(struct device *dev, const struct attribute_group *grp); /* * Platform "fixup" functions - allow the platform to have their say * about devices and actions that the general device layer doesn't * know about. */ /* Notify platform of device discovery */ extern int (*platform_notify)(struct device *dev); extern int (*platform_notify_remove)(struct device *dev); /* * get_device - atomically increment the reference count for the device. * */ extern struct device *get_device(struct device *dev); extern void put_device(struct device *dev); #ifdef CONFIG_DEVTMPFS extern int devtmpfs_create_node(struct device *dev); extern int devtmpfs_delete_node(struct device *dev); extern int devtmpfs_mount(const char *mntdir); #else static inline int devtmpfs_create_node(struct device *dev) { return 0; } static inline int devtmpfs_delete_node(struct device *dev) { return 0; } static inline int devtmpfs_mount(const char *mountpoint) { return 0; } #endif /* drivers/base/power/shutdown.c */ extern void device_shutdown(void); /* debugging and troubleshooting/diagnostic helpers. */ extern const char *dev_driver_string(const struct device *dev); /* Device links interface. */ struct device_link *device_link_add(struct device *consumer, struct device *supplier, u32 flags); void device_link_del(struct device_link *link); void device_link_remove(void *consumer, struct device *supplier); #ifndef dev_fmt #define dev_fmt(fmt) fmt #endif #ifdef CONFIG_PRINTK __printf(3, 0) int dev_vprintk_emit(int level, const struct device *dev, const char *fmt, va_list args); __printf(3, 4) int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...); __printf(3, 4) void dev_printk(const char *level, const struct device *dev, const char *fmt, ...); __printf(2, 3) void _dev_emerg(const struct device *dev, const char *fmt, ...); __printf(2, 3) void _dev_alert(const struct device *dev, const char *fmt, ...); __printf(2, 3) void _dev_crit(const struct device *dev, const char *fmt, ...); __printf(2, 3) void _dev_err(const struct device *dev, const char *fmt, ...); __printf(2, 3) void _dev_warn(const struct device *dev, const char *fmt, ...); __printf(2, 3) void _dev_notice(const struct device *dev, const char *fmt, ...); __printf(2, 3) void _dev_info(const struct device *dev, const char *fmt, ...); #else static inline __printf(3, 0) int dev_vprintk_emit(int level, const struct device *dev, const char *fmt, va_list args) { return 0; } static inline __printf(3, 4) int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...) { return 0; } static inline void __dev_printk(const char *level, const struct device *dev, struct va_format *vaf) {} static inline __printf(3, 4) void dev_printk(const char *level, const struct device *dev, const char *fmt, ...) {} static inline __printf(2, 3) void _dev_emerg(const struct device *dev, const char *fmt, ...) {} static inline __printf(2, 3) void _dev_crit(const struct device *dev, const char *fmt, ...) {} static inline __printf(2, 3) void _dev_alert(const struct device *dev, const char *fmt, ...) {} static inline __printf(2, 3) void _dev_err(const struct device *dev, const char *fmt, ...) {} static inline __printf(2, 3) void _dev_warn(const struct device *dev, const char *fmt, ...) {} static inline __printf(2, 3) void _dev_notice(const struct device *dev, const char *fmt, ...) {} static inline __printf(2, 3) void _dev_info(const struct device *dev, const char *fmt, ...) {} #endif /* * #defines for all the dev_<level> macros to prefix with whatever * possible use of #define dev_fmt(fmt) ... */ #define dev_emerg(dev, fmt, ...) \ _dev_emerg(dev, dev_fmt(fmt), ##__VA_ARGS__) #define dev_crit(dev, fmt, ...) \ _dev_crit(dev, dev_fmt(fmt), ##__VA_ARGS__) #define dev_alert(dev, fmt, ...) \ _dev_alert(dev, dev_fmt(fmt), ##__VA_ARGS__) #define dev_err(dev, fmt, ...) \ _dev_err(dev, dev_fmt(fmt), ##__VA_ARGS__) #define dev_warn(dev, fmt, ...) \ _dev_warn(dev, dev_fmt(fmt), ##__VA_ARGS__) #define dev_notice(dev, fmt, ...) \ _dev_notice(dev, dev_fmt(fmt), ##__VA_ARGS__) #define dev_info(dev, fmt, ...) \ _dev_info(dev, dev_fmt(fmt), ##__VA_ARGS__) #if defined(CONFIG_DYNAMIC_DEBUG) #define dev_dbg(dev, fmt, ...) \ dynamic_dev_dbg(dev, dev_fmt(fmt), ##__VA_ARGS__) #elif defined(DEBUG) #define dev_dbg(dev, fmt, ...) \ dev_printk(KERN_DEBUG, dev, dev_fmt(fmt), ##__VA_ARGS__) #else #define dev_dbg(dev, fmt, ...) \ ({ \ if (0) \ dev_printk(KERN_DEBUG, dev, dev_fmt(fmt), ##__VA_ARGS__); \ }) #endif #ifdef CONFIG_PRINTK #define dev_level_once(dev_level, dev, fmt, ...) \ do { \ static bool __print_once __read_mostly; \ \ if (!__print_once) { \ __print_once = true; \ dev_level(dev, fmt, ##__VA_ARGS__); \ } \ } while (0) #else #define dev_level_once(dev_level, dev, fmt, ...) \ do { \ if (0) \ dev_level(dev, fmt, ##__VA_ARGS__); \ } while (0) #endif #define dev_emerg_once(dev, fmt, ...) \ dev_level_once(dev_emerg, dev, fmt, ##__VA_ARGS__) #define dev_alert_once(dev, fmt, ...) \ dev_level_once(dev_alert, dev, fmt, ##__VA_ARGS__) #define dev_crit_once(dev, fmt, ...) \ dev_level_once(dev_crit, dev, fmt, ##__VA_ARGS__) #define dev_err_once(dev, fmt, ...) \ dev_level_once(dev_err, dev, fmt, ##__VA_ARGS__) #define dev_warn_once(dev, fmt, ...) \ dev_level_once(dev_warn, dev, fmt, ##__VA_ARGS__) #define dev_notice_once(dev, fmt, ...) \ dev_level_once(dev_notice, dev, fmt, ##__VA_ARGS__) #define dev_info_once(dev, fmt, ...) \ dev_level_once(dev_info, dev, fmt, ##__VA_ARGS__) #define dev_dbg_once(dev, fmt, ...) \ dev_level_once(dev_dbg, dev, fmt, ##__VA_ARGS__) #define dev_level_ratelimited(dev_level, dev, fmt, ...) \ do { \ static DEFINE_RATELIMIT_STATE(_rs, \ DEFAULT_RATELIMIT_INTERVAL, \ DEFAULT_RATELIMIT_BURST); \ if (__ratelimit(&_rs)) \ dev_level(dev, fmt, ##__VA_ARGS__); \ } while (0) #define dev_emerg_ratelimited(dev, fmt, ...) \ dev_level_ratelimited(dev_emerg, dev, fmt, ##__VA_ARGS__) #define dev_alert_ratelimited(dev, fmt, ...) \ dev_level_ratelimited(dev_alert, dev, fmt, ##__VA_ARGS__) #define dev_crit_ratelimited(dev, fmt, ...) \ dev_level_ratelimited(dev_crit, dev, fmt, ##__VA_ARGS__) #define dev_err_ratelimited(dev, fmt, ...) \ dev_level_ratelimited(dev_err, dev, fmt, ##__VA_ARGS__) #define dev_warn_ratelimited(dev, fmt, ...) \ dev_level_ratelimited(dev_warn, dev, fmt, ##__VA_ARGS__) #define dev_notice_ratelimited(dev, fmt, ...) \ dev_level_ratelimited(dev_notice, dev, fmt, ##__VA_ARGS__) #define dev_info_ratelimited(dev, fmt, ...) \ dev_level_ratelimited(dev_info, dev, fmt, ##__VA_ARGS__) #if defined(CONFIG_DYNAMIC_DEBUG) /* descriptor check is first to prevent flooding with "callbacks suppressed" */ #define dev_dbg_ratelimited(dev, fmt, ...) \ do { \ static DEFINE_RATELIMIT_STATE(_rs, \ DEFAULT_RATELIMIT_INTERVAL, \ DEFAULT_RATELIMIT_BURST); \ DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, fmt); \ if (unlikely(descriptor.flags & _DPRINTK_FLAGS_PRINT) && \ __ratelimit(&_rs)) \ __dynamic_dev_dbg(&descriptor, dev, dev_fmt(fmt), \ ##__VA_ARGS__); \ } while (0) #elif defined(DEBUG) #define dev_dbg_ratelimited(dev, fmt, ...) \ do { \ static DEFINE_RATELIMIT_STATE(_rs, \ DEFAULT_RATELIMIT_INTERVAL, \ DEFAULT_RATELIMIT_BURST); \ if (__ratelimit(&_rs)) \ dev_printk(KERN_DEBUG, dev, dev_fmt(fmt), ##__VA_ARGS__); \ } while (0) #else #define dev_dbg_ratelimited(dev, fmt, ...) \ do { \ if (0) \ dev_printk(KERN_DEBUG, dev, dev_fmt(fmt), ##__VA_ARGS__); \ } while (0) #endif #ifdef VERBOSE_DEBUG #define dev_vdbg dev_dbg #else #define dev_vdbg(dev, fmt, ...) \ ({ \ if (0) \ dev_printk(KERN_DEBUG, dev, dev_fmt(fmt), ##__VA_ARGS__); \ }) #endif /* * dev_WARN*() acts like dev_printk(), but with the key difference of * using WARN/WARN_ONCE to include file/line information and a backtrace. */ #define dev_WARN(dev, format, arg...) \ WARN(1, "%s %s: " format, dev_driver_string(dev), dev_name(dev), ## arg); #define dev_WARN_ONCE(dev, condition, format, arg...) \ WARN_ONCE(condition, "%s %s: " format, \ dev_driver_string(dev), dev_name(dev), ## arg) /* Create alias, so I can be autoloaded. */ #define MODULE_ALIAS_CHARDEV(major,minor) \ MODULE_ALIAS("char-major-" __stringify(major) "-" __stringify(minor)) #define MODULE_ALIAS_CHARDEV_MAJOR(major) \ MODULE_ALIAS("char-major-" __stringify(major) "-*") #ifdef CONFIG_SYSFS_DEPRECATED extern long sysfs_deprecated; #else #define sysfs_deprecated 0 #endif /** * module_driver() - Helper macro for drivers that don't do anything * special in module init/exit. This eliminates a lot of boilerplate. * Each module may only use this macro once, and calling it replaces * module_init() and module_exit(). * * @__driver: driver name * @__register: register function for this driver type * @__unregister: unregister function for this driver type * @...: Additional arguments to be passed to __register and __unregister. * * Use this macro to construct bus specific macros for registering * drivers, and do not use it on its own. */ #define module_driver(__driver, __register, __unregister, ...) \ static int __init __driver##_init(void) \ { \ return __register(&(__driver) , ##__VA_ARGS__); \ } \ module_init(__driver##_init); \ static void __exit __driver##_exit(void) \ { \ __unregister(&(__driver) , ##__VA_ARGS__); \ } \ module_exit(__driver##_exit); /** * builtin_driver() - Helper macro for drivers that don't do anything * special in init and have no exit. This eliminates some boilerplate. * Each driver may only use this macro once, and calling it replaces * device_initcall (or in some cases, the legacy __initcall). This is * meant to be a direct parallel of module_driver() above but without * the __exit stuff that is not used for builtin cases. * * @__driver: driver name * @__register: register function for this driver type * @...: Additional arguments to be passed to __register * * Use this macro to construct bus specific macros for registering * drivers, and do not use it on its own. */ #define builtin_driver(__driver, __register, ...) \ static int __init __driver##_init(void) \ { \ return __register(&(__driver) , ##__VA_ARGS__); \ } \ device_initcall(__driver##_init); #endif /* _DEVICE_H_ */
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1